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Learning a Semantic Space From User’s
Relevance Feedback for Image Retrieval
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Abstract—As current methods for content-based retrieval are
incapable of capturing the semantics of images, we experiment
with using spectral methods to infer a semantic space from user’s
relevance feedback, so that our system will gradually improve its
retrieval performance through accumulated user interactions.
In addition to the long-term learning process, we also model
the traditional approaches to query refinement using relevance
feedback as a short-term learning process. The proposed short-
and long-term learning frameworks have been integrated into an
image retrieval system. Experimental results on a large collection
of images have shown the effectiveness and robustness of our
proposed algorithms.

Index Terms—Image retrieval, learning, semantics, singular
value decomposition, user’s relevance feedback.

I. INTRODUCTION

DUE TO the rapid growth of the number of digital im-
ages, there is an increasing demand for effective image

management tools. Conventional content-based image retrieval
(CBIR) systems [6], [13], [17] use low-level features (color, tex-
ture, shape, etc.) automatically extracted from the images them-
selves to search for images relevant to a user’s query. While
there are research efforts to improve performance by using dif-
ferent low-level features, and by modifying the similarity mea-
sures constructed from them, it is argued in [19] that, as uncon-
strained object recognition is still beyond the reach of current
technology, these content-based systems can at best capture only
pre-attentive similarity, not semantic similarity.

In recent years, much has been written about relevance
feedback in content-based image retrieval from the perspective
of machine learning [20], [21], [23]–[25], yet most learning
methods take into account only the current query session, while
the knowledge obtained from the past user interactions with
the system is forgotten. To compare the effects of different
learning techniques, a useful distinction can be made between
short-termlearning within a single query session andlong-term
learning over the course of many query sessions. Short-term
learning is memoryless and aims to improve the retrieval
performance of the current query session. Long-term learning
aims to accumulate knowledge from users, which could result
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in new feature representations for images in the database so
that the system’s future retrieval performance is enhanced.
Both short- and long-term learning processes are useful in an
image retrieval system, though the former has been the primary
focus of research so far.

Despite much work on relevance feedback for image retrieval
(i.e., short-term learning) in the past few years, little work has
been done from the theoretical perspective. In contrast, com-
putational on-line learning algorithms [8] have been well ana-
lyzed in text retrieval [2], [5], [10], [15]. These techniques have
been better understood from a theoretical standpoint, leading to
performance guarantees and guidance in parameter settings. In
this paper, we use mistake-driven on-line learning algorithms to
model the process of image retrieval based on user’s relevance
feedback. The on-line learning algorithm winnow [11] is used to
train an image classifier for searching for more relevant images
from the database based on the positive and negative examples
provided by a user. Following the theoretical analysis in [11],
we derive a mistake upper bound, i.e., a bound on how many
relevance feedbacks are needed for reaching a satisfactory per-
formance in image retrieval.

To address the limitations of current systems with regard
to searching for images at the semantic level, we propose
a long-term learning method that creates a semantic space
implicitly, based on user interactions in a relevance feedback
driven query-by-example system. The idea is that, after several
rounds of relevance feedback, the user has a pool of images
that are relevant to his query. Assuming these images belong
to a semantic class, by aggregating such results we may
incrementally construct a semantic space, with a concomitant
improvement in the system’s performance. We use the singular
value decomposition (SVD) to reduce the dimensionality
of the semantic space, both for savings in storage and for
possible improvement in retrieval performance. Due to the
dimensionality reduction, the relevant and irrelevant images
in the semantic space may be no longer linearly separable. In
this case, systems such as support vector machines (SVMs)
can be used to learn the target function for retrieving relevant
images. Our experiments show that the SVD helps to correlate
relevance feedbacks from different search sessions and reduce
the subjectivity and noise introduced by individual users.

The rest of this paper is organized as follows. Section II
relates a list of previous works to our work and summarizes
our contribution. Section III describes the proposed method
for long-term learning. Section IV describes the proposed
method for short-term learning, with theoretical analysis. Our
MiAlbumimage retrieval system is introduced in Section V. The
experimental results are shown in Section VI. Finally, we give
concluding remarks and discuss future work in Section VII.
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II. PREVIOUS WORK

One of the most popular models used in information retrieval
is the vector space model [18]. Various retrieval techniques have
been developed for this model, including the method of rele-
vance feedback. Most previous research on relevance feedback
has fallen into the following three categories: retrieval based on
query point movement [17], retrieval based on re-weighting of
different feature dimensions [7], and retrieval based on updating
the probability distribution of images in the database [4].

