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Abstract

Purpose—To allow fast and high-quality reconstruction of clinical accelerated multi-coil MR 

data by learning a variational network that combines the mathematical structure of variational 

models with deep learning.

Theory and Methods—Generalized compressed sensing reconstruction formulated as a 

variational model is embedded in an unrolled gradient descent scheme. All parameters of this 

formulation, including the prior model defined by filter kernels and activation functions as well as 

the data term weights, are learned during an offline training procedure. The learned model can 

then be applied online to previously unseen data.

Results—The variational network approach is evaluated on a clinical knee imaging protocol for 

different acceleration factors and sampling patterns using retrospectively and prospectively 

undersampled data. The variational network reconstructions outperform standard reconstruction 

algorithms, verified by quantitative error measures and a clinical reader study for regular sampling 

and acceleration factor 4.

Conclusion—Variational network reconstructions preserve the natural appearance of MR images 

as well as pathologies that were not included in the training data set. Due to its high computational 

performance, i.e., reconstruction time of 193 ms on a single graphics card, and the omission of 

parameter tuning once the network is trained, this new approach to image reconstruction can easily 

be integrated into clinical workflow.
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INTRODUCTION

Imitating human learning with deep learning (1, 2) has become an enormously important 

area of research and development, with a high potential for far-reaching application, 

including in the domain of Computer Vision. Taking encouragement from early successes in 

image classification tasks (3), recent advances also address semantic labeling (4), optical 

flow (5) and image restoration (6). In medical imaging, deep learning has also been applied 

to areas like segmentation (7, 8), q-space image processing (9), and skull stripping (10). 

However, in these applications, deep learning was seen as a tool for image processing and 

interpretation. The goal of the current work is to demonstrate that the concept of learning 

can also be used at the earlier stage of image formation. In particular, we focus on image 

reconstruction for accelerated MRI, which is commonly accomplished with frameworks like 

Parallel Imaging (PI) (11–13) or Compressed Sensing (CS) (14–16). CS in particular relies 

on three conditions to obtain images from k-space data sampled below the Nyquist rate 

(17,18).

The first CS condition requires a data acquisition protocol for undersampling such that 

artifacts become incoherent in a certain transform domain (14, 15). In MRI, we usually 

achieve incoherence by random (16) or non-Cartesian sampling trajectories (19). The second 

requirement for CS is that the image to be reconstructed must have a sparse representation in 

a certain transform domain. Common choices are the Wavelet transform (16, 20) or Total 

Variation (TV) (19, 21–23). In these transform domains, the l1 norm is commonly applied to 

obtain approximate sparsity. The third CS condition requires a non-linear reconstruction 

algorithm that balances sparsity in the transform domain against consistency with the 

acquired undersampled k-space data.

Despite the high promise of CS approaches, most routine clinical MRI examinations are still 

based on Cartesian sequences. Especially in the case of 2D sequences, it can be challenging 

to fulfill the criteria for incoherence required by CS (24). One other obstacle to 

incorporation of CS into some routine clinical routine examinations is the fact that the 

sparsifying transforms employed in CS applications to date may be too simple to capture the 

complex image content associated with biological tissues. This can lead to reconstructions 

that appear blocky and unnatural, which reduces acceptance by clinical radiologists. A 

further drawback, not only for CS but for advanced image acquisition and reconstruction 

methods in general, is the long image reconstruction time typically required for iterative 

solution of non-linear optimization problems. A final challenge concerns the selection and 

tuning of hyper-parameters for CS approaches. A poor choice of hyper-parameters leads 

either to over-regularization, i.e., excessively smooth or unnatural-looking images, or else to 

images that still show residual undersampling artifacts. The goal of our current work is to 

demonstrate that, using learning approaches, we can achieve accelerated and high-quality 
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MR image reconstructions from undersampled data which do not fulfill the usual CS 

conditions, which we adress with both quantitative error measures and a clinical reader 

study.

With current iterative image reconstruction approaches, we treat every single exam and 

resulting image reconstruction task as a new optimization problem. We do not use 

information about the expected appearance of the anatomy, or the known structure of 

undersampling artifacts, explicitly in these optimization problems, which stands in stark 

contrast to how human radiologists read images. Radiologists are trained throughout their 

careers to look for certain reproducible patterns, and they obtain remarkable skills to “read 

through” known image artifacts (24). Translating this conceptual idea of human learning to 

deep learning allows us to shift the key effort of optimization from the online reconstruction 

stage to an up-front offline training task. In other words, rather than solving an inverse 

problem to compute, for each new data set, a suitable transform between raw data and 

images, we propose to learn the key parameters of that inverse transform in advance, so that 

it can be applied to all new data as a simple flow-through operation.

In this work, we introduce an efficient trainable formulation for accelerated PI-based MRI 

reconstruction that we term a variational network (VN). The VN embeds a generalized CS 

concept, formulated as a variational model, within a deep learning approach. Our VN is 

designed to learn a complete reconstruction procedure for complex-valued multi-channel 

MR data, including all free parameters which would otherwise have to be set empirically. 

We train the VN on a complete retrospectively undersampled clinical protocol for 

musculoskeletal imaging, evaluating performance for different acceleration factors, and for 

both regular and pseudo-random Cartesian 2D sampling. Using both retrospectively and 

prospectively undersampled clinical patient data, we investigate the applicability of our 

proposed VN approach for clinical routine examination, including improved image quality 

and preservation of unique pathologies that are not included in the training data set.

THEORY

From Linear Reconstruction to a Variational Network

In MRI reconstruction, we naturally deal with complex numbers. Here, we introduce a 

mapping to real-valued numbers that we will use throughout our manuscript. We define 

complex images u∼ of size nX × nY = N as equivalent real images u as follows:

u
∼ = uRE + juIM ∈ ℂN

u = (uRE, uIM) ∈ ℝ2N .

