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Abstract
We present an equilibrium model of dynamic trading, learning, and pricing by strategic
investors with trading targets and price impact. Since trading targets are private, investors
filter the child order flow dynamically over time to estimate the latent underlying parent
trading demand imbalance and to forecast its impact on subsequent price-pressure dynamics.
We prove existence of an equilibrium and solve for equilibrium trading strategies and prices
as the solution to a system of coupled ODEs. Trading strategies are combinations of trading
towards investor targets, liquidity provision for other investors’ demands, and speculation
based on learning about latent underlying trading-demand imbalances.

Keywords Order-splitting · Optimal order execution · Subgame perfect nash equilibrium ·
Dynamic learning · Trading targets · Speculation

JEL codes G11 · G12

1 Introduction

The price formation process in financial markets involves equating supply and demand for
securities over time for arriving investors with heterogeneous trading preferences. In present
day markets, large investors act on their underlying trading preferences, sometimes called
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parent demands, by splitting their trading into dynamic sequences of smaller orders, called
child orders (see O’Hara [32]), to minimize their price impact. Since the parent demands
driving child-order trading are private information, investors use information from arriving
child orders to form inferences over time about the dynamically evolving fundamental state
of the market. In particular, investors learn about imbalances in the underlying aggregate
parent demands and the associated pressure on future market-clearing prices and incorporate
this information in their current child orders. Given the widespread prevalence of optimized
order-splitting of parent orders into flows of child orders, dynamic learning about aggregate
parent demands is a critical part of market dynamics.1

This paper is the first to provide an analytically tractable equilibrium model of dynamic
learning, trading, and pricing with parent trading demands. We consider a continuous-time
model with high-frequency trading at times t ∈ [0, 1] over short time-horizons with [0, 1]
being a day or an hour. Trading occurs between price-sensitive optimizing traders with two
different types of parent trading targets: One group has fixed individual targets, and the
other group wants to track a stochastically evolving target over time. Since parent targets
are initially not public, information about parent demand imbalances is partially revealed
through market-clearing stock prices. Our analysis models the equilibrium dynamic learning
process, stock holdings, and stock-price processes.

Our main results are:

• We construct and solve two different equilibrium models: A simpler price-friction equi-
librium and a subgame perfect Nash financial-market equilibrium. In the price-friction
equilibrium, price impact is due to an exogenous trading friction, but in the subgame
Nash equilibrium, price impact includes both exogenous frictions and an endogenous
price impact due to market clearing with constrained market asset-holding capacity. We
find that these two equilibria are numerically similar.

• Intraday price drifts due to price pressure change over the trading day and are path-
dependent. This leads to time-varying incentives for investors to provide liquidity to the
child orders of other investors.

• Apractical application of ourmodel is thatwe can compute total trading costs for investors
given the effects of dynamic learning and optimal trading by other investors. We show
these costs are quadratic in the rebalancers’ trading targets.

• Trading in our model reflects a combination of liquidity provision and speculation but
not predatory trading. We conjecture that the absence of predatory trading is because our
model replaces the exogenous price-elastic residual supply used in both Brunnermeier
and Pedersen [9] and Carlin, Lobo, and Viswanathan [10] with endogenous demands
coming from rational profit-maximizing investors.

Our paper advances several strands of research on market microstructure. First, dynamic
learning and trading have been extensively studied in the context of markets with strategic
investors with long-lived asymmetric information as in Kyle [29]. However, equilibrium
trading, learning, and pricing with optimal dynamic order-splitting by large uninformed
investors are less understood. Thus, we model price pressure to equate supply and demand
rather than adverse selection. Second, Grossman and Miller [21] model pricing and liquidity
provision with impatient traders who submit single orders equal to their parent demands and
with symmetric payoff information. In contrast, we model liquidity provision with optimal
order-splitting of parent demands into child order flows. Third, Choi, Larsen, and Seppi
[12] construct an equilibrium with optimal dynamic trading and learning in a market with a

1 See van Kervel and Menkveld [26], Korajczyk and Murphy [28], and van Kervel, Kwan, and Westerholm
[25].
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strategic rebalancer with an end-of-day trading target and an informed investor who trades
on private long-lived asset-payoff information. By filtering the order flow over time, the
rebalancer learns about the underlying asset payoff, the informed investor learns about the
rebalancer’s trading target, and market makers learn about both when setting prices. That
earlier paper provides a characterization result for equilibrium and gives numerical examples
but does not have an existence proof or analytic solutions. In contrast, our model is solved
analytically and gives the equilibrium in closed form. Fourth, Brunnermeier and Pedersen [9]
and Carlin, Lobo, and Viswanathan [10] show how dynamic rebalancing by a large investor
can lead to predatory trading. However, these papers abstract from the learning problem
by assuming the parent trading needs are publicly observable. They also make an ad hoc
assumption about the price sensitivity of a residual market-maker trading demand due to
exogenous price-elastic noise traders. In contrast, our model assumes the underlying parent
trading demands are private information, which leads to a learning problem. In addition, our
prices are rationally setwith no ad hoc residual demand. Fifth, a large body of researchmodels
optimal order-splitting strategies for a single strategic investor given an exogenous pricing
rule with no learning about latent trading demands of other investors (see, e.g., Almgren
and Chriss [3, 4], Almgren [2], and Schied and Schöneborn [34]). In contrast, we solve for
optimal trades, learning, and pricing jointly. van Kerval, Kwan, and Westerholm [25] solve
for optimal trading strategies for two dynamic rebalancers with learning over time about each
other’s latent trading demands. This leads to predictions about the effect of aggregate parent
demand on individual investor child orders, which are then verified empirically. However,
they assume an ad hoc linear pricing rule, and there are no existence proofs or analytic
solutions. In contrast, price pressure in our Nash model is partly endogenously determined
in equilibrium, andwe solve ourmodel analytically. As in vanKervel, Kwan, andWesterholm
[25], trading in our model is a combination of speculation on expected future price changes
and trading-demand accommodation.

The mathematics of our model is tractable because we use a modeling approach from the
asset-pricing literature for non-dividend paying stocks. The simplification involves finding
equilibriumprice drifts that clear themarketwithout determining the levels ofmarket-clearing
prices as discounted future cash flows. Karatzas and Shreve [27, Chap. 4] use this approach
in completemarket settings, and Cuoco andHe [14] consider an extension to incompletemar-
kets. Atmaz andBasak [1] show that non-dividend paying stocks are relevant for asset pricing.
However, the non-dividend paying stock approach is new in the mainstream microstructure
literature. Gârleanu and Pedersen [20], Bouchard, Fukasawa, Herdegen, and Muhle-Karbe
[7], and Noh and Weston [31] use the zero-dividend stock approach to model prices given
exogenous transaction costs. We extend this approach to include learning and endogenous
price impact.

2 Model

We model equilibrium trading, learning, and pricing in a market with a risky stock and a
riskless bank account over a short time horizon [0, 1] (e.g., a trading day). For simplicity,
the net supply of both the stock and bank account are set to zero. Since the time horizon
is short, the risk-free interest rate on the bank account is set to zero. Stock differs from the
bank account in two ways: First, investors have individual parent demands for the stock.
Second, stock prices are stochastic over time. Stock valuation can be viewed as the sum of
two components: One component is a fundamental valuation of future dividends absent price
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pressure from trading targets. The other component is incremental price pressure for markets
to clear given parent trading demand imbalances. It is the price pressure component that is
the focus of our analysis. Our analysis treats these two components as being orthogonal and,
for simplicity, normalizes the dividend valuation component to zero. Thus, hereafter, when
we refer to the “stock price”, this is shorthand for the “price pressure valuation component of
stock prices.” Our prices are random due to random trading demand imbalances. In a more
complicated model, a separate fundamental dividend valuation component could be added
to our stock-price pressure valuation to get the full stock price.

Two different groups of investors trade in our equilibrium model.

(i) Price-sensitive rebalancers. Rebalancer i ∈ {1, ..., M} maximizes her expected profit
subject to a parent trading target ãi where ãi is private information for i . The targets
(ã1, ..., ãM ) are assumed independent and homogeneously distributed ãi ∼ N (0, σ 2

ã )

for all rebalancers i ∈ {1, ..., M} with identical zero means and standard deviations σã .
The aggregate target is

ã� :=
M∑

i=1

ãi . (2.1)

Rebalancer i’s control is her stock holdings, which are denoted by (θi,t )t∈[0,1] for i ∈
{1, ..., M}. For simplicity, the initial endowed holdings of both the bank account and the
stock are normalized to zero for all rebalancers.
When ãi is close to zero (ãi ≈ 0), rebalancer i is a “high-frequency" liquidity provider
with inventory penalties. Because ãi is private information for i , other traders k, k �= i ,
do not know whether rebalancer i has an active latent trading demand (|ãi | >> 0) or is
a liquidity provider (ãi ≈ 0).

(ii) Price-sensitive trackers. Trackers j ∈ {M + 1, ..., M + M̄} all track a dynamic target
given by a common exogenous Brownian motion process wt over time t ∈ [0, 1]

wt := w0 + w◦
t , t ∈ (0, 1], (2.2)

where the initial target is w0 ∼ N (0, σ 2
w0

), and w◦
t is a standard Brownian motion that

starts at zero, has a zero drift, and a unit volatility.2 While trackers observe the same
wt at time t ∈ [0, 1], rebalancers do not and instead filter wt over time t ∈ [0, 1].
Tracker j’s control is her stock holdings, which are denoted by (θ j,t )t∈[0,1] for j ∈
{M + 1, ..., M + M̄}. Their initial stock and money market holdings are also normalized
to zero.
We assume the random variables (ã1, ..., ãM ), w0, and (w◦

t )t∈[0,1] are all independent.

van Kerval, Kwan, and Westerholm [25] show that interactions between multiple het-
erogenous investors are an empirically important part of the trading process. Our model
with M ≥ 1 and M̄ ≥ 1 lets us analyze such trading interactions. In the following, index
k ∈ {1, ..., M+ M̄} denotes any generic trader, index i ∈ {1, ..., M} denotes a rebalancer, and
index j ∈ {M + 1, ..., M + M̄} denotes a tracker. This allows us to express the stock-market
clearing condition as

2 Adding a volatility coefficient σw in front of w◦
t in (2.2) does not increase model flexibility because —

as we shall see — the stock volatility γ is a free model parameter and γ and σw would play identical roles.
Moreover, our model can be extended to include a drift term μw t for a constant μw in (2.2).
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0 =
M+M̄∑

k=1

θk,t =
M∑

i=1

θi,t

︸ ︷︷ ︸
rebalancer demand

+
M+M̄∑

j=M+1

θ j,t

︸ ︷︷ ︸
tracker demand

, t ∈ [0, 1]. (2.3)

Investor stock demands change over time due to stochastic shocks to the tracker target wt

and due to randomness in imperfect learning about the rebalancer targets. As a result, the
stock-price process that clears the market as in (2.3) changes randomly over time. Thus, stock
randomness in our model — given that the fundamental dividend valuation is normalized
to zero — comes from learning about traders’ parent targets (which are initially private
information of the individual rebalancers and the trackers) and from random changes over
time in the trackers’ target wt .3

Investor information is represented as generic filtrations Fi,t and F j,t for rebalancers and
trackers. These filtrations are constructed explicitly in the equilibria considered below. In
the price-friction equilibrium in Sect. 3, the filtrations Fi,t and F j,t are

σ(ãi , Si,u)u∈[0,t], t ∈ [0, 1], i ∈ {1, ..., M},
σ (wu, S j,u)u∈[0,t], t ∈ [0, 1], j ∈ {M + 1, ..., M + M̄}, (2.4)

where Si,t and S j,t denote perceived stock-price processes for a rebalancer i and a tracker j .
In the Nash equilibrium in Sect. 4, more complicated filtrations are needed to derive traders’
optimal off-equilibrium response functions.

Our model is a model of dynamic learning. As we shall see, trackers infer the aggregate
target ã� in (2.1) from the initial stock price, and so trackers have no need to filter the
rebalancers’ individual targets (ã1, ..., ãM ). The situation is different for each rebalancer
i ∈ {1, ..., M}, who only observes her own target ãi and past and current stock prices. When
σw0 > 0, these observations are insufficient to infer ã� and wt separately, so rebalancer
i filters based on ãi and on past and current stock-price observations to learn about the
underlying latent parent demands ã� andwt . In contrast, when σw0 := 0, the model only has
static learning about ã� at time t = 0 from the initial stock price. At later times t ∈ (0, 1],
the rebalancers can infer wt from their stock-price observations. The static learning model
with σw0 := 0 was developed in Choi, Larsen, and Seppi [13].

2.1 Individual maximization problems

This section introduces the individual maximization problems. A generic trader k’s optimal
stock holdings are determined in terms of a trade-off between expected terminal wealth
Xk,1 and a penalty for deviations of their holdings θk,t over time from their parent target ãi
(rebalancers) or Brownian motion wt (trackers). An investor’s terminal wealth Xk,1 depends
on the stock prices Sk,t associated with k’s holdings θk,t over time. An exogenous continuous
(deterministic) function κ : [0, 1] → [0,∞] models the severity of the target penalty over
time.4 For example, more severe target penalties later in the day would be associated with a
penalty severity function κ that is increasingwith time t . The rebalancer and tracker objectives
are

3 Our model features asymmetric information and learning about parent demands. However, because there
are no stock dividends, there can be no asymmetric information related to future dividends.
4 Our analysis can be extended to allow for different penalty functions for the two groups of traders.
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sup
θi,t∈Fi,t

E

[
Xi,1 −

∫ 1

0
κ(t)(ãi − θi,t )

2dt
∣∣∣Fi,0

]
, i ∈ {1, ..., M},

sup
θ j,t∈F j,t

E

[
X j,1 −

∫ 1

0
κ(t)(wt − θ j,t )

2dt
∣∣∣F j,0

]
, j ∈ {M + 1, ..., M + M̄},

(2.5)

where ãi is the ideal holdings for rebalancer i and wt is the ideal holdings for tracker j at
time t ∈ [0, 1]. However, stock-market clearing prevents θi,t and θ j,t from being ãi and wt .
The suprema in (2.5) are taken over progressively measurable holding processes θi,t and θ j,t

with respect to traders’ filtrations Fi,t and F j,t . As we shall see in Sects. 3 and 4 below,
our traders optimally use controls given as smooth functions evaluated at a finite set of state
processes (i.e., Markov controls). The next section constructs such a set of Markovian state
processes. To rule out doubling strategies, we require square integrability

E

[∫ 1

0
θ2k,t dt

]
< ∞, k ∈ {1, ..., M + M̄}. (2.6)

Terminal wealth Xk,1 in (2.5) is generated by trader k’s perceived wealth process

dXk,t := θk,t dSk,t , Xk,0 := 0, k ∈ {1, ..., M + M̄}, (2.7)

which is affected by k’s holdings θk,t both directly and also indirectly via the impact of k’s
holdings on an associated perceived stock-price process Sk,t . Trader k’s holdings θk,t are
price sensitive because market-clearing price pressure affects price drifts and, thus, investor
wealth. In (2.7), the zero initial wealth Xk,0 = 0 is because trader k’s initial endowed money
market and stock holdings are normalized to zero. Thus, ãi andwt are ideal holding changes
relative to investors’ normalized initial zero holdings. Given the objectives in (2.5), trading
reflects a combination of motives: Investors seek to have stock holdings close to their own
targets ai and wt , but they also seek to increase their expected terminal wealth by trading on
price pressure from other investors trading on their targets. Thus, traders demand liquidity
(to come close to their targets) and supply liquidity for markets to clear (by being willing
to deviate from their targets so that other traders can trade towards their targets, given the
appropriate price incentives), and speculate on future predictable price pressure.

Our remaining model construction involves specifying investor stock-price perceptions
Si,t and S j,t and the associated investor filtrations Fi,t and F j,t . We then state conditions
that these perceptions and filtrations must satisfy in equilibrium. Finally, we give theoretical
results that ensure equilibria exist.

2.2 State processes

The fundamental underlying state of the market in our model depends on the aggregate
parent demand imbalances ã� and M̄wt . As already noted, there is a significant informational
difference between trackers and rebalancers. Each tracker directly observeswt in (2.2) and—
aswe shall see—can therefore infer the aggregate rebalancer target ã� in (2.1) from the initial
stock price. In contrast, rebalancers learn about wt and ã� using dynamic filtering. Thus, the
rebalancer filtrationsFi,t , i ∈ {1, ..., M}, and tracker filtrationsF j,t , j ∈ {M+1, ..., M+M̄},
are not nested. Rebalancers know prices and their individual target ãi , whereas trackers know
ã� , wt , and prices.

