IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 1, JANUARY 2003 39

Learning a Semantic Space From User’s
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Abstract—As current methods for content-based retrieval are in new feature representations for images in the database so
incapable of capturing the semantics of images, we experiment that the system’s future retrieval performance is enhanced.
with using spectral methods to infer a semantic space from user's goth short- and long-term learning processes are useful in an

relevance feedback, so that our system will gradually improve its . . .
retrieval performance through accumulated user interactions. image retrieval system, though the former has been the primary

In addition to the long-term learning process, we also model focus of research so far.
the traditional approaches to query refinement using relevance  Despite much work on relevance feedback forimage retrieval
feedback as a short-term learning process. The proposed short- (j.e., short-term learning) in the past few years, little work has
ﬁgg 'gr‘rg;g\glliaggﬁ flriel(msrivrﬁreknstz;ar\éesl?l?segnln;elg:afaegollrlg(():t%nn been done from the theoretical perspective. In contrast, com-
of ir%]ages haveyshowh th% effectiveness and robugstness of ou Utati(_)nal on'"n_e learning algorithms [8] have bee_n well ana-
proposed algorithms. lyzed in text retrieval [2], [5], [10], [15]. These techniques have
Index Terms—mage retrieval, learning, semantics, singular been better understood from ath_eoretlcgl standpoint, Iea(_jlng to
value decomposition, user’s relevance feedback. performance guarantees and guidance in parameter settings. In
this paper, we use mistake-driven on-line learning algorithms to
model the process of image retrieval based on user’s relevance
|. INTRODUCTION feedback. The on-line learning algorithm winnow [11] is used to
UE TO the rapid growth of the number of digital im-train an image classifier for searching for more relevant images
ages, there is an increasing demand for effective |ma§@m the database based on the pOSitive and negative examples
management tools. Conventional content-based image retrig¥&vided by a user. Following the theoretical analysis in [11],
(CBIR) systems [6], [13], [17] use low-level features (color, texte derive a mistake upper bound, i.e., a bound on how many
ture, shape, etc.) automatically extracted from the images theilevance feedbacks are needed for reaching a satisfactory per-
selves to search for images relevant to a user's query. WHigmance in image retrieval.
there are research efforts to improve performance by using dif-To address the limitations of current systems with regard
ferent low-level features, and by modifying the similarity medo searching for images at the semantic level, we propose
sures constructed from them, it is argued in [19] that, as uncenlong-term learning method that creates a semantic space
strained object recognition is still beyond the reach of curremaplicitly, based on user interactions in a relevance feedback
technology, these content-based systems can at best capture@diivgn query-by-example system. The idea is that, after several
pre-attentive similarity, not semantic similarity. rounds of relevance feedback, the user has a pool of images
In recent years, much has been written about relevarit@t are relevant to his query. Assuming these images belong
feedback in content-based image retrieval from the perspectigea semantic class, by aggregating such results we may
of machine learning [20], [21], [23]-[25], yet most learningncrementally construct a semantic space, with a concomitant
methods take into account only the current query session, wtillgorovement in the system’s performance. We use the singular
the knowledge obtained from the past user interactions witalue decomposition (SVD) to reduce the dimensionality
the system is forgotten. To compare the effects of different the semantic space, both for savings in storage and for
learning techniques, a useful distinction can be made betwgssible improvement in retrieval performance. Due to the
short-termlearning within a single query session dodg-term dimensionality reduction, the relevant and irrelevant images
learning over the course of many query sessions. Short-teifithe semantic space may be no longer linearly separable. In
learning is memoryless and aims to improve the retrievillis case, systems such as support vector machines (SVMs)
performance of the current query session. Long-term learniggn be used to learn the target function for retrieving relevant
aims to accumulate knowledge from users, which could resifhages. Our experiments show that the SVD helps to correlate
relevance feedbacks from different search sessions and reduce
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Il. PREVIOUS WORK semantic space may no longer be linearly separable after
dimensionality reduction. In this case, a SVM training
algorithm is used to retrieve relevant images from the
database.

ﬁ) An image retrieval system integrating both the short-
and long-term learning algorithms is developed. Our
experimental results demonstrate that the proposed
learning techniques are effective in capturing user’s
relevance feedback for improving the system’s short-
and long-term performances.

One of the most popular models used in information retrieval
is the vector space model [18]. Various retrieval techniques have
been developed for this model, including the method of rele-
vance feedback. Most previous research on relevance feedbac
has fallen into the following three categories: retrieval based on
query point movement [17], retrieval based on re-weighting of
different feature dimensions [7], and retrieval based on updating
the probability distribution of images in the database [4].