We consider the ill-posed linear inverse problem of finding a reconstructed image u ∈ ℝ2N 

that satisfies the following system of equations

Au = f , [1]
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where f ∈ ℝ2NQ is the given undersampled k-space data, where missing data are padded by 

zeros. The linear forward sampling operator A implements point-wise multiplications with 

Q coil sensitivity maps, Fourier transforms, and undersampling according to a selected 

sampling pattern. Originally, the operator A is defined by the mapping ℂN ↦ ℂNQ, but 

embedding it in our real-valued problem changes the mapping to ℝ2N ↦ ℝ2NQ. Since the 

system in Eq. 1 is ill-posed, we cannot solve for u explicitly. Therefore, a natural idea is to 

compute u by minimizing the least squares error

min
u

1
2

Au − f 2
2

. [2]

In practice we do not have access to the true f  but only to a noisy variant f satisfying

f − f 2 ≤ δ

where δ is the noise level. The idea is to perform a gradient descent on the least squares 

problem Eq. 2 that leads to an iterative algorithm, which is known as the Landweber method 

(25). It is given by choosing some initial u0 and performing the iterations with step sizes αt

u
t + 1 = u

t − α
t
A

∗(Au
t − f), t ≥ 0 [3]

where A* is the adjoint linear sampling operator. To prevent over-fitting to the noisy data f, 

it is beneficial to stop the Landweber iterative algorithm early (26), i.e., after a finite number 

of iterations T.

Instead of early stopping, we can also extend the least squares problem by an additional 

regularization term ℛ(u) to prevent over-fitting. The associated (variational) minimization 

problem is given by

min
u

ℛ(u) +
λ

2
Au − f 2

2 .

The minimizer of the regularized problem depends on the trade-off between the 

regularization term and the least squares data fidelity term controlled by λ > 0. One of the 

most influential regularization terms in the context of images is the TV semi-norm (21), 

which is defined as

ℛ(u) = (DuRE, DuIM)
2, 1

= ∑
l = 1

N

|DuRE|
l, 1
2 + |DuIM|

l, 1
2 + |DuRE|

l, 2
2 + |DuIM|

l, 2
2

where D : ℝN ↦ ℝN×2 is a finite differences approximation of the image gradient, see for 

example (27). The main advantage of TV is that it allows for sharp discontinuities (edges) in 

the solution while being a convex functional enabling efficient and global optimization. 
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From a sparsity point of view, TV induces sparsity in the image edges and hence, favors 

piecewise constant solutions. However, it is also clear that the piecewise-constant 

approximation is not a suitable criterion to describe the complex structure of MR images and 

a more general regularizer is needed.

A generalization of the TV is the Fields of Experts model (28)

ℛ(u) = ∑
i = 1

N
k

Φi(Kiu), 1 . [4]

Here, the regularization term is extended to Nk terms and 1 denotes a vector of ones. The 

linear operator K = (KRE, KIM) : ℝ2N ↦ ℝN models convolutions with filter kernels k ∈ 
ℝs×s×2 of size s, which is expressed as

Ku = KREuRE + KIMuIM, u ∈ ℝ2N
u ∗ k = uRE ∗ kRE + uIM ∗ kIM, u ∈ ℝ

nX × nY × 2
.

The non-linear potential functions Φ(z) = (ϕ(z1),…, ϕ(zN))⊤ : ℝN ↦ ℝN are composed by 

scalar functions ϕ. In the Fields of Experts model (28), both convolution kernels and 

parametrization of the non-linear potential functions, such as student-t functions, are learned 

from data.

Plugging the Fields of Experts model Eq. 4 into the Landweber iterative algorithm Eq. 3 

yields

u
t + 1 = u

t − α
t ∑

i = 1

N
k

(Ki)
⊤

Φi
ʹ(Kiu

t) + λA
∗(Au

t − f) [5]

where Φ
i
ʹ (z) = diag(ϕ

i
ʹ(z1), …, ϕ

i
ʹ(z

N
)) are the activation functions defined by the first 

derivative of potential functions Φi. Observe that the application of the tranpose operation 

(Ki)
⊤ can be implemented as a convolution with filter kernels ki rotated by 180°. Chen et al. 

(6) introduce a trainable reaction-diffusion approach that performs early stopping on the 

gradient scheme Eq. 5 and allows the parameters, i.e., filters, activation functions and data 

term weights, to vary in every gradient descent step t. All parameters of the approach are 

learned from data. This approach has been successfully applied to a number of image 

processing tasks including image denoising (6), JPEG deblocking (6), demosaicing (29) and 

image inpainting (30). For MRI reconstruction, we rewrite the trainable gradient descent 

scheme with time-varying parameters K
i
t, Φ

i
tʹ, λt as
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u
t + 1 = u

t − ∑
i = 1

N
k

(Ki
t)

⊤
Φi

tʹ(Ki
t
u

t) − λ
t
A

∗(Au
t − f), 0 ≤ t ≤ T − 1. [6]

Additionally, we omit the step size αt in Eq. 5 because it is implicitly contained in the 

activation functions and data term weights.

By unfolding the iterations of Eq. 6, we obtain the variational network (VN) structure as 

depicted in Figure 1. Essentially, one iteration of an iterative reconstruction can be related to 

one step in the network. In our VN approach, we directly use the measured raw data as 

input. Coil sensitivity maps are pre-computed from the fully sampled k-space center. A zero 

filled solution is computed from the undersampled k-space data by applying the adjoint 

operator A*. The measured raw data and sensitivity maps, together with the zero filled 

initializations, are fed into the VN as illustrated in Supporting Figure S1. The sensitivity 

maps are used in the operators A, A*, which perform sensitivity-weighted image 

combination and can also implement other processing steps such as the removal of readout 

oversampling. While both raw data and operators A, A* are required in every iteration of the 

VN to implement the gradient of the data term, the gradient of the regularization is only 

applied in the image domain as depicted in Figure 1.

METHODS

Variational Network Parameters

The VN defined by Eq. 6 and illustrated in Figure 1 contains a number of parameters: Filter 

kernels k
i
t, activation functions Φ

i
tʹ, and data term weights λt. We first consider the filter 

kernels which requires us to introduce a vectorized version k
i
t ∈ ℝ2s

2
 of the filter kernel k

i
t. 