Before considering specific stock-price perceptions in Sects. 3 and 4 below, we describe
a set of conjectured state processes (Yt , ηt , qi,t , wi,t ) for rebalancer i ∈ {1, ..., M}. These
processes are all endogenous in the equilibria we construct. However, it is convenient to
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describe the state processes’ informational properties first, before showing how they arise in
equilibrium. The processes (Yt , ηt ) are public in that they are adapted to Fk,t for all traders
k ∈ {1, ..., M + M̄}. Furthermore, ηt will be adapted to σ(Yu)u∈[0,t]. The state processes
(qi,t , wi,t ) are specific to individual rebalancers. They are adapted to i’s filtration Fi,t , but
they are not adapted to other traders’ filtrations Fk,t for k �= i .

Rebalancers learn by extracting information about aggregate demand imbalances from
stock prices. In the equilibria we construct, the information extracted from stock prices over
time t is a state process Yt , which has the form

Yt := wt − B(t)ã�, t ∈ [0, 1], (2.8)

where B : [0, 1] → R is a smooth deterministic function of time that is endogenously
determined in equilibrium. The function B(t) controls how ã� and wt are mixed in stock
prices. The process Yt is not directly observable for the rebalancers, but Lemma 3.1 below
shows that Yt can be inferred from stock prices. Because rebalancer i ∈ {1, ..., M} also
knows her own target ãi , by knowing Yt over time t ∈ [0, 1], she equivalently knows

Yi,t : = Yt + B(t)ãi

= wt − B(t)(ã� − ãi ).
(2.9)

Unlike Yt in (2.8), the process Yi,t is independent of rebalancer i’s private trading target ãi
and satisfies

σ(ãi , Yu)u∈[0,t] = σ(ãi , Yi,u)u∈[0,t], t ∈ [0, 1]. (2.10)

Rebalancers use knowledge of Yt to estimate ã� and wt from stock prices at time t . For a
continuously differentiable function B : [0, 1] → R, we define two processes

qi,t := E

[
ã� − ãi

∣∣∣ σ(Yi,u)u∈[0,t]
]
,

dwi,t := dwt − B ′(t)
(
ã� − ãi − qi,t

)
dt, wi,0 := Yi,0,

(2.11)

for each rebalancer i ∈ {1, ..., M} and t ∈ [0, 1]. The expectation qi,t describes what
rebalancer i has learned up through time t about the aggregate target ã� − ãi of the other
rebalancers.5 In particular, qi,t is a path-dependent process because it depends on the path
of Yi,s over time s ∈ [0, t].

Let the function �(t) denote the remaining variance

�(t) := V[ã� − ãi − qi,t ] = E[(ã� − ãi − qi,t )
2], t ∈ [0, 1], (2.12)

where the second equality follows from the zero-mean assumptions for (ã1, ..., ãM ) and w0.
Because the targets (ã1, ..., ãM ) are assumed independent and homogeneously distributed
N (0, σ 2

ã ), the initial variance �(0) = E[(ã� − ãi −qi,0)2] is identical across all rebalancers
i ∈ {1, ..., M}. This property and the formula for �(t) in (2.15) below imply that �(t) is
also identical for all index i ∈ {1, ..., M} for all t ∈ [0, 1].

Now consider the wi,t processes. Eq. (2.11) gives the dynamics of Yi,t as

dYi,t = dwt − B ′(t)(ã� − ãi )dt

= dwi,t − B ′(t)qi,t dt .
(2.13)

The following result is a special case of the Kalman-Bucy result from filtering theory
(See Appendix B for details).

5 The process Yi,t is also informative about the current value of the trackers’ targetwt . Using (2.9) and (2.11),
we have E[wt |σ(Yi,u)u∈[0,t]] = E[Yi,t + B(t)(ã� − ãi )|σ(Yi,u)u∈[0,t]] = Yi,t + B(t)qi,t .
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Lemma 2.1 (Kalman-Bucy) For a continuously differentiable function B : [0, 1] → R, the
process wi,t is independent of ãi , is a Brownian motion, and satisfies (modulo P null sets)

σ(ãi , Yi,u)u∈[0,t] = σ(ãi , wi,u)u∈[0,t], t ∈ [0, 1]. (2.14)

Furthermore, the remaining variance at time t is given by

�(t) = 1
1

V[ã�−ãi−qi,0] + ∫ t
0

(
B ′(u)

)2
du

, t ∈ [0, 1]. (2.15)

♦
Because the process wi,t is independent of ãi , wi,t is also a Brownian motion with respect
to the filtration σ(ãi , wi,u)u∈[0,t]. Furthermore, Lemma 2.1 shows that (ãi , wi,t ) are infor-
mationally equivalent with (ãi , Yi,t ) in the sense that (2.14) holds. However, while wi,t on
the left in (2.11) is observable by rebalancers, the individual terms wt and ã� in wi,t ’s
decomposition on the right of (2.11) are not.

The stock-market clearing condition (2.3) lets us relate prices to the state processes driving
investor demands. The sum

∑M
i=1 qi,t is an important term in this relation, so the following

decomposition results are useful:

Lemma 2.2 Let B : [0, 1] → R be a continuously differentiable function.

1. The decomposition

M∑

i=1

qi,t = ηt + A(t)ã�, t ∈ [0, 1], (2.16)

holds with the process ηt being adapted to σ(Yu)u∈[0,t] with Yt in (2.8) and

A′(t) = −(
B ′(t)

)2
�(t)

(
A(t) + 1

)
, A(0) = − (M−1)B(0)2σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã
,

dηt = −(
B ′(t)

)2
�(t)ηt dt − MB ′(t)�(t)dYt , η0 = − M(M−1)B(0)σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã
Y0.

(2.17)

2. The inverse relation

qi,t = ηt

M
− F1(t)

(
(M−1)B(0)2σ 2

a
σ 2

w0
+(M−1)B(0)2σ 2

a
+ F2(t)

)
ãi (2.18)

holds with deterministic functions F1(t) and F2(t) given by the ODEs

F ′
1(t) = −B ′(t)2�(t)F1(t), F1(0) = 1,

F ′
2(t) = B′(t)2�(t)

F1(t)
, F2(0) = 0.

(2.19)

♦
There are two key points: First, no investor knows

∑M
i=1 qi,t , but it can be decomposed into

a public term ηt and a term A(t)ã� that trackers know but not the rebalancers. Second, from
(2.17), the process ηt depends on the path of Ys over time s ∈ [0, t]. Thus, the state process ηt
reflects common path dependence due to wt . The expression (2.18) shows that the individual
rebalancer expectation qi,t includes a common learning component ηt

M and then the effect of
i’s private information ãi . In particular, it follows from (2.19), that F1(t) and F2(t) are both
positive so that, consistent with intuition, the loading on ãi is negative in (2.18).
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3 Price-friction equilibrium

Investor perceptions of the impact of their trading on stock prices are a key part of the opti-
mizations in (2.5) and the resulting market equilibrium. We consider two specifications of
investor stock-price perceptions. This section presents a simplified model in which perceived
price impact is a fully exogenous trading friction. This approach is analogous to the exogenous
price impact used in van Kerval, Kwan, and Westerholm [25]. We then solve for the endoge-
nous stock-price process that clears the market (and also satisfies some weak consistency
conditions) and the associated optimized investor-holding processes. Sect. 4 presents a richer
model of price impact in which investor stock-price perceptions are partially endogenized in
a subgame perfect Nash financial-market equilibrium.

Our equilibrium construction is a conjecture-and-verify analysis. Section 3.1 conjectures
functional forms for investor perceptions of stock-price dynamics. Section 3.2 defines equi-
librium and then solves for equilibrium price-perception coefficients and the associated price
dynamics and holdings that satisfy the definition of equilibrium.

3.1 Stock-price perceptions

Recall that price pressure is different from the value of future dividends. It is a valuation
adjustment needed to clear the stock market given trading demand imbalances. This allows
us to model price pressure as zero-dividend asset prices as in, e.g., Karatzas and Shreve [27,
Chap. 4].

Rebalancers optimize (2.5) with respect to perceived stock-price processes of the form

dS f
i,t :=

{
f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt + αθi,t

}
dt + γ dwi,t ,

S f
i,0 := Y0, i ∈ {1, ..., M},

(3.1)

where f0, f1, f2, f3 : [0, 1] → R are continuous (deterministic) functions of time t ∈ [0, 1]
and (α, γ ) are constants. The “ f ” superscript indicates that the perceived price S f

i,t is defined
with respect to a particular set of coefficient functions f in (3.1). The stock-price drift in (3.1)
is perceived by rebalancer i to be affine in a set of state processes. Consistent with intuition,
we will see that in equilibrium the loadings f0(t) and f3(t) on Yt and ηt are negative. In
particular, Yt with B(t) < 0 measures a mix of aggregate demand from rebalancers and
trackers, and ηt reflects public expectations of aggregate private rebalancer expectations
about other rebalancers’ parent-demand imbalances, both of which depress price change
expectations. The other coefficients describe the perceived impact of rebalancer i on the
stock-price drift.

Theorem 3.5 below endogenously determines ( f0, f1, f2, f3) in equilibrium. The exoge-
nous parameters (α, γ ) can be found by calibrating model output to empirical data. The
term αθi,t allows for ad hoc trading frictions. The price-friction parameter α is an exogenous
model input. Price taking is a special case with α := 0, whereas the empirically relevant case
is α < 0 such that buy (sell) orders decrease (increase) the future stock-price drifts.

The innovations in the rebalancers’ perceived stock prices dwi,t come from new infor-
mation rebalancer i learns over time about the underlying parent-demand state variable Yt ,
which has both a direct effect on the future stock-price drift and an additional indirect effect
via its impact on ηt since ηt is adapted to σ(Yu)u∈[0,t] from Lemma 2.2.

The zero-dividend stock valuation approach (see, e.g., Chapter 4 in Karatzas and Shreve,
[27]) has several consequences: First, we model perceived and equilibrium stock-price drifts
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rather than price levels. Second, in (3.1), the stock’s volatility and initial value are not deter-
mined in equilibrium but rather are model inputs. For simplicity, we set the volatility to be a
constant γ > 0 (i.e., positive demand innovations dwi,t increase prices), and the initial price
is set to be Y0 in (3.1). However, other choices of S0 would work equally well as long as S0
satisfies σ(S0) = σ(Y0).

The next result shows that wi,t is rebalancer i’s innovations process in the sense that wi,t

is a Brownian motion relative to i’s filtration defined with perceived stock prices S f
i,t in (3.1)

and such that S f
i,t and wi,t generate the same information.

Lemma 3.1 Let f0, f1, f2, f3 : [0, 1] → R be continuous functions and let B : [0, 1] → R

be a continuously differentiable function. For a rebalancer i ∈ {1, ..., M}, let θi,t satisfy (2.6)
and be progressively measurable with respect to Fi,t := σ(ãi , S

f
i,u)u∈[0,t] with S f

i,t defined
in (3.1) and Yt defined in (2.8). Then, modulo P-null sets, we have

σ(ãi , wi,u)u∈[0,t] = σ(ãi , S
f
i,u)u∈[0,t], t ∈ [0, 1], i ∈ {1, ..., M}. (3.2)

♦
Thus, given a path of perceived prices generated by a price process S f

i,t of the form in
(3.1) and her personal target ãi , rebalancer i can infer the path of wi,t . Furthermore, given
the path wi,t , rebalancer i can infer Yi,t using (2.14) and, thus, can infer Yt from (2.10).
Consequently, rebalancer i can infer (qi,t , ηt ) where we recall from Lemma 2.2 that ηt is
adapted to σ(Yt )t∈[0,1].

Trackers optimize (2.5) with respect to a perceived stock-price process of the form

dS f̄
j,t : =

{
f̄3(t)ηt + f̄4(t)ã� + f̄5(t)wt + αθ j,t

}
dt + γ dwt ,

S f̄
j,0 : = Y0, j ∈ {M + 1, ..., M + M̄},

(3.3)

where f̄3, f̄4, f̄5 : [0, 1] → R are continuous (determinstic) functions, and the α is a con-
stant.6 Trackers have different information in that they observe wt directly and can infer
ã� from the initial stock price Y0 using (2.8) and their knowledge of w0. Therefore, their
perceived stock prices differ from those of the rebalancers. Theorem 3.5 below endogenously
determines ( f̄3, f̄4, f̄5) in equilibrium, and (α, γ ) are exogenousmodel inputs. Again,α := 0
is the special case of price-taking.

The motivation for these price perceptions for the trackers is as follows. First, the per-
ceptions in (3.3) allow trackers to condition their perceived price drift to take into account
price pressure from target imbalances ã� and wt that depress expected price changes. Since
trackers and rebalancers trade differently on their targets, the price-drift impacts f̄4 and f̄5
are in general different. Second, the trackers understand that the state process Yt affects the
rebalancer demand and, thus, the stock-price drift. However, Yt does not need to be included
explicitly in the tracker perceived price drift in (3.3) since Yt is given by a linear combination
of ã� and wt , which are already included in the drift. Third, trackers know that rebalancers’
can infer ηt and that this potentially affects their price perceptions in (3.1), and, thus, is
likely to affect their trading, and, thus, is likely to affect pricing. Thus, trackers allow for
the pricing effect of ηt in their perceptions in (3.3). Fourth, as already noted, α allows for
possible exogenous trading frictions, if any.

An important difference between rebalancer and tracker perceived prices in (3.1) and
(3.3) is that rebalancer price dynamics are based on the informational innovations dwi,t ,

6 Our model can be extended to allow for a different price-friction coefficient ᾱ with ᾱ �= α for the trackers.
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whereas tracker price dynamics are based on the tracker target changes dwt . Reconciling the
price perceptions of rebalancers and trackers will impose restrictions on equilibrium price
perceptions and holdings and will rely on the relation between dwi,t and dwt in (2.11).

Given the price perceptions in (3.1) and (3.3), we solve (2.5) for optimal rebalancer and
tracker holdings.

Lemma 3.2 Let f0, f1, f2, f3, f̄3, f̄4, f̄5 : [0, 1] → R and κ : [0, 1] → (0,∞] be contin-
uous functions, let B : [0, 1] → R be continuously differentiable, let α ≤ 0, and let the
perceived stock-price process in the wealth dynamics (2.7) be as in (3.1) and (3.3). Then, for

Fi,t := σ(ãi , S
f
i,u)u∈[0,t] andF j,t := σ(wu, S

f̄
j,u)u∈[0,t], and, provided the holding processes

θ̂i,t := f0(t)

2(κ(t) − α)
Yt + f1(t) + 2κ(t)

2(κ(t) − α)
ãi + f2(t)

2(κ(t) − α)
qi,t + f3(t)

2(κ(t) − α)
ηt ,

θ̂ j,t := f̄3(t)

2(κ(t) − α)
ηt + f̄5(t) + 2κ(t)

2(κ(t) − α)
wt + f̄4(t)

2(κ(t) − α)
ã�,

(3.4)

satisfy (2.6), the traders’ maximizers for (2.5) are θ̂i,t for rebalancer i ∈ {1, ..., M} and θ̂ j,t

for tracker j ∈ {M + 1, ..., M + M̄}. ♦
The proof of Lemma 3.2 shows that pointwise quadratic maximization gives the maximizers
for (2.5) for rebalancers and trackers for arbitrary f and f̄ functions.

Stock-price perceptions play two interconnected roles in our model. First, rebalancers
and trackers solve their optimization problems in (2.5) based on their perceptions in (3.1)
and (3.3) for how hypothetical holdings θi,t and θ j,t affect price dynamics. Second, investor
stock-price perceptions affect how they learn from observed prices. In particular, Lemma 3.1
shows that rebalancers use their stock-price perceptions (3.1) to infer the aggregate demand
state variable Yt based on past and current stock prices. In other words, dynamic learning by
rebalancers depends critically on their stock-price perceptions. Similarly, trackers also use
their stock-price perception of Y0 in (3.3) to infer the aggregate parent demand ã� from the
initial price at time t = 0. However, thereafter, there is no additional learning from prices by
the trackers at t > 0 since they directly observe their target wt .