In recent years, some learning-based approaches have been
proposed. Wuet al.[24] proposed a Discriminant-EM algorithm
within the transductive learning framework in which both la-
beled and unlabeled images are used. Tieuet al. [22] presented
a framework for image retrieval based on representing images
with a very large set of highly selective features. Queries are
interactively learned online with a simple boosting algorithm.
Tonget al. [23] proposed the use of a SVM active learning al-
gorithm for conducting effective relevance feedback for image
retrieval. While most machine learning algorithms are passive
in the sense that they are generally applied using a randomly se-
lected training set, the SVM active learning algorithm chooses
the most informative images within the database, and asks the
user to label these.

All of these approaches have achieved good empirical re-
sults. However, a common limitation of them is that they do not
have a mechanism to memorize or accumulate relevance feed-
back information provided by users; consequently, the knowl-
edge obtained from the previous queries and relevance feedback
is forgotten.

Cox et al. [3] showed that query-by-example performance
may improve by placing images in a semantic space, even if the
user does not actually query by keyword (i.e., if the semantic
attributes inducing the similarity measure are hidden). In that
experiment, pictures were visually examined to see which of
approximately 125 keywords were relevant, and these ratings
were used to construct a semantic space for the images.

In [9], an image retrieval system based on an information
embedding scheme is proposed. Using relevance feedback, the
system gradually embeds correlations between images from a
high-level semantic perspective. The semantic relationships be-
tween images are captured and embedded into the system by
splitting/merging image clusters and updating the correlation
matrix. In this way, the user-provided information is gradually
embedded into the system; however, the system may take a long
time to converge, and may not converge to an optimal state.

Here, we summarize the novel contributions of our work.

1) A long-term learning method is proposed to infer a
semantic space for improving the system’s retrieval
performance over time. It consists of two parts: learning
semantics from user interactions and from image con-
tent. A technique based on SVD is proposed, to form a
compact semantic feature representation and reduce the
subjectivity and noise from an individual user.

2) An on-line learning model for the traditional relevance
feedback methods for image retrieval is proposed. Based
on the model, a theoretical analysis of at most how many
feedbacks are needed is performed. We also show that the

semantic space may no longer be linearly separable after
dimensionality reduction. In this case, a SVM training
algorithm is used to retrieve relevant images from the
database.

3) An image retrieval system integrating both the short-
and long-term learning algorithms is developed. Our
experimental results demonstrate that the proposed
learning techniques are effective in capturing user’s
relevance feedback for improving the system’s short-
and long-term performances.

III. L ONG-TERM LEARNING: INFERRING ASEMANTIC SPACE

Most existing relevance feedback techniques focus on im-
proving the retrieval performance of the current query session,
and the knowledge obtained from past user interactions with
the system is forgotten. In this section, we describe a long-term
learning approach for constructing a semantic space from user
interactions and image content. The proposed learning tech-
nique is able to accumulate knowledge from users over time,
and gradually enhance the retrieval performance of the system.

A. Hidden Semantic Features

We adopt the vector space model of information re-
trieval [18] to represent the semantic space constructed from
user-and-system interactions. In this model, one has a matrix

(say of size ), whose rows correspond to images
and whose columns correspond to attributes. In a traditional
image retrieval system, these columns correspond to low-level
features (e.g., color and texture) or pre-annotated high-level
semantic attributes (e.g., dog, cat, tree, people, etc). is
a measure of the extent to which imagehas attribute ; it
may be binary, weighted by frequency, etc. Theth row of
may then be regarded as the coordinates of theth image in
an -dimensional vector space, and the dot-product between
rows and of may be regarded as a measure of the
similarity between images and . Dividing this dot-product
by the norms of the rows and gives the cosine of the angle
between rows and , another commonly used similarity
measure.

We argue that the images marked by the user as positive ex-
amples in a query session often share a common semantic at-
tribute. Since we do not know the exact meaning of the attribute
unless the user specifically provides such information, we call it
a hidden semantic feature. The hidden semantic features accu-
mulated from user-and-system interactions can be used to infer
a semantic space for image retrieval. We discuss how to con-
struct such a space in the following.