We constrain the filters to be zero-mean which is defined as ξRE
⊤

k
i
t = 0, ξIM

⊤
k

i
t = 0, where 

ξRE
⊤

k
i
t, ξIM

⊤
k

i
t estimate the individual means of the filter kernel on the real and imaginary 

plane, respectively. Additionally, the whole kernel is constrained to lie on the unit-sphere, 

i.e., k
i
t

2
= 1, for to avoid a scaling problem of the activation functions. To learn the 

activation functions, we require a suitable function parametrization. A standard choice to 

smoothly approximate any functions are Gaussian radial basis functions (RBFs). We define 

the scalar activation functions ϕ
i
tʹ as a weighted combination of Nw RBFs with nodes μ and 

standard deviation σ =
2IMAX
N

w
− 1

ϕ
i
tʹ(z) = ∑

j = 1

N
w

w
i j
t exp −

(z − μ
j
)2

2σ
2

.
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The nodes are distributed in an equidistant way in [−IMAX, IMAX] which allows us to 

achieve the same resolution over the whole defined range. Note here that μ, σ depend on the 

maximum estimated filter response IMAX. The final parameters that we consider are the data 

term weights λt, which are constrained to be non-negative (λt > 0). During training, all 

constraints on the parameters are realized based on projected gradient methods.

Variational Network Training

During the offline training procedure illustrated in Figure 2, the goal is to find an optimal 

parameter set θ = {θ0, …, θT−1}, θt = w
i j
t , k

i
t, λ

t  for our proposed VN in Eq. 6. To set up the 

training procedure, we minimize a loss function over a set of images S with respect to the 

parameters θ. The loss function defines the similarity between the reconstructed image uT 

and a clean, artifact-free reference image g. A common choice for the loss function is the 

mean-squared error (MSE)

ℒ(θ) = min
θ

1
2S

∑
s = 1

S

u
s
T(θ) − g

s 2

2
.

As we are dealing with complex numbers in MRI reconstruction and we typically assess 

magnitude images, we define the MSE loss of (ε-smoothed) absolute values

ℒ(θ) = min
θ

1
2S

∑
s = 1

S

|u
s
T(θ) |

ε
− |g

s
|
ε 2

2
, |x |

ε
= xRE

2 + xIM
2 + ε

where |·|ε is understood in a point-wise manner. To solve this highly non-convex training 

problem, we use the Inertial Incremental Proximal Gradient (IIPG) optimizer which is 

related to the Inertial Proximal Alternating Linearized Minimization (IPALM) algorithm 

(31). For algorithmic details on IIPG refer to Appendix A and (32). First-order optimizers 

require both the loss function value and the gradient with respect to the parameters θ. This 

gradient can be computed by simple back-propagation (33), i.e., applying the chain rule

∂ℒ(θ)

∂θ
t

=
∂u

t + 1

∂θ
t

⋅
∂u

t + 2

∂u
t + 1

⋯
∂u

T

∂u
T − 1

⋅
∂ℒ(θ)

∂θ
T

.

The derivation of the gradients for the parameters is provided in Appendix B. After training, 

the parameters θ are fixed and we can reconstruct previously unseen k-space data efficiently 

by forward-propagating the k-space data through the VN.

Data Acquisition

A major goal of our work was to explore the generalization potential of a learning-based 

approach for MRI reconstruction. For this purpose, we used a standard clinical knee protocol 

for data acquisition with a representative patient population that differed in terms of 

anatomy, pathology, gender, age and body mass index. The protocol consisted of five 2D 

turbo spin echo (TSE) sequences that differed in terms of contrast, orientation, matrix size 
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and signal-to-noise ratio (SNR). For each sequence, we scanned 20 patients on a clinical 3T 

system (Siemens Magnetom Skyra) using an off-the-shelf 15-element knee coil. All data 

were acquired without acceleration, and undersampling was performed retrospectively as 

needed. In addition, we acquired prospectively accelerated data for one case. The number of 

acquired slices was chosen individually for each clinical patient exam. The study was 

approved by our institutional review board. Sequence parameters were as follows:

Coronal proton-density (PD): TR=2750ms, TE=27ms, turbo factor/echo train 

length TF=4, matrix size 320 × 288, in-plane resolution 0.49 × 0.44mm2, slice 

thickness 3mm, 35–42 slices, 5 female / 15 male, age 15–76, BMI 20.46-32.94

Coronal fat-saturated PD: TR=2870ms, TE=33ms, TF=4, matrix size 320×288, in-

plane resolution 0.49 × 0.44mm2, slice thickness 3mm, 33–44 slices, 10 female / 10 

male, age 30–80, BMI 19.76-33.87

Axial fat-saturated T2: TR=4000ms, TE=65ms, TF=9, matrix size 320 × 256, in-

plane resolution 0.55 × 0.44mm2, slice thickness 3mm, 33–41 slices, 10 female / 10 

male, age 20–70, BMI 19.20-35.69

Sagittal fat-saturated T2: TR=4300ms, TE=50ms, TF=11, matrix size 320×256, in-

plane resolution 0.55 × 0.44mm2, slice thickness 3mm, 31–40 slices, 11 female / 9 

male, age 12–73, BMI 18.16-37.31

Sagittal PD: TR=2800ms, TE=27ms, TF=4, matrix size 384 × 307, in-plane 

resolution 0.46 × 0.36mm2, slice thickness 3mm, 31–38 slices, 11 female / 9 male, 

age 15–94, BMI 18.69-35.15

Coil sensitivity maps were precomputed from a data block of size 24 × 24 at the center of k-

space using ESPIRiT (34). For both training and quantitative evaluation, each network 

reconstruction was compared against a gold standard reference image. We defined this gold 

standard as the coil-sensitivity combined, fully sampled reconstruction. The fully sampled 

raw data were retrospectively undersampled for both training and testing.

Experimental Setup

Our experiments differed in contrast, orientation, acceleration factor and sampling pattern. 

For all our experiments, we pre-normalized the acquired k-space volumes with nSL slices by 

nSL10000

f 2
. We trained an individual VN for each experiment and kept the network 

architecture fixed for all experiments. The VN consisted of T = 10 steps. The initial 

reconstruction u0 was defined by the zero filled solution. In each iteration Nk = 48 real/

imaginary filter pairs of size 11×11 were learned. For each of the Nk filters, the 

corresponding activation function was defined by Nw = 31 RBFs equally distributed between 

[−150,150]. Including the data term weight λt in each step, this resulted in a total of 131,050 

network parameters.