3.2 Equilibrium

This section defines our first of two equilibrium concepts and then derives price-perception
coefficients for the conjectured functional form in Sect. 3.1 that satisfy the equilibrium
definition along with the associated equilibrium price dynamics and holdings. The notion of
equilibrium in our first construction is relatively simple, being based just on market clearing
and consistency of investor price perceptions.

Definition 3.3 Deterministic functions of time f0, f1, f2, f3, f̄3, f̄4, f̄5, B : [0, 1] → R

constitute a price-friction equilibrium if:

(i) Maximizers θ̂k,t for (2.5) exist for traders k ∈ {1, ..., M + M̄} given the stock-
price perceptions (3.1) and (3.3) for filtrations Fi,t := σ(ãi , S

f
i,u)u∈[0,t] and F j,t :=

σ(wu, S
f̄
j,u)u∈[0,t].

(ii) Inserting trader k’s maximizer θ̂k,t into the perceived stock-price processes (3.1) and
(3.3) produces identical stock-price processes across all traders k ∈ {1, ..., M + M̄}.
This common equilibrium stock-price process is denoted by Ŝt .
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(iii) The money and stock markets clear. ♦

Definition 3.3 places only minimal restrictions on the perceived stock-price coefficient func-
tions in (3.1) and (3.3): Markets must clear and result in consistent perceived stock-price
processes when all investors use their equilibrium strategies. Section 4 below considers a
subgame perfect Nash extension of our basic model that imposes more restrictions on allow-
able off-equilibrium stock-price perceptions such as off-equilibrium market clearing and
various consistency requirements.

Definition 3.3(ii) requires that in equilibrium rebalancers and trackers perceive identical
stock-price dynamicswhen using their equilibriumholdings. However, rebalancers and track-
ers have different information (i.e., rebalancers form imperfect inferences about wt and ã� ,
whereas trackers observe wt directly and infer ã� at time 0). The resolution of this apparent
paradox is investors’ different information sets: Trackers and rebalancers all agree on d Ŝt ,
but they disagree on how to decompose d Ŝt into drift and volatility components. Because
the trackers observe wt , they can use dwt in their decomposition of d Ŝt . However, wt is not
adapted to the rebalancers’ filtrations and can therefore not be used in their d Ŝt decomposi-
tions. Instead, rebalancers use their innovations processes dwi,t when decomposing d Ŝt into
drift and volatility. By replacing dwi,t in dS f

i,t in (3.1) with the decomposition of dwi,t in

terms of dwt from (2.11), we can rewrite dS f
i,t in (3.1) as

dS f
i,t =

{
f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt + αθi,t

− B ′(t)
(
ã� − ãi − qi,t

)
γ
}
dt + γ dwt , i ∈ {1, ..., M}.

(3.5)

Therefore, to ensure identical equilibrium stock-price perceptions for all rebalancers and

trackers, it suffices to match the drift of dS f̄
j,t in (3.3) for the equilibrium holdings θ j,t = θ̂ j,t ,

j ∈ {M+1, ..., M+M̄},with the drift ofdS f
i,t in (3.5) for the equilibriumholdings θi,t := θ̂i,t ,

i ∈ {1, ..., M}. This produces the following equilibrium requirement:

f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt + αθ̂i,t − B ′(t)
(
ã� − ãi − qi,t

)
γ

= f̄3(t)ηt + f̄4(t)ã� + f̄5(t)wt + αθ̂ j,t ,
(3.6)

for all rebalancers i ∈ {1, ..., M} and all trackers j ∈ {M + 1, ..., M + M̄}. We note that the
right-hand side of (3.6) does not depend on the rebalancer index i . Matching up coefficients
in front of (ãi , ã�, qi,t , ηt , wt ) in (3.6) using θ̂i,t and θ̂ j,t in (3.4) and Yt in (2.8) produces
five equations. In addition, inserting θ̂i,t and θ̂ j,t in (3.4) into the market-clearing condition
(2.3) and using (2.16) produce three more equations frommatching (ã�, ηt , wt ) coefficients.
All in all, we have eight equilibrium restrictions for ( f0, f1, f2, f3, f̄3, f̄4, f̄5) and B ′, which
give the equilibrium coefficient functions (A.1) in Appendix A and the ODE for B(t) in (3.7)
below.

Our equilibrium existence result is based on the following technical lemma. It guaran-
tees the existence of a solution to an autonomous system of coupled ODEs. In particular,
given rebalancer stock-price perceptions of the form in (3.1) with an aggregate demand state
variable Yt process of the form in (2.8) (and the associated ηt process), we must construct a
deterministic function B(t) that gives an equilibrium.
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Lemma 3.4 Let κ : [0, 1] → [0,∞] be a continuous and integrable function (i.e.,∫ 1
0 κ(t)dt < ∞). For an initial constant B(0) ∈ R, the coupled ODEs

B ′(t) = 2κ(t)(M̄ B(t) + 1)

γ (A(t) + M̄ + 1)
,

A′(t) = −(
B ′(t)

)2
�(t)

(
A(t) + 1

)
, A(0) = − (M−1)B(0)2σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã
,

�′(t) = −(
B ′(t)

)2
�(t)2, �(0) = (M−1)σ 2

ã σ 2
w0

(M−1)B(0)2σ 2
ã +σ 2

w0

,

(3.7)

have unique solutions with �(t) ≥ 0, �(t) decreasing, A(t) ∈ [−1, 0], A(t) decreasing for
t ∈ [0, 1], and B(t), B ′(t) < 0 when M̄ B(0) + 1 < 0. ♦
The solutions to the ODEs for A(t) and �(t) in (3.7) agree with the expressions in (2.15)
and (2.17). The exogenous price-friction coefficient α does not appear in the ODEs (3.7). It
is possible to restate the ODE system (3.7) using a single path-dependent ODE . The special
case B(0) := − 1

M̄
produces a model with no dynamic learning because B ′(t) = 0 implies

�′(t) = 0 and so dqi,t = 0.
The following theorem gives the price-friction equilibrium in terms of the ODEs (3.7). In

this theorem, the price-friction parameter α, volatility γ , and initial value B(0) ∈ R are free
parameters. The intuition for B(0) being free is discussed after our equilibrium construction
in Theorem 3.5.

Theorem 3.5 Let κ : [0, 1] → (0,∞) be continuous, let the functions (B, A, �) be as in
Lemma 3.4, and let α ≤ 0. Then, we have:

(i) A price-friction equilibrium exists and is given by the price-perception functions (A.1)
in Appendix A.

(ii) The equilibrium in (i) has holdings θ̂i,t for rebalancer i and θ̂ j,t for tracker j given by

θ̂i,t = − γ B′(t)−2κ(t)
2κ(t)−α

ãi − γ B′(t)
2κ(t)−α

qi,t

+ γ B′(t)
(M+M̄)(2κ(t)−α)

ηt − 2M̄κ(t)
(M+M̄)(2κ(t)−α)

Yt , i ∈ {1, ..., M},
θ̂ j,t = γ B′(t)

(M+M̄)(2κ(t)−α)
ηt + 2Mκ(t)

(M+M̄)(2κ(t)−α)
wt

+ γ (A(t)−M+1)B′(t)−2κ(t)
(M+M̄)(2κ(t)−α)

ã�, j ∈ {M + 1, ..., M + M̄}.

(3.8)

(iii) The equilibrium in (i) has the equilibrium stock-price process Ŝt given by Ŝ0 := w0 −
B(0)ã� and dynamicswith respect to the trackers’ filtrationsF j,t := σ(wu, S

f̄
j,u)u∈[0,t]

given by

d Ŝt =
{

γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

wt + γ (A(t)−M+1)B′(t)−2κ(t)
M+M̄

ã�

}
dt + γ dwt , (3.9)

and dynamics with respect to the rebalancers’ filtrationsFi,t := σ(ãi , S
f
i,u)u∈[0,t] given

by

d Ŝt =
{

γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

Yt − γ B ′(t)
(
ãi + qi,t

)}
dt + γ dwi,t . (3.10)

♦
Several observations follow from Theorem 3.5:
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1. Lemma 3.1 ensures that rebalancer i can infer her innovations processwi,t from perceived
prices S f

i,t and ãi , but rebalancer i cannot infer the trackers’ targetwt from the equilibrium

prices Ŝt in (3.9). This is because the aggregate target ã� also appears in the drift of d Ŝt
and ã� is not observed by individual rebalancers.

2. The equilibrium holdings (3.8) follow from inserting the equilibrium f and f̄ functions
in (A.1) in Appendix A into (3.4). Thus, the holdings in (3.8) are expressed in terms
of the investors’ state processes, which, in particular, are adapted to the investors’ fil-
trations. However, these state processes are not mutually independent and so we give
such representations of (3.8) in (A.2) and (A.3) in Appendix A. First, the price-friction
equilibrium rebalancer holdings θ̂i,t in (3.8) can be written in terms of the independent
variables (ãi , ã� − ãi , w0) and a residual orthogonal term given as a stochastic integral
with respect tow◦

t of a deterministic function of time. Likewise, the price-friction equilib-
rium tracker holdings θ̂ j,t can be written in terms of the independent variables (ã�,w0)

and a residual orthogonal term given in terms of a stochastic integral with respect to w◦
t

of a deterministic function of time. Both these residual terms are Gaussian. Section 3.4
illustrates the loading coefficients on these independent state processes.

3. Because the exogenous price-friction coefficient α ≤ 0 does not appear in the ODEs (3.7),
α is irrelevant for the equilibrium stock-price dynamics (3.9). However, α does affect the
equilibrium holdings in (3.8).

4. The stock-price volatility γ affects the stock-price drift and holdings via its impact on
B(t) in (3.7) and, thus, on (A.1).

5. It can seem paradoxical that trackers and rebalancers all perceive the same equilibrium
stock-price process Ŝt , but they decompose its dynamics d Ŝt into different perceived
drifts and martingale terms (i.e., they have different Itô decompositions). The resolution
lies in the rebalancers and trackers having different filtrations:7 The drift and martingale
terms in (3.10) are not adapted to F j,t and the drift and martingale terms in (3.9) are not
adapted to Fi,t . The dynamics (3.9) and (3.10) all produce the same process Ŝt because
the innovations process wi,t in (2.11) links dwt with dwi,t and the drift term B ′(t)(ã� −
ãi − qi,t )dt .

6. Investors’ off-equilibrium perceived stock-price drifts differ linearly from their equilib-
rium drifts due to the differences θk,t − θ̂k,t between their off-equilibrium and equilibrium
holdings.8 Rebalancer i’s perceived stock-price drift in (3.1) can be decomposed for arbi-
trary holdings θi,t as

f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt + αθi,t

= γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

Yt − γ B ′(t)
(
ãi + qi,t

) + α(θi,t − θ̂i,t ),
(3.11)

7 We nickname this our “Rashomon Theorem” after the 1950 movie in which different characters perceive
the same event differently given their different perspectives. Rebalancers and trackers both start with private
information so their filtrations are not nested. However, in equilibrium, stock-price dynamics depend on wt
and ã� . Because the trackers know w0 at time t = 0, they infer ã� from S j,0 = w0 − B(0)ã� , and so
they have no need to filter at later times. On the other hand, rebalancer i only has noisy dynamic predictions
E[ã� |Fi,t ] = qi,t + ãi of the aggregate parent imbalance ã� given her inferences based on the individual
parent targets ãi and stock-price observations.
8 Eqs. (3.11) and (3.12) are similar to Eq. (3.14) in Choi, Larsen, and Seppi [13].
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where we have used the formulas for ( f0, f1, f2, f3) in (A.1) in Appendix A. Likewise,
for arbitrary holdings θ j,t , tracker j’s perceived stock-price drift in (3.3) is

f̄3(t)ηt + f̄4(t)ã� + f̄5(t)wt + αθ j,t

= γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

wt + γ (A(t)−M+1)B′(t)−2κ(t)
M+M̄

ã� + α(θ j,t − θ̂ j,t ),
(3.12)

where we have used the formulas for ( f̄3, f̄4, f̄5) in (A.1) in Appendix A.
Continuity between equilibrium and off-equilibrium is a reasonable property of investor
stock-price perceptions. The representation of the perceived rebalancer drift in (3.11)
relative to θ̂i,t from (3.8) also explains the presence of the rebalancer-specific terms
(ãi , qi,t ) in the rebalancers’ perceptions in (3.1).

7. Investors initially use block trades at time 0 to trade to positions θi,0 and θ j,0 from (3.8) that
are generically different from their initial normalized holdings of 0. Thereafter, investors
trade continuously at times t > 0.

8. Theorem 3.5 verifies that price-perception coefficients in (3.1) and (3.3) can be con-
structed such that an equilibrium satisfying Definition 3.3 exists. However, as with many
other rational expectation models, we do not have a proof of uniqueness. For example,
there may be other public state variables in addition to ηt that could hypothetically be
included in the perceived price drifts that might also be associated with other equilibria
as defined in Definition 3.3.

The function B(t) from (3.7) is key both in constructing the equilibrium and for interpret-
ing the equilibrium price and holding processes. First, there is the issue that the initial value
B(0) is a free input in Theorem 3.5. The intuition is that our model determines equilibrium
stock-price drifts but not price levels. As can be seen in Theorem 3.5(iii) , B(0) controls the
initial price level in our model. Second, the relation between B(t) and price levels allows
us to impose additional structure on B(t). In particular, wt and ã� represent different types
of demand imbalances. Thus, if B(t) < 0, then Yt in (2.8) plays the role of an aggregate
demand state variable. How the two component quantities wt and ã� are mixed in the aggre-
gate demand state variable Yt is different given the two components’ different informational
dynamics (i.e., ã� is not time dependent while wt changes randomly over time) and given
their different impacts on investor demands (i.e., each rebalancer only knows their personal
ãi component of ã� where other rebalancers’ targets do not affect investor i’s parent demand
whereas wt affects both an individual tracker’s parent demand and is also information about
other trackers’ parent demands). It seems reasonable that the sign of the impact of wt and ã�

on the price level should be the same, which imposes the additional restriction that B(t) < 0.
From Lemma 3.4, a sufficient condition for B(t) < 0 for all t ∈ [0, 1] is M̄ B(0) + 1 < 0,
which implies B ′(t) < 0.9

With the economically reasonable parametric restriction that B ′(t) < 0 and given that
α ≤ 0 so that α − 2κ(t) < 0, we can sign the impact of various quantities in the model on
holdings and prices, which leads to the following comparative statics:

1. In (3.8), the equilibrium holdings θ̂i,t of rebalancers are positively related to their parent
targets ãi . This is intuitive because rebalancers want holdings close to ãi . Rebalancer
holdings θ̂i,t are negatively related to the aggregate demand imbalance state variable Yt .
The fact that θi,t is decreasing in Yt is consistent with the theoretical results and empirical
evidence in van Kerval, Kwan, and Westerholm [25] that investors buy less when there is

9 This sufficient condition follows because the denominator in (3.7) is positive given that A(t) ∈ [−1, 0] so
that the numerator in (3.7) determines the sign of B′(t).
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a positive parent-demand imbalance for other investors in the market. The same intuition
applies to the negative impact of the common component ηt on θ̂i,t . However, the impact of
qi,t on θ̂i,t is positive. The intuition is that when rebalancer i expects the other rebalancers
(given i’s ability to filter using her private target information ãi ) to have a net positive
parent-demand imbalance E[ã� − ãi |Fi,t ] from (2.11), she buys at time t to speculate
on the resulting anticipated positive drift in future price pressure in (3.10).

2. In (3.8), the equilibrium holdings θ̂ j,t of trackers are increasing in wt (which reflects
both her own parent demand and also information about the parent demands of other
trackers). Tracker holdings θ̂ j,t are also decreasing in ηt , which is related to imbalances in
rebalancers’ aggregate parent demand expectations. The negative effect of ηt is consistent
with the van Kerval, Kwan, and Westerholm [25] liquidity-provision result and empirical
evidence. However, the impact of ã� is ambiguous in (3.8), and numerical calculations
in Sect. 3.4 show that the sign is positive. This is again consistent with speculation on
future predicted price pressure due to the tracker’s superior information about aggregated
latent parent-demand imbalances.

3. The equilibrium stock-price drift in (3.9) is decreasing in the tracker parent demand wt .
However, the impact of ã� in the price drift is again ambiguous, which is related to
information about ã� being useful in forecasting future price pressure.