B. Constructing a Semantic Space

Let us assume that there exists a semantic matrixfor a data-
base of images. A row vector (-dimensional) of the matrix
represents the hidden semantic features of an image. A query
may, like the image, be represented as an-dimensional vector,
and the retrieval results of the query as an -dimensional
vector, with the similarity of to row of . Concisely,

, as illustrated in Fig. 1.
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Fig. 1. Image retrieval in the semantic space can be thought of a matrix
operation.B is a semantic matrix.qqq is a query vector.Bqqq = rrr is the result
vector containing the similarity measure with each image in the database.

Learning Semantics From User Interactions:The long-term
learning is essentially the process of inferring a semantic space

through knowledge of the result vectorsaccumulated from
the users’ relevance feedback. Suppose that, are
the results of queries with relevance feedback, with
if the th image was deemed relevant to theth query and with

otherwise. We seek a matrix (whose rows represent
the images) and query vectors, so that
for . Equivalently, defining to be the
matrix whose th column is , we seek an matrix and
an matrix such that . Note that , the number
of images, is forced on us, as is, but there is some choice in

. One possibility is to take , , and . In this
solution, the th column of , which stands for theth query
session, hasth entry one, and all other entries zero. Hence,
this query session is going to retrieve those images having the
th hidden semantic feature. Multiplying by , we get ,

which is the retrieval result. Fig. 2 shows a simple example of a
semantic space constructed after three query sessions.

Reduce Semantic Space Using SVD:In the above section,
choosing implies that all queries are orthogonal. But, in
practice, different queries may involve common high-level se-
mantic features. Simply appending each retrieval resultas a
column vector in matrix does not exploit the correlation be-
tween queries. Another consequence is that the size ofgrows
linearly as the number of query sessions increases.

For storage and performance improvements, it is desirable to
merge related hidden semantic features and construct a lower
dimensional space . We may compute the SVD of , which
expresses , with , , and diag-
onal. Note that the column vectors ofand are eigenvectors
of and , respectively. Let be the rank of (which is
equal to the number of nonzero entries on the diagonal of). It
can be at most , and is possibly much smaller, since
there may be linear dependencies among the(for instance,
when one semantic category is the disjoint union of others).

If we delete all but the first columns of and , and all but
the upper submatrix of , then we still have .
Thus, we can let be the matrix , and the

Fig. 2. Simple example of a semantic space constructed after three query
sessions. There are five images in the database. The images on the top are
query images. For each image in the database, its corresponding entry of the
semantic matrix is set to be 1 if it is marked as relevant.

matrix . Since
, this gives the same inter-image similarities as using

, but with reduced storage if . ( is usually quite sparse,
while may not be.) Note that the “queries” (i.e., the columns
of ) will no longer in general be orthogonal if .

Now our result vectors are constructed from user judg-
ments as to which images are relevant to a given query (i.e.,
which images contain the same hidden semantic feature). But
as the user does not generally inspect all the images in the data-
base, there may be some spurious zeros in, and different users
may disagree on certain images, even if seeking essentially the
same semantic class. Thus, the matrixmay be noisy and of
artificially increased rank. The cleaner, ideal results may be gen-
erated by a linear process of rank less than rank. By taking

rank , deleting all but the first columns of and
and all but the upper submatrix of as before, and by
taking and as before, we obtain a still lower
dimensional semantic space. It is no longer true that ,
but instead is the best rank- approximation of , in the
least squares sense (i.e., under the Frobenius norm).

The above idea is similar to latent semantic indexing (LSI)
for text retrieval, and it has been shown that relative precision
can improve by 30% by reducing the rank of document-term
matrices in this fashion [1]. The claim is that meaningless dis-
tinctions between words are reduced. Theoretical results that go
some ways toward explaining these empirical successes appear
in [14], though under fairly restrictive hypotheses.
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C. Updating the Semantic Space

In a real-world implementation of the retrieval system, the
semantic matrix may be periodically replaced by in a re-
duced-rank SVD approximation of . If one does not
have ana priori estimate of the rank of the underlying linear
process, one may resort toad hocmethods for choosing the di-
mension for the reduced rank SVD based on examining the sizes
of the singular values, or assessing the retrieval performance of
the algorithm. In theory, the optimal rank is closely related to
the number of semantic categories in the image database. If this
number can be roughly estimated, it can be used as a guideline
to select the best rank for updating the semantic space. As more
vectors are appended and becomes bloated, is then sub-
jected to an SVD again to keep its rank within a certain range.