In recent years, some learning-based approaches have been
proposed. Wit al.[24] proposed a Discriminant-EM algorithm
within the transductive learning framework in which both la-Ill. L ONG-TERM LEARNING: INFERRING A SEMANTIC SPACE
beled and unlabeled images are used. ®ieal. [22] presented  jost existing relevance feedback techniques focus on im-
a framework for image retrieval based on representing imagggying the retrieval performance of the current query session,
with a very large set of highly selective features. Queries ag the knowledge obtained from past user interactions with
interactively learned online with a simple boosting algorithmne system is forgotten. In this section, we describe a long-term
Tonget al. [23] proposed the use of a SVM active leaming akearning approach for constructing a semantic space from user
gorithm for conducting effective relevance feedback for imaggieractions and image content. The proposed learning tech-
retrieval. While most machine learning algorithms are passimhue is able to accumulate knowledge from users over time,

in the sense that they are generally applied using a randomly §gq gradually enhance the retrieval performance of the system.
lected training set, the SVM active learning algorithm chooses

the most informative images within the database, and asks Km_e
user to label these. ) ]
All of these approaches have achieved good empirical re-V& adopt the vector space model of information re-
sults. However, a common limitation of them is that they do néfiéval [18] to represent the semantic space constructed from
have a mechanism to memorize or accumulate relevance feégfr-and-system interactions. In this model, one has a matrix
back information provided by users; consequently, the knowf (Say of sizem x ), whose rows correspond to images
edge obtained from the previous queries and relevance feedb@gfl Whose columns correspond to attributes. In a traditional
is forgotten. image retrieval system, these columns correspond to low-level
Cox et al. [3] showed that query-by-example performancgaatures_ (e.g._, color and texture) or pre-annotated hig_h-level
may improve by placing images in a semantic space, even if ffgmantic attributes (e.g., dog, cat, tree, people, ég).is
user does not actually query by keyword (i.e., if the semanficmeasure of the extent to which imagéas attributey; it
attributes inducing the similarity measure are hidden). In th&2y be binary, weighted by frequency, etc. Tilerow of B
experiment, pictures were visually examined to see which B2y then be regarded as the coordinates ofithemage in
approximately 125 keywords were relevant, and these raﬁr@%n—dlmensmnal vector space, and the dot-product between
were used to construct a semantic space for the images. ~ TOWS i1 and i of 5 may be regarded as a measure of the
In [9], an image retrieval system based on an informaticimilarity between images andi,. Dividing this dot-product
embedding scheme is proposed. Using relevance feedback, Qe norms of the rows and, gives the cosine of the angle
system gradually embeds correlations between images frofi&{ween rowsi; and i, another commonly used similarity
high-level semantic perspective. The semantic relationships Ha&asure. _ N
tween images are captured and embedded into the system by/€ argue that the images marked by the user as positive ex-
splitting/merging image clusters and updating the correlati@fPles in a query session often share a common semantic at-
matrix. In this way, the user-provided information is graduallV'bUte- Since we do not know the exact meaning of the attribute

embedded into the system; however, the system may take a |b|ﬁ|bess the user specifically provides such information, we call it
time to converge, and may not converge to an optimal state. a hidden semantic featurd@ he hidden semantic features accu-

Here. we summarize the novel contributions of our work. Mulated from user-and-system interactions can be used to infer
a2 semantic spacB for image retrieval. We discuss how to con-
ruct such a space in the following.

Hidden Semantic Features

1) A long-term learning method is proposed to infer
semantic space for improving the system'’s retrievgf
performance over time. It consists of two parts: learnin
semantics from user interactions and from image cof-
tent. A technique based on SVD is proposed, to form aLet us assume that there exists a semantic m&tfor a data-
compact semantic feature representation and reduce base ofn images. A row vecton(-dimensional) of the matri®
subjectivity and noise from an individual user. represents the hidden semantic features of an image. A guery

2) An on-line learning model for the traditional relevancenay, like the image, be represented asafimensional vector,
feedback methods for image retrieval is proposed. Basadd the retrieval results of the query as amn-dimensional
on the model, a theoretical analysis of at most how mamgctor, withr(:) the similarity ofg to row i of B. Concisely,
feedbacks are needed is performed. We also show that fb¢ = r, as illustrated in Fig. 1.

Constructing a Semantic Space
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Fig. 1. Image retrieval in the semantic space can be thought of a matrix
operation.B is a semantic matrixg is a query vectorBq = r is the result
vector containing the similarity measure with each image in the database.

Learning Semantics From User Interaction¥he long-term
learning is essentially the process of inferring a semantic space
B through knowledge of the result vectarsccumulated from
the users’ relevance feedback. Supposethat,, ..., r; are
the results ok queries with relevance feedback, witf(i) = 1
if the ith image was deemed relevant to gk query and with
r;(i) = 0 otherwise. We seek a matriX (whose rows represent
the images) and query vectars g, ..., g, SOthatBg; =7; g 2 simple example of a semantic space constructed after three query
forj =1, 2, ..., k. Equivalently, definingR to be them x k  sessions. There are five images in the database. The images on the top are
matrix whosejth column iSrj, we seek amn, x n matrix B and duery images. For each image in the database, its corresponding entry of the
ann x k matrix Q such that3Q = R. Note thatm, the number semantic matrix is set to be 1 if it is marked as relevant.
of images, is forced on us, ashs but there is some choice in
n. One possibility is to take = k, B = R, and@ = I. Inthis matrix V7T, SinceRRT = (BVT)(BVT)T = B(VTV)BT =
solution, thejth column ofQ, which stands for thgth query BBT, this gives the same inter-image similarities as uging
session, hagth entry one, and all other entries zero. Hencd?, but with reduced storagejif < k. (R is usually quite sparse,
this query session is going to retrieve those images having thieile U'S may not be.) Note that the “queries” (i.e., the columns
Jth hidden semantic feature. Multiplying by ¢;, we getr;, of Q) will no longer in general be orthogonalzif< .
which is the retrieval result. Fig. 2 shows a simple example of aNow our result vectors:; are constructed from user judg-
semantic space constructed after three query sessions.  ments as to which images are relevant to a given query (i.e.,

