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Abstract. Takens, Ruelle, Eckmann, Sano and Sawada launched an inves-
tigation of images of attractors of dynamical systems. Let A be a compact
invariant set for a map f on Rn and let φ : Rn → Rm where n > m be a “typ-
ical” smooth map. When can we say that A and φ(A) are similar, based only
on knowledge of the images in Rm of trajectories in A? For example, under
what conditions on φ(A) (and the induced dynamics thereon) are A and φ(A)
homeomorphic? Are their Lyapunov exponents the same? Or, more precisely,
which of their Lyapunov exponents are the same? This paper addresses these
questions with respect to both the general class of smooth mappings φ and
the subclass of delay coordinate mappings.

In answering these questions, a fundamental problem arises about an ar-
bitrary compact set A in Rn. For x ∈ A, what is the smallest integer d such
that there is a C1 manifold of dimension d that contains all points of A that
lie in some neighborhood of x? We define a tangent space TxA in a natural
way and show that the answer is d = dim(TxA). As a consequence we obtain
a Platonic version of the Whitney embedding theorem.

1. Introduction

In The Republic, Plato writes of people who are chained in a cave for all of
their lives, unable to observe life directly. Behind these people a fire burns and
real objects cast shadows on the cave wall for them to see. Forced to base their
knowledge of reality on inferences made from the shadows, they equate the shadows
with reality. While philosophers may vigorously debate epistemological theory, it
is certainly true that experimentalists are limited to observations that may not
encode the full complexity of their systems.

As Ruelle and Takens have observed, it is very difficult to directly observe all
aspects of the evolution of a high dimensional dynamical system such as a turbulent
flow. Out of necessity, it is frequently the case that experimentalists study such sys-
tems by measuring a relatively low number of different quantities. We assume that
all measurements have infinite precision in what follows. A central experimental
question is the following.

Question 1.1. Is the measured data sufficient for us to understand the evolution
of the dynamical system? In particular, does the measured data contain enough
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information to reconstruct dynamical objects of interest and recover coordinate
independent dynamical properties such as attractor dimension and Lyapunov ex-
ponents? How many exponents can be determined?

Let f : Rn → Rn be a map and suppose A ⊂ Rn is a compact invariant set. Let
φ : Rn → Rm be a smooth map. We always assume m > 0. We think of φ as a
measurement function measuring m physical quantities, and for each point x in the
state space Rn we say that φ(x) is the measurement associated with x. Motivated
by an experimental point of view, we say that observations are deterministic if
there exists an induced map f̄ on φ(A) such that the following diagram commutes:

A
f−−−−→ A

φ

y yφ

φ(A)
f̄−−−−→ φ(A)

The dynamics generated by f̄ may be thought of as the shadows that traverse
Plato’s hypothetical cave wall. The global goal is to infer as much as possible about
the dynamical system f from knowledge of the induced dynamics. In the absence of
induced dynamics, experimenters increase m by either making more measurements
or using delay coordinate maps. Assuming f̄ exists, there is a considerable literature
on how to compute the Lyapunov exponents associated with the induced system.
Do these values correspond to those of the full system? What do we need to check
to see this? We would like to state theorems of the following type.

Prototypical Theorem. For a typical measurement map φ, if the induced map f̄
exists and has certain properties, then the measurement map φ preserves dynamical
objects of interest and dynamical invariants of the full system may be computed
from the induced dynamics.

Under what conditions do our observations allow us to make predictions? James
Clerk Maxwell wrote of the fundamental importance of continuous dependence on
initial data [2, 9]:

“It is a metaphysical doctrine that from the same antecedents fol-
low the same consequents. No one can gainsay this. But it is not
of much use in a world like this, in which the same antecedents
never again concur, and nothing ever happens twice.... The physi-
cal axiom which has a somewhat similar aspect is ‘That from like
antecedents follow like consequents’.”

We ask what we can conclude if observations are deterministic and if the induced
map f̄ is continuous. Using a translation invariant concept of “almost every” on
infinite dimensional vector spaces described in Section 2, we obtain the main C0

conclusion.

Notation 1.2. For a map ψ we denote the restriction of ψ to a subset S of the
domain of ψ by ψ[S]. Notice that this notation is not standard.

Let Fix(f̄) and Per2(f̄) denote the collection of fixed points and period two points,
respectively, of f̄ .

C0 Theorem. Let f : Rn → Rn be a map and let A be a compact invariant set.
For almost every map φ ∈ C1(Rn,Rm), there is an induced map f̄ satisfying
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(1) f̄ is continuous and invertible, and
(2) Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.

(1) The measurement map φ is one to one on A.
(2) The sets Fix(f [A]) and Per2(f [A]) are countable.
(3) The map f [A] is continuous and invertible.

Remark 1.3. If one can infer a property of A from a corresponding property of
φ(A), we say that the property is observable. The boundedness of A is observable
in the sense that if A is unbounded, then φ(A) is unbounded for almost every
φ ∈ C1(Rn,Rm). This applies to each of the embedding theorems in this paper.

Remark 1.4. Our goal is to obtain results with few or preferably no assumptions
on f and A. Hypotheses should instead be placed on the observed objects, φ(A)
and f̄ . This point of view motivates the definition of a Platonic result.

Definition 1.5. A result is said to be Platonic if it contains no hypotheses on the
dynamical system f aside from the assumption of a finite-dimensional Euclidean
phase space.

Does a typical measurement function preserve differential structure? If f is a
diffeomorphism, A is a smooth submanifold of Rn and dim(A) is known a priori, one
may appeal to the Whitney embedding theorem [6]. This theorem states that if A is
a compact Cr k-dimensional manifold, where r ≥ 1, then there is a Cr embedding
of A into Rm where m ≥ 2k + 1. This situation is generic in the sense that the set
of embeddings of A is open and dense in Cr(A,Rm). However, the experimentalist
lacking a priori knowledge of the structure of A cannot rely on embedding theorems
of Whitney type.