Note that, in a real-world application, we do not need to com-
pute the SVD of (or ) explicitly. We only need to compute
the matrix of the eigenvectors of . The semantic matrix
is replaced by . The matrix is called thetransfor-
mation matrix. Since the semantic space is periodically reduced
to a low-dimensional space, the dimension of the matrix
is usually not high.

IV. SHORT-TERM LEARNING: LEARNING A

CLASSIFIER FROM EXAMPLES

In Section III, we described our algorithm for constructing a
semantic space. With this semantic space, the aim of short-term
learning is to infer the user’s information need by applying su-
pervised learning to build a classifier for differentiating seman-
tically relevant images in the database from irrelevant ones. In
this section, we first introduce the idea of the target function
corresponding to a user’s query.

A. Target Function in the Semantic Space

Our proposed short-term learning for image retrieval can be
modeled as the following process: learn a function which
takes an image ( represents its -dimensional feature vector)
as input, and outputs 1 if this image is relevant and outputs 0
if it is irrelevant. Hence, the system uses to distinguish
relevant images from irrelevant ones. The goal of the short-term
learning is to learn and to make as few mistakes as possible,
assuming that both the choice of relevant features and the choice
of feedback examples are under the control of the user. Here,
relevant featuresare those hidden semantic features that the user
desires. We call thetarget function. In other words, the goal
is to train a classifier to label each image within the database,
such that the classifier’s labeling agrees with the user’s labeling
for all images.

B. Representing Query Example With Hidden Semantics

When an example image is presented to the system as a query,
its low-level features (color, texture, etc) are extracted to con-
duct the first iteration of the search. Note that we do not have
hidden semantic features for images unless they are in the data-
base. After the first retrieval, the semantic representation of the
query image can be formed based on the user’s relevance feed-
back as follows: suppose the user markspositive examples and

negative examples from among the first batch of retrieved im-

ages. Each of these images is represented by a semantic
vector , with for the positive examples and

for the negative examples. Then the se-
mantic feature for the query image can be represented as

where

and where is the th element of the semantic vector. In
the semantic space after SVD dimensionality reduction, the se-
mantic vectors are no longer Boolean. In this case, we simply
use a linear combination of the relevant images to represent the
query image, as follows:

C. Learning a Classifier in the Boolean Semantic Space

An image in -dimensional Boolean semantic space is
represented by a Boolean vector , .
The image has theth hidden semantic feature if and only if

. Thus, the task is to learn a target (discriminating)
function . If the output is one, the system
classifies the image as relevant, while if the output is zero, the
system classifies the image as irrelevant. We assume in this
analysis that users seek images having any one of some subset
of relevant hidden semantic features. Then the optimalis a
disjunction function , where

are the subscripts of therelevant features, i.e.,
those hidden semantic features which the user desires. We also
assume that the user acts as the disjunction function
to teach the search engine. That is, for a given image, the user
classifies it as positive example if it has at least one relevant
feature. Otherwise, the user classifies it as a negative example.
Since the images classified by are linearly separable
(note that for any concept , a separating
hyperplane is given by , our goal
is to find a linear hyperplane that separates the images with at
least one relevant feature from those images with no relevant
feature, as does. In our system, the linear discriminant
function is defined as follows:

if

if

where is a function to evaluate the score of image
while ranking and is a threshold. The simplest score functions
are linear; that is, they may be expressed as the dot product of
a weight vector and the hidden semantic feature vectoras
follows:

Mistake-Driven Learning:Traditionally, the user’s rele-
vance feedbacks are used to update the query vector or adjust
the weighting of different dimensions. This process can be
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viewed as an on-line learning process in which the image
retrieval system acts as a learner and the user acts as a teacher.
The typical retrieval process is outlined as follows.

1) The user provides his relevance feedback to the system by
labeling images as “relevant” or “irrelevant.”

2) The system compares the user’s judgment with the one
generated by the current target function .

3) The system modifies such that it generates a judg-
ment coherent with the user’s feedback.

If the system’s judgment disagrees with that of the user, we
say that the system makes a mistake. A mistake-driven learning
algorithm updates only when a mistake is made. In this sec-
tion, we use a variant of Littlestone’s winnow [11], one of the
most widely used on-line learning algorithms for linear func-
tions, to perform short-term learning for image retrieval.