Reduce Semantic Space Using SMD:the above section, which images contain the same hidden semantic feature). But
choosing} = I implies that all queries are orthogonal. But, inys the user does not generally inspect all the images in the data-
practice, different queries may involve common high-level sgase, there may be some spurious zeras amd different users
mantic features. Simply appending each retrieval resals a may disagree on certain images, even if seeking essentially the
column vector in matrix3 does not exploit the correlation be-sagme semantic class. Thus, the maftixnay be noisy and of
tween queries. Another consequence is that the sizegrbws  atificially increased rank. The cleaner, ideal results may be gen-
linearly as the number of query sessions increases. erated by a linear process of rank less than (&)kBy taking

For storage and performance improvements, it is desirable;fo< rank( R), deleting all but the first. columns ofU andV
merge related hidden semantic features and construct a lowgd all but the upper x n submatrix ofS as before, and by
dimensional spac&. We may compute the SVD at, which takingB = US and@Q = V7 as before, we obtain a still lower
expresse® = USV”T, withU"U = I,VTV =I,andS diag- dimensional semantic space. It is no longer true h@t= R,
onal. Note that the column vectors@fandV are eigenvectors but insteadB( is the best rank: approximation ofR, in the
of RR™ andR™ R, respectively. Lep be the rank o (whichis |east squares sense (i.e., under the Frobenius norm).
equal to the number of nonzero entries on the diagond)ot ~ The above idea is similar to latent semantic indexing (LSI)
can be at mosiin(m, k), and is possibly much smaller, sincefor text retrieval, and it has been shown that relative precision
there may be linear dependencies amongrthéfor instance, can improve by 30% by reducing the rank of document-term
when one semantic category is the disjoint union of others). matrices in this fashion [1]. The claim is that meaningless dis-

If we delete all but the firgh columns of/ andV, and all but  tinctions between words are reduced. Theoretical results that go
the uppemp x p submatrix ofS, then we still haveR = USVT. some ways toward explaining these empirical successes appear
Thus, we can leB3 be them x p matrix US, andQ@ thep x & in [14], though under fairly restrictive hypotheses.

—_— O OO = O
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C. Updating the Semantic Space ages. Each of these+ ¢ images is represented by a semantic

In a real-world implementation of the retrieval system, th§€Ctorx’, with j =1, ..., s for the positive examples and
semantic matrix3 may be periodically replaced iyS inare- J = 8+ 1, ..., s + t for the negative examples. Then the se-
duced-rank SVD approximatioi SV of B. If one does not mantic feature for the query image can be represented as
have ana priori estimate of the rank of the underlying linear a=(q1, G2, -, Gn)
process, one may resortao hocmethods for choosing the di-
mension for the reduced rank SVD based on examining the siydere
of the singular values, or assessing the retrieval performance,of. (ztva?v.-va) AT vaetiv.ove
the algorithm. In theory, the optimal rank is closely related to
the number of semantic categories in the image database. If this _
number can be roughly estimated, it can be used as a guidetmel wherer! is theith element of the semantic vectef. In
to select the best rank for updating the semantic space. As miire semantic space after SVD dimensionality reduction, the se-
vectorsr are appended antl becomes bloated3 is then sub- mantic vectors are no longer Boolean. In this case, we simply
jected to an SVD again to keep its rank within a certain rangeise a linear combination of the relevant images to represent the

Note that, in a real-world application, we do not need to conquery image, as follows:
pute the SVD ofB (or R) explicitly. We only need to compute 18
the matrixV of the eigenvectors aB” B. The semantic matrix G=-> .
is replaced byBV (=U S). The matrixV is called thetransfor- 5=
mation matrix Since the semantic space is periodically reduced
to a low-dimensional space, the dimension of the ma&{x3 C. Learning a Classifier in the Boolean Semantic Space
is usually not high.

?

i=1,2,...,n

An image in n-dimensional Boolean semantic space is

VS T L L represented by a Boolean vecter = (z1, za, ..., Z,).
' H(éRT' ERM FEARN'EG' EARNING A The image has théh hidden semantic feature if and only if
LASSIFIER FROM EXAMPLES z; = 1. Thus, the task is to learn a target (discriminating)

In Section I, we described our algorithm for constructing &unctiong: {0, 1}™ — {0, 1}. If the output is one, the system
semantic space. With this semantic space, the aim of short-testassifies the image as relevant, while if the output is zero, the
learning is to infer the user’s information need by applying swsystem classifies the image as irrelevant. We assume in this
pervised learning to build a classifier for differentiating semarmanalysis that users seek images having any one of some subset
tically relevant images in the database from irrelevant ones.dfrelevant hidden semantic features. Then the optimial a
this section, we first introduce the idea of the target functiadisjunction functiong®?*(x) = x;, V ;, V --- V 1, , where

corresponding to a user’s query. i1, 12, ..., 1 are the subscripts of therelevant features, i.e.,
o _ those hidden semantic features which the user desires. We also
A. Target Function in the Semantic Space assume that the user acts as the disjunction fungtish(x)