In Section 3 we define a notion of tangent space, denoted TxA, suitable for
a general compact subset A of Rn and we prove a manifold extension theorem.
This result allows us to prove a Platonic version of the Whitney embedding the-
orem and to formulate a notion of diffeomorphism on A equivalent to the notion
of injective immersion on A. We formulate our C1 embedding theorems using this
notion of diffeomorphism. Our Platonic C1 theorem states that for almost every
φ ∈ C1(Rn,Rm), the existence of an invertible quasidifferentiable (see Section 6)
induced map f̄ on φ(A) satisfying mild assumptions implies that φ is a diffeomor-
phism on A.

Platonic C1 Theorem. Suppose f : Rn → Rn is a map. For almost every
φ ∈ C1(Rn,Rm), if there exists an invertible quasidifferentiable (see Section 6)
induced map f̄ on φ(A) satisfying

(1) Fix(f̄) and Per2(f̄) are countable,
(2) dimTy(φ(A)) < m ∀y ∈ φ(A), and
(3) Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),

then the measurement mapping φ is a diffeomorphism on A.

It is difficult for a scientist to measure a large number of independent quanti-
ties simultaneously. For this reason one introduces the class of delay coordinate
mappings. This mapping class was introduced into the literature by Takens [23].
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Definition 1.6. Let g ∈ C1(Rn,R). The delay coordinate map φ(f, g) : Rn →
Rm is given by

φ(f, g)(x) = (g(x), g(f(x)), . . . , g(fm−1(x)))T

Analogs of several of our embedding results hold for the class of delay coordinate
mappings. Since the delay coordinate mappings form a subspace of C1(Rn,Rm),
it should be stressed that the delay coordinate results do not follow from the cor-
responding results about almost every φ ∈ C1(Rn,Rm). The following result ad-
dresses the observation of differentiable dynamics.

Delay Coordinate Map Theorem. Let f be a diffeomorphism on Rn and let A
be a compact invariant set. For almost every g ∈ C1(Rn,R), if there is a quasidif-
ferentiable induced map f̄ satisfying

(1)
⋃2m

i=1 Peri(f̄) is countable and
(2) for each p ∈ {1, . . . ,m} and y ∈ Perp(f̄) we have

Df̄p(y)[Tyφ(f, g)(A)] 6= γ · I for every γ ∈ R,

then the delay map φ(f, g) is a diffeomorphism on A.

Assume that f and f̄ are quasidifferentiable and invertible on A and φ(A), re-
spectively, with invertible quasiderivatives at each point x ∈ A and y ∈ φ(A).
Suppose that φ is a diffeomorphism on A. We say that a Lyapunov exponent
λ(y, v) of f̄ at y ∈ φ(A) is true if it does not depend on the choice of quasideriva-
tive Df̄ and if it is also a Lyapunov exponent of f at φ−1(y) ∈ A. The works of
Eckmann, Ruelle, Sano and Sawada provide heuristic computational procedures for
obtaining m Lyapunov exponents for a trajectory (yk) of f̄ . They use the subset
of measurement mappings generated by so-called delay coordinate mappings, the
mapping class considered in the famous, fundamental paper of Takens [23]. In par-
ticular, the Eckmann and Ruelle algorithm (ERA) [3] uses a linear fitting of the
tangent map and has proven to be computationally efficient in giving the complete
Lyapunov spectrum of many dynamical systems. Mera and Morán [14] find con-
ditions ensuring the convergence of this algorithm for a smooth dynamical system
on a C1+α submanifold supporting an ergodic invariant Borel probability measure.
Our exponent characterization theorem establishes a rigorous connection between
the observed Lyapunov exponents and the Lyapunov exponents of f [A]. Under our
assumptions, an observed Lyapunov exponent λ(y, v) is a true Lyapunov exponent
if and only if v ∈ Tyφ(A).

Suppose A is a manifold of dimension d. Implementation of the full Eckmann
and Ruelle algorithm yields m observed Lyapunov exponents, d of which are true.
The remaining m−d exponents are spurious, artifacts of the embedding process. In
order to identify the d true exponents, one must either devise a method to identify
the spurious exponents a fortiori or modify ERA to completely avoid the compu-
tation of spurious exponents. Several authors propose a modified ERA in which
the tangent maps are computed only on the tangent spaces and not on the ambient
space Rm. Mera and Morán [15] discuss the convergence of the modified ERA.
This technique eliminates the computation of spurious exponents but requires that
tangent spaces be computed along orbits. We propose a new technique based on
the exponent characterization theorem that allows for the a fortiori determination
of the spurious exponents without requiring the computation of tangent spaces
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along orbits. We describe this algorithm in Section 7 following the statement of the
exponent characterization theorem.

1.1. The case of linear f and φ. We illustrate our ansatz with the case where
f and φ are linear.

Proposition 1.7. Let f be linear on Rn and let A be an invariant subspace on
which f is an isomorphism. If the restriction of f to A is not a scalar multiple
of the identity, then for almost every φ ∈ Lin(Rn,Rm) in the sense of Lebesgue
measure, there is an induced map on φ(A) if and only if φ is an isomorphism on
A.

Key issues are raised by this proposition. Notice that if there exists c ∈ R for
which f(x) = cx for all x ∈ A, then y 7→ cy is the induced map on φ(A) even
if φ is not one to one on A. Since this is a theory of observation, when possible
the assumptions should be verifiable from observation. The following alternative
version of the proposition transfers the assumption onto the induced dynamics in
a manner that will be followed throughout this paper.

Proposition 1.8. Let f be linear on Rn and let A be an invariant subspace on
which f is an isomorphism. For almost every φ ∈ Lin(Rn,Rm), there is an induced
map on φ(A) and this induced map is not identically a scalar multiple of the identity
if and only if φ is an isomorphism on A and the restriction of f to A is not a scalar
multiple of the identity.

Remark 1.9. The hypothesis that f is an isomorphism on A is observable in the
sense mentioned earlier. The key point is that if f [A] is not one-to-one, then for
almost every φ ∈ Lin(Rn,Rm) there does not exist an injective induced map f̄ on
φ(A).