Winnow-Like Learning Algorithm:With user’s relevance
feedback, our algorithm can learn the disjunction of hidden
semantic features that the user desires.

A winnow-like mistake-driven on-line learning algorithm is
used to learn the discriminant function . Initially, the weight
vector is set to be the query vector, which is obtained by
the method described in Section IV-B. Those images with the
highest scores, along with some random images, are presented
to the user. If the current classifier labels an imageas “irrel-
evant” ([i.e., if ) while the user labels as “rele-
vant,” we say apositive mistakeoccurs. Similarly, if the current
classifier labels image as “relevant” (i.e., if )
while the user labels as “irrelevant,” we say anegative mis-
takeoccurs. When the user’s relevance feedback contradicts the
current classification, the algorithm updates the weight vector
as follows:

Negative mistake:

if

if

Positive mistake:
if

if and

if and

where controls the adjustment rate and is greater than one.
How Many Feedbacks are Needed at Most—Theoretical

Analysis of Mistake Bound:Despite tremendous research on
using relevance feedback for image retrieval, little theoretical
analysis has been performed so far. In this section, we provide
a theoretical analysis of the mistake upper bound for the
winnow-like algorithm. We regard each query as a classifi-
cation problem, and train a linear classifier to discriminate
between relevant and irrelevant images in the database. A linear
classifier is represented by a pair ( ), where is an

-dimensional weight vector and is a threshold.
During the user interaction, the algorithm updates the weight

vector each time a mistake occurs. Our goal is to minimize the
total number of mistakes that the algorithm makes, so that the
user can retrieve the target images as quickly as possible. The

following theorem gives a theoretical upper bound on the re-
quired number of feedbacks.

Theorem 1: Assume is the total number of hidden semantic
features in the database. The winnow-like image retrieval algo-
rithm with threshold and adjusting rate learns the class of
disjunctions over the-dimensional Boolean vector space in the
mistake-bound model, making at most

mistakes when the target
concept is a disjunction of hidden semantic features.

Littlestone proved a similar result in [11]; since we use a
slightly different update rule, we give a sketch of the proof in
the Appendix. This gives us an estimate of at most how many
feedbacks are needed. It should be pointed out, however, that
this result is obtained in an idealized setting. In the real world,
the user is not an optimal teacher, in most cases. That is, some-
times the user is unable to tell whether an image is relevant or
irrelevant. Estimating the mistake-bound under such conditions
is beyond the scope of this paper and is left for future studies.

D. Learning a Classifier in the Dimensionality-Reduced
Semantic Space

In low-level feature (color, texture, shape, etc.) space, or in
semantic space after dimensionality reduction, the representa-
tion of an image is no longer a Boolean vector, but a real-valued
vector. Also, the relevant images and irrelevant images [deter-
mined by ] may no longer be linearly separable in the
dimensionality-reduced semantic space.

In the Boolean semantic space, a linear classifier is given by a
pair , where is an -dimensional weight vector
and is a threshold. To be consistent with the previous
section, we will still use to denote a weight vector, but without
loss of generality we can assume that the threshold is zero, by
making the following modifications.

• Append a new dimension to with value of

• Append a new dimension towith value of 1

• Append a new orthogonal column vector to the transfor-
mation matrix (see Section III)

(Here, is a column vector taking 0 at each entry.)
Consequently, the transformed image vector in the reduced-

dimension semantic space is also appended a new dimension
with value of 1

Hence, the linear classifier can be represented by a single
weight vector , which is called a linearseparator.

Let denote the set of all the linear separators in the original
semantic space and let denote the subspace spanned by the
column vectors of matrix . We have the following theorem,
which is proven in the Appendix.
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Fig. 3. MiAlbum image retrieval system. The user can provide his feedback
by clicking “thumb up” or “thumb down” buttons associated with each retrieved
image.

Theorem 2: The relevant images and irrelevant images are
linearly separable in the reduced-dimension semantic space if
and only if .

As the theorem indicates, if and are disjoint, then there
does not exist a hyperplane that separates the relevant images
from the irrelevant images. In this case, a SVM training algo-
rithm can be used to learn a nonlinear target function for re-
trieving relevant images.

Another motivation for using an SVM is the small sample
size issue in image retrieval. The number of training examples
fed back by the user is usually small (six per round of interaction
in our experiment) relative to the dimension of the feature space
(from dozens to hundreds, or even more), while the number of
semantic classes is large for most real-world image databases.
SVMs make no assumptions on the distribution of the data and
can, therefore, be applied even when we do not have enough
knowledge to estimate the distribution that produced the input
data.