3.3 Tractability andmodel structure

This section discusses the key modeling features that make our model tractable. First, we
assume all traders seek to maximize their individual objectives in (2.4). Linear-quadratic
objectives have been used extensively in the literature because of their tractability. Such
objectives have been used in, e.g., Sannikov and A. Skrzypacz [33], Gârleanu and Peder-
sen [20], and Bouchard, Fukasawa, Herdegen, and Muhle-Karbe [7]. The linear-quadratic
objectives (2.5) allow us to solve for the optimal holdings in Lemma 3.2 using quadratic
pointwise optimization. In the price-friction equilibrium, we could equivalently use dynamic
programming to produce the same optimal holdings.

Second, our stock does not pay dividends, which means that only the stock drift can
be endogenously determined in equilibrium. Models with non-dividend paying stocks have
been used extensively in the literature. The monograph Karatzas and Shreve [27] gives an
overview.10 In particular, non-dividend paying stockmodels have been used for short horizon
models like ours where consumption only takes place at the terminal time.11 The rebal-
ancers’ dynamic learning produces forward-running filtering equations and by considering
a non-dividend paying stock, we circumvent having additional backward-running equations.
Equilibrium models with both forward and backward-running equations include Kyle [29],

10 Similar to amoneymarket account, a non-dividend paying stock is a financial asset in the sense that holding
one stock at time t = 1, gives one unit of consumption at t = 1. Likewise, being short one stock at t = 1,
means the trader provides one unit of consumption at t = 1. Both the bank account and the non-dividend
paying stock have exogenous initial prices and volatilities. It is custom for the money market account’s initial
price to be one and its volatility to be zero. For the non-dividend paying stock, we set the initial price to be
Y0, its volatility to be a positive constant γ > 0, and determine endogenously the drift.
11 There are long-lived non-dividend paying stocks too as; see, for example, Atmaz and Basak [1] write: “For
example, Hartzmark and Solomon [24] find that over the long-sample of 1927-2011, the average proportion
of no-dividend stocks is around 35% and accounts for 21.3% of the aggregate US stock market capitalization.
Similarly, by taking into account of rising share repurchase programs since the mid-1980ies, Boudoukh et al.
[8] report that over the 1984-2003 period, the average proportion of no-dividend stocks is 64% and no-payout
stocks, i.e., no dividends or no share repurchases, is 51% with the relative market capitalizations of 16.4%
and 14.2%, respectively."
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Foster and Viswanathan [18, 19], Back, Cao, and Willard [5], and Choi, Larsen, and Seppi
[12].

Third, price impact is often modeled as the impact of investor holdings and orders on
price levels (e.g., as in Almgren [2]) and as the impact of orders on price changes (e.g.,
Kyle [29]). However, for the sake of tractability, we follow Cuoco and Cvitanić [15] and
model price impact in terms of the impact of investor holdings on the price drift. Price
impact matters for the trading decisions of strategic investors because of its effect on future
expected price changes (e.g., high holding demand raises prices which lowers expected future
price appreciation). Our price-friction specification simply assumes directly that investor
holdings affect expected future price changes. Thus, while our price impact specification is a
simplification, it is a reasonable simplification that preserve the essential economics of price
impact.

Fourth, instead of exogenous noise traders, we use optimizing trackers with a Brownian
motion target wt . Grossman and Stiglitz [22] and Kyle [29] are standard references with
an exogenous Gaussian stock supply. Gaussian noise traders are also used in the predatory
trading models in Brunnermeier and Pederson [9] and Carlin, Lobo, and Viswanathan [10].
In our setting, we could eliminate trackers by setting M̄ := 0 and replace the stock-market
clearing condition (2.3) by using wt to model the exogenous stock supply as in

wt =
M∑

i=1

θi,t , t ∈ [0, 1]. (3.13)

Including noise traders as in (3.13) in the model would be tractable in the price-friction
equilibrium. However, surprisingly, exogenous noise-traders complicate constructing a Nash
equilibrium with dynamic learning, whereas — as we show in Sect. 4 — optimizing trackers
and market learning in (2.3) produce a subgame perfect Nash financial-market equilibrium
in closed form. The models in Sannikov and Skrzypacz [33] and Choi, Larsen, and Seppi
[13] have optimizing trackers but no dynamic learning.

3.4 Numerics

Our price-friction equilibrium is straightforward to compute numerically. This is because
equilibrium stock prices and holdings are available in closed form given the solutions to the
associated coupled ODEs in (3.7). We illustrate our models for several different parameter-
izations. In these parameterizations, there are M := 5 rebalancers and M̄ := 10 trackers.
The penalty function is a constant over the trading day and set to κ(t) := 1. The rebalancer
target volatility is normalized to σã := 1 whereas we consider σw0 ∈ { 1

10 , 1} to illustrate the
impact of dynamic learning. Recall that σw0 := 0 gives the model with only initial learning
of ã� as developed in Choi, Larsen, and Seppi [13]. To be consistent with our negative B(t)
restriction, we consider an initial value B(0) := −0.2. We consider two stock-price volatil-
ity parameters γ ∈ { 12 , 1} and a zero price-friction parameter α := 0 (i.e., the competitive
equilibrium). As noted above, α does not affect the endogenous price-drift coefficients, but
α does affect investor holdings.

3.4.1 Equilibrium holdings

First, we consider equilibrium holdings. Fig. 1 shows the coefficient functions for the equi-
librium stock holdings θ̂k,t in (3.8) for rebalancers and trackers using their orthogonal
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Fig. 1 Plots of coefficient loadings over time for holdings θ̂k,t using the orthogonal representations in (A.2)
and (A.3) in Appendix A. The exogenous model parameters are σã := 1, M := 5, M̄ := 10, α := 0,
B(0) := −0.2, κ(t) := 1 for t ∈ [0, 1], (γ, σw0 ) = ( 12 , 1

10 )(blue), ( 12 , 1)(amber), (1, 1
10 )(green), and

(1, 1)(red).

representations in (A.2) and (A.3) in Appendix A. Alternatively, we could plot coeffi-
cient loadings on the state processes (ãi , qi,t , ηt , Yt ) and (ηt , wt , ã�) in (3.8). We prefer to
illustrate orthogonal loadings to avoid cancelation effects in the different state processes.

Fig. 1E shows rebalancer i’s loadings over time on her own parent target ai . As expected,
these loadings are positive, but they are less than 1 because trading towards a positive target
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depresses equilibrium price drifts in order for markets to clear. The rebalancer loading on ãi
is over 0.9, which implies a large initial block trade at time t = 0. The negative coefficients
on ã� − ãi (for rebalancer i) in Fig. 1A and ã� (for tracker j) in Fig. 1B are demand
accommodation. In particular, rebalancers and trackers reduce their holdings when other
rebalancers want to buy. The loadings on w0 in Fig. 1C and 1D are more subtle. When
the initial tracker target w0 has a high volatility (as in the red and amber trajectories), the
tracker holdings load positively on w0 over time in Fig. 1D, and the negative rebalancer
loadings in Fig. 1C indicate demand accommodation by the rebalancers. However, when
the initial tracker target has low volatility (as in the green and blue trajectories), the initial
positive tracker loadings on w0 eventually flip signs as do the initial negative rebalancer
loadings. At first glance, this is puzzling. The explanation is that, as noted above, the trackers
and rebalancers have different stock-price drift perceptions in (3.9) and (3.10) given their
different filtrations. In particular, there is dynamic learning over time by the rebalancers based
on the information Yt inferred from prices, whereas the trackers are fully informed about ã�

andwt (trackers infer ã� at time 0). Fig. 3C and 3D below illustrate that the rebalancers’ and
trackers’ stock-drift perceptions are quite different in these two low σw0 parameterizations.

In addition to the effects illustrated in Fig. 1, investor holdings are also affected by the
realized path of wt = w0 + w◦

t over time. This is because of fluctuations in the underlying
tracker parent demand and also due to the effect ofw◦

t on dynamic learning by the rebalancers.
Appendix A shows the exact specification of this term in the tracker holdings (given as a
dw◦

u integral of a deterministic function). Given the linearity of investor holdings and since
the Brownian motion w◦

t has zero expected increments, this random path effect disappears
in ex ante expected investor holdings.

To summarize, Fig. 1 shows there are three main drivers of investor holdings: First,
investors’ holdings in most cases are drawn partially towards their own targets ãi and wt .
Second, investors provide partial accommodation to other investors’ parent demands. Third,
dynamic learning and speculation on the price drift affect demand accommodation. Inter-
estingly, there is no evidence in Fig. 1 of predatory trading. Predatory trading differs from
demand accommodation in that a predator first trades in the same direction as another investor
and then subsequently unwinds her position. In this context, the hump-shape of the blue tra-
jectories (for low σw0) in Fig. 1C and 1D do not indicate predatory trading: Becausew0 is the
trackers’ own target, the blue hump in Fig. 1D cannot reflect predatory trading. Furthermore,
the blue hump-shaped trajectory in Fig. 1C also differs from predatory trading because the
tracker and rebalancer loadings have opposite signs as seen in Fig. 1D. This is due to mar-
ket clearing. For example, when the rebalancers are buying given w0 > 0, the trackers are
actually selling. Instead of predatory trading, we shall see below, that the blue trajectories
are explained by price perceptions and dynamic learning.

Fig. 2 plots the instantaneous intraday unconditional trading autocorrelations

ρk(t) := lim
h↓0

corr(θ̂k,t+h − θ̂k,t , θ̂k,t+2h − θ̂k,t+h)

h
, k ∈ {1, ..., M + M̄}, (3.14)

for the price-friction equilibrium holding processes for both the rebalancer and tracker in
(3.8). These autocorrelations are scaled by the time step h > 0 (the unscaled versions
converge to zero as h ↓ 0).
Thus, consistent with empirical evidence, trading is autocorrelated due to order splitting. Fig.
2 shows that rebalancers’ orders are positively autocorrelated (2A) whereas trackers’ orders
exhibit negative autorcorrelation (2B).
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Fig. 2 Plots of unconditional autocorrelation (3.14) of trading over time. The exogenous model parameters
are σã := 1, M := 5, M̄ := 10, α := 0, B(0) := −0.2, κ(t) := 1 for t ∈ [0, 1], and (γ, σw0 ) =
( 12 , 1

10 )(blue), ( 12 , 1)(amber), (1, 1
10 )(green), and (1, 1)(red).

Market clearing forces the intraday instantaneous unconditional cross correlation between
rebalancers’ and trackers’ holdings to be negatively perfectly correlated

lim
h↓0 corr(θ̂i,t+h − θ̂i,t , θ̂ j,t+h − θ̂ j,t ) = −1, (3.15)

for all i ∈ {1, ..., M} and j ∈ {M + 1, ..., M + M̄}.

3.4.2 Equilibrium prices

Next, we consider the price-friction equilibrium stock-price dynamics in (3.9) and (3.10).
For the trackers, we can rewrite the drift in (3.9) in terms of the independent random variables
(ã�,w0) and an residual orthogonal term given as a stochastic integral with respect to w◦

t
of a deterministic function of time. For the rebalancers, we can rewrite the perceived drift
in (3.10) in terms of the independent random variables (ã� − ãi , w0, ãi ) and an residual
orthogonal term given as a stochastic integral with respect to w◦

t of a deterministic function
of time. These formulas are given in (A.4) and (A.5) in Appendix A and are illustrated in
Fig. 3.

Fig. 3 shows that positive parent demands ãi , ã� − ãi , and ã� all depress perceived stock-
price drifts. The same is true for the tracker perceived stock-price drift loading on the initial
tracker parent demand w0. However, the relation between the rebalancer perceived drift and
w0 is more nuanced. When the initial tracker demand volatility σw0 is high (red and amber
lines in Fig. 3C and 3D), then rebalancers perceive thatw0 depresses the price drift. However,
when σw0 is low, then the dynamic learning process — given the inability of rebalancers to
observe w0 directly — causes the rebalancer perceived stock-price drift loading on w0 to
change sign. The blue and green lines in Fig. 3C and 3D illustrate that low values of σw0

make the trackers use their superior knowledge of w0 to manipulate stock-price perceptions
to create gains from trade that outweigh their penalties. More specifically, the blue and green
lines in Fig. 1C and 1D show that rebalancers have large positive stock holdings and trackers
have large negative holdings based on a positive realization w0 > 0. Such large negative
holdings imply that trackers incur large inventory penalties because they deviate from the
target trajectory wt = w0 + w◦

t . Trackers find this behavior optimal because their blue and
green lines in Fig. 3D are negative (giving trackers large gains from trade) and rebalancers
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Fig. 3 Plots of coefficient loadings over time in stock-price drifts in (A.5) (rebalancer i) and (A.4) (tracker j).
The exogenous model parameters are σã := 1, M := 5, M̄ := 10, α := 0, B(0) := −0.2, κ(t) := 1 for
t ∈ [0, 1], and (γ, σw0 ) = ( 12 , 1

10 )(blue), ( 12 , 1)(amber), (1, 1
10 )(green), and (1, 1)(red).

are willing to hold these large positive stock positions because their blue and green lines in
Fig. 3C are positive (giving also rebalancers large gains from trade).

Fig. 4A plots the instantaneous intraday unconditional stock-price autocorrelation, which
is again scaled relative to h

ρ(t) := lim
h↓0

corr(Ŝt+h − Ŝt , Ŝt+2h − Ŝt+h)

h
, t ∈ [0, 1), (3.16)

for the equilibrium stock-price process Ŝt .
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Fig. 4 Plots of the stock-price scaled autocorrelation (3.16) and of the variance of trackers’ equilibrium
stock-price drift over time for the equilibrium stock-price dynamics d Ŝt in (3.9). The exogenous model
parameters are σã := 1, M := 5, M̄ := 10, α := 0, B(0) := −0.2, κ(t) := 1 for t ∈ [0, 1], and
(γ, σw0 ) = ( 12 , 1

10 )(blue), ( 12 , 1)(amber), (1, 1
10 )(green), and (1, 1)(red).

Price pressure from persistent parent demands lead to rising intraday price autocorrelation
over the trading day. Fig. 4B plots the time trajectory of the unconditional variance of intraday
price drifts over the trading day based on the trackers’ equilibrium perceptions in (3.9).
Predictable price drifts are important in actual markets as incentives for intraday liquidity
provision by HFT market makers (represented in our model by rebalancers with realizations
ãi ≈ 0.) We see that price-drift variability due to price pressure increases over the trading
day.

3.4.3 Equilibrium learning

Fig. 5A shows that σw0 > 0 controls the starting point �(0) > 0 whereas γ > 0 controls
the speed of learning (i.e., how negative the slope of �(t) is). For example, the green and
red lines (γ = 1) illustrate a slower speed of learning relative to the amber and blue lines
(γ = 0.1). These effects on�′(t) come from Fig. 5B and the formula for�(t) in terms B ′(t)
in (2.15). The red line in Fig. 5A also shows that the remaining variance �(1) at t = 1 can
be substantial.

3.4.4 Equilibriumwelfare

In this section, we study the impact of the exogenous model input B(0) ∈ R on equilibrium
welfare. There are many ways to measure social welfare (see, e.g., Vayanos [35, Section
6]). We follow Du and Zhu [17, Eq. 42] and consider maximizing the expected aggregate
certainty equivalent for the M + M investors. The certainty equivalent CEk ∈ R for investor
k ∈ {1, ..., M + M} is defined by the expressions in (2.5). The aggregate expected welfare
is given by

M+M∑

k=1

E[CEk], (3.17)

where the expectation in (3.17) is ex ante in the sense that it is taken over the random variables
(ã1, ..., ãM ) and w0 (Gaussian and independent).
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Fig. 5 Plots of solutions of ODEs in (3.7) over time. The exogenous model parameters are σã :=
1, M := 5, M̄ := 10, α := 0, B(0) := −0.2, κ(t) := 1 for t ∈ [0, 1], and (γ, σw0 ) =
( 12 , 1
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Fig. 6 Plots of aggregate expected welfare in (3.17) for varying B(0). The exogenous model param-
eters are σã := 1, M := 5, M̄ := 10, κ(t) := 1 for t ∈ [0, 1], α := 0, and (γ, σw0 ) =
( 12 , 1

10 )(blue), ( 12 , 1)(amber), (1, 1
10 )(green), and (1, 1)(red).

Fig. 6 shows that in the price-friction equilibrium with α := 0, expected welfare is
maximized at B(0) = 1

M̄
. This is not too surprising because B(0) = 1

M̄
implies full revelation

andnodynamic learning takes place for t > 0 (see the discussion afterLemma3.4).Aggregate
welfare is decreasing in the initial tracker parent standard deviation σw0 both because more
demand accommodation is required and also because the rebalancer learning problem is
more difficult. This effect can be seen by comparing the blue and green (low initial standard
deviation) and amber and red (high initial standard deviation) cases in Fig. 6.