For optimization, we used the IIPG optimizer described in Appendix A. The IIPG optimizer 

allows handling the previously described constraints on the network parameters. We 

generated a training set for each of the five knee datasets. In each experiment, we used 20 
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image slices from 10 patients with the same contrast weighting and orientation, which 

amounts to 200 images, as the training set. For each patient, the central 20 slices were used 

for training. In fact, each single pixel of these training images provides a training example. 

In the case of a 320×320 matrix, this results in more than 20 million pixels which is orders 

of magnitudes larger than the number of network parameters. The training set was split into 

mini batches of size 10. Optimization was performed for 1000 epochs with a step size of η = 

10−3.

Experiments

In the first step, we investigated whether the learning-based VN approach actually benefits 

from structured undersampling artifacts due to regular undersampling, or if it performs 

better with incoherent undersampling artifacts as are typically present in CS applications. 

We used a regular sampling scheme with fully-sampled k-space center consisting of 24 auto-

calibration lines, identical to the vendor implementation of an accelerated TSE sequence on 

an MR-system. To introduce randomness, we also generated a variable-density random 

sampling pattern according to Lustig et al. (16). Both sampling patterns have the same fully-

sampled k-space center and same number of phase encoding steps. We evaluated the 

acceleration factors R ∈ {3, 4} for two sequences which differ in contrast and SNR. The 

second step was to explore the generalization potential with respect to different contrasts and 

orientations of a clinical knee protocol. In a third step, we performed an experiment with 

prospectively accelerated data.

Evaluation

We tested our algorithm on data from 10 clinical patients per sequence and reconstructed the 

whole imaged volume for each patient. These cases were not included in the training set, and 

they also contained pathology not represented in the training set. It is worth noting that the 

number of slices was different for each patient, depending on the individual optimization of 

the scan protocol by the MR technologist.

We compared our learning-based VN to the linear PI reconstruction method CG SENSE (12) 

and a combined PI-CS non-linear reconstruction method based on Total Generalized 

Variation (TGV) (22, 35). Additionally, we compared our qualitative results to dictionary 

learning (36) and provide quantitative measures for the selected cases. However, a full 

comparison to dictionary learning for all cases is out of scope of this work due to the long 

runtime requirements (approximately one hour per slice). The forward and adjoint operators 

for all three reference methods, in particular the coil sensitivity maps, were consistent with 

our VN approach. All hyper-parameters for CG SENSE and PI-CS TGV such as the number 

of iterations and regularization parameters were estimated individually by grid search for 

each sampling pattern, contrast and acceleration factor, such that the MSE of the 

reconstruction to the gold standard reconstruction was minimized. For dictionary learning, 

we used the standard parameters as in (36) and estimated the regularization parameter by 

grid search such that the MSE of the depicted slices was minimized. We assessed the 

reconstruction results quantitatively in terms of MSE, Normalized Root Mean Square Error 

(NRMSE), and Structural Similarity Index (SSIM) (37) with σ = 1.5 on the magnitude 

images.
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In addition to the qualitative and quantitative evaluation, we performed a reader study that 

compared results from the proposed VN method with results from PI-CS TGV. The 50 test 

cases from all five sequences were independently reviewed by two fellowship trained 

musculoskeletal radiologists who were blinded to the MRI reconstruction method. Cases 

were reviewed in two different sessions, separated by 2 weeks to minimize recall bias. Each 

session consisted of a random selection of 25 learning and 25 TGV reconstructions. Using a 

4-point ordinal scale, reconstructed images were evaluated for sharpness (1: no blurring, 2: 

mild blurring, 3: moderate blurring, 4: severe blurring), SNR (1: excellent, 2: good, 3: fair, 4: 

poor), presence of aliasing artifacts (1: none, 2: mild, 3: moderate, 4: severe) and overall 

image quality (1: excellent, 2: good, 3: fair, 4: poor). Comparisons in terms of image quality 

scores, averaged over the two readers, were made using a one-sided Wilcoxon signed-rank 

test. The null hypothesis that PI-CS TGV reconstruction results are equal or better than VN-

based results is rejected at significance level α = 0.05 if the resulting P-value of the test is 

lower than the significance level α.

Implementation Details

The VN approach as well as the reference methods were implemented in C++/CUDA with 

CUDNN support. We provide Python and Matlab interfaces for testing. Experiments were 

performed on a system equipped with an Intel Xeon E5-2698 Central Processing Unit (CPU) 

(2.30GHz) and a single Nvidia Tesla M40 Graphics Processing Unit (GPU). For dictionary 

learning, we used the Matlab implementation provided by the authors (36) and extended 

their formulation to be used with our multi-coil sampling operator. This requires to solve 

Eqn. 7 in their work using the conjugate gradient method which additionally increases 

runtime. Source code and data are available online1.

RESULTS

Retrospective Variational Network Reconstructions

Figure 3 display the impact of acceleration factor R = 4 and sampling patterns for CG 

SENSE, dictionary learning, PI-CS TGV and our learned VN on coronal PD-weighted 

images. Additionally, we plot zero filling solutions to illustrate the amount and structure of 

undersampling artifacts. Difference images to the reference are visualized in Figure 4. The 

reconstruction results for acceleration factor R = 3 along with the difference images are 

illustrated in Supporting Figure S2 and Supporting Figure S3. Residual artifacts and noise 

amplification can be observed for CG SENSE, in particular for R = 4. In case of acceleration 

factor R = 3, the PI-CS image appears less noisy than CG SENSE; however, similar 

undersampling artifacts are present. For R = 4 the PI-CS TGV result contains fewer 

undersampling artifacts than CG SENSE but small details in the image are already lost. 

Dictionary learning leads to improved removal of undersampling artifacts, resulting in a 

lower NRMSE than PI-CS TGV for this particular case. The learned VN suppresses these 

artifacts while still providing sharper and slightly more homogeneous images. Interestingly, 

dictionary learning as well as the PI-CS TGV and learned VN reconstruction with R = 3 

regular sampling perform slightly better than with variable-density random sampling in 

1https://github.com/VLOGroup/mri-variationalnetwork
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terms of intensity homogeneity and sharpness. For acceleration R = 4, randomness improves 

the reconstruction results. We depict the reconstruction videos of the whole imaged volume 

of a 29-year-old female patient for acceleration factor R = 4 in Supporting Video S1 for 

regular sampling and in Supporting Video S2 for variable-density random sampling.