SVMs: SVMs are a family of pattern classification algo-
rithms developed by Vapnik [22] and collaborators. SVM
training algorithms are based on the idea ofstructural risk
minimizationrather thanempirical risk minimization, and give
rise to new ways of training polynomial, neural network, and
radial basis function (RBF) classifiers.

We shall consider SVMs in the binary classification setting.
We assume that we have a data set of labeled
examples, where , and we wish to select, among
the infinite number of linear classifiers that separate the data,
one that minimizes the generalization error, or at least mini-
mizes an upper bound on it. In [22], it is shown that the hy-
perplane with this property is the one that leaves the maximum
margin between the two classes. Given a new data pointto
classify, a label is assigned according to its relationship to the
decision boundary, and the corresponding decision function is

From this equation, it is possible to see that theasso-
ciated with the training point expresses the strength with

Fig. 4. Design of our system, which is equipped with both short- and long-term
learning capabilities.

which that point is embedded in the final decision function. A re-
markable property of this alternative representation is that often
only a subset of the points will be associated with nonzero.
These points are calledsupport vectorsand are the points that
lie closest to the separating hyperplane.

The nonlinear SVM implicitly maps the input variable into
a high-dimensional (often infinite-dimensional) space, and ap-
plies the linear SVM in the space. Computationally, this can be
achieved by the application of a (reproducing) kernel. The cor-
responding nonlinear decision function is

where is the kernel function. Some typical kernel functions
include polynomial kernels, Gaussian RBF kernels, and sigmoid
kernels.

V. MIALBUM IMAGE RETRIEVAL SYSTEM

We have integrated this learning framework into the Mi-
Album [12] image retrieval system developed at Microsoft
Research Asia. Fig. 3 shows the user interface of this system.
In this paper, we focus on image retrieval based on “query
by example” and on using the user’s relevance feedback and
interaction to improve the system’s short- and long-term
performance. Fig. 4 shows the flowchart of our system. When
the user submits an example image as a query, the system first
computes low-level features of the query image, which are
used to rank the images in the database, some of which are then
shown to the user. Note that no semantic features are involved
at this stage. Then, the user provides his feedback by clicking
on the “thumb up” or “thumb down” button according to his
judgment of the relevance of each retrieved image. With the
user’s relevance feedback, the system starts to take advantage
of the hidden semantic features, and trains the on-line classifier
to improve search performance. The search results continue to
be refined iteratively until the user is satisfied. The accumulated
relevance feedbacks are used to update the semantic space, as
described in the long-term learning process.
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TABLE I
IMAGE FEATURESUSED IN OURSYSTEM

VI. EXPERIMENTAL RESULTS

We performed several experiments to evaluate the effective-
ness of the proposed approach on a large image database. The
image database we used consists of 10 000 images of 79 se-
mantic categories, from the Corel dataset. It is a large and het-
erogeneous image set. A retrieved image is considered correct
if it belongs to the same category as the query image. Three
types of color features and three types of texture features are
used in our system; they are listed in Table I. We designed an
automatic feedback scheme to model the short-term retrieval
process. At each iteration, the system marks the first three in-
correct images from the top 100 matches as irrelevant exam-
ples, and also selects, at most, three correct images as relevant
examples (relevant examples from the previous iterations are ex-
cluded from the selection). These automatically generated feed-
backs are used as training data to perform short-term learning.
To model the long-term learning, we randomly select images
from each category as the queries. For each query, a short-term
learning process is performed and the positive feedbacks are
used to construct the semantic space. That is, for each single
session of retrieval, a hidden semantic feature is learned and ap-
pended as a new column to the semantic matrix. To evaluate the
performance of our algorithms, we define the retrieval accuracy
as follows:

Five experiments were designed to evaluate our proposed al-
gorithms. The experiments with the SVM training algorithm are
discussed in Section VI-A. In Section VI-B, we show how the
image retrieval performance improves as the semantic space is
refined based on the user’s interaction with the system. We fur-
ther test the system’s performance on the semantic space whose
dimension has been reduced using SVD in Section VI-C. The
system’s robustness to noise is evaluated in Section VI-D.