4 Subgame perfect Nash equilibrium

This section builds on the analysis in Section 3 by endogenizing stock-price perceptions and
price impact. In particular, we partially endogenize the impact of an investor’s hypotheti-

123



638 Mathematics and Financial Economics (2022) 16:615–658

cal off-equilibrium holdings on off-equilibrium market-clearing stock prices based on her
perceptions of how other investors perceive prices and on other investors’ resulting optimal
response functions to her off-equilibrium holdings. More specifically, a subgame perfect
Nash equilibrium involves describing how each trader k0 (who might be a rebalancer i0 or a
tracker j0 with their different filtrations) perceives all other traders’ price perceptions.

The major difference between the price-friction equilibrium in Sect. 3 and our subgame
perfect Nash equilibrium lies in the traders’ stock-price perceptions. For a subgame perfect
Nash equilibrium, investor stock-price perceptions must be such that:

(i) Trader k0’s own stock-price perceptions must be consistent with market-clearing for
any off-equilibrium holdings θk0,t used by k0, when other traders’ holding responses
are optimal given the stock-price dynamics k0 perceives other traders k �= k0 to have.
This off-equilibrium market-clearing requirement can be found in, e.g., Vayanos [35].

(ii) Trader k0’s equilibrium holdings are found by solving her optimization problem using
her own market-clearing stock-price dynamics from (i).

(iii) All optimizers from (i) must be consistent with traders’ equilibrium holdings in (ii).

Definition 4.3 below makes properties (i)–(iii) operational. We refer to the last property (iii)
as a consistency requirement between off- and on-equilibrium holdings.

4.1 Optimal off-equilibrium responses

In our subgame perfect Nash model, a generic trader k0 perceives that other rebalancers and
trackers have stock-price perceptions of the form

dSZ
i,t :=

{
Zt + μ1(t)ãi + μ2(t)qi,t + μ3(t)ηt + αθi,t

}
dt + γ dWi,t ,

SZ
i,0 := Z0, i ∈ {1, ..., M},

dSZ
j,t :=

{
Zt + μ̄4(t)ã� + μ̄5(t)wt + αθ j,t

}
dt + γ dWj,t ,

SZ
j,0 := Z0, j ∈ {M + 1, ..., M + M̄},

(4.1)

where Wi,t and Wj,t are Brownian motions and Zt is an arbitrary Itô process (i.e., Zt is a
sum of drift and volatility). The “Z” superscript in (4.1) indicates that the perceived stock
prices SZ

i,t and SZ
j,t are defined with respect to Zt . We use the market-clearing condition

(2.3) to construct two such Itô processes in (4.5) and (4.8) below. These Zt processes differ
from Yt in (3.1) and (3.3) in that we use Zt to capture the effect of arbitrary off-equilibrium
stock holdings by trader k0 on market-clearing prices given optimal responses by other
investors k, k �= k0. We then go on to determine endogenously the deterministic functions
(μ1, μ2, μ3, μ̄4, μ̄5) in equilibrium in Theorem 4.5 below.

Lemma 4.1 gives traders’ optimal response to an arbitrary Itô process Zt and is the Nash
equilibrium analogue of Lemma 3.2.

Lemma 4.1 (Optimal responses to Zt ) Letμ1, μ2, μ3, μ̄4, μ̄5 : [0, 1] → R and κ : [0, 1] →
(0,∞] be continuous functions, let α ≤ 0, let (Zt )t∈[0,1] be an Itô process, and let the
perceived stock-price process in the wealth dynamics (2.7) be as in (4.1). Then, Zt is adapted
to bothFi,t := σ(ãi , Yu,Wi,u, SZ

i,u)u∈[0,t] andF j,t := σ(ã�,wu, Yu,Wj,u, SZ
j,u)u∈[0,t] and,

provided

θ Z
i,t := 1

2(κ(t)−α)
Zt + 2κ(t)+μ1(t)

2(κ(t)−α)
ãi + μ2(t)

2(κ(t)−α)
qi,t + μ3(t)

2(κ(t)−α)
ηt ,

θ Z
j,t := 1

2(κ(t)−α)
Zt + 2κ(t)+μ̄5(t)

2(κ(t)−α)
wt + μ̄4(t)

2(κ(t)−α)
ã�,

(4.2)
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satisfy (2.6), the maximizer for (2.5) is θ Z
i,t for rebalancer i ∈ {1, ..., M} and θ Z

j,t for tracker

j ∈ {M + 1, ..., M + M̄}. ♦
Similar to Lemma 3.2, Lemma 4.1 is proven using pointwise quadratic maximization. Unlike
Yt in Lemma 3.2, there is no Markov structure imposed on Zt in Lemma 4.1, which makes
dynamical programming inapplicable. Therefore, the simplicity of the linear-quadratic objec-
tives in (2.5) is crucial for the proof of the optimality of θ Z

i,t and θ Z
j,t in (4.2).

4.2 Market-clearing stock-price perceptions

Investor k0’s perceptions about other investors’ stock-price perceptions ensure that the stock
market clears for any choice of k0’s holdings. Thus, when solving for trader k0’s individual
equilibrium holdings, we require k0’s perceived stock-price process (denoted by Sν

k0,t
below)

clears the stockmarket for arbitrary hypothetical holdings θk0,t .We assume that a given trader
k0 ∈ {1, ..., M + M̄} perceives that other traders k �= k0 perceive the stock-price processes
in (4.1). Hence, trader k0 perceives that other traders k, k �= k0, optimally hold θ Z

k,t in (4.2)
shares of stock. Given this, we then find market-clearing Zk0,t processes associated with
arbitrary hypothetical holdings θk0,t for trader k0.

First, consider a rebalancer i0 ∈ {1, ..., M}. We construct a process Zi0,t such that the
stock market clears in the sense

0 = θi0,t︸︷︷︸
rebalancer

i0 +
M∑

i=1,i �=i0

θ
Zi0
i,t

︸ ︷︷ ︸
other rebalancers

+
M̄∑

j=M+1

θ
Zi0
j,t

︸ ︷︷ ︸
trackers

, t ∈ [0, 1],
(4.3)

where θi0,t denotes an arbitrary stock-holdings process for rebalancer i0 and other investors’

responses θ
Zi0
k,t are from (4.2) for Zt := Zi0,t . Clearly, any solution Zi0,t of (4.3) is specific

for rebalancer i0. To describe one particular solution Zi0,t , we insert (4.2) into (4.3). This
produces an affine equation in (θi0,t , Zi0,t , ãi0 , qi0,t , ηt , wt , ã�). Because rebalancer i cannot
observe nor infer wt and ã� seperately, she has to filter based on observing a linear combi-
nation of wt and ã� given by Yt := wt − B(t)ã� where B : [0, 1] → R is a continuously
differentiable function satisfying

B(t) = − A(t)μ2(t) + M̄μ̄4(t) + 2κ(t) + μ1(t)

2M̄κ(t) + M̄μ̄5(t)
, (4.4)

where A(t) is as in (2.17). The specific form of (4.4) comes from rewriting (4.3) in terms of
(θi0,t , Zi0,t , ãi0 , qi0,t , ηt , Yt ) rather than (θi0,t , Zi0,t , ãi0 , qi0,t , ηt , wt , ã�). Because A(t) in
(2.17) depends on B(t), Eq. (4.4) is a fixed point requirement for B(t). Below, we show that
the coupled ODEs in (4.19) characterize (A, B) in (4.4), and we give conditions ensuring
that (4.19) has a solution. Given a solution B(t) to (4.4), we use Yt := wt − B(t)ã� from
(2.8) to express a solution of (4.3) as12

Zi0,t := 2(α−κ(t))
M+M̄−1

θi0,t + 2κ(t)+μ1(t)
M+M̄−1

ãi0 + μ2(t)
M+M̄−1

qi0,t

− (M−1)μ3(t)+μ2(t)
M+M̄−1

ηt − M̄(2κ(t)+μ̄5(t))
M+M̄−1

Yt , t ∈ [0, 1].
(4.5)

12 The specific B(t) function in (4.4) lets us combine wt and ã� terms from (4.3) into the Yt term in (4.5)
using Yt = wt − B(t)ã� from (2.8).

123



640 Mathematics and Financial Economics (2022) 16:615–658

The process Zi0,t in (4.5) captures the impact of arbitrary holdings θi0,t by rebalancer i0 on
market-clearing stock prices given i0’s perceptions of how other traders k �= i0 optimally

respond using θ
Zi0
k,t from (4.2) with Zt := Zi0,t .

Next, we describe rebalancer i0’s stock-price perceptions for i0 ∈ {1, ..., M}. Rebalancer
i0 filters based on her own target ãi and on observations of past and current perceived market-
clearing stock prices Sν

i0,u
defined by

dSν
i0,t :=

{
ν0(t)Zi0,t + ν1(t)ãi0 + ν2(t)qi0,t + ν3(t)ηt + αθi0,t

}
dt + γ dwi0,t ,

Sν
i0,0 := Y0, i0 ∈ {1, ..., M},

(4.6)

where (ãi0 , θi0,t ) are known and (Zi0,t , qi0,t , ηt0) are inferred by rebalancer i0. The “ν”
superscript in (4.6) indicates that the perceived stock prices are defined with respect to a
particular set of deterministic functions (ν0, ν1, ν2, ν3), which we endogenously determine
in Theorem 4.5 below. More specifically, by observing ãi0 and (Sν

i0,u
)u∈[0,t] defined in (4.6),

rebalancer i0 infers Yt := wt−B(t)ã� from (2.8) using theVolterra argument behind Lemma
3.1. To see this, we insert (4.5) into (4.6) to produce rebalancer i0’s perceivedmarket-clearing
stock-price dynamics

dSν
i0,t =

{(
ν0(t)(2κ(t)+μ1(t))

M+M̄−1
+ ν1(t)

)
ãi0 +

(
μ2(t)ν0(t)
M+M̄−1

+ ν2(t)
)
qi0,t

+
(
ν3(t) − ν0(t)((M−1)μ3(t)+μ2(t))

M+M̄−1

)
ηt − M̄ν0(t)(2κ(t)+μ̄5(t))

M+M̄−1
Yt

+
(
α − 2ν0(t)(κ(t)−α)

M+M̄−1

)
θi0,t

}
dt + γ dwi0,t .

(4.7)

Because the expressions multiplying (ãi0 , qi0,t , ηt , Yt , θi0,t ) in (4.7) are continuous (deter-
ministic) functions of time t ∈ [0, 1], Lemma 3.1 applies and shows that by observing ãi0
and (Sν

i0,u
)u∈[0,t] in (4.7) over time t ∈ [0, 1], rebalancer i0 can infer wi0,t . Subsequently,

rebalancer i0 can use (2.10) and (2.14) to also infer Yt over time t ∈ [0, 1].
Next, consider a tracker j0 ∈ {M +1, ..., M + M̄}. For arbitrary off-equilibrium holdings

θ j0,t , the market-clearing solution Z j0,t from

0 = θ j0,t︸︷︷︸
tracker j0

+
M̄∑

j=M+1, j �= j0

θ
Z j0
j,t

︸ ︷︷ ︸
other trackers

+
M∑

i=1

θ
Z j0
i,t

︸ ︷︷ ︸
rebalancers

, t ∈ [0, 1],
(4.8)

is given by

Z j0,t := 2(α−κ(t))
M+M̄−1

θ j0,t − Mμ3(t)+μ2(t)
M+M̄−1

ηt − (M̄−1)(2κ(t)+μ̄5(t))
M+M̄−1

wt

− A(t)μ2(t)+(M̄−1)μ̄4(t)+2κ(t)+μ1(t)
M+M̄−1

ã�,
(4.9)

where A(t) is as in (2.17). Once again, Z j0,t captures tracker j0’s perceptions of the impact of
her holdings θ j0,t on market-clearing stock prices given j0’s perceptions of other investors’

k �= j0 responses θ
Z j0
k,t to θ j0,t .

Tracker j0’s perceived market-clearing stock-price process is defined as

dSν̄
j0,t :=

{
Z j0,t + ν̄3(t)ηt + ν̄4(t)ã� + ν̄5(t)wt + αθ j0,t

}
dt + γ dwt ,

Sν̄
j0,0 := Y0, j0 ∈ {M + 1, ..., M + M̄},

(4.10)
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where ν̄3, ν̄4, ν̄5 : [0, 1] → R are deterministic functions of time (endogenously determined
Theorem 4.5 below). Inserting (4.9) into (4.10) gives tracker j0’s perceived market-clearing
stock-price dynamics

dSν̄
j0,t =

{(
ν̄3(t) − Mμ3(t)+μ2(t)

M+M̄−1

)
ηt

+
(
ν̄5(t) − (M̄−1)(2κ(t)+μ̄5(t))

M+M̄−1

)
wt

+
(
ν̄4(t) − A(t)μ2(t)+(M̄−1)μ̄4(t)+2κ(t)+μ1(t)

M+M̄−1

)
ã�

+ α(M+M̄+1)−2κ(t)
M+M̄−1

θ j0,t

}
dt + γ dwt .

(4.11)

We note that tracker j0’s perceived market-clearing stock-price dynamics dSν̄
j0,t

in (4.11)
are driven by the exogenous Brownian motion wt from (2.2) whereas rebalancer i0’s stock
prices dSν

i0,t
in (4.7) are driven by i0’s innovations process dwi0,t from (2.11). This is due to

the different information sets of rebalancers and trackers.
Unlike the price-friction equilibrium in Theorem 3.5, we see from (4.7) and (4.11) that,

even with no direct price impact in the sense α := 0 in (4.6) and (4.10), the remaining net
price impacts − 2ν0(t)κ(t)

M+M̄−1
and − 2κ(t)

M+M̄−1
of θi,t and θ j,t are nonzero. This is because price

pressure in (4.7) and (4.11) clears the stock market for arbitrary holdings θi,t and θ j,t .
The next result gives the optimal holdings θ∗

k,t for all traders k0 := k ∈ {1, ..., M + M̄}
given their perceptions of market-clearing stock prices in (4.7) and (4.11). While both θ∗

k,t

and the optimal response holdings θ Z
k,t in (4.2) maximize (2.5), they differ because they are

based on different perceived stock-price processes. On one hand, the optimal responses θ Z
k,t

in (4.2) are based on the stock-price perceptions in (4.1). On the other hand, the optimizer
θ∗
k,t is based on the market-clearing stock-price perceptions in (4.7) and (4.11).

Lemma 4.2 [Trader k’s maximizer for market-clearing stock-price perceptions] Let ν0, ν1,
ν2, ν3, ν̄3, ν̄4, ν̄5 : [0, 1] → R and κ : [0, 1] → (0,∞] be continuous functions with
ν0 > 0 and assume α ≤ 0. Let the perceived market-clearing stock-price processes in the
wealth dynamics (2.7) be given by (4.7) and (4.11) with corresponding filtrations Fi,t :=
σ(ãi , Sν

i,u)u∈[0,t] and F j,t := σ(wu, Sν̄
j,u)u∈[0,t] for i ∈ {1, ..., M} and j ∈ {M +1, ..., M +

M̄}. Then, provided the holding processes

θ∗
i,t : = 2κ(t)(M+M̄+ν0(t)−1)+(M+M̄−1)ν1(t)+μ1(t)ν0(t)

2(κ(t)−α)(M+M̄+2ν0(t)−1)
ãi

+ (M+M̄−1)ν2(t)+μ2(t)ν0(t)
2(κ(t)−α)(M+M̄+2ν0(t)−1)

qi,t

− ν0(t)((M−1)μ3(t)+μ2(t))−(M+M̄−1)ν3(t)
2(κ(t)−α)(M+M̄+2ν0(t)−1)

ηt

− M̄ν0(t)(2κ(t)+μ̄5(t))
2(κ(t)−α)(M+M̄+2ν0(t)−1)

Yt ,

θ∗
j,t : = (M+M̄−1)ν̄3(t)−Mμ3(t)−μ2(t)

2(M+M̄+1)(κ(t)−α)
ηt

+ (M+M̄−1)ν̄5(t)+2Mκ(t)−(M̄−1)μ̄5(t)
2(M+M̄+1)(κ(t)−α)

wt

− A(t)μ2(t)−(M+M̄−1)ν̄4(t)+(M̄−1)μ̄4(t)+2κ(t)+μ1(t)
2(M+M̄+1)(κ(t)−α)

ã�,

(4.12)

satisfy (2.6), the traders’ maximizers for (2.5) are θ∗
i,t for rebalancer i ∈ {1, ..., M} and θ∗

j,t

for tracker j ∈ {M + 1, ..., M + M̄}. ♦
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From Lemma 4.2, we note that a generic rebalancer i0 has filtration σ(ãi0 , S
ν
i0,u

)u∈[0,t]
whereas she perceives that other rebalancers i �= i0 have filtrationsσ(ãi , Yu,Wi,u, SZ

i,u)u∈[0,t]
as in Lemma 4.1. Because these are i0’s off-equilibrium perceptions, this is allowable as long
as they are consistent with i’s equilibrium holdings. We require this consistency in Definition
4.3(iii) below. We also note from Lemma 4.1 that rebalancer i can infer Zi0,t in (4.5). In turn,
this allows rebalancer i , i �= i0, to also know the process

2(α−κ(t))
M+M̄−1

θi0,t + 2κ(t)+μ1(t)
M+M̄−1

ãi0 + μ2(t)
M+M̄−1

qi0,t . (4.13)

However, knowing (4.13) is insufficient for rebalancer i , i �= i0, to infer rebalancer i0’s
private target ãi0 .