Similar observations can be made for coronal PD-weighted scans with fat saturation, as 

depicted in Figure 5. Again, the reconstruction results for acceleration factor R = 3 along 

with the difference images are illustrated in Supporting Figure S4 and Supporting Figure S5. 

The main difference is that this sequence has a lower SNR compared to the non-fat-saturated 

version. Since additional noise reduces sparsity, the PI-CS TGV reconstructions produce an 

even more unnatural blocky pattern and contain substantial residual artifacts. The dictionary 

learning results appear blurrier at image edges and the general reconstruction quality is 

lowered at this level of SNR, which can best be seen in the error maps in Figure 6 and is 

supported by the quantitative values for this particular slice. Our learned VN is able to 

suppress these undersampling artifacts and shows improved image quality at this SNR level 

as well.

All our observations are supported by the quantitative evaluation depicted in Table 1 for R = 

4 and in Supporting Table S1 for R = 3. The wide range in quantitative values over the 

different sequences illustrates the effect of SNR on the reconstructions. The learned VN 

reconstructions show superior performance in terms of MSE, NRMSE and SSIM in all 

cases. Table 1 and Supporting Table S1 also supports the qualitative impression that there is 

no improvement using variable-density random sampling for R = 3 for PI-CS TGV and VN 

reconstruction. In contrast, random sampling outperforms regular sampling for R = 4 in all 

coronal cases.

We illustrate results for individual scans with regular sampling of R = 4 for a complete knee 

protocol, which contains various pathologies, taken from subjects ranging in age from 15 to 

57, and anatomical variants, including a pediatric case. In particular, the coronal PD-

weighted scan (M32) depicted in Figure 3 shows osteoarthritis, most advanced within the 

lateral tibiofemoral compartment with associated marginal osteophyte formation, indicated 

by the green bracket. An extruded and torn medial meniscus, indicated by the green arrow, is 

visible in the coronal fat-saturated PD-weighted scan in Figure 5. Additionally, this patient 

(F57) has broad-based, full-thickness chondral loss within the medial compartment and a 

subchondral cystic change underlying the medial tibial plateau, as indicated by the green 

bracket. Further results for different orientations and contrasts are illustrated in Figure 7 for 

regular sampling with R = 4 along with the error maps in Supporting Figure S6. The sagittal 

PD-weighted scan illustrate a skeletally immature patient (F15) with almost completely 

fused tibial physes. A partial tear of the posterior cruciate ligament is visible in the sagittal 

fat-saturated T2-weighted scan M34. A full-thickness chondral defect centered in the medial 

femoral trochlea (green arrow) is visible on the axial fat-saturated T2-weighted scan (F45) 

on a background of patellofemoral osteoarthritis. A reconstruction video of all available 

image slices for the axial fat-saturated T2-weighted case is shown in Supporting Video S3.

The presence of these particular variations, which were not included in the training data set, 

does not negatively affect the learned reconstruction. The reduction of residual aliasing 
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artifacts, marked by yellow arrows, the reduced noise level, and the overall improved image 

quality lead to improved depiction of the pathologies when compared to the reference 

methods. Again, the quality improvement of the learned VN is supported by the quantitative 

analysis of similarity measures depicted in Table 1 and Supporting Table S1.

Prospective Variational Network Reconstructions

The reconstruction results of prospectively undersampled data for regular sampling and 

acceleration R = 4 are depicted in Figure 8. We observe a similar behaviour of the 

reconstruction methods as for the retrospectively undersampled data. While PI-CS TGV and 

dictionary learning perform reasonably well for non-fat-saturated scans, a noise pattern can 

be observed in certain regions for dictionary learning and blocky appearance for PI-CS TGV. 

Our VN reconstructions are more homogeneous and less prone to remaining artifacts.

Reader Study

The average scores of the readers together with the P-values of the Wilcoxon signed-rank 

test are listed in Table 1. The mean values of the reader scores indicate that all VN 

reconstructions have equal or better scores than the PI-CS TGV reconstructions. P-values 

indicate that the null hypothesis is rejected for most of the sequences for the given 

significance level α. Coronal as well as sagittal T2 VN reconstructions have significantly 

better image quality than PI-CS TGV. The difference between the individual reconstruction 

methods for the sagittal PD case is not significant, which is already obvious in the negligible 

difference of the qualitative results and quantitative results for this sequence. No significant 

difference in image quality, except SNR, can be observed for the axial T2-weighted scans.

Variational Network Parameters

Examples of learned filter kernel pairs for real and imaginary feature planes are plotted 

along with their corresponding activation and potential functions in Figure 9. The potential 

functions are computed by integrating the learned activation functions, and they can be 

linked directly to the norms that are used in the regularization terms of traditional CS 

algorithms. We observe that same are very close to the convex l1 norm used in CS (e.g., the 

function in the 2nd column), but we can also observe substantial deviations. We can identify 

functions with student-t characteristics and concave functions. Some of the learned filter 

pairs have the same structure in both the real and imaginary plane while some of them seem 

to be inverted in the real and imaginary part.

DISCUSSION

While deep learning has resulted in clear breakthroughs in Computer Vision, the application 

of deep learning to medical image reconstruction is just beginning (38). Initial results for our 

deep learning image reconstruction approach presented in detail here were first presented at 

the Annual Meeting of the International Society for Magnetic Resonance in Medicine in 

May of 2016 (39). Early attempts to use machine learning for MRI reconstruction were 

based on dictionary learning (36,40,41). The key difference to our VN approach is that they 

learn a reconstruction online as a combination of dictionary elements directly from 

undersampled data, hence, no reference data is required. Although the learned dictionary 
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might be reused, a new optimization problem has to be performed for every new 

reconstruction, which is computationally demanding. While dictionary learning methods act 

on patches, which need to be properly combined, and do not involve non-linearities in the 

combination of dictionary elements, our proposed VN approach directly reconstructs the 

whole images and learns non-linearities, which are important to enhance or suppress certain 

filter responses. Wang et al. (42) showed first results using a convolutional neural network 