A. SVM Learning Algorithm

We compared the performance of the SVM training algorithm
with RBF kernel to the relevance feedback approach described
in Rui [16]. The comparison was made in the low-level feature
space, with no semantic features involved. Fig. 5 shows the frac-
tion of relevant images among the top images returned
by each method, as a function of the number of rounds of user
feedback. We obtained similar results using other values of,
up to 100. As can be seen, the SVM training algorithm outper-
formed Rui’s approach in these tests.

Fig. 5. Comparison of SVM learning algorithm with Rui’s approach. The
SVM learning algorithm outperforms Rui’s approach.

Fig. 6. Retrieval accuracy of the system improves as the semantic degree
of the system increases. The graph also show the system can quickly reach a
reasonably good performance with two to three iterations.

B. Image Retrieval in Boolean Semantic Space—System
Evolution Evaluation

As discussed previously, the high-level semantic space is con-
structed as the system evolves. To evaluate the degree of system
evolution, a measurement called semantic degree is defined as
follows:

Semantic degree

For simplicity, a semantic space with semantic degree% is
referred to as a% semantic spacein this section. The semantic
degree of a semantic space can be measured by the number of
columns of the semantic matrix, namely, the number of hidden
semantic features. For example, there are 10 000 images in our
database, so a 3% semantic space corresponds to a 10 000300
semantic matrix before dimension reduction.

In the following, we evaluate how the system retrieval
performance improves as the semantic space is learned from
the user-and-system interactions. The experiments were con-
ducted using the winnow-like mistake-driven on-line learning
algorithm in Boolean semantic spaces of different semantic
degrees. In Fig. 6, each curve shows the average retrieval
performance. To train the system,% of the images in each
category were randomly selected as query images to build the

% semantic space. Then the rest of images were used as test
data to evaluate the retrieval accuracy of our system at different
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Fig. 7. Image retrieval performance in original semantic space, and
dimensionality-reduced semantic space. The semantic degree of the semantic
space is 3%.

degrees of evolution. As can be seen, the system performance
improved as the semantic degree of the system increased. In
addition, we see that our system learned to retrieve the target
images quite quickly. It reached a reasonably good performance
within two to three iterations.

C. Image Retrieval in Dimensionality-Reduced Semantic
Space

In this section, we evaluate the image retrieval performance
in a dimensionality-reduced semantic space. The SVD was used
to reduce the dimension of the original semantic space, and
then an SVM was trained to classify images in this space. After
the long-term learning, a 3% semantic space represented by a
10 000 300 semantic matrix was constructed. Fig. 7 shows
the experimental results, comparing the image retrieval perfor-
mance in the original semantic space with the dimensionality-
reduced spaces.

As we discussed in Section III-C, the fundamental problem
for updating the semantic space and reducing its dimension is
to estimate the true rank of the semantic space. The optimal rank
is closely related to the number of semantic classes in the data-
base. If the image database administrator has prior knowledge
about this number, it can be used as a guideline to control the di-
mensionality reduction. Intuitively, the system reaches the best
performance (in terms of accuracy and efficiency) when the rank
of the semantic space is close to the number of semantic classes.
Reducing the dimension of the semantic space to below this rank
will start to cause information loss and decrease the retrieval ac-
curacy. This intuition is supported by our experiments. As we
can see from Fig. 8, the system achieved its best performance
when the number of dimensions of the inferred semantic space
approximated the number of semantic classes (in this case, 79).

D. Learning Semantic Space Under a Noisy Environment

In the previous experiments, the simulated user’s relevance
feedback was generated based on the ground truth, i.e., the 79
image categories from the Corel image library. In this case, the
user is regarded as an optimal teacher. That is, the images that
the user marked as positive always belonged to the same se-
mantic class. However, in the real world, the user may make

Fig. 8. Retrieval accuracy in the 3% semantic space with different degrees of
dimensionality reduction. The evaluation is conducted after three iterations (the
system starts to converge at this point). As can be seen, the system reaches the
best performance when the number of dimensions approximates the number of
semantic classes, i.e., 79.

Fig. 9. Retrieval accuracy in the 3% semantic space with 20% noise. In other
words, 20% of the user’s feedback is incorrect. As can be seen, although the
system with noise performs a little worse than the system without noise, the
difference is not significant. When the rank of the semantic matrix is reduced
using SVD, the performance difference becomes smaller.

mistakes in providing feedback. For instance, a user may un-
consciously select images of “wolf” as positive examples while
he is actually looking for images of “dog.” Hence, noise could
be introduced into the system when the semantic space is being
constructed. The noise has two effects on the system: 1) for
long-term learning, the noise will degrade the reliability of the
inferred semantic space and 2) for short-term learning, the noise
will mislead the current retrieval session.