Our proposed short-term learning for image retrieval can ¢ teach the search engine. That is, for a given image, the user
modeled as the following process: learn a functj¢r) which ~classifies it as positive example if it has at least one relevant
takes an imagex(represents ita-dimensional feature Vector) feature. Otherwise, the user classifies it as a negative example.
as input, and outputs 1 if this image is relevant and outputsSince the images classified k™ (x) are linearly separable
if it is irrelevant. Hence, the system usegx) to distinguish (note that for any concept;, V z;, V --- V z;,, a separating
relevant images from irrelevant ones. The goal of the short-tefiperplane is given by;, + z;, +--- +z;, > 0.5), our goal
learning is to learp(x) and to make as few mistakes as possiblé to find a linear hyperplane that separates the images with at
assuming that both the choice of relevant features and the chdf®st one relevant feature from those images with no relevant
of feedback examples are under the control of the user. Hel@ature, ag/°**(x) does. In our system, the linear discriminant
relevant featureare those hidden semantic features that the udipction is defined as follows:
desires. We calj(x) thetarget functionIn other words, the goal 1, if hscore(x) >0
is to train a classifier to label each image within the database, 9(x) = {0 it I (x) < 8

? score

such that the classifier’'s labeling agrees with the user’'s Iabelin% ) ] ]
for all images. wherehs.ore(x) is a function to evaluate the score of image

while ranking and is a threshold. The simplest score functions

B. Representing Query Example With Hidden Semantics ~ are linear; that is, they may be expressed as the dot product of

. . a weight vectow and the hidden semantic feature vectaas
When an example image is presented to the system as a QUEIYS s

its low-level features (color, texture, etc) are extracted to con-

duct the first iteration of the search. Note that we do not have "

hidden semantic features for images unless they are in the data- hscore(x) = (w - x) = Z Wity

base. After the first retrieval, the semantic representation of the =t

guery image can be formed based on the user’s relevance feedistake-Driven Learning:Traditionally, the user’'s rele-
back as follows: suppose the user mark®sitive examples and vance feedbacks are used to update the query vector or adjust
t negative examples from among the first batch of retrieved irthe weighting of different dimensions. This process can be
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viewed as an on-line learning process in which the imadellowing theorem gives a theoretical upper bound on the re-
retrieval system acts as a learner and the user acts as a teago@ed number of feedbacks.

The typical retrieval process is outlined as follows. Theorem 1: Assumen is the total number of hidden semantic
1) The user provides his relevance feedback to the systemfggtures in the database. The winnow-like image retrieval algo-
|abe|ing images as “relevant” or “irrelevant.” rithm with thresholdd and adjusting rate learns the class of
2) The system compares the user’s judgment with the oflgjunctions over the-dimensional Boolean vector space inthe
generated by the current target functigx). mistake-bound model, making at mdst= an/((« — 1)) +
3) The system modifieg(x) such that it generates a judg-len/((a—1)8) +a+ 1]k(1 +log,, #) mistakes when the target
ment coherent with the user's feedback. concept is a disjunction df hidden semantic features.

If the system’s judgment disagrees with that of the user, We_Littlestpne proved a similar resglt in [11]; since we use a
say that the system makes a mistake. A mistake-driven learnfii{ghtly different update rule, we give a sketch of the proof in

algorithm updateg(x) only when a mistake is made. In this secth® Appendix. This gives us an estimate of at most how many
tion, we use a variant of Littlestone’s winnow [11], one of thdeedbacks are needed. It should be pointed out, however, that

most widely used on-line learning algorithms for linear fundhis result is obtained in an idealized setting. In the real world,
tions, to perform short-term learning for image retrieval. the user is not an optimal teacher, in most cases. That is, some-

Winnow-Like Learning AlgorithmWith users relevance times the user is unable to tell whether an image is relevant or

feedback, our algorithm can learn the disjunction of hidddfelevant. Estimating the mistake-bound under such conditions
semantic features that the user desires. is beyond the scope of this paper and is left for future studies.

A winnow-like mistake-driven on-line learning algorithm is
used to learn the discriminant functig(x). Initially, the weight
vectorw is set to be the query vectey, which is obtained by
the method described in Section IV-B. Those images with theln low-level feature (color, texture, shape, etc.) space, or in
highest scores, along with some random images, are preses@uantic space after dimensionality reduction, the representa-
to the user. If the current classifier labels an imagas “irrel-  tion of an image is no longer a Boolean vector, but a real-valued
evant” ([i.e., if heeore (x) < 6) while the user labels as “rele- vector. Also, the relevant images and irrelevant images [deter-
vant,” we say gositive mistakeccurs. Similarly, if the current mined byg°?*(x)] may no longer be linearly separable in the
classifier labels image as “relevant” (i.e., ifhcore(x) > ) dimensionality-reduced semantic space.
while the user labelx as “irrelevant,” we say aegative mis-  In the Boolean semantic space, a linear classifier is given by a
takeoccurs. When the user’s relevance feedback contradicts giar (w, 0), wherew € R™ is ann-dimensional weight vector
current classification, the algorithm updates the weight vectandf € R is a threshold. To be consistent with the previous