(CNN) architecture to define a relationship between zero filled solution and high-quality 

images based on pseudo-random sampling. The learned network can then be used as 

regularization in a non-linear reconstruction algorithm. Yang et al. (43) introduced a network 

architecture that is based on unrolling the Alternating Direction Method of Multipliers 

algorithm. They proposed to learn all parameters including image transforms and shrinkage 

functions for CS-based MRI. Han et al. (44) learned destreaking on CT images and then 

fine-tuned the learning on MR data to remove streaking from radially undersampled k-space 

data. All three approaches used single-coil data, and it remains unclear how they deal with 

the complex domain of MR images. Kwon et al. (45) introduced a neural network 

architecture to estimate the unfolding of multi-coil Cartesian undersampled data. Similar to a 

classic SENSE reconstruction (12), unfolding is performed line-by-line. This restricts the 

applicability to a fixed matrix size and a particular 1D undersampling pattern. Most recently, 

Lee et al. (46) used residual learning to train two CNNs to estimate the magnitude and phase 

images of Cartesian undersampled data.

In this work, we present the first learning-based MRI reconstruction approach for clinical 

multi-coil data. Our VN architecture combines useful properties of two successful fields: 

variational methods and deep learning. We formulate image reconstruction as a variational 

model and embed this model in a gradient descent scheme, which forms the specific VN 

structure. The VN was first introduced as a trainable reaction-diffusion model (6) with 

application to classic image processing tasks (6,29,30). All these tasks are similar in the 

sense that the data are corrupted by unstructured noise in the image domain. MR image 

reconstruction presents several substantial differences: complex-valued multi-coil data are 

acquired in the Fourier domain and transformed into the image domain. This involves the 

use of coil sensitivity maps and causes distinct artifacts related to the sampling pattern. For 

our MR image reconstruction task, the optimal design of the VN, such as the number of 

stages, the number of filters per stage and the kernel size, is currently an open question. Our 

particular design choice is based on preliminary experiments (39) and, in line with the 

experiments presented here, delivered consistent results for a wide range of experimental 

conditions. We also found that the performance of our VN was stable when varying the 

design of the architecture. In practice, the design of the network is essentially a trade-off 

between model complexity and training efficiency. For example, the number of RBFs that 

are used to model the activation functions in a smoothed function approximation, defines the 

flexibility to approximate arbitrary functions in an accurate way. In our experimental setup 

as well as in the latest studies on image processing tasks (32), we reduced the number of 

RBFs compared to the initial work (6) by a half without a loss in performance but with 

reduced training time.

Our VN structure allows us to visualize the learned parameters, which is non-trivial for 

classical CNNs (47). In general, the filters in both the real and imaginary part represent 
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different (higher-order) derivative filters of various scales and orientations, similar to Gabor 

filters (48, 49). Handcrafted Gabor filters have been successfully used in image processing 

(50), and learning-based approaches (3) report similar filters. It has also been shown that 

these types of filters have a strong relation to the human perceptual system (51).

Some of the learned potential functions in Figure 9 are very close to the convex l1 norm used 

in CS (e.g., the function in the 2nd column), but we can also observe substantial deviations. 

We can identify functions with student-t characteristics also used in (28). Indeed, non-

convex functions of student-t type introduce more sparsity than, e.g., the convex l1-norm and 

are reported to fit the statistics of natural images better than the l1-norm (52). Potential 

functions like those in columns 1, 4 and 7 have been associated with image sharpening in the 

literature (53).

Designing filters and functions is not a trivial task. Using learning-based approaches 

provides a way to tune these parameters such that they are adapted to specific types of image 

features and artifact properties. The strength of our algorithm are the trainable activation 

functions which stands in contrast to other deep learning approaches that use fixed activation 

functions such as Rectified Linear Units or sigmoid functions. Hence, instead of adding 

more and more layers and creating deeper networks, we introduce more structure and 

flexibility in the individual layers, which might help to reduce the overall complexity of the 

network. As shown in (32) for image denoising and non-blind deblurring, fixing the 

activation functions to less flexible, e.g., convex, functions might also lead to a decrease in 

performance for our application.

Compared to convex L1 minimization where we can understand the characteristics and 

artifacts of hand-crafted filters and potential functions, learning-based methods are often 

considered to be black-boxes, which are difficult to interpret. While we cannot claim insight 

into the properties of the model and the resulting images to the same degree of a simpler 

model like TV, one of the key strengths of our proposed VN is the motivation by a 

generalized, trainable variational model. To gain an understanding of what the VN learns, 

we first inspect the intermediate outputs of the gradient descent steps of our VN (see 

Supporting Video S4). We observe successive low-pass and high-pass filtering, and note that 

the prevalence of undersampling artifacts decreases after each single iteration. A continuous 

improvement over the iterations does not occur because our training is designed such that 

the result after the last gradient step is optimal in terms of the error metric chosen for 

evaluation. Although it would be possible to train the VN for progressive improvement, this 

would reduce the flexibility of the algorithm for adjusting the learned parameters during the 

training procedure.

In any iterative CS approach, every reconstruction is handled as an individual optimization 

problem. This is a fundamental difference to our proposed data-driven VN. In our VN 

approach, we perform the computationally expensive optimization as an offline pre-

computation step to learn a set of parameters for a small fixed number of iterations. In our 

experiments, one training took approximately four days on a single graphics card. Once the 

VN is trained, the application to new data is extremely efficient, because no new 

optimization problem has to be solved and no additional parameters have to be selected. In 
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our experiments, the VN reconstruction took only 193 ms for one slice. In comparison, the 

reconstruction time for zero filling was 11 ms, for CG SENSE with 6 iterations 75 ms and 

for PI-CS TGV with 1000 primal-dual iterations (22) 11.73 s on average. Thus, the online 

VN reconstruction using the learned parameters for the fixed number of iterations does not 

affect the hard time constraints during a patient exam.