4.3 Equilibrium

Definition 4.3 Deterministic functions of timeμ1, μ2, μ3, μ̄4, μ̄5, ν0, ν1, ν2, ν3, ν̄3, , ν̄4, ν̄5 :
[0, 1] → R constitute a subgame perfect Nash financial-market equilibrium if:

(i) For k ∈ {1, ..., M + M̄}, trader k’s maximizer θ∗
k,t for (2.5) exists given the market-

clearing stock-price perceptions (4.7) and (4.11).
(ii) For k ∈ {1, ..., M + M̄}, inserting trader k’s maximizer θ∗

k,t into the perceived market-
clearing stock-price processes (4.7) and (4.11) produces identical stock-price processes
across all traders. This common equilibrium stock-price process is denoted by S∗

t .
(iii) Optimizers and equilibrium holdings must be consistent in the sense that trader k’s

perceived response to trader k0’s maximizer θ∗
k0,t

is trader k’s maximizer θ∗
k,t .

(iv) The money and stock markets clear. ♦

The identical stock-price requirement in Definition 4.3(ii) is similar to the one in Def-
inition 3.3(ii). We see from the rebalancers’ perceptions (4.6) that both the drifts and the
martingale terms have i dependence. Similar to (3.5), we replace dwi,t in dSν

i,t in (4.6) with
the decomposition of dwi,t in terms of dwt in (2.11) and rewrite dSν

i,t in (4.6) as

dSν
i,t =

{
ν0(t)Zi,t + ν1(t)ãi + ν2(t)qi,t + ν3(t)ηt + αθi,t

− B ′(t)
(
ã� − ãi − qi,t

)
γ
}
dt + γ dwt , i ∈ {1, ..., M}.

(4.14)

Therefore, to ensure identical equilibrium stock-price perceptions for all traders k ∈
{1, ..., M + M̄}, it suffices to match the drift of dSν̄

j,t in (4.10) for j ∈ {M + 1, ..., M + M̄}
with the drift of dSν

i,t in (4.14) for the optimal holdings θi,t := θ∗
i,t for i ∈ {1, ..., M}. This

produces the requirement

ν0(t)Z
∗
i,t + ν1(t)ãi + ν2(t)qi,t + ν3(t)ηt + αθ∗

i,t − B ′(t)
(
ã� − ãi − qi,t

)
γ

= Z∗
j,t + ν̄3(t)ηt + ν̄4(t)ã� + ν̄5(t)wt + αθ∗

j,t ,
(4.15)

for all rebalancers i ∈ {1, ..., M} and all trackers j ∈ {M + 1, ..., M + M̄}. The right-hand
side of (4.15) does not depend on the rebalancer index i . In (4.15), the process Z∗

i,t is (4.5)
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evaluated at θi,t := θ∗
i,t , and Z∗

j,t is (4.9) evaluated at θ j,t := θ∗
j,t so that:

Z∗
i,t := 2(α−κ(t))

M+M̄−1
θ∗
i,t + 2κ(t)+μ1(t)

M+M̄−1
ãi + μ2(t)

M+M̄−1
qi,t

− (M−1)μ3(t)+μ2(t)
M+M̄−1

ηt − M̄(2κ(t)+μ̄5(t))
M+M̄−1

Yt ,

Z∗
j,t := 2(α−κ(t))

M+M̄−1
θ∗
j,t − Mμ3(t)+μ2(t)

M+M̄−1
ηt

− (M̄−1)(2κ(t)+μ̄5(t))
M+M̄−1

wt − A(t)μ2(t)+(M̄−1)μ̄4(t)+2κ(t)+μ1(t)
M+M̄−1

ã�,

(4.16)

for rebalancers i ∈ {1, ..., M} and trackers j ∈ {M + 1, ..., M + M̄}.
As for the consistency requirement in Definition 4.3(iii), we first fix a rebalancer i0 ∈

{1, ..., M}. We require that the response holdings in (4.2) are consistent with θ∗
i0,t

in the sense
that

θ∗
i,t = 1

2(κ(t)−α)
Z∗
i0,t + 2κ(t)+μ1(t)

2(κ(t)−α)
ãi + μ2(t)

2(κ(t)−α)
qi,t + μ3(t)

2(κ(t)−α)
ηt ,

θ∗
j,t = 1

2(κ(t)−α)
Z∗
i0,t + 2κ(t)+μ̄5(t)

2(κ(t)−α)
wt + μ̄4(t)

2(κ(t)−α)
ã�,

(4.17)

for rebalancers i ∈ {1, ..., M} \ {i0} and trackers j ∈ {M + 1, ..., M + M̄}. Second, we fix
a tracker j0 ∈ {M + 1, ..., M + M̄} and require that the response holdings in (4.2) must be
consistent with θ∗

j0,t
in the sense that

θ∗
i,t = 1

2(κ(t)−α)
Z∗
j0,t + 2κ(t)+μ1(t)

2α−2κ(t) ãi + μ2(t)
2(κ(t)−α)

qi,t + μ3(t)
2(κ(t)−α)

ηt ,

θ∗
j,t = 1

2(κ(t)−α)
Z∗
j0,t + 2κ(t)+μ̄5(t)

2(κ(t)−α)
wt + μ̄4(t)

2(κ(t)−α)
ã�,

(4.18)

for rebalancers i ∈ {1, ..., M} and trackers j ∈ {M + 1, ..., M + M̄} \ { j0}.
Similar to the price-friction equilibrium, our Nash equilibrium existence result is based

on a technical lemma, which guarantees the existence of a solution to an autonomous system
of coupled ODEs.

Lemma 4.4 Let κ : [0, 1] → (0,∞] be a continuous and integrable function (i.e.,∫ 1
0 κ(t)dt < ∞), let M + M̄ > 2, and let α ≤ 0. For a constant B(0) ∈ R, the cou-
pled ODEs

B′(t) =

{
2κ(t)

(
M̄ B(t)(M + M̄ − 1)

(
α(M + M̄) − 2(M + M̄ − 1)κ(t)

)

+(M + M̄ − 2)
(
α(M + M̄ + 1) − 2(M + M̄)κ(t)

))}

{
γ
(
A(t)(M + M̄ − 2)

(
α(M + M̄ + 1) − 2(M + M̄)κ(t)

)

+α
(
(M2 + M − 1)M̄ + M2 + 2MM̄2 − M + M̄3 − 2

)

−2
(
(M2 − 1)M̄ + (2M − 1)M̄2 + (M − 2)M + M̄3

)
κ(t)

)}
,

,

A′(t) = −(
B′(t)

)2
�(t)

(
A(t) + 1

)
, A(0) = − (M − 1)B(0)2σ 2

ã

σ 2
w0

+ (M − 1)B(0)2σ 2
ã

,

�′(t) = −(
B′(t)

)2
�(t)2, �(0) = (M − 1)σ 2

ã σ 2
w0

(M − 1)B(0)2σ 2
ã + σ 2

w0

,

(4.19)

have unique solutions with�(t) ≥ 0,�(t) decreasing, A(t) ∈ [−1, 0], and A(t) decreasing
for t ∈ [0, 1]. ♦
The affine ODE for B(t) in (4.19) is more complicated than the corresponding affine ODE
in (3.7) because the Nash equilibrium has the additional fixed point requirement in (4.4) that
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is absent in the price-friction equilibrium. However, both ODEs for B(t) are affine. It is
possible to restate the ODE system (4.19) using a single path-dependent ODE. The special
case α := 0 and B(0) := − 1

M̄
+ 1

M̄(M+M̄−1)2
produces a Nash model with no dynamic

learning because B ′(t) = 0 implies �′(t) = 0 and so dηt = dqi,t = 0. The resulting
Subgame perfect Nash equilibrium model only has learning at t = 0 and can be seen as a
special case of Choi, Larsen, and Seppi [13].

Our main theoretical result gives a Nash equilibrium in terms of the ODEs (4.19). In this
theorem, the price-friction parameter α ≤ 0, volatility γ > 0, and initial value B(0) ∈ R are
free parameters.

Theorem 4.5 Let κ : [0, 1] → (0,∞) be continuous, let the functions (B, A, �) be as in
Lemma 4.4, let M + M̄ > 2, and let α ≤ 0. Then, we have:

(i) A subgameperfectNashfinancial-market equilibriumexists and is givenby the functions
in (A.6) in Appendix A.

(ii) The Nash equilibrium in (i) has holdings given by

θ∗
i,t := − (M + M̄ − 2)

(
2κ(t) − γ B′(t)

)

α(M + M̄) − 2(M + M̄ − 1)κ(t)
ãi

+ γ (M + M̄ − 2)B′(t)
α(M + M̄) − 2(M + M̄ − 1)κ(t)

qi,t

−
{
γ (M + M̄ − 2)2B′(t)(α(M + M̄ + 1) − 2(M + M̄)κ(t))

}

{
(α(M + M̄) − 2(M + M̄ − 1)κ(t))

(
α
(
(3M − 1)M̄2 + M(3M − 2)M̄

+(M − 2)M(M + 1) + M̄3) − 2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

)}

ηt

+
{
2M̄(M + M̄ − 2)(M + M̄ − 1)κ(t)

}

{
α

(
(3M − 1)M̄2 + M(3M − 2)M̄ + (M − 2)M(M + 1) + M̄3

)

−2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

}

Yt , (4.20)

θ∗
j,t : = − γ (M+M̄−2)(M+M̄−1)B′(t)

α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)
ηt

− 2M(M+M̄−2)(M+M̄−1)κ(t)
α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)

wt

+ (M+M̄−2)(M+M̄−1)(γ (−A(t)+M−1)B′(t)+2κ(t))
α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)

ã�,

for rebalancers i ∈ {1, ..., M} and trackers j ∈ {M + 1, ..., M + M̄}.
(iii) The Nash equilibrium in (i) has the stock-price process S∗

t given by S
∗
0 := w0−B(0)ã�

and dynamics with respect to the trackers’ filtrations F j,t := σ(wu, Sν̄
j,u)u∈[0,t] given

by

dS∗
t =

{
γ (M+M̄−2)B′(t)(α(M+M̄+1)−2(M+M̄)κ(t))

α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)
ηt

− 2M̄(M+M̄−1)κ(t)(α(M+M̄)−2(M+M̄−1)κ(t))
α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)

wt

− (M+M̄−2)(α(M+M̄+1)−2(M+M̄)κ(t))(γ (−A(t)+M−1)B′(t)+2κ(t))
α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)

ã�

}
dt

+ γ dwt ,

(4.21)
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and dynamics with respect to the rebalancers’ filtrationsFi,t := σ(ãi , Sν
i,u)u∈[0,t] given

by

dS∗
t =

{
γ (M+M̄−2)B′(t)(α(M+M̄+1)−2(M+M̄)κ(t))

α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)
ηt

− 2M̄(M+M̄−1)κ(t)(α(M+M̄)−2(M+M̄−1)κ(t))
α((3M−1)M̄2+M(3M−2)M̄+(M−2)M(M+1)+M̄3)−2((M+M̄−2)(M+M̄)2+M̄)κ(t)

Yt

− γ B ′(t)(ãi + qi,t )
}
dt + γ dwi,t .

(4.22)

♦

The following observations follow from Theorem 4.5:

1. The logic for the initial value B(0) being a free input parameter is the same as in the
price-friction equilibrium.

2. The price-friction parameter α and stock-price volatility γ affect the stock-price drift and
holdings via its impact on B(t) in (4.19). The dependence on α is different from the
price-friction equilibrium where the corresponding B(t) in (3.7) is independent of α. The
reason is that α affects the perceived optimal responses in (4.2).

3. Similar to (3.11) and (3.12), for an arbitrary trader k0 ∈ {1, ..., M + M̄} and her arbitrary
holdings θk0,t , the optimal responses in (4.2) can be decomposed as

θ
Zk0
i,t = θ∗

i,t − 1

M + M̄ − 1
(θk0,t − θ∗

k0,t ), i ∈ {1, ..., M},

θ
Zk0
j,t = θ∗

j,t − 1

M + M̄ − 1
(θk0,t − θ∗

k0,t ), j ∈ {M + 1, ..., M + M̄},
(4.23)

where the equilibrium holdings (θ∗
i,t , θ

∗
j,t , θ

∗
k0,t

) are in (4.20).13

4. The subgame perfect Nash financial-market equilibrium is attractive because of its rea-
sonable off-equilibrium market-clearing perceptions. However, although much of the
mathematic structure is similar, the expressions for the equilibrium stock price and holding
coefficients are algebraically more complex. Nonetheless, our numerical results in Sect.
3.4 below show that the differences between the price-friction and the subgame perfect
Nash financial-market equilibria are quantitatively small. This, in turn, suggests that the
economic logic from the price-friction equilibrium carries over to the Nash equilibrium.

4.4 Numerics

We have experimented extensively with the subgame perfect Nash model’s numerics, and
its numerics are very similar to the numerics of the price-friction equilibrium in Sect. 3.
The numerical similarity of the two equilibria suggests that the intuitions for the signs of
the various coefficients in the price-friction equilibrium carry over to the subgame perfect
Nash financial-market equilibrium. Because the two equilibria produce similar numerics,
it appears that the in-equilibrium market-clearing requirement (common in both equilibria)
has a much larger effect on equilibrium prices relative to the off-equilibrium market-clearing
requirement (only present in the subgame perfect Nash equilibrium).

13 This is similar to Eq. (2.16) in Chen, Choi, Larsen, and Seppi [11].
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5 Empirical predictions

The primary contribution of our analysis is theoretical. The Kyle model has provided a
tractable framework for a large body of theoretical research on price discovery and dynamic
order splitting given long-lived asymmetric information about stock cash flows. However, no
corresponding tractable framework exists for modeling price discovery and dynamic order
splitting with private trading targets (e.g., by large index funds). Our model provides such
a framework. While our zero-dividend modeling approach precludes statements about the
impact of order on price levels, our analysis does have empirical implications for intraday
price drifts:

First, intraday price predictability is an important empirical driver of high-frequency
liquidity provision. Our model’s equilibrium price dynamics in (3.9) and (4.21) suggest that
intraday price drifts are path dependent (via the ηt term) and also that learning about parent-
demand imbalances early in the trading day is associated with predictable price drifts later
in the day.

Second, our analysis provides insights about the determinants of price impact as it relates
to imbalance-related parent trading demands and toxic cumulative order flow. In particular,
the holdings θk,t are cumulative trading up through time t , and large parent targets ãi lead to
toxic streams of orders. Our subgame perfect Nash model endogenizes the price-drift impact
of investor holdings (i.e., cumulative trading). The Nash model’s price-friction coefficient in
the rebalancer’s perceived stock-price dynamics (4.7) is given by

−2ν0(t)(κ(t) − α)

M + M̄ − 1
= −2

κ(t) − α

M + M̄ − 2
, (5.1)

where we have inserted ν0(t) from (A.6). An implication of (5.1) is that if, as is widely
believed, investor target penalties become stronger as time passes (i.e., if κ(t) increases with
time), then our Nash model predicts that the total price impact in (5.1) should increase.
On its face, this is contrary to evidence in Barardehi and Bernhardt [6] that price impact
declines over the trading day. We conjecture, however, that a richer model can be reconciled
with these stylized facts if the number of investors (and, thus, the available inventory bearing
capacity to absorb aggregate parent demand imbalances) is also allowed to grow as themarket
approaches the end of the trading day. Increased investor participation toward the end of the
trading day is also empirically common.