D. Learning a Classifier in the Dimensionality-Reduced
Semantic Space

as follows: section, we will still usev to denote a weight vector, but without
loss of generality we can assume that the threshold is zero, by
e Negative mistake: making the following modifications.
w® « Append a new dimension t& with value of—f
pt+) ] oy =1
; =

w' — (w, —0).
wgt), if z; =0

e Positive mistake: * Append a new dimension towith value of 1

wgt), if ; =0 x' — (x, 1).
w™ =41 if 2, = 1 andw” =0
i ) Wz = w; = » Append a new orthogonal column vector to the transfor-
awz(t)7 if 2 = 1 andwgt) £0 mation matrixV" (see Section Il1)
wherea controls the adjustment rate and is greater than one. V' o { v 0]
How Many Feedbacks are Needed at Most—Theoretical o7 1

Analysis of Mistake BoundDespite tremendous research o . .
rQ—ﬂere,o is a column vector taking 0 at each entry.)

using relevance feedback for image retrieval, little theoretic c tv the t ; di tor in th duced
analysis has been performed so far. In this section, we provide onsequently, the transtormed image vector in the reduced-

a theoretical analysis of the mistake upper bound for t amension semantic space is also appended a new dimension

winnow-like algorithm. We regard each query as a classif)f\—"th value of 1

cation problem, and train a linear classifier to discriminate y —xV' = (xV,1) = (y, 1).
between relevant and irrelevant images in the database. A linear
classifier is represented by a paw (f), wherew € R"™ is an Hence, the linear classifier can be represented by a single
n-dimensional weight vector artle R is a threshold. weight vectorw, which is called a lineaseparator

During the user interaction, the algorithm updates the weightLet S,, denote the set of all the linear separators in the original
vector each time a mistake occurs. Our goal is to minimize teemantic space and 18t denote the subspace spanned by the
total number of mistakes that the algorithm makes, so that tbelumn vectors of matri¥”. We have the following theorem,
user can retrieve the target images as quickly as possible. T¥@ch is proven in the Appendix.



44 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 1, JANUARY 2003

Fatders | Covogeias| [ S = Query
| h e & . e k o+ A

E
@ vead

Similarity measure and
ranking based on low-
! level features

First retrieval

Low-Level
Features

TFinal Positive | Long-Term Learning
inal result /‘( feedbacks Update the semantic
(end of a NO ser’s relevance space and image

single feedback representations
session)

olexalml]

YES

Y

Short-Term Learning
Refine query vector and
train the online classifier

Fig. 3. MiAlbum image retrieval system. The user can provide his feedback

by clicking “thumb up” or “thumb down” buttons associated with each retrievegig. 4. Design of our system, which is equipped with both short- and long-term
image. learning capabilities.

High-Level
Semantic
Space

. Thelorem 2:Tb*|‘e _re'i"a”t;magdez,a”d irrelevant images a(gy;ch that point is embedded in the final decision function. Are-
mzar yl S(_af%ara g in the reduced-dimension semantic Spacg, il apje property of this alternative representation is that often
and only it Sy N Sy # ¢. only a subset of the points will be associated with nonzero

AS thethe_orem indicates, $, andSy are disjoint, thenthe_re These points are callexslipport vectorand are the points that
does not exist a hyperplane that separates the relevant IMaQes|osest to the separating hyperplane

from the irrelevant images. In this case, a SVM training algo- The nonlinear SVM implicitly maps the input variable into

“‘.h“? can lbe usc_ad to learn a nonlinear target function for rf‘?l'high—dimensional (often infinite-dimensional) space, and ap-
trieving relevant images. lies the linear SVM in the space. Computationally, this can be

. An_other_mptlvatmn f(_)r using an SVM is the _sr_nall sampl chieved by the application of a (reproducing) kernel. The cor-
size issue in image retrieval. The number of training exampl?essponding nonlinear decision function is

fed back by the user is usually small (six per round of interaction
in our experiment) relative to the dimension of the feature space ) t
(from dozens to hundreds, or even more), while the number of J(x) = sign (Z iy K (xi, x) — b)
semantic classes is large for most real-world image databases. =1
SVMs make no assumptions on the distribution of the data amtere K is the kernel function. Some typical kernel functions
can, therefore, be applied even when we do not have enouigglude polynomial kernels, Gaussian RBF kernels, and sigmoid
knowledge to estimate the distribution that produced the inpkgrnels.
data.
SVMs: SVMs are a family of pattern classification algo- V. MIALBUM IMAGE RETRIEVAL SYSTEM
rithms developed by Vapnik [22] and collaborators. SVM \ye have integrated this learning framework into the Mi-
training algorithms are based on the ideastiuctural risk - Ajpym [12] image retrieval system developed at Microsoft
minimizationrather tharempirical risk minimizationand give pagearch Asia. Fig. 3 shows the user interface of this system.
risg to new ways of training poly_qomial, neural network, ang, ihis paper, we focus on image retrieval based on “query
radial basis function (RBF) classifiers. o _ by example” and on using the user’s relevance feedback and
We shall consider SVMs in the binary classification settingtaraction to improve the system's short- and long-term
We assume that we have a dataBet {x;, yi};_, of labeled o tormance. Fig. 4 shows the flowchart of our system. When
examples, wherg; € {—1, 1}, and we wish to select, amongy,e ,ser submits an example image as a query, the system first
the infinite _ngm_ber of linear classmf-zrs that separate the d‘f"%mputes low-level features of the query image, which are
one that minimizes the generalization error, or at least Minjze tq rank the images in the database, some of which are then
mizes an upper bound on it. In [22], it is shown that the hysy o 1o the user. Note that no semantic features are involved
perplane with this property is the one that leaves the maximufy,is stage. Then, the user provides his feedback by clicking
margin between the two classes. Given a new data poiot the “thumb up” or “thumb down” button according to his
classify, a label is assigned according to its relationship to tﬁﬁjgment of the relevance of each retrieved image. With the
decision boundary, and the corresponding decision function {§ser's relevance feedback, the system starts to take advantage
t of the hidden semantic features, and trains the on-line classifier
f(x) = sign (Z iy (Xi, X) — b) - to improve search performance. The search results continue to
i=1 be refined iteratively until the user is satisfied. The accumulated
From this equation, it is possible to see that thheasso- relevance feedbacks are used to update the semantic space, as
ciated with the training poink; expresses the strength withdescribed in the long-term learning process.
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TABLE | 0 Retrieval accuracy in top 20 results