In this section, we examine how the noise affects the
long-term learning. We conducted experiments in which the
original semantic space contained 20% noise. In other words,
20% of the simulated user’s feedback was incorrect. As can be
seen from Fig. 9, although the system with noise performed
a little worse than the system without noise, the difference
was not significant. When the rank of the semantic matrix
was reduced using SVD, the performance difference became
smaller. This suggests that the SVD not only reduces the
dimensionality, but also helps to remove the noise introduced
in the long-term learning process. After four iterations, the
performance difference is less than 3%. These experiments
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indicate that our proposed learning algorithms for inferring the
semantic space are robust in a noisy environment, which is
crucial for practical use in the real world.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we described a learning framework that makes
use of relevance feedback to enhance the performance of
an image retrieval system from both short- and long-term
perspectives. The proposed long-term learning scheme infers a
semantic space from user interactions. A method of updating
of the semantic space and guidelines for choosing the optimal
dimensionality (rank) were also discussed. As can be seen
from the experiments, this learned semantic space supplements
the low-level features in making the image search result more
satisfactory to users.

For the short-term learning, a winnow-like mistake-driven
learning algorithm and a SVM training algorithm were used
to learn the target function for retrieving relevant images from
the database. A theoretical analysis of the winnow-like algo-
rithm shows that themistake boundin short-term learning is
logarithmic with the total number of features, and linear with
the number of relevant features. In fact, without considering
the effect of the low-level features, thesemantic degreeof the
constructed semantic space determines at most how many rel-
evant images can be retrieved for a given query, and themis-
take boundprovides estimation about at most how many feed-
backs are needed to retrieveall these relevant images. We also
stated conditions under which the dimensionality-reduced se-
mantic space is linearly separable. Based on this analysis, a
SVM training algorithm was used to retrieve the target images
from the database.

In our proposed learning approaches, the positive examples
from the user’s relevance feedback are mainly used for inferring
the semantic space in the long-term learning. A possible exten-
sion of our work is to consider assigning a negative value for
those negative examples while appending a new column to the
semantic matrix. We are currently exploring the impact of this
extension. On the other hand, as many other researchers have
suggested, the negative examples—which correspond to the
failure of current classifier (target function) in the short-term
learning—contain the most valuable information for improving
the performance in the current query session. Though our
system does not explicitly direct users to provide this kind
of feedback, we believe that the system will converge to a
satisfactory result in fewer steps if such guidance is provided to
users. Furthermore, the feedback provided by real-world users
often contains inaccurate information. Although our proposed
learning approaches can tolerate noise to some extent, it may
be desirable to conduct filtering to remove unreliable feedback
before using it for training the system.

APPENDIX

Proof of Theorem 1:For the sake of simplicity, we define
the relevant weightsto be , where the are
the subscripts of the corresponding relevant features. We define
the total weight for each trial (each time a mistake occurs) to
be , where is the weight

vector in the th trial. Any positive mistake will increase at least
one relevant weight. And a negative mistake will not decrease
any of the relevant weights. Furthermore, each of these relevant
weights can be increased at most times. Therefore,
the algorithm makes at most positive mis-
takes. For each positive mistake, the weight increases if the
corresponding equals one. Therefore, the total weight
increases by at most .

On the other hand, each negative mistake decreases the total
weight by at least . Let denote the
number of negative mistakes. Thus, .
This leads to the upper bound on the number of negative mis-
takes . Therefore, the total number of
mistakes is bounded by

Proof of Theorem 2: If , then
and , such that is a separator in the original se-

mantic space. The hyperplane discriminating the relevant im-
ages and irrelevant images in the original semantic space is

Note that and are both row vectors. Since , we
have . Thus

where is the image vector in the reduced semantic
space. Thus, the relevant and irrelevant images are still linearly
separable in the reduced semantic space.

If the relevant images and irrelevant images are still lin-
early separable in the reduced semantic space, we assume that

is such a separator. Thus

is a discriminating hyperplane in the reduced semantic space.
Since , we have

Thus, is a linear separator in the original se-
mantic space. That is, . Obviously, . Therefore,

.
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