6 Measuring execution costs

As an application, this section gives a measure of a rebalancer’s costs of rebalancing from
zero endowed shares at time t = 0 to a given target ãi . We present the measure in the price-
friction equilibrium in Sect. 3 (the Nash analogue is logically similar and produces similar
numerics). In the price-friction equilibrium, rebalancer i’s value function is

J (ãi , 0, η0, Y0, qi,0) :=E

[ ∫ 1

0
θ̂i,t d Ŝt −

∫ 1

0
κ(t)(ãi − θ̂i,t )

2dt
∣∣∣Fi,0

]
, (6.1)

where θ̂i,t denotes rebalancer i’s equilibrium stock holdings in (3.8) and Fi,t :=
σ(ãi , S

f
i,u)u∈[0,t] where the f coefficient functions are as in (A.1) in Appendix A for
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i ∈ {1, ..., M}. We seek a value function J = J (ãi , s, q, Y , qi ) such that the process

J (ãi , s, ηs, Ys, qi,s) +
∫ s

0

{
θ̂i,t

(
f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt + αθ̂i,t

)

− κ(t)(ãi − θ̂i,t )
2
}
dt, s ∈ [0, 1],

(6.2)

is a martingale with respect to Fi,t . Because rebalancer i’s objective in (2.5) is linear-
quadratic, the value function J is again linear-quadratic in the state processes. Thus, J
can be written as

J (ãi , s, η, Y , qi ) = J0(s) + Jη(s)η + JY (s)Y + Jqi (s)qi + Jηη(s)η
2

+ JηY (s)ηY + JYY (s)Y 2 + Jqi qi (s)q
2
i + Jqiη(s)qiη + Jqi Y (s)qiY ,

(6.3)

for deterministic functions of time (J0, Jη, JY , Jqi , Jηη, JηY , JYY , Jqi qi , Jqiη, Jqi Y ). These
functions are given by a coupled set of ODEs with zero terminal conditions (we omit the
ODEs for brevity). In (6.3), the dummy variables (η, Y , qi ) are real numbers and s ∈ [0, 1].

To quantify the costs associatedwith rebalancer i’s trading target ãi , the quadraticmapping
RC (Rebalancing Costs) defined by

RC(ãi ) := J (0, 0, η, Y , qi ) − J (ãi , 0, η, Y , qi ), (6.4)

measures the dependence the change in profit (i.e., change in value function) associated with
a non-zero target ãi . The rebalancing cost RC in (6.4) for a target ãi is computed as the
difference between the value function evaluated at ãi and the function evaluated at ãi = 0.
Since the value function J is highest at ãi = 0, the measure RC is positive.

Figure 7 plots the rebalancer’s value function J for different target values ãi for differ-
ent model parameterizations. When the target ãi is close to zero, the rebalancers become
high-frequency liquidity providers. Their value function is positive due expected profit from
liquidity provision and price-pressure speculation. As the target moves away from zero, the
rebalancer starts to have larger stock-holding penalties that eventually drive the rebalancer’s
value function negative. Interestingly, the impact of the stock-price volatility parameter γ on
the rebalancer’s value function can be positive or negative. Liquidity providing rebalancers

Fig. 7 Plots of the rebalancers’ value function J for various values of (γ, σw0 ). The exogenous model
parameters are σã := 1, M := M̄ := 10, α := −0.1, B(0) := −1, κ(t) := 1 for t ∈ [0, 1], and
w0 := B(0)(ã� − ãi )
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are better off with a small γ whereas rebalancers with large rebalancing targets are better off
when γ is large.

7 Conclusion

This paper presents the first analytically tractable model of dynamic learning about parent
trading-demand imbalances with optimized order-splitting. In particular, we provide closed-
form expressions prices and stock holdings in terms of solutions to systems of coupled ODEs
in both the price-friction and Subgame perfect Nash equilibria. Trading in our models reflects
a combination of reaching investor’s own trading targets, liquidity provision so that markets
can clear, and speculation based on predictions of future price pressure.

There are many interesting directions for future research based on our analysis. First,
replacing the zero-dividend stock approach with valuation based on a terminal payoff would
be a significant technical step. Second, the model could be enriched by allowing for investor
heterogeneity in the form of different penalty functions κ(t) and by having multiple tracker
targets (which would weaken the trackers’ informational advantage). Third, it would be
interesting to investigate if other off-equilibrium refinements have larger equilibrium effects.
Fourth, incorporating risk-aversion into the investors’ objectives would be interesting too.
For example, how can Lemma 4.1 be extended if the objectives in (2.5) are changed to
exponential utilities?

Funding The authors have benefited from helpful comments fromDan Bernhardt, John Kuong (Paris Finance
discussant), and participants at the SIAM and INFORMS math finance conferences (2021), the Paris Finance
meeting (2021), and Carnegie Mellon. Jin Hyuk Choi is supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. 2020R1C1C1A01014142 and No.
2021R1A4A1032924). Kasper Larsen has been supported by the National Science Foundation under Grant
No. DMS 1812679 (2018 – 2022). Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation (NSF).The datasets generated during and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Mathematics and Financial Economics (2022) 16:615–658 649

A Formulas

A.1 Price-perception coefficients for the price-friction equilibrium

f0(t) := 4M̄κ(t)(κ(t) − α)

(M + M̄)(α − 2κ(t))
, f1(t) := 2γ B ′(t)(κ(t) − α) + 2ακ(t)

α − 2κ(t)
,

f2(t) := 2γ B ′(t)(κ(t) − α)

α − 2κ(t)
, f3(t) := 2γ B ′(t)(α − κ(t))

(M + M̄)(α − 2κ(t))
,

f̄3(t) := 2γ B ′(t)(α − κ(t))

(M + M̄)(α − 2κ(t))
,

f̄4(t) := 2(α − κ(t))
(
γ (A(t) − M + 1)B ′(t) − 2κ(t)

)

(M + M̄)(α − 2κ(t))
,

f̄5(t) := 2κ(t)(α(M − M̄) + 2M̄κ(t))

(M + M̄)(α − 2κ(t))
.

(A.1)

A.2 Orthogonal representations for the price-friction equilbrium

Let the deterministic functions F1(t) and F2(t) be as in (2.19).

A.2.1 Price-friction equilibrium holdings

The price-friction equilibrium holdings θ̂i,t in (3.8) for rebalancer i ∈ {1, ..., M} has an
orthogonal representation given by

θ̂i,t = −

{
2κ(t)

(
A(t)(M̄ B(t) + M + M̄)

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+MF1(t)F2(t)(M̄ B(t) + 1)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+(M − 1)
(
B(0)2Mσ 2

ã F1(t)(M̄ B(t) + 1) − M̄ B(t)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

))

+M̄(M + M̄)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) )}

{
(M + M̄)(A(t) + M̄ + 1)(α − 2κ(t))

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) } ãi

+

{
2M̄κ(t)

(
B(t)

( − A(t)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+M̄ F1(t)
(
F2(t)

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)
+ (M − 1)B(0)2σ 2

ã

)

−(M̄ + 1)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) )

+F1(t)
(
F2(t)

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)
+ (M − 1)B(0)2σ 2

ã

) )}

{
(M + M̄)(A(t) + M̄ + 1)(α − 2κ(t))

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) } (ã� − ãi )

+
2M̄κ(t)

(
1 − B(0)(M−1)σ2

ã F1(t)(M̄ B(t)+1)

(A(t)+M̄+1)
(
(M−1)B(0)2σ2

ã +σ2
w0

)

)

(M + M̄)(α − 2κ(t))
w0

+ 2M̄κ(t)

(M + M̄)(α − 2κ(t))
w◦
t − 2M̄ F1(t)κ(t)(M̄ B(t) + 1)

(M + M̄)(A(t) + M̄ + 1)(α − 2κ(t))

∫ t

0

B′(s)�(s)

F1(s)
dw◦

s .

(A.2)
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The price-friction equilibrium holdings θ̂ j,t in (3.8) for tracker j ∈ {M + 1, ..., M + M̄}
has an orthogonal representation given by

θ̂ j,t = −

{
2κ(t)

(
M̄ B(t)

(
A(t)

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+MF1(t)F2(t)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+(M − 1)
(
B(0)2Mσ 2

ã F1(t) − (M − 1)B(0)2σ 2
ã − σ 2

w0

) )

+MF1(t)
(
F2(t)

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

)

+(M − 1)B(0)2σ 2
ã

) − (M + M̄)
(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) )}

{
(M + M̄)(A(t) + M̄ + 1)(α − 2κ(t))

(
(M − 1)B(0)2σ 2

ã + σ 2
w0

) } ã�

+
2Mκ(t)

(
B(0)(M−1)σ 2

ã F1(t)(M̄ B(t)+1)

(A(t)+M̄+1)
(
(M−1)B(0)2σ 2

ã +σ 2
w0

) − 1

)

(M + M̄)(α − 2κ(t))
w0

− 2Mκ(t)

(M + M̄)(α − 2κ(t))
w◦
t + 2MF1(t)κ(t)(M̄ B(t) + 1)

(M + M̄)(A(t) + M̄ + 1)(α − 2κ(t))

∫ t

0

B ′(s)�(s)

F1(s)
dw◦

s .

(A.3)

A.2.2 Price-friction equilibrium stock dynamics

For the trackers, we can rewrite the drift in (3.9) in terms of (ã�,w0) and an residual
orthogonal term as

γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

wt + γ (A(t)−M+1)B′(t)−2κ(t)
M+M̄

ã�

= −
B(0)γ (M−1)Mσ2ã F1(t)B′(t)

(M−1)B(0)2σ2ã +σ2w0
+2M̄κ(t)

M+M̄
w0

+
γ B′(t)

(
A(t)+MF1(t)

(
(M−1)B(0)2σ2ã

(M−1)B(0)2σ2ã +σ2w0
+F2(t)

)
−M+1

)
−2κ(t)

M+M̄
ã�

− 2M̄κ(t)
M+M̄

w◦
t − γ MF1(t)B′(t)

M+M̄

∫ t

0

B′(s)�(s)
F1(s)

dw◦
s .

(A.4)

For the rebalancers, we can rewrite the drift in (3.10) in terms of (ã� − ãi , w0, ãi ) and an
residual orthogonal term as

− γ B ′(t)
(
ãi + qi,t

) + γ B′(t)
M+M̄

ηt − 2M̄κ(t)
M+M̄

Yt

=
M̄

(
B(0)γ (M−1)σ2ã F1(t)B′(t)

(M−1)B(0)2σ2ã +σ2w0
−2κ(t)

)

M+M̄
w0

+
γ B′(t)

(
MF1(t)

(
(M−1)B(0)2σ2ã

(M−1)B(0)2σ2ã +σ2w0
+F2(t)

)
−M−M̄

)
+2M̄ B(t)κ(t)

M+M̄
ãi

+
M̄

(
γ F1(t)B′(t)

(
− (M−1)B(0)2σ2ã

(M−1)B(0)2σ2ã +σ2w0
−F2(t)

)
+2B(t)κ(t)

)

M+M̄
(ã� − ãi )

− 2M̄κ(t)
M+M̄

w◦
t + γ M̄ F1(t)B′(t)

M+M̄

∫ t

0

B′(s)�(s)
F1(s)

dw◦
s .

(A.5)
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A.3 Price-perception coefficients for the Nash equilibrium

μ1(t) := 2γ (M + M̄ − 2)B ′(t)(κ(t) − α) + 2κ(t)(α(M + M̄ − 4) + 2κ(t))

α(M + M̄) − 2(M + M̄ − 1)κ(t)
,

μ2(t) := − 2γ (M + M̄ − 2)B ′(t)(α − κ(t))

α(M + M̄) − 2(M + M̄ − 1)κ(t)
,

μ3(t) :=
{

− (
4γ (M + M̄ − 2)B ′(t)(α − κ(t))2

)}

{(
(α(M + M̄) − 2(M + M̄ − 1)κ(t))

(
α((3M − 1)M̄2 + M(3M − 2)M̄

+(M − 2)M(M + 1) + M̄3) − 2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

))}

,

μ̄4(t) :=
{
−

(
2(M+M̄−2)(α−κ(t))

(
γ B ′(t)

(
α

(−2A(t)+(M+M̄−1)(M+M̄)2−2
) − 2κ(t)

(−A(t) + (3M − 2)M̄2 + M(3M − 4)M̄ + (M − 1)2M + M̄3 + M̄ − 1
) ) + 4κ(t)(α − κ(t))

))}

{(
(α(M + M̄) − 2(M + M̄ − 1)κ(t))

(
α((3M − 1)M̄2 + M(3M − 2)M̄

+(M − 2)M(M + 1) + M̄3) − 2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

))}

,

μ̄5(t) :=

{(
2κ(t)

(
α
(
M2(3M̄ − 5) + M3 + M(M̄(3M̄ − 10) + 6)

+(M̄ − 4)(M̄ − 1)M̄
) + 2

(
M2 + 2M(M̄ − 1) + (M̄ − 1)M̄

)
κ(t)

))}

{(
α

(
(3M − 1)M̄2 + M(3M − 2)M̄ + (M − 2)M(M + 1) + M̄3

)

−2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

)}

,

ν0(t) := 1

M + M̄ − 2
+ 1,

ν1(t) := 2α(M + M̄ − 2)κ(t) − 2γ (M + M̄ − 1)B ′(t)(α − κ(t))

α(M + M̄) − 2(M + M̄ − 1)κ(t)
,

ν2(t) := − 2γ (M + M̄ − 1)B ′(t)(α − κ(t))

α(M + M̄) − 2(M + M̄ − 1)κ(t)
,

ν3(t) :=
{

− (M + M̄ − 1)4γ B ′(t)(α − κ(t))2
}

{(
(α(M + M̄) − 2(M + M̄ − 1)κ(t))

(
α
(
(3M − 1)M̄2 + M(3M − 2)M̄

+(M − 2)M(M + 1) + M̄3
) − 2

(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

))}

,

ν̄3(t) :=
2γ (M+M̄−2)B ′(t)(α−κ(t))

α
(
(3M−1)M̄2+M(3M−2)M̄+(M − 2)M(M+1)+M̄3

) − 2
(
(M+M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

,

ν̄4(t) :=
{
−

(
2(M+M̄ − 2)(α−κ(t))

(
γ B ′(t)

(
α
(−A(t)(M+M̄+2)+(M+M̄−1)

(
M2+2MM̄+M+M̄2

)

−M̄ − 2
)+2κ(t)

(
A(t)(M+M̄)+M2(1−3M̄) − M3 − 3M(M̄ − 1)M̄ + M − (M̄ − 2)M̄2

) ) + 2κ(t)

(α(M + M̄ + 2) − 2(M + M̄)κ(t))
))}

{(
(α(M + M̄) − 2(M + M̄ − 1)κ(t))

(
α((3M − 1)M̄2 + M(3M − 2)M̄ + (M − 2)

M(M + 1) + M̄3) − 2
(
(M + M̄ − 2)(M + M̄)2 + M̄

)
κ(t)

))}

,

ν̄5(t) :=
2(M + M̄−1)κ(t)

(
α

(
M2 + 2M(M̄ − 1) + (M̄ − 4)M̄

) + 2M̄κ(t)
)

α
(
(3M − 1)M̄2 + M(3M − 2)M̄ + (M − 2)M(M + 1)+M̄3

) −2
(
(M+M̄−2)(M + M̄)2+M̄

)
κ(t)

.

(A.6)
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B Kalman–Bucy filtering

The proof of Lemma 2.1 follows from the well-knownKalman-Bucy result in filtering theory
and can be found in, e.g., Lipster and Shiryaev [30, Chapter 8]. We note that the solution to
the Riccati equation (B.3) below is given by (2.15).