60 _———¢

IMAGE FEATURESUSED IN OURSYSTEM

Color-1 | Color histogram in HSV space with
quantization 256

Color-2 | First and second moments in Lab space
Color-3 | Color coherence vector in LUV space with 30
quantization 64 2 (
Texture-1 | Tamura coarseness histogram
Texture-2 | Tamura directionary

Texture-3 | Pyramid wavelet texture feature

50

40

Accuracy

Number of iterations!

0 1 2 3 4 5 6 71 8
- —4— SVM learning in low-level feature space
—— Rui's algorithm

Fig. 5. Comparison of SVM learning algorithm with Rui's approach. The
SVM learning algorithm outperforms Rui's approach.

We performed several experiments to evaluate the effective-
ness of the proposed approach on a large image database. The retrieval accuracy in top 20 Results
image database we used consists of 10000 images of 79 se-
mantic categories, from the Corel dataset. It is a large and het-
erogeneous image set. A retrieved image is considered correct
if it belongs to the same category as the query image. Three
types of color features and three types of texture features are
used in our system; they are listed in Table I. We designed an
automatic feedback scheme to model the short-term retrieval
process. At each iteration, the system marks the first three in- %/ Number of iterations
correct images from the top 100 matches as irrelevant exam- 20 ‘ ‘ '

VI. EXPERIMENTAL RESULTS

Accuracy

ples, and also selects, at most, three correct images as relevant o o2 3 4 5 6 7 8
. . . 0, 1

examples (relevant examples from the previous iterations are ex- | s ﬁof Semanti shace

cluded from the select?on). These automatically generated fged— | —@— 626 semantic ohace

backs are used as training data to perform short-term learning. | —— low-level feature space

To model the long-term learning, we randomly select images _ _ _

from each category as the queries. For each query, a short-té_ﬁ’ﬂe' Retne_val accuracy of the system improves as the semantic degree
. . .. of the system increases. The graph also show the system can quickly reach a

learning process is performe(_i and the pOSIt!Ve feedbaCkS_ & onably good performance with two to three iterations.

used to construct the semantic space. That is, for each single

session of retrieval, a hidden semantic feature is learned and PImage Retrieval in Boolean Semantic Space—System

pended as a hew column to the semantic matrix. To evaluate lution Evaluation

performance of our algorithms, we define the retrieval accuracy . ) ] )
As discussed previously, the high-level semantic space is con-

as follows:
structed as the system evolves. To evaluate the degree of system
Accuracy = relevant images retrieved in top N returns evolution, a measurement called semantic degree is defined as
N "~ follows:

Five experiments were designed to evaluate our proposed §J§mantic degree number of queries in semantic category
gorithms. The experiments with the SVM training algorithm are number of images in semantic category

_discussed_in Section VI-A. In_ Section VI-B, we show _how the For simplicity, a semantic space with semantic degréeis
image retrieval performance. IMproves as the semantic SPaCR{& e q to as a% semantic spaci this section. The semantic
refined based on th<'e user’s interaction with the sy;tem. We ﬂéré ree of a semantic space can be measured by the number of
ther tesF the system’s performanqe on the ;emant'lc space Wr&ﬁ mns of the semantic matrix, namely, the number of hidden
d|mens'|on has been reducl:ed.usmg SVD n Sect|.on VI-C. ngmantic features. For example, there are 10 000 images in our
system’s robustness to noise is evaluated in Section VI-D. database, so a 3% semantic space corresponds to a 0D
) ) semantic matrix before dimension reduction.