1.2. What does “typical” mean? The conclusions of the linear propositions
hold for almost every linear φ with respect to Lebesgue measure. In the general
situation we will consider the space of C1 measurement mappings. In order to
prove versions of our prototypical theorem, we must first clarify what we mean
by a “typical” measurement mapping φ. The notion of typicality may be cast in
topological terms. In this setting, “typical” would be used to refer to an open and
dense subset or a residual subset of mappings. For example, consider the topological
Kupka-Smale theorem.

Definition 1.10. Let M be a smooth, compact manifold. A diffeomorphism f ∈
Diffr(M) is said to be Kupka-Smale if

(1) The periodic points of f are hyperbolic.
(2) If p and q are periodic points of f , then W s(p) is transverse to Wu(q).

Theorem 1.11 (Kupka-Smale [17]). The set of Kupka-Smale diffeomorphisms is
residual in Diffr(M).

The topological notion of typicality is not the appropriate conceptualization for
the experimentalist interested in a probabilistic result on the likelihood of a given
property in a function space. Any Cantor set of positive measure illustrates the
difference between the topological and measure theoretic notions of a small set. The
discord between topological typicality and probabilistic typicality is also evident in
the following dynamical examples.
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Example 1.12. Arnold [1] studied the family of circle diffeomorphisms

fω,ε(x) = x+ ω + ε sin(x) (mod 2π),

where 0 ≤ ω ≤ 2π and 0 ≤ ε < 1 are parameters. For each ε we define the set

Sε = {ω ∈ [0, 2π] : fω,ε has a stable periodic orbit}.

For 0 < ε < 1, the set Sε is a countable union of disjoint open intervals (one for
each rational rotation number) and is an open dense subset of [0, 2π]. However, the
Lebesgue measure of Sε converges to 0 as ε→ 0.

There are even more striking examples where the Baire categorical and measure
theoretic notions of typicality yield diametrically opposite conclusions about the
size of a set.

Example 1.13. Misiurewicz [16] proved that the mapping z 7→ ez on the complex
plane is topologically transitive, implying that a residual set of initial points yield
dense trajectories. On the other hand, Lyubich [13] and Rees [18] proved that
Lebesgue almost every initial point has a trajectory whose limit set is a subset of
the real axis.

Finally, we consider Lyapunov exponents. This example is particularly relevant
because the work of Eckmann, Ruelle, Sano, and Sawada on the computation of
these exponents motivated this paper.

Example 1.14 (Lyapunov Exponents). Let f : M →M be a C1 diffeomorphism on
a compact finite-dimensional Riemannian manifold M . For (x, v) ∈ TM , ‖v‖ 6= 0,
the number

lim
n→±∞

1
n

log ‖Dfn(x)v‖

should the limit exist is called the Lyapunov exponent of f at (x, v), denoted λ(x, v).
We say that x ∈M is a regular point for f if there are Lyapunov exponents

λ1(x) > · · · > λl(x)

and a splitting

TxM =
l⊕

i=1

Ei(x)

of the tangent space to M at x such that

lim
n→±∞

1
n

log ‖Dfn(x)u‖ = λj(x) (u ∈ Ej(x) \ {0} and 1 ≤ j ≤ l).

While the periodic points of f are always regular points, frequently the set of
regular points is a topologically small subset of M . Quite often this set is Baire
first category and it may even be finite [24]. From a measure theoretic point of
view the situation is completely different.

Theorem 1.15 (Oseledec Multiplicative Ergodic Theorem [24, 11]). The set of
regular points for f has full measure with respect to any f-invariant Borel probability
measure on M .

The Oseledec theorem holds in the more general context of measurable cocycles
over invertible measure-preserving transformations of a Lebesgue space (X,µ) [11].
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Let f : X → X be an invertible measure preserving transformation and let L :
X → GL(n,R) be a measurable cocycle over X. If

log+ ‖L±1(x)‖ ∈ L1(X,µ)

then almost every x ∈ X is a regular point for (f, L).
The following example illustrates that Lyapunov exponents may not exist for a

residual set of points. Let p > 1 and q > 1 satisfy 1
p + 1

q = 1 and p 6= q. Consider
the Markov map f : [0, 1] → [0, 1] defined by

f(x) =

{
px, if 0 6 x < 1

p ;
qx− q

p , if 1
p 6 x 6 1.

This transformation represents the full shift on two symbols with probabilities 1/p
and 1/q. Lebesgue measure is invariant under f and ergodic, thus the Lyapunov
exponent at Lebesgue almost every x ∈ [0, 1] exists and is equal to

log(p)
p

+
log(q)
q

by virtue of the Birkhoff ergodic theorem. On the other hand, we claim that no
Lyapunov exponent exists for a residual set of points. For n ∈ N, set

Vp,n(x) =
1
n

(|{0 6 i 6 n− 1 : f i(x) ∈ [0, 1/p)}|).

Fix α > 1/p and β < 1/p. Define for each N ∈ N the sets CN = {x : ∃n > N
for which Vp,n(x) > α} and DN = {x : ∃n > N for which Vp,n(x) 6 β}. The set
CN contains an open interval to the right of each preimage of 1/p, and thus CN

contains an open and dense subset of [0, 1]. Similarly, DN contains an open interval
to the left of each preimage of 1/p, and thus DN also contains an open and dense
subset of [0, 1]. No Lyapunov exponent exists for points in the residual set

∞⋂
N=1

CN ∩DN

because Vp,n(x) does not converge for such points.

Motivated by the probabilistic interpretation of typicality, we will use the notion
of prevalence developed in [7, 8]. See the references given in [8] for closely related
concepts. The notion of prevalence generalizes the translation invariant concept of
Lebesgue full measure to infinite-dimensional Banach spaces.