Theorem B.1 (Kalman-Bucy) Let B : [0, 1] → R be a continuously differentiable function
and consider the Gaussian observation process Yi,t := wt − B(t)(ã� − ãi ) from (2.9) with
dynamics

dYi,t = dwt − B ′(t)
(
ã� − ãi

)
dt, Yi,0 = w0 − B(0)(ã� − ãi ) (B.1)

and corresponding innovations process wi,t in (2.11). Then, (2.14) holds and the filtering
property in (2.11) holds if qi,t has dynamics given by

dqi,t = −B ′(t)�(t)dYi,t − (
B ′(t)

)2
�(t)qi,t dt

= −B ′(t)�(t)dwi,t ,

qi,0 = E[ã� − ãi |σ(Yi,0)]
= E[ã� − ãi |σ

(
w0 − B(0)(ã� − ãi )

)] (B.2)

= − B(0)V[ã� − ãi ]
V[w0] + B(0)2V[ã� − ãi ]

(
w0 − B(0)(ã� − ãi )

)

= − (M − 1)B(0)σ 2
ã

σ 2
w0

+ (M − 1)B(0)2σ 2
ã

(
w0 − B(0)(ã� − ãi )

)
,

and the remaining variance is given by

�′(t) = −(
B ′(t)

)2
�(t)2, (B.3)

with initial value

�(0) = V[ã� − ãi − qi,0]
= E[(ã� − ãi − qi,0)

2]

= E

[(
ã� − ãi + (M−1)B(0)σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã

(
w0 − B(0)(ã� − ãi )

))2
]

=
(

(M−1)B(0)σ 2
ã

σ 2
w0

+(M−1)B(0)2σ 2
ã

)2

σ 2
w0

+
(
1 − B(0)

(M−1)B(0)σ 2
ã

σ 2
w0

+(M−1)B(0)2σ 2
ã

)2

(M − 1)σ 2
ã

= (M − 1)σ 2
ã σ 2

w0

(M − 1)B(0)2σ 2
ã + σ 2

w0

.

(B.4)

C Remaining proofs

Proof of Lemma 2.2 To see that (2.16) holds, we use the Kalman-Bucy filter (B.2) to write

qi,t = qi,0 −
∫ t

0
B ′(u)�(u)dwi,u, t ∈ [0, 1]. (C.1)
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Then,

M∑

i=1

qi,0 = − (M − 1)B(0)σ 2
ã

σ 2
w0

+ (M − 1)B(0)2σ 2
ã

(
Mw0 − B(0)(Mã� − ã�)

)

= − (M − 1)B(0)σ 2
ã

σ 2
w0

+ (M − 1)B(0)2σ 2
ã

(
MY0 + B(0)ã�

)
,

M∑

i=1

B ′(t)�(t)dwi,t = B ′(t)�(t)
(
Mdwt + B ′(t)

{
ã� +

M∑

i=1

qi,t − Mã�

}
dt

)

= B ′(t)�(t)
(
MdYt + B ′(t)

{
ã� +

M∑

i=1

qi,t
}
dt

)
.

(C.2)

To explicitly solve for
∑M

i=1 qi,t , we note

de
∫ t
0 (B′(u))2�(u)du

M∑

i=1

qi,t

= e
∫ t
0 (B′(u))2�(u)du

{
(B ′(t))2�(t)

M∑

i=1

qi,t dt −
M∑

i=1

B ′(t)�(t)dwi,t

}

= −e
∫ t
0 (B′(u))2�(u)du B ′(t)�(t)

(
MdYt + B ′(t)ã�dt

)
.

(C.3)

We get the solution
∑M

i=1 qi,t by integrating

M∑

i=1

qi,t = e− ∫ t
0 (B′(u))2�(u)du

M∑

i=1

qi,0

−
∫ t

0
e− ∫ t

s (B′(u))2�(u)du B ′(s)�(s)
(
MdYs + B ′(s)ã�ds

)
.

(C.4)

Thus, the decomposition (2.16) holds with

A(t) := −e− ∫ t
0 (B′(u))2�(u)du (M−1)B(0)2σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã
−

∫ t

0
e− ∫ t

s (B′(u))2�(u)du(B ′(s)
)2

�(s)ds,

ηt := −e− ∫ t
0 (B′(u))2�(u)du M(M−1)B(0)σ 2

ã
σ 2

w0
+(M−1)B(0)2σ 2

ã
Y0−M

∫ t

0
e− ∫ t

s (B′(u))2�(u)du B ′(s)�(s)dYs .

(C.5)

For the second part, we write the solution to the Ornstein-Uhlenbeck SDE for dηt in (2.17)
as

ηt = F1(t)

(
η0 + MF2(t)ã� − M

∫ t

0

B′(s)�(s)
F1(s)

dw◦
s

)
, (C.6)

where the deterministic functions F1(t) and F2(t) are given by the ODEs in (2.19). Similarly,
the the Ornstein-Uhlenbeck SDE for dqi,t in (B.2) has solution

qi,t = F1(t)

(
qi,0 + F2(t)(ã� − ãi ) −

∫ t

0

B′(s)�(s)
F1(s)

dw◦
s

)
. (C.7)

By comparing (C.6) and (C.7), we get (2.18). ♦
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Proof of Lemma 3.1 The inclusion “⊇” in (3.2) follows from (2.4), (2.10), and (2.14). To
see the inclusion “⊆”, we use Yt in (2.8), ηt in (C.5), and qi,t in (B.2) to find deterministic
functions h0, h, and H such that

dS f
i,t − αθi,t dt =

{
f0(t)Yt + f1(t)ãi + f2(t)qi,t + f3(t)ηt

}
dt + γ dwi,t

=
{
h0(t)Y0 + h(t)ãi +

∫ t

0
H(u, t)dwi,u

}
dt + γ dwi,t .

(C.8)

We define

dZi,t := dS f
i,t −

{
αθi,t + h0(t)Y0 + h(t)ãi

}
dt, Zi,0 := wi,0, (C.9)

The inclusion “⊆" in (3.2) will follow from the inclusion

σ(wi,u)u∈[0,t] ⊆ σ(Zi,u)u∈[0,t]. (C.10)

To see (C.10), let t0 ∈ [0, t] be arbitrary and let f (s), s ∈ [0, t], solve the following Volterra
integral equation of the second kind (such f exists by Lemma 4.3.3 in Davis [16] because
γ �= 0):

∫ t

r
f (s)H(r , s)ds + f (r)γ = 1[0,t0](r), r ∈ [0, t]. (C.11)

This gives us
∫ t

0
f (s)dZi,s =

∫ t

0
f (s)

∫ s

0
H(r , s)dwi,r ds +

∫ t

0
f (s)γ dwi,s

=
∫ t

0

∫ t

r
f (s)H(r , s)dsdwi,r +

∫ t

0
f (s)γ dwi,s

=
∫ t

0

( ∫ t

r
f (s)H(r , s)ds + f (r)σ

)
dwi,r

=
∫ t

0
1[0,t0](r)dwi,r

= wi,t0 − wi,0.

(C.12)

♦
Proof of Lemma 3.2 Consider a rebalancer i ∈ {1, ..., M}. For arbitrary holdings θi,t , the
expectation in the i’th objective in (2.5) is

E

[ ∫ 1

0
θi,t dS

f
i,t −

∫ 1

0
κ(t)(ãi − θi,t )

2dt
]

= E

[ ∫ 1

0
θi,t

{
f0(t)Yt+ f1(t)ãi + f2(t)qi,t+ f3(t)ηt+αθi,t

}
dt−

∫ 1

0
κ(t)(ãi − θi,t )

2dt
]
.

(C.13)

The equality in (C.13) follows from the square integrability condition (2.6),which ensures that
the stochastic integral

∫ s
0 θi,t dwi,t is a martingale with zero expectation. We can maximize

the integrand in (C.13) pointwise because the second-order condition α < κ(t) holds. This
gives the first formula in (3.4).

The second formula for a tracker j in (3.4) is proved similarly. ♦
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Proof of Lemma 3.4 The local Lipschitz property of the ODEs (3.7) ensures that there exists
a maximal interval of existence [0, τ ) with τ ∈ (0,∞] by the Picard-Lindelöf theorem (see,
e.g., Theorem II.1.1 in Hartman [23]). We assume that τ < 1 and construct a contradiction.
To this end, we set

K :=
∫ 1

0
κ(s)ds < ∞. (C.14)

First, the Riccati ODE for �(t) has the explicit solution in (2.15), which cannot explode
as t ↑ τ (even if B(t) should explode as t ↑ τ ).

Second, the initial value A(0) in (3.7) ensures A(0) ≥ −1 and to see that implies A(t) ≥
−1 for all t ∈ [0, τ ), we note

∂

∂t

(
A(t) + 1

) = −(
B ′(t)

)2
�(t)

(
A(t) + 1

)
, (C.15)

which implies

A(t) + 1 = (
A(0) + 1

)
e− ∫ t

0 (B′(s))2�(s)ds

≥ 0.
(C.16)

This shows that A(t) cannot explode as t ↑ τ (even if B(t) should explode as t ↑ τ ).
Third, we show B(t) is uniformly bounded for t ∈ [0, τ ); hence, also B(t) cannot explode

as t ↑ τ . This then gives the desired contradiction because of Theorem II.3.1 in Hartman
[23]. The affine ODE for B(t) in (3.7) has the explicit solution

B(t) = e
∫ t
0

2M̄κ(s)
γ (A(s)+1+M̄)

ds
(
B(0) +

∫ t

0

2κ(s)

γ (A(s) + 1 + M̄)
e
− ∫ s

0
2M̄κ(u)

γ (A(u)+1+M̄)
du
ds

)
. (C.17)

We can use K in (C.14) to produce the upper bound
∫ t

0

2M̄κ(s)

γ
(
A(s) + 1 + M̄

)ds ≤
∫ t

0

2M̄κ(s)

γ M̄
ds ≤ 2K

γ
, t ∈ [0, τ ). (C.18)

In turn, the bound (C.18) and (C.17) imply

|B(t)| ≤ e
2K
γ

(
|B(0)| +

∫ t

0

2κ(s)

γ (A(s) + 1 + M̄)
ds

)

≤ e
2K
γ

(
|B(0)| + 2K

γ M̄

)
,

(C.19)

for t ∈ [0, τ ). Because the upper bound in (C.19) is uniform over t ∈ [0, τ ), B(t) cannot
explode as t ↑ τ . ♦
Proof of Theorem 3.5 To see that the holdings in (3.8) satisfy the square integrability condition
(2.6), we insert B ′(t) from (3.7) to get

θ̂i,t = − 2κ(t)(A(t)+M̄(1−B(t)))
(A(t)+M̄+1)(α−2κ(t))

ãi + 2κ(t)(M̄ B(t)+1)
(A(t)+M̄+1)(α−2κ(t))

qi,t

− 2κ(t)(M̄ B(t)+1)
(M+M̄)(A(t)+M̄+1)(α−2κ(t))

ηt + 2M̄κ(t)
(M+M̄)(α−2κ(t))

Yt ,

θ̂ j,t = − 2κ(t)(M̄ B(t)+1)
(M+M̄)(A(t)+M̄+1)(α−2κ(t))

ηt − 2Mκ(t)
(M+M̄)(α−2κ(t))

wt

+ 2κ(t)(M̄ B(t)(−A(t)+M−1)+M+M̄)

(M+M̄)(A(t)+M̄+1)(α−2κ(t))
ã�.

(C.20)
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Because κ : [0, 1] → (0,∞) is continuous, κ(t) is uniformly bounded. This gives us that
B ′(t) in (3.7) is also uniformly bounded. As a consequence, the variancesV[qi,t ],V[ηt ], and
V[Yt ] are also uniformly bounded functions of t ∈ [0, 1]. Therefore, the holding processes
in (C.20) satisfy (2.6) if the coefficient functions for (ãi , qi,t , ηt , Yt , wt , ã�) are square
integrable over t ∈ [0, 1]. For example, the coefficient function for ãi in θ̂i,t is bounded
because

| 2κ(t)(A(t)+M̄(1−B(t)))
(A(t)+M̄+1)(α−2κ(t))

| ≤ 2|A(t)+M̄(1−B(t))|
M̄

, (C.21)

which is continuous for t ∈ [0, 1]. Similarly, the remaining coefficients functions can be seen
to be bounded too. The optimality in Definition 3.3(i) then follows from Lemma 3.2 and the
fact that the holdings (3.8) are those in (3.4) with the f functions in (A.1) inserted.

Definition 3.3(ii)+(iii) are ensured by the specific f functions in (A.1).
♦

Proof of Lemma 4.1 Lemma A.1 in Choi, Larsen, and Seppi [13] and the continuity of Zt ’s
paths imply that Zt is adapted to both Fi,t and F j,t . The rest of this proof is similar to the
proof of Lemma 3.2 given above and is therefore omitted. ♦

Proof of Lemma 4.2 The rebalancers’ second-order condition is
(
α − κ(t)

)(
M + M̄ + 2ν0(t) − 1

)

M + M̄ − 1
< 0, (C.22)

whereas the trackers’ second-order condition is α < κ(t). Inequality (C.22) holds because
ν0(t) ≥ 0 and α < κ(t). The rest of this proof is similar to the proof of Lemma 3.2 given
above and is therefore omitted. ♦

Proof of Lemma 4.4 The proof only requires minor changes to the proof of Lemma 3.4. As
before, we let [0, τ ) be the maximal interval of existence with τ ∈ (0,∞] and assume that
τ < 1 to construct a contradiction. As in the proof of Lemma 3.4, �(t) = 1

1
�(0) +

∫ t
0 (B′(t))2dt

and A(t) ≥ −1. Next, to show B(t) is bounded on [0, τ ), we rewrite the ODE for B(t) in
(4.19) as

B ′(t) = 2κ(t)
(
B(t)(c(t) + M̄) + 1

)

γ
(
A(t) + 1 + M̄ + c(t)

) . (C.23)

where the deterministic function c(t) is defined as

c(t) := 2M̄
(
κ(t) − α

)

(M + M̄ − 2)
(
2(M + M̄)κ(t) − α(M + M̄ + 1)

) , t ∈ [0, 1]. (C.24)

Because α ≤ 0 and κ(t) > 0, we have c(t) > 0. Furthermore, c(t) is bounded because

c(t) ≤ 2M̄(κ(t) − α)

(M + M̄ − 2)(M + M̄ + 1)(κ(t) − α)

= 2M̄

(M + M̄ − 2)(M + M̄ + 1)

=: c0,

(C.25)
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where the inequality follows from 2(M + M̄) > (M + M̄ + 1) and the positivity of κ(t).
Because A(t) + 1 ≥ 0 and c(t) > 0 we get the two estimates

∫ t

0

2κ(s)(c(s) + M̄)

γ (A(s) + 1 + M̄ + c(s))
ds ≤ 2(c0 + M̄)

γ M̄
K ,

∫ t

0

2κ(s)

γ (A(s) + 1 + M̄ + c(s))
ds ≤ 2

γ M̄
K ,

(C.26)

where K is as in (C.14). Similar to (C.17), the explicit solution of (C.23) is

B(t) = e
∫ t
0

2κ(s)(c(s)+M̄)

γ (A(s)+1+M̄+c(s))
ds
B(0) +

∫ t

0
e
∫ t
s

2κ(u)(c(u)+M̄)

γ (A(u)+1+M̄+c(u))
du 2κ(s)

γ (A(s)+1+M̄+c(s))
ds.

(C.27)

Combing this expression for B(t) with the bounds (C.26) produces

B(t) ≤ e
2(c0+M̄)K

γ M̄ |B(0)| +
∫ t

0
e
2(c0+M̄)K

γ M̄ 2κ(s)
γ (A(s)+1+M̄+c(s))

ds

≤ e
2(c0+M̄)K

γ M̄ (|B(0)| + 2K

γ M̄
).

(C.28)

♦
Proof of Theorem 4.5 From (C.23) we see that

|B ′(t)| = 2κ(t)
(|B(t)|(c(t) + M̄) + 1

)

γ
(
A(t) + 1 + M̄ + c(t)

)

≤ 2κ(t)
(|B(t)|(c0 + M̄) + 1

)

γ M̄
,

(C.29)

where c0 is defined in (C.25). Because κ(t) is continuous on t ∈ [0, 1], κ(t) is bounded and
from (C.19) we know that B(t) is bounded too. Therefore, from (C.29), we see that B ′(t)
is also uniformly bounded. Consequently, the variances V[qi,t ],V[ηt ], and V[Yt ] are also
uniformly bounded functions of t ∈ [0, 1].

As before, the coefficient functions for (ãi , qi,t , ηt , Yt , wt , ã�) in (4.20) are all uniformly
bounded for t ∈ [0, 1]. Therefore, the square-integrability condition (2.6) holds.

The requirements in Definition 4.3 follow from the definition of the functions in (A.6). ♦
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