A. SVM Learning Algorithm In the following, we evaluate how the system retrieval

We compared the performance of the SVM training algorithperformance improves as the semantic space is learned from
with RBF kernel to the relevance feedback approach descrilted user-and-system interactions. The experiments were con-
in Rui [16]. The comparison was made in the low-level featuucted using the winnow-like mistake-driven on-line learning
space, with no semantic features involved. Fig. 5 shows the fratgorithm in Boolean semantic spaces of different semantic
tion of relevant images among the tdp= 20 images returned degrees. In Fig. 6, each curve shows the average retrieval
by each method, as a function of the number of rounds of ugerformance. To train the system% of the images in each
feedback. We obtained similar results using other valugs of category were randomly selected as query images to build the
up to 100. As can be seen, the SVM training algorithm outperf% semantic space. Then the rest of images were used as test
formed Rui’s approach in these tests. data to evaluate the retrieval accuracy of our system at different
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retrieval accuracy in top 20 results Retrieval accuracy in top 20 results VS.
Dimensionality of semantic space

Accuracy

30 A — S ——— —
Number of iterations
20 L 1 1 L 1

0 1 2 3 4 5 6 71 8

retrieval accuracy after 3
iterations

" —e— SVD semantic space with 80 dimensions
| —a— SVD semantic space with 150 dimensions
\ —>— original semantic space with 300 dimensions

130
150
170
190

o = o o
A = =N -

I
10
30

B — — i — dimensionality

Fig. 7. Image retrieval performance in original semantic space, amdg.8. Retrieval accuracy inthe 3% semantic space with different degrees of

dimensionality-reduced semantic space. The semantic degree of the semaliti@nsionality reduction. The evaluation is conducted after three iterations (the

space is 3%. system starts to converge at this point). As can be seen, the system reaches the
best performance when the number of dimensions approximates the number of
semantic classes, i.e., 79.

degrees of evolution. As can be seen, the system performance

improved as the semantic degree of the system increased. In Retrieval accuracy in top 20 results

addition, we see that our system learned to retrieve the target % N

images quite quickly. It reached a reasonably good performance 80 W

within two to three iterations. 70 |
§ © /__‘__‘___—‘———A——A—.

C. Image Retrieval in Dimensionality-Reduced Semantic B 50 /;/ -

Space < 0 // /

In this section, we evaluate the image retrieval performance 30 // _’
in a dimensionality-reduced semantic space. The SVDwasused 5 r Number of iterations

to reduce the dimension of the original semantic space, and 0 1 2 3 4 5 6 7 8
then an SVM was trained to classify images in this space. After —+— SVD semantic space without noise (80 dims)
the long-term learning, a 3% semantic space represented by a —=—SVD Sfmantlc space with itiO% noise ggodg?w))

; ; ; —— original semantic space without noise ms
10000 x 300 semantic matrix was cons_tructed. Flg. 7 shows »— original semantic space with 20% noise (300 dims)
the experimental results, comparing the image retrieval perfor-

mance in the original semantic space with the dimensionalityiy. 9. Retrieval accuracy in the 3% semantic space with 20% noise. In other

reduced spaces. words, 20% of the user’s feedback is incorrect. As can be seen, although the

As we discussed in Section 1lI-C. the fundamental probbm?tem with noise performs a little worse than the system without noise, the
’ ifference is not significant. When the rank of the semantic matrix is reduced

for updating the semantic space and reducing its dimensionfg svp, the performance difference becomes smaller.
to estimate the true rank of the semantic space. The optimal rank
is closely related to the number of semantic classes in the d@

b If the i datab dministrator h ior know stakes in providing feedback. For instance, a user may un-
ase. € image dalabase administrator has prior knowle %sciously select images of “wolf’ as positive examples while

about this number, it can be used as a guideline to control theﬁié- is actually looking for images of “dog.” Hence, noise could

mensionality r_eduction. Intuitively, the SV_S‘_em reaches the b introduced into the system when the semantic space is being
performance (_mterms .Of accuracy and efficiency) when_the "4B8nstructed. The noise has two effects on the system: 1) for
of the semantic space is close to the number of semantic clas g-term learning, the noise will degrade the reliability of the

Rgducmg the d|m§n3|on ofthe semantic space to below Fh|s "Afterred semantic space and 2) for short-term learning, the noise
will start to cause information loss and decrease the retrieval AN mislead the current retrieval session

curacy. This intyition is supported by our gxperiments. As We | e section, we examine how the noise affects the
can see from Fig. 8, t_he sys_tem ach|ev_ed its best perf9rmam&ﬁg—term learning. We conducted experiments in which the
when the number of dimensions of the inferred _sem_ant|c Sp ginal semantic space contained 20% noise. In other words,
approximated the number of semantic classes (in this case, 0% of the simulated user’s feedback was incorrect. As can be
) ) ) , seen from Fig. 9, although the system with noise performed

D. Learning Semantic Space Under a Noisy Environment o jittje worse than the system without noise, the difference
In the previous experiments, the simulated user’s relevansas not significant. When the rank of the semantic matrix
feedback was generated based on the ground truth, i.e., thevé® reduced using SVD, the performance difference became
image categories from the Corel image library. In this case, thmaller. This suggests that the SVD not only reduces the
user is regarded as an optimal teacher. That is, the images thiatensionality, but also helps to remove the noise introduced
the user marked as positive always belonged to the same igsethe long-term learning process. After four iterations, the
mantic class. However, in the real world, the user may makerformance difference is less than 3%. These experiments
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indicate that our proposed learning algorithms for inferring theector in thetth trial. Any positive mistake will increase at least
semantic space are robust in a noisy environment, whichase relevant weight. And a negative mistake will not decrease

crucial for practical use in the real world. any of the relevant weights. Furthermore, each of these relevant
weights can be increased at mast log,, 6 times. Therefore,
VIl. CONCLUSIONS AND FUTURE WORK the algorithm makes at most, = k(1 +log, 6) positive mis-