Our VN is individually trained for different sampling patterns, reflected in the forward and 

adjoint operators. We do not learn a global mapping between undersampled k-space and 

reconstruction, but how to enhance local structures, while ensuring consistency to the 

acquired k-space data. First results towards learning a general regularizer, that could be 

applied for any sampling pattern, were recently presented at the annual meeting of ISMRM 

in 2017 (54): We showed that a network trained for regular sampling patterns can be used for 

reconstruction of randomly sampled data, but a network trained for randomly sampled data 

is not capable of removing coherent undersampling artifacts, which indicates that the 

dependency of sampling patterns is required to train the regularizer. However, the systematic 

performance evaluation for a wide range of sampling patterns is beyond the scope of this 

particular manuscript, and will be the target of future work. We will not only explore joint 

training of various sampling patterns, acceleration factors and sequences, but also the 

application of VN reconstruction to non-Cartesian sampling, dynamic and multi-parametric 

data.

The reconstruction quality of all methods does not only rely on the sampling pattern, but 

also on other parameters. Larger filter sizes, such as the 11 × 11 filters used in our VN 

architecture, provide the possibility to capture more efficiently the characteristic backfolding 

artifacts of Cartesian undersampled data, which are spread over several pixels. This stands in 

contrast to models like TV or TGV that are based on gradient filters in a small neighborhood 

(e.g., only forward differences in the x and y direction are considered). To suppress artifacts 

with PI-CS TGV, the regularization parameters must be chosen in such a way that the 

remaining image appears over-smoothed, and fine details are lost. Even though the 

piecewise-affine prior model of TGV is more complex than the piecewise-constant prior 

model of TV, the images appear artificial, especially if MR images with low SNR are 

reconstructed. Dictionary learning involves also larger filter kernels and works reasonably 

well for data with high SNR, reconstructions of low SNR data contain lots of noisy regions 

and blurry edges.

The image quality reader study confirms our quantitative and qualitative observations for 

regular sampling of R = 4. In general, the image quality of the fat-saturated sequences was 

rated lower than for the non-fat-saturated sequences for both VN and PI-CS TGV. The 

difference between the two types of sequences is the baseline SNR, which is much lower for 

the fat-saturated sequences. It is well known that in all CS-based methods, the best 

performance can be achieved in the case of a high baseline SNR and incoherent artifacts. 

The presented experiments demonstrate that if the corruption of the reconstructed images is 

dominated by noise, performance of both CS and VN reconstruction drops. If the baseline 

SNR drops to a level where the noise has a higher impact than aliasing artifacts, the VN 

concentrates on denoising instead of undersampling artifact removal. In addition, some of 

our results show residual artifacts, most prominent in the axial sequences. The source of 

Hammernik et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these artifacts is residual aliasing and Gibbs’ ringing. These residual artifacts are present in 

all our reconstructions and not unique for our VN.

While radiologists learn throughout their career to distinguish certain patterns in images 

such as artifacts, we have to reflect the quality of learning in our presented approach by not 

only choosing the right architecture but also a suitable similarity measure. As demonstrated 

by our evaluation, quantitative scores are not always on par with image quality readings by 

radiologists. The used MSE for training compares pixel-wise differences and is likely not 

optimal for representing similarity to artifact-free reference reconstructions. Future 

investigations will also involve the choice of different error metrics or the investigation of 

generative adversarial networks (55) for training.

CONCLUSION

Inspired by variational models and deep learning, we present a new approach, termed VN, 

for efficient reconstruction of complex multi-coil MR data. We learn the whole 

reconstruction procedure and all associated model parameters in an offline training step on 

clinical patient data sets. The VN-based reconstructions preserve important features not 

presented in the training data. Our proposed learning-based VN reconstruction approach 

outperforms traditional reconstructions for a wide range of pathologies and offers high 

reconstruction speed, which is substantial for integration into clinical workflow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

Inertial Incremental Proximal Gradient Algorithm (IIPG)

For network training, we consider following optimization problem:
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s . t . θ ∈ � = {λ
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2
= 1} .

To solve this highly non-convex training problem, we use the Inertial Incremental Proximal 

Gradient (IIPG) optimizer. This IIPG variant of projected gradient descent is related to the 

Inertial Proximal Alternating Linearized Minimization (IPALM) algorithm (31). The whole 

sequence generated by IPALM is guaranteed to converge to a stationary point in the non-

convex non-stochastic case under certain constraints on the step size and inertial parameters. 

The analysis for the stochastic version is left to future research. In the IIPG Algorithm 1, the 

parameter updates are calculated in a stochastic way on a single mini batch. First, we 

perform over-relaxation where we set an over-relaxation constant βe dependent on the 

current epoch e to achieve moderate acceleration. Second, we compute the gradient with 

respect to the parameters on the current mini batch which yields a new parameter update 

θ
∼m + 1

 for the current iteration m. To realize additional constraints on the parameters, we 

finally perform the projections
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As the constraints do not depend on each other, we can consider the projections 

independently. To realize the non-negativity constraint on the data term weights λm+1, the 
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Algorithm 1

Inertial Incremental Proximal Gradient (IIPG) Algorithm

APPENDIX B

Gradient Derivation of Network Parameters

In every gradient step t, we seek the derivatives with respect to the parameters 

θ
t = {w

i j
, k

i
t, λ

t} of the loss function

ℒ(θ) = min
θ
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∑
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− |g
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|
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2
, |x|

ε
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2 + ε

where |·|ε is understood in a point-wise manner. For simplicity, we drop the dependency of 

uT on the parameters θ and the subscript s and show the calculations only for a single 

training example. The gradient steps are given as
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The derivatives with respect to the parameters θt are obtained by back-propagation (33)
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The reconstruction error of the t-th gradient step is given by 
∂ℒ(θ)
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t + 1

= e
t + 1.