1.3. Overview of this paper. Section 2 develops the relevant prevalence theory
and demonstrates that cardinality and boundedness are observable properties. In
§3 we define a notion of tangent space suitable for general compact subsets of Rn

and we prove the manifold extension theorem. The manifold extension theorem is
used in §4 to derive a Platonic version of the Whitney embedding theorem. We
present our embedding theorems in §5 and §6 and our results on delay coordinate
mappings and Lyapunov exponents in §7.
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1.4. The Transference Method. Schematically our embedding theorems are de-
veloped in the following way. Let f : Rn → Rn be a dynamical system and let A
be a compact invariant set. We want to require no regularity assumptions about
f nor do we wish to assume that f is invertible. For a map g, a subset D of the
domain of g and any property L, write (g, L;D) to indicate that the restriction of g
to D has property L. Let S denote a collection of properties of a dynamical system.
Let Q denote a collection of properties of maps in the measurement function space
C1(Rn,Rm). For example, Q might consist of the assertion that φ ∈ C1(Rn,Rm) is
a homeomorphism on A. We are interested in the ability of the observer to make
inferences; that is, in results of the form

(1.1) (f̄ ,L;φ(A)) ⇒ (φ,Q) for almost every φ,

where L is a collection of properties of f̄ . In other words, the existence of an
induced map f̄ satisfying properties L implies that φ satisfies properties Q. We
first prove

(f, S;A) ⇒ ((f̄ ,L1;φ(A)) ⇔ (φ,Q)) for a.e. φ.

The Platonic version of the theorem is obtained by replacing each assumption on
f with one on f̄ . For P ∈ S, we replace the assumption

(f, P ;A)

with one on f̄ , giving

(f̄ ,L1 ∪ S;φ(A)) ⇔ ((φ,Q) and (f, S;A)) for a.e. φ.

In particular, (1.1) holds with L = L1 ∪ S. In essence the Platonic version has
been obtained by transferring the hypotheses (f, P ;A) for P ∈ S onto the induced
dynamics. Prevalence statements allow for these transfers. Properties for which
this program may be implemented are said to be observable.

2. Prevalence (Measure-Theoretic Transversality)

Let V be a complete metric linear space.

Definition 2.1. A Borel measure µ on V is said to be transverse to a Borel set
S ⊂ V if the following holds:

(1) There exists a compact set U ⊂ V for which 0 < µ(U) <∞, and
(2) for every v ∈ V we have µ(S + v) = 0.

For example, µ might be Lebesgue measure supported on a finite-dimensional sub-
space of V .

Definition 2.2. A Borel set S ⊂ V is called shy if there exists a measure transverse
to S. More generally, a subset of V is called shy if it is contained in a shy Borel
set. The complement of a shy set is called a prevalent set.

A subset of Rn is shy if and only if it has Lebesgue measure zero. For a map
φ contained in a prevalent subset S of a linear function space V , we say that φ is
typical. Employing the language of the finite dimensional case, we say that almost
every element of V lies in S (in the sense of prevalence).

Using the notion of prevalence, researchers have reformulated several topological
and dynamical theorems. Sauer, Yorke, and Casdagli prove in [21] a prevalence
version of the Whitney embedding theorem.
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Theorem 2.3 (Prevalence Whitney Embedding Theorem [21]). Let A be a compact
subset of Rn of box dimension d and let m be an integer greater than 2d. For almost
every smooth map φ : Rn → Rm,

(1) φ is one to one on A and
(2) φ is an immersion on each compact subset C of a smooth manifold contained

in A.

This theorem is not Platonic because the dimension assumption is on A. In
Section 4 we prove a Platonic Whitney embedding theorem as a corollary of the
manifold extension theorem.

The reformulation of a genericity theorem of Kupka-Smale type requires a notion
of prevalence for nonlinear function spaces such as the space of diffeomorphisms of
a compact smooth manifold. Kaloshin in [10] develops such a notion and proves a
prevalence version of the Kupka-Smale theorem for diffeomorphisms.

2.1. Cardinality Preservation. In Sections 5, 6 and 7 we will need to know how
a typical smooth projection affects the cardinality of a set. We show that for a set
A ⊂ Rn, A and φ(A) have the same cardinality for a.e. φ ∈ C1(Rn,Rm). We begin
by assuming that A is a countable set.

Proposition 2.4. Let A ⊂ Rn be a countable set. Almost every φ ∈ C1(Rn,Rm)
is one to one on A. In particular, if A is countably infinite, then φ(A) is also
countably infinite for almost every φ ∈ C1(Rn,Rm).

Proof. We write A = {xi : i ∈ N}. For i 6= j let Cij = {φ ∈ C1(Rn,Rm) : φ(xi) =
φ(xj)}. We first show that Cij is shy. Let B(xi, ri) be a metric ball such that
xj /∈ B(xi, ri). Let β : Rn → R be a C∞ map such that

(1) β > 0 on B(xi, ri) and
(2) supp(β) = B(xi, ri).

Let v ∈ Rm be a nonzero vector and let µ be the Lebesgue measure supported on
the one dimensional subspace

{tvβ : t ∈ R}.

For any φ ∈ C1(Rn,Rm), it is evident that φ + tvβ ∈ Cij for at most one t ∈ R.
Thus Cij is a shy subset of C1(Rn,Rm) because µ is transverse to it. The set⋂

i,j∈N
i 6=j

C1(Rn,Rm) \ Cij

consists of functions that map A injectively into Rm. This set is prevalent because
the countable intersection of prevalent sets is prevalent (see [7]). �

Plato would have us consider the prisoner’s question where the cardinality of A
is not known a priori. For a typical φ, does the countability of φ(A) imply the
countability of A? The next proposition answers this question affirmatively with
the help of the following lemma.