.. . . (1) . .
In this paper, we described a learning framework that mak@(es' For e.ach(tp;osnwe mistake, the we@bt) nereases |ft§1e
use of relevance feedback to enhance the performanceCgfesponding;” equals one. Therefore, the total weigfit

an image retrieval system from both short- and long-terficréases by at most = n + (a — 1)6.
perspectives. The proposed long-term learning scheme infers ©n the other hand, each negative mistake decreases the total
semantic space from user interactions. A method of updatiW&

ight by at least/ = ((a — 1)/a)f. Let My denote the
of the semantic space and guidelines for choosing the optinidimber of negative mistakes. Thusy MpY — MyZ > 0.

dimensionality (rank) were also discussed. As can be sebS leads to the upper bound on the number of negative mis-
from the experiments, this learned semantic space supplemd@feSMy = 1/Z(n + MpY'). Therefore, the total number of
the low-level features in making the image search result mdfustakes is bounded by

satisfactory to users. E=Mp+ My
For the short-term learning, a winnow-like mistake-driven
learning algorithm and a SVM training algorithm were used = an +a+1|k(1+log, 6).

_|._
to learn the target function for retrieving relevant images from (a—1)8 (a—1)¢
the database. A theoretical analysis of the winnow-like algo- Proof of Theorem 2:(=) If Sy, N Sy # ¢, thendw, w €
rithm shows that thenistake boundn short-term learning is S,, andw € Sy, such thatw is a separator in the original se-
logarithmic with the total number of features, and linear witmantic space. The hyperplane discriminating the relevant im-
the number of relevant features. In fact, without considerirages and irrelevant images in the original semantic space is
the effect of the low-level features, tlsemantic degreef the
constructed semantic space determines at most how many rel-
evant images can be retrieved for a given query, andrtise Note thatw andx are both row vectors. Sinog € Sy, we
take boundpbrovides estimation about at most how many feethavew = w'V7. Thus
backs are needed to retrieat these relevant images. We also
stated conditions under which the dimensionality-reduced se-
mantic space is linearly separable. Based on this analysis, a =>wyl =0

SVM training algorithm was used to retrieve the target images ) , . .
from the database. wherey = xV is the image vector in the reduced semantic

In our proposed learning approaches, the positive examp?&ace' Thu_s, the relevant and irre_levant images are still linearly
from the user’s relevance feedback are mainly used for inferrifigParable in the reduced semantic space. o
the semantic space in the long-term learning. A possible exten{ <) If the relevantimages and irrelevant images are still lin-
sion of our work is to consider assigning a negative value fg,a}r!y separable in the reduced semantic space, we assume that
those negative examples while appending a new column to ffe!S SUch a separator. Thus
semantic matrix. We are currently exploring the impact of this w'yT =0
extension. On the other hand, as many other researchers have = = = | . )
suggested, the negative examples—which correspond to tHé& discriminating hyperplane in the reduced semantic space.
failure of current classifier (target function) in the short-terr?NC€Y = xV, we have
learning—contain the most valuable information for improving w (xV)' =0= (wVhHxT =o.
the performance in the current query session. Though our o , . .
system does not explicitly direct users to provide this kind ThUS,w = w'V" is a linear separator in the original se-
of feedback, we believe that the system will converge to §antic space. Thatisy € S... Obviouslyw € Sy . Therefore,
satisfactory result in fewer steps if such guidance is provided“ﬁw NSy # ¢.
users. Furthermore, the feedback provided by real-world users
often contains inaccurate information. Although our proposed
learning approaches can tolerate noise to some extent, it majt] M.W.Berry, S. M. Dumais, and G. W. O'Brien, “Using linear algebra for

be desirable to conduct filtering to remove unreliable feedback T;g"gge”“”forma“on retrieval, SIAM Rev.vol. 37, no. 4, pp. 573-595,

before using it for training the system. [2] Z. Chen, X. Meng, B. Zhu, and R. Fowler, “Websail: From on-line
learning to web-search,” iRroc. 1st Int. Conf. Web Information Systems
Engineeringvol. 1, Hong Kong, China, June 2000, pp. 192-199.
APPENDIX [3] I.J. Cox, J. Ghosn, M. L. Miller, T. V. Papathomas, and P. N. Yianilos,
. . . . “Hidden annotation in content based image retrieval,Pioc. IEEE
Proof of The_orem 1:For the sake of simplicity, we define Workshop Content-Based Access of Image and Video Librai8sy,
therelevant weight$o bew;, , w;,, ..., w;,, where the; are pp. 76-81.

the subscripts of the corresponding relevant features. We definé 1. J. Cox, T. P. Minka, T. V. Papathomas, and P. N. Yianilos, “The

. - - . Bayesian image retrieval system, PicHunter: Theory, implementation,
the total weéght for( each trial (each time a mistake occurs) to 4 psychophysical experimentsEE Trans. Image Processingol.

ber® = w{” + wl’ + ... + w, wherew® is the weight 9, pp. 20-37, Jan. 2000.

wx! = 0.

wx! =0=>wVixl =w'(xV)l =0
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