Derivative of the Loss Function

First, we require the gradient of the loss function ℒ with respect to the reconstruction uT 

defined as eT. It is computed as
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Derivative of the Data Term Weights λt

The derivative of the reconstruction ut wrt. to λt ∈ ℝ for the t-th gradient step is expressed 

as:
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This can be rewritten in a matrix-vector notation:
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During training, we learn the weights w
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t ∈ ℝ

N
w and express its gradient as:
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Derivative of the Intermediate Reconstructions ut

Further gradients with respect to the reconstructions from intermediate steps are given as:
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Derivative of the Filter Kernels k
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t

To compute the derivative with respect to the filter kernels k
i
t we have to introduce further 

relationships between our given parameters. The convolution can be defined as matrix-vector 

multiplication:
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where the matrix Ut:ℝ2s
2

↦ ℝN is a suitably shifted representation of the image ut and 

k
i
t ∈ ℝ2s

2
 is the vectorized filter kernel. The gradient step also involves rotated filter kernels 
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. As we want to calculate the 

derivative with respect to k
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t
(K

i
t
u

t):ℝN ↦ ℝ2s
2
 is a suitable matrix representation of Φ

i
t(K

i
t
u

t). Applying the 

product rule yields following expression for the kernel derivative

∂(K
i
t)

⊤
Φ

i
tʹ(K

i
t
u

t)

∂k
i
t

=
∂Φ

i
tʹ(K

i
t
u

t)

∂k
i
t

K
i
t +

∂k
i
t

∂k
i
t

Φ
∼

i
tʹ

(K
i
t
u

t)R
⊤

= (Ut)
⊤

diag Φ
i
t″(K

i
t
u

t) K
i
t + R

⊤
Φ
∼

i
tʹ

(K
i
t
u

t) .

The full derivative may be expressed as

∂ℒ(θ)

∂k
i
t

=
∂u

t + 1

∂k
i
t

∂ℒ(θ)

∂u
t + 1

= − (Ut)
⊤

diag Φ
i
t″(K

i
t
u

t) K
i
t + R

⊤
Φ
∼

i
tʹ

(K
i
t
u

t) e
t + 1 .
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Figure 1. 

Structure of the variational network (VN). The VN consists of T gradient descent steps. To 

obtain a reconstruction, we feed the undersampled k-space data, coil sensitivity maps and 

the zero filling solution to the VN. Here, a sample gradient step is depicted in detail. As we 

are dealing with complex-valued images, we learn separate filters k
i
t for the real and complex 

plane. The non-linear activation function ϕ
i
tʹ combines the filter responses of these two 

feature planes. During a training procedure, the filter kernels, activation functions and data 

term weights λt are learned.
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Figure 2. 

Variational network training procedure: We aim at learning a set of parameters θ of the VN 

during an offline training procedure. For this purpose, we compare the current reconstruction 

of the VN to an artifact-free reference using a similarity measure. This gives us the 

reconstruction error which is propagated back to the VN to compute a new set of parameters.
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Figure 3. 

Coronal PD-weighted scan with acceleration R = 4 of a 32-year-old male. The green bracket 

indicates osteoarthritis. The first and third row depict reconstruction results for regular 

Cartesian sampling, the second and fourth row depict the same for variable-density random 

sampling. Zoomed views show that the learned VN reconstruction appears slightly sharper 

than the PI-CS TGV and dictionary learning reconstruction. The dictionary learning and VN 

reconstruction can significantly suppress artifacts unlike CG SENSE and PI-CS TGV. 

Results based on random sampling show reduced residual artifacts and slightly increased 

sharpness in comparison to regular sampling.

Hammernik et al. Page 27

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 

Difference images to reference image for the reconstructed coronal PD-weighted scans with 

acceleration R = 4 presented in Figure 3. The undersampling artifacts can be clearly 

observed in the CG SENSE and zero filling results. While TGV has a remaining 

undersampling artifact for regular sampling, the dictionary learning method can suppress 

this artifact. However, we observe larger errors at object boundaries in the dictionary 

learning results. The VN result has the least error compared to the reference methods.

Hammernik et al. Page 28

Magn Reson Med. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 

Coronal fat-saturated PD-weighted scan with acceleration R = 4 of a 57-year-old female. 

The green bracket indicates broad-based, full-thickness chondral loss and a subchondral 

cystic change. The green arrow depicts an extruded and torn medial meniscus. The first and 

second row depict reconstruction results for regular Cartesian sampling, the third and fourth 

row depict the same for variable-density random sampling. The zoomed views show that the 

learned VN reconstruction appears sharper than the PI-CS TGV and dictionary learning 

reconstruction. The VN reconstruction shows reduced artifacts compared to the other 

methods. Results based on random sampling show reduced residual artifacts and appear 

sharper than the results based on regular sampling.
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Figure 6. 

Difference images to reference image for the reconstructed coronal fat-saturated PD-

weighted scans with acceleration R = 4 presented in Figure 5. The undersampling artifacts 

can be clearly observed in the CG SENSE and zero filling results. Both PI-CS TGV and 

dictionary learning have residual undersampling artifact for regular sampling. We observe 

larger errors at object boundaries in the dictionary learning results. The VN result has the 

least error compared to the reference methods and is able to suppress the undersampling 

artifacts.
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Figure 7. 

Reconstruction results for sagittal fat-saturated T2-weighted, sagittal PD-weighted and axial 

fat-saturated T2-weighted sequences of a complete knee protocol for acceleration factor R = 

4 with regular undersampling. Each sequence here is illustrated with results from a different 

patient, identified by gender and age (e.g., M50 indicates a 50-year-old male). Pathological 

cases and a pediatric case are shown for both male and female patients of various ages. 

Green arrows and brackets indicate pathologies. Yellow arrows show residual artifacts that 

are visible in the different reconstructions, but not in the learned VN reconstructions.
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Figure 8. 

Reconstruction results of prospectively undersampled data for regular sampling R = 4. We 

show reconstruction results for dictionary learning, PI-CS TGV and our VN for a whole 

knee protocol of a 27-year old female volunteer. We observe a similar behavior as for the 

retrospective undersampled data. Dictionary learning and PI-CS TGV perform reasonably 

well for non-fat-saturated scans. While the fat-saturated scans appear artificial with a PI-CS 

TGV reconstruction, we observe a noise pattern in the dictionary learning results, most 

prominent in the sagittal fat-saturated T2-weighted scan. Dictionary learning appears slightly 

blurrier, which is best seen in the axial slice. The VN reconstructions have less 

undersampling artifacts and an improved SNR.
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Figure 9. 

Examples of learned parameters of the VN. Filter kernels for the real kRE and imaginary kIM 

plane as well as their corresponding activation ϕ′ and potential function ϕ are shown. The 

potential function ϕ was obtained by integrating the activation function ϕ′ including an 

additional integration constant.
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