Lemma 2.5. Let A0 ⊂ Rn be an uncountable set. Lebesgue almost every function
φ ∈ Lin(Rn,Rm) maps A0 to an uncountable set.
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Proof. It suffices to consider the scalar case m = 1. For each φ ∈ Lin(Rn,R) there
exists a unique vector v ∈ Rn such that φ(x) = (x, v) for all x ∈ Rn. Suppose by
way of contradiction that the set

{φ ∈ Lin(Rn,R) : φ(A0) is countable}

has positive measure. This implies that there exist n linearly independent vectors
{vi : i = 1, . . . , n} such that the functions φvi

given by x 7→ (x, vi) map A0 to a
countable set. Let A1 be an uncountable subset of A0 such that φv1(A1) = {y1}.
Inductively construct a collection of sets {Ai : i = 1, . . . , n} satisfying

(1) Ai is uncountable for each i,
(2) Ai ⊂ Ai−1 for each i, and
(3) φvi(Ai) = {yi}.

We have φvi(An) = {yi} for each i, so An consists of one point. This contradiction
establishes the lemma. �

Proposition 2.6. Let A0 be an uncountable set. For almost every

φ ∈ C1(Rn,Rm),

φ(A0) is uncountable.

Proof. Once again it suffices to consider the scalar case m = 1. We show that the
set

S = {φ ∈ C1(Rn,R) : φ(A0) is countable}

is shy. Let {φei
} be a basis for Lin(Rn,R) and let µ be the Lebesgue measure on

Rn. Write α = (αi) for a vector in Rn and for φ ∈ C1(Rn,R) set

φα := φ+
n∑

i=1

αiφei .

If S is not shy, there exists some g ∈ S such that

µ{α : gα(A0) is countable} > 0

where µ denotes n dimensional Lebesgue measure. Without loss of generality as-
sume that g(A0) is countable. There is at least one point y such that g−1(y) ∩ A0

is uncountable. Shrinking A0 if necessary, without loss of generality we may as-
sume that g maps A0 to a single point; that is, g is constant on A0. There exist
n linearly independent vectors {vi} such that the functions φvi + g map A0 to a
countable set. As in the proof of (2.5) we inductively construct a collection of sets
{Ai : i = 1, . . . , n} satisfying

(1) Ai is uncountable for each i,
(2) Ai ⊂ Ai−1 for each i, and
(3) (φvi + g)(Ai) = {yi}.

We have (φvi + g)(An) = {yi} for each i, so An consists of one point. This contra-
diction establishes the proposition. �
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2.2. Preservation of Unboundedness. We now consider the question of how a
typical smooth projection affects the boundedness of a set. For a typical φ, does
the boundedness of φ(A) imply that A is bounded?

Proposition 2.7 (Unboundedness Preservation). Assume A ⊂ Rn is unbounded.
Then φ(A) is unbounded for almost every φ ∈ C1(Rn,Rm).

Proof. It suffices to assume m = 1. We show that the set

V = {φ ∈ C1(Rn,R) : φ(A) is bounded}
is shy. As above, let µ be the Lebesgue measure on Rn and for φ ∈ C1(Rn,R) and
(αi) ∈ Rn write

φα := φ+
n∑

i=1

αiφei .

If V is not shy, there exists some g ∈ V such that

µ{α : gα(A) is bounded} > 0.

Without loss of generality assume that g(A) ⊂ [−d, d] for some d > 0. There exist n
linearly independent vectors {vi} and scalars ci > 0 such that the functions g+φvi

map A into [−ci, ci]. Thus A is contained in the set
n⋂

i=1

φ−1
vi

([−ci − d, ci + d]),

a bounded solid polygon. This contradiction establishes the proposition. �

Remark 2.8. We conclude that for a typical φ ∈ C1(Rn,Rm), the boundedness of
φ(A) implies that A is bounded. That is, the boundedness of A is an observable
property.

3. Enveloping Manifolds

Let A be a compact subset of Rn and let x ∈ A. We say that a C1 manifold
M is an enveloping manifold for A at x if there exists a neighborhood N(x) of x
such that M ⊃ N(x)∩A and if the dimension of M is minimal with respect to this
property. We demonstrate the existence of a C1 enveloping manifold M for each
x ∈ A.

Definition 3.1. Let DxA be the set of all directions v for which there exist se-
quences (yi) and (zi) in A such that yi → x, zi → x, and zi−yi

‖zi−yi‖ → v. The tangent
space at x relative to A, denoted TxA, is the smallest linear space containing DxA.

We note that this is one of the two obvious ways to define the tangent space at
a point in an arbitrary compact subset of Rn. The other would be to fix yi = x
in the above definition, but the resulting tangent space would be too small for our
purposes. In general neither the tangent space itself nor its dimension will vary
continuously with x ∈ A. Nevertheless, the tangent space varies upper semicontin-
uously with x ∈ A. More precisely, we have

Lemma 3.2. The function x 7→ dim(TxA) is upper semicontinuous on A. In fact,
TxA depends upper semicontinuously on x ∈ A in the sense that if xi → x where
xi ∈ A and vi → v where vi ∈ TxiA then v ∈ TxA. In other words, {(x, v) : x ∈ A,
v ∈ TxA} is a closed subset of Rn × Rn. If TxA has constant dimension on a set
A0 ⊂ A, then TxA is continuous on A0 in the same sense.
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Definition 3.3. The tangent dimension of A, denoted dimT (A), is given by

dimT (A) = max
x∈A

(dimTxA).

Example 3.4. In Figure 1 the tangent space TpA is two-dimensional while TxA is
one-dimensional for all other points x ∈ A. Choosing (yi) ⊂ A and (zi) ⊂ A such
that yi → p, zi → p, and yi and zi lie on a vertical line for each i, we obtain the
tangent vector v ∈ TpA. Thus dimT (A) = 2.

zi

yi

v

p

A

Figure 1. A Cusp

We are now in position to state a surprising theorem.

Theorem 3.5 (Manifold Extension Theorem). For each x ∈ A there exists an
enveloping manifold M for A at x with TxM = TxA.

Conjecture 3.6. We believe that integrability is an intrinsic feature of the defi-
nition of the tangent space. We therefore conjecture that a global version of the
manifold extension theorem holds. Namely, there exists a manifold M such that
dim(M) = dimT (A) and A ⊂M .

Proof. Recall that for a map ψ we denote the restriction of ψ to a subset S of the
domain of ψ by ψ[S]. Let m = dim(TxA). There exists a compact neighborhood
N of x such that dim(TyA) ≤ m for all y ∈ N ∩ A. Let π denote the orthogonal
projection of Rn onto TxA. The projection map π induces the splitting Rn =
TxA⊕Ex. Using this splitting write (p, q) for points in Rn. If ((pi, qi)) is a sequence
such that (pi, qi) ∈ N ∩A for each i and (pi, qi) → x then ‖qi+1−qi‖

‖pi+1−pi‖ → 0. We may
assume N has been chosen sufficiently small so that π maps TyA injectively into
TxA for each y ∈ N ∩ A and that π[N ∩ A] is one to one. Hence we may define ψ
on π(N ∩ A) by ψ(p) := q for (p, q) ∈ N ∩ A. Repeated use of our main technical
tool, the Whitney extension theorem, will allow us to extend ψ to a C1 function
defined on a neighborhood in TxA of π(A ∩N). We first state a C1 version of the
Whitney extension theorem for compact domains.

Definition 3.7. Let Q ⊂ Rm be a compact set and assume f : Q → Rk and
L : Q→ Lin(Rm,Rk) are given functions.

Notation 3.8.

(1) R(y, z) := f(z)−f(y)−L(y)·(z−y)
‖z−y‖ (for all y, z ∈ Q, y 6= z).
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(2) For δ > 0, set
ρ(δ) := sup

y,z∈Q
0<‖z−y‖≤δ

‖R(y, z)‖.

The pair (f, L) is said to be a Whitney C1 function pair on Q if f and L are
continuous and if ρ satisfies

(3.1) ρ(δ) → 0 as δ → 0.

Notice that (3.1) is equivalent to the following uniformity condition stated by Whit-
ney in [25]: Given any w ∈ Q and ε > 0, there exists δ > 0 such that if y ∈ Q and
z ∈ Q satisfy ‖y − w‖ < δ and ‖z − w‖ < δ, then ‖R(y, z)‖ ≤ ε.

Theorem 3.9 (Whitney Extension Theorem [5, 12, 25]). Given a Whitney C1

function pair (f, L) defined on a compact subset Q of Rm, there exists a C1 function
f̃ : Rm → Rk such that f̃ = f and Df̃ = L on Q.

We now continue the proof of our manifold extension theorem. Let

d(y) = dim(TyA)

for y ∈ A∩N . For k ≤ m let Xk = {y ∈ N ∩A : d(y) = k}. We first find a function
whose graph is a C1 manifold which envelops Xm. For each y ∈ N ∩A, the tangent
space TyA may be viewed as a subspace of TxA⊕Ex = Rn. For y ∈ Xm define the
linear operator Lm(y) : TxA → Ex as follows. For (v, w) ∈ DyA let Lm(y)v = w.
By linearity Lm(y) is determined on TyA. The linear operator Lm(y) depends
continuously on y ∈ Xm since TyA depends continuously on y ∈ Xm by (3.2). The
function pair (ψ,Lm) is Whitney C1 on π(Xm) because the uniformity condition of
Whitney is implied by (3.1). Notice that the Whitney extension theorem can now
only be used to extend ψ[π(Xm)] because no obvious candidate exists for L(y) for
y /∈ Xm. By applying the Whitney extension theorem, extend ψ to a function ψ̃1

defined on π(N). Notice that if Xm = N ∩ A, the result is proved since the graph
of ψ̃1 constitutes an enveloping manifold for A at x.

The general case is handled inductively. Construct ψ̃1 as above and make the
nonlinear change of variable (p, q) → (p, q − ψ̃1(p)) := (p, ψ2(p)). Consider the
map ψ2[π(Xm) ∪ π(Xm−1)] and let y ∈ graph(ψ2[π(Xm) ∪ π(Xm−1)]). The tan-
gent space Ty(graph(ψ2[π(A)])) may be viewed as a subspace of TxA ⊕ Ex = Rn.
Define the linear map Lm−1(y) : TxA → Ex as follows. If y ∈ graph(ψ2[π(Xm)]),
set Lm−1(y) ≡ 0. If y ∈ graph(ψ2[π(Xm−1)]), enlarge Ty(graph(ψ2[π(A)])) to
a linear space T̃y of dimension m by adjoining one vector in TxA orthogonal to
Ty(graph(ψ2[π(A)])). For (v, w) ∈ T̃y let Lm−1(y)v = w. The linear operator
Lm−1(y) depends continuously on y ∈ graph(ψ2[π(Xm)∪ π(Xm−1)]) by (3.2). The
function pair (ψ2, Lm−1) is Whitney C1 on π(Xm) ∪ π(Xm−1) because the unifor-
mity condition of Whitney is implied by (3.1). By applying the Whitney extension
theorem, extend ψ2[π(Xm) ∪ π(Xm−1)] to a function ψ̃2 defined on π(N). Make
the nonlinear change of variables (p, q) → (p, q − ψ̃2(p)) = (p, ψ3(p)).

Assume now that the functions ψ̃1, ψ̃2, . . . , ψ̃k−1 and ψk have been constructed.
Consider the map

ψk

[
m⋃

i=m−k+1

π(Xi)

]
.
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For each point y in the set

graph

(
ψk

[
m⋃

i=m−k+1

π(Xi)

])
the tangent space Ty(graph(ψk[π(A)])) may be viewed as a subspace of TxA ⊕
Ex = Rn. Define the linear map Lm−k+1(y) : TxA → Ex as follows. If y ∈
graph(ψk[π(Xm) ∪ · · · ∪ π(Xm−k+2)]), set Lm−k+1(y) ≡ 0. On the other hand, if
y ∈ graph(ψk[π(Xm−k+1)]), enlarge Ty(graph(ψk[π(A)])) to a linear space T̃y of
dimension m by adjoining k − 1 vectors in TxA orthogonal to

Ty(graph(ψk[π(A)])).

