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1 Introduction

We published the journal paper Learning a Structured Neural Network Policy
for a Hopping Task [1] roughly two years ago as a RAL journal paper with
proceedings in IROS 2018. The paper is about learning a hopping motion on
a single leg robot. The paper contributes a way to learn the dynamics of the
system, how to optimize a hopping policy and two different ways to transfer
the optimized policy to a neural network policy. The goal of one of the neural
network policies, the feedback network policy, was to learn the feedback and
feedforward gains. This allows to inspect the behavior of the policy by analyzing
the outputs.

In the following, I outline a few lessons learned that are not mentioned in
the original paper. In addition, I am listing a few things I would do differently
from today’s standpoint.

2 Technical lessons learned

Here I outline some technical details that I became aware of during this work.

• Experimental round trip time matters. At some point running the
simulation experiments and regenerating the plots took longer than a day.
Through various optimization this time was brought down to the five
minute range1. Faster round trip time allowed us to try new ideas and
run the required experiments faster.

1Initially, most of the time was spend training very large networks with many hidden
layers, neurons and large batch sizes for many steps, which we reduced to smaller networks
and smaller batch sizes at no loss of final policy network performance.
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• Experiment automation pays off. Our experiments consisted of many
different tasks like first optimizing a policy, generating training data for
neural network training, training different networks and then evaluating
them. To orchestrate these tasks and rerun only the ones needed, we used
make and a python generated Makefile. This allowed us to run all tasks
including the final plot with a single command. In addition it enabled us
to run tasks in parallel and thereby faster.

• Control network policies can be small and train fast on CPUs.
During our experiments we found that the control policies we used were
rather small neural networks with ten hidden neurons and three hidden
layers. As the networks were small, we could train them on a CPU at
similar speed compared to a GPU. This allowed us to parallelize the net-
work training on our local workstation over multiple CPUs and speedup
the overall experimental round trip time significantly.

• Using a cluster comes with overhead. At some points we had all
our experimental simulations running on a local research cluster. While
this allowed us to run more tasks in parallel, it also came at the overhead
of debugging our scripts on the cluster, coordinate for free resources with
other cluster users and spending time to adjust our scripts to run on the
cluster. In the end, we found it easier to optimize our tasks to run on a
local machine (e.g. train on CPUs instead of GPUs) and use a powerful
workstation with many CPUs.

As conclusion, we found it important to have a short experiment round
trip time to try new research ideas quickly. We achieved this by finding that
smaller networks performed similar than the initial large ones used. In addi-
tion, we found that our small networks train fast on CPUs, allowing to utilize
parallelization over multiple CPU cores when training different neural networks.
Especially in our setup without vision we didn’t find it beneficial to use GPUs or
large compute. The parallelization was enabled by the experiment automation
that we used. Last but not least we found it easier to run all our experiments
locally than on a cluster.

3 Research lessons learned

Besides the technical lessons learned, there were also some research related
aspects learned on the way.

• Avoiding experimenter bias for real robot experiments using au-
tomation. One important part about doing proper research is the ability
to reproduce results. When it comes to real world experiments operated
by an experimenter, the experimenter can bias the results of the experi-
ments. For example, in our first first submission of the paper we changed
the floor angle of attack manually. As pointed out by the reviewers, this
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could lead to a bias from the experimenter and should therefore be au-
tomated. Therefore, for the final paper, we motorized the floor to have
repeatable motions. This lead to a change in results and the PPO policy
performed better on the real world experiment after the motorization.

• Learning on real hardware did not work. Initially we tried to learn
the dynamics model for the trajectory optimization directly on real hard-
ware. This did not work and we ended up using only simulated data2. As
hypothesis, I assume the main problem for learning on the real hardware
came from the cogging pattern applied by the brushless motors. Brush-
less motors use multiple coils and magnets and because of their alignments
turning the motor has easier and harder to rotate positions. The resulting
torque is relative high compared to the torque needed to move the leg in
free air. Especially at the beginning of the dynamics learning this caused
the learned dynamics to get biased and become unstable. Since the ini-
tial experiments we have tried to remove the cogging torque but did not
manage yet. This is as the cogging torque profile is changing relatively
quickly and is hard to identify.

• Learning feedback policy using PPO. Using the Proximal Policy
Optimization (PPO) algorithm, we attempted to learn a feedback pol-
icy. That is, predict with a PPO trained network policy the feedforward
torque, desired state and feedback matrix. This did not work and we hy-
pothesized in the paper that this is due to the instability of learning the
desired state and feedback matrix at the same time. Meanwhile, there has
been some followup work [2, 3] which shows that a feedback like policy
can be optimized when more structure is imposed on the problem (e.g.
learn only a diagonal feedback matrix).

In summary, initially we missed to rule out experimenter bias for the real
hardware experiments. The real world experiments got automated to remove
the bias. We didn’t manage to learn the dynamics directly on the real hardware
due to unmodeled disturbances. Therefore, we used only simulation data to
train the policies. Using PPO we were not able to train a feedback policy. This
has been explored further in the meantime [2, 3].

4 Things done differently

Besides the technical and research lessons learned, there are also a few points I
would do differently if approaching this project once more.

• Fix network architecture earlier. While working on the project, we
spent significant time training different sized neural networks as we were

2To run the policies from simulation on the real hardware, we scaled the output torque by
a factor of 1.3. In addition a small joint velocity damping taudamp = −0.03 q̇ was added to
stabilize the motion.
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not sure which one would perform best. In retroperspective, we should
have picked one set of network parameters and focus more on the other
research aspects.

• Use same robot properties in simulation and real robot. For the
simulated and real robot the publication uses different total mass, maxi-
mum torque etc. This is the case as the real hardware was finished later.
We decided to not adapt the robot parameters in simulation to show the
learned policies transfer to the real robot and thereby show the robustness
property of the policies. From today’s standpoint, I would rather use the
same robot properties in simulation and on the real hardware. This is
to make the results in simulation and real robot better comparable. In
addition, the transfer to a different robot platform was not the main focus
of the publication.

• Use metric directly corresponding to the task. As metric for our
hopping task we used the sum of the upwards base velocity squared. This
metric showed well the progress when optimizing trajectories with iLQR
over multiple jumps and while the trajectories got longer over the course
of optimization. However, naturally a jump is better the higher the robot
manages to jump. Therefore, I would use a metric like the maximum mean
jump height over multiple jumps instead today.

• Use appropriate contact model. In our work we used a momentum-
preserving contact model without slippage. We choose this contact model
to simulate hard impacts like we observe them on the platform properly.
Because the model didn’t support slipping, the simulated robot leg would
not slip when the floor was at a very steep angle. However, simulating
slipping in this scenario is crucial to have a realistic simulation. Therefore
I should have used a contact model allowing foot slippage, like a spring-
damped contact model with friction cone for the tangential forces.

In conclusion, we spend significant time training different neural network
architectures and should have converged on an architecture earlier. We used
different robot properties for historical reason. We should have updated the
simulated properties to make the experiments more comparable. As overall
metric, we used a metric that helped us to see the progress of the iLQR opti-
mization but should have used a metric more corresponding to the task instead.
Last but not least, as slippage is important for our task we should have chosen
a contact model that allows to simulate slippage as well.
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