For (v, w) ∈ T̃y let Lm−k+1(y)v = w. By (3.1) and (3.2) the function pair

(ψk, Lm−k+1)

is Whitney C1 on the set
m⋃

i=m−k+1

π(Xi).

By applying the Whitney extension theorem, extend the function

ψk

[
m⋃

i=m−k+1

π(Xi)

]
to a function ψ̃k defined on π(N). Make the change of variables (p, q) → (p, q −
ψ̃k(p)) := (p, ψk+1(p)). After m+ 1 steps we obtain a map

Ψ :=
m+1∑
i=1

ψ̃i

defined on π(N). The graph of Ψ constitutes an enveloping manifold M for A at
x. �

Remark 3.10. Although our inductive procedure is canonical, observe that the
Whitney extension theorem makes no claim of uniqueness. Assume that (f, L1) and
(f, L2) are Whitney C1 function pairs defined on a compact subset Q of Rm as in
(3.9). Let y ∈ graph(f) and let π denote the orthogonal projection of Rm×Rk onto
Rm. The tangent space Ty(graph(f)) may be viewed as a subspace of Rm × Rk.
The linear operators L1(y) and L2(y) must satisfy L1(y)v = L2(y)v = w for all
(v, w) ∈ Ty(graph(f)). However, L1(y) and L2(y) are determined only for (v, w) ∈
Ty(graph(f)). If v /∈ π(Ty(graph(f))), then L1(y) and L2(y) may be such that
L1(y)v 6= L2(y)v.

4. Platonic Embedology

Recall the prevalence version of the Whitney embedding theorem.

Theorem 4.1 (Prevalence Whitney Embedding Theorem [21]). Let A be a compact
subset of Rn of box dimension d and let m be an integer greater than 2d. For almost
every smooth map φ : Rn → Rm,

(1) φ is one to one on A and
(2) φ is an immersion on each compact subset C of a smooth manifold contained

in A.
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The manifold extension theorem implies a Platonic version of this result. We
need a notion of diffeomorphism appropriate for a general compact subset A of Rn.

Definition 4.2. We say that a measurement map φ ∈ C1(Rn,Rm) is a diffeomor-
phism on A if φ is injective on A and if for each x ∈ A there exists an enveloping
manifold M for A at x that is mapped diffeomorphically onto an enveloping mani-
fold for φ(A) at φ(x).

We are now in position to formulate the Platonic Whitney embedding theorem.

Theorem 4.3 (Platonic Whitney Embedding Theorem). Let A ⊂ Rn be compact.
For almost every φ ∈ C1(Rn,Rm), if φ(A) satisfies dimT φ(A) < m

2 , then φ is a
diffeomorphism on A.

Conjecture 4.4. The Platonic Whitney embedding theorem remains valid under
the weaker assumption that dimT φ(A) < m.

The proof of this result requires an understanding of the relationship between
the box dimension of A and the dimension of the tangent spaces TxA for x ∈
A. Working only with the definitions, the relationship is unclear. Illumination is
provided by the manifold extension theorem.

Lemma 4.5. Let A ⊂ Rn be compact. For each x ∈ A, there exists a neighborhood
N of x such that dim(TxA) > dimB(A ∩N).

Proof. Fix x ∈ A. By the manifold extension theorem, there exists an enveloping
manifold M for A at x and a neighborhood N of x such that M ⊃ N ∩ A. The
set N ∩ A is contained in a C1 manifold of dimension dim(TxA) and therefore
dim(TxA) > dimB(A ∩N). �

We now commence with the proof of the Platonic Whitney embedding theorem.
Suppose there exists x ∈ A such that dim(TxA) > m

2 . In this case we would have
that dim(Tφ(x)φ(A)) > m

2 for almost every φ ∈ C1(Rn,Rm) as a consequence of
the fact that almost every linear transformation has full rank. Therefore we may
assume that dim(TxA) < m

2 ∀x ∈ A. By the manifold extension theorem and the
compactness of A, A is contained in a finite union

⋃k
i=1Mi of enveloping manifolds

such that dim(Mi) < m
2 for each i. Box dimension is finitely stable, so one has

dimB(A) 6 dimB

(
k⋃

i=1

Mi

)
= max

i
dimB(Mi) <

m

2
.

The prevalence version of the Whitney embedding theorem (2.3) implies that almost
every φ ∈ C1(Rn,Rm) is a diffeomorphism on A.

Remark 4.6. Suppose one only knows that dimB(φ(A)) < m
2 for a typical φ. It

is difficult to draw any conclusions in this case. Sauer and Yorke [20] exhibit a
compact subset A of R10 with dimB(A) = 3.5 such that dimB(φ(A)) < 3 for every
φ ∈ C1(R10,R6).

5. Observing A Continuous Dynamical System

Let f : Rn → Rn be a dynamical system and let A be a compact invariant set.
We make no a priori regularity assumptions about f . Let φ ∈ C1(Rn,Rm) and let
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B ⊂ Rn be an open metric ball. Recall that if there exists a map f̄ : φ(A) → φ(A)
such that for x ∈ A the diagram

A
f−−−−→ A

φ

y yφ

φ(A)
f̄−−−−→ φ(A)

commutes, then we say that f̄ is the induced map associated with f .

Remark 5.1. If f is continuous, then the existence of f̄ implies the continuity of
f̄ .

Definition 5.2. The pair (x1, x2) ∈ A × A is coincident if φ(x1) = φ(x2). The
pair (x1, x2) ∈ A×A is said to be dynamically separated by B if

(1) (x1, x2) is coincident and
(2) x1 /∈ B, x2 /∈ B, f(x1) ∈ B and f(x2) /∈ B.

Definition 5.3. Let SB be the set of maps φ in C1(Rn,Rm) for which the following
hold:

(1) There exists some pair (x1, x2) dynamically separated by B, and
(2) for all such pairs we have φ(f(x1)) = φ(f(x2)).

Lemma 5.4. The set SB is a shy subset of C1(Rn,Rm).

Proof. We construct a measure transverse to SB . Let β : Rn → R be a C∞ map
such that β > 0 on B and supp(β) = B̄. Let v ∈ Rm be a nonzero vector. Let µ
be the Lebesgue measure supported on the one dimensional subspace

{tvβ : t ∈ R} .
For any φ ∈ C1(Rn,Rm) it is evident that φ + tvβ ∈ SB for at most one t ∈ R.
Thus SB is shy because µ is transverse to it. �

Definition 5.5. Let Fix(f) denote the set of fixed points of f . Let Per2(f) denote
the set of periodic points of f of period 2.

Proposition 5.6. Suppose f [A] is continuous and invertible. Assume that the sets
Fix(f [A]) and Per2(f [A]) are countable. For almost every map φ ∈ C1(Rn,Rm)
the following are equivalent:

(1) The map φ is one to one on A.

(2) The induced map f̄ exists (and is therefore continuous).

Proof.
((1) ⇒ (2)) Define f̄ := φ ◦ f ◦ φ−1.
((2) ⇒ (1)) Let {Bi} be a countable collection of open metric balls such that if
x, y ∈ A satisfy x 6= y then there exists some Bi such that x ∈ Bi and y /∈ Bi.
Consider the following three sets:

G1 = {φ ∈ C1(Rn,Rm) : φ is one to one on Fix(f [A])}
G2 = {φ ∈ C1(Rn,Rm) : φ is one to one on Per2(f [A])}

G3 =
∞⋂

i=1

(SBi)
C
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The set G1 is a prevalent subset of C1(Rn,Rm) by Proposition 2.4 because the fixed
points of f [A] are countable. Similarly, G2 is prevalent. The set G3 is a prevalent
subset of C1(Rn,Rm) because (SBi)

C is prevalent for each i by (5.4) and because
the countable intersection of prevalent sets is prevalent (see [7]). Thus G1∩G2∩G3

is a prevalent subset of C1(Rn,Rm). Let φ ∈ G1 ∩ G2 ∩ G3 and assume that φ is
not one to one on A. It follows that no induced map f̄ exists. Since φ /∈ SBi for all
i, there exists a metric ball Bi and a coincident pair (x1, x2) dynamically separated
by Bi such that φ(f(x1)) 6= φ(f(x2)). �

Proposition 2.6 allows us to improve this result by transferring the dynamical
hypotheses onto the induced dynamics. We need a lemma indicating that the
existence of a point of discontinuity of f [A] precludes the existence of a continuous
induced map for a typical measurement function.

Lemma 5.7. Suppose f [A] is discontinuous at some point x ∈ A. Then for a.e.
φ ∈ C1(Rn,Rm), no continuous induced map exists.

Theorem 5.8. Let f : Rn → Rn be a map. For almost every map φ ∈ C1(Rn,Rm),
there is an induced map f̄ satisfying

(1) f̄ is continuous and invertible, and
(2) Fix(f̄) and Per2(f̄) are countable

if and only if the following hold.
(1) The measurement map φ is one to one on A.
(2) The sets Fix(f [A]) and Per2(f [A]) are countable.
(3) The map f [A] is continuous and invertible.

Proof. We employ the transference method. If f [A] is continuous and invertible
and Fix(f [A]) and Per2(f [A]) are countable sets, then (5.6) implies the result.
If Fix(f [A]) or Per2(f [A]) is uncountable then Proposition 2.6 implies that the
statement of the theorem holds for almost every φ. Lemma 5.7 implies the result if
f [A] is discontinuous at some point. If f [A] is not invertible, then for almost every
φ ∈ C1(Rn,Rm) no invertible induced map exists. �

We now consider the possibility of recovering differential information.

6. Observing Differentiable Dynamics

Assume that f is a diffeomorphism on Rn. The concept of a measurement
function φ being an immersion on A usually requires A to be a manifold, but there
is now an obvious extension.

Definition 6.1. We say the map φ ∈ C1(Rn,Rm) is an immersion on A if
Dφ(x)[TxA] : TxA→ Tφ(x)φ(A) is one to one for each x ∈ A.

Motivated by the theory of infinite-dimensional dynamical systems, we formulate
our C1 results using the notion of quasidifferentiability.

Definition 6.2. The function f is said to be quasidifferentiable on the set A if f [A]
is continuous and if for each x ∈ A there exists a linear map Df(x) : Rn → Rn, the
quasiderivative of f at x, such that

f(xi)− f(yi)−Df(x)(xi − yi)
‖xi − yi‖

→ 0

for all sequences (xi) ⊂ A and (yi) ⊂ A such that xi → x and yi → x.
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Remark 6.3. The function f is Whitney C1 if and only if f is quasidifferentiable
and the quasiderivative varies continuously. Since continuity is observable, the
C1 embedding results to follow may be formulated with ‘Whitney C1’ in place of
‘quasidifferentiable.’

We would like to prove under the assumptions of (5.6) that for almost every φ,
the existence of a quasidifferentiable induced map f̄ implies that φ is an injective
immersion on A. However, one extra hypothesis on f is needed; namely, that for
each x ∈ Fix(f [A]) we have

Df(x)[TxA] 6= γ · I for every γ ∈ R.

To see the need for this hypothesis, suppose that f is the identity map, A is count-
able, and there exists x ∈ A such that dim(TxA) = n > m. In this case, the identity
map on φ(A) is the induced map for every φ ∈ C1(Rn,Rm), yet every φ fails to be
immersive at x.

Consider a countable set {Bi = B(yi, ri) of open metric balls in Rn that separates
points. Let T (A) = {(x, v) : x ∈ A, v ∈ TxA}.

Definition 6.4. Let WBi be the set of measurement maps in C1(Rn,Rm) with the
following properties:

(1) There exists some point (x, v) ∈ T (A) such that v 6= 0, x /∈ B(yi, 2ri),
f(x) ∈ B(yi, ri), Dφ(x)v = 0, and

(2) for all such points we have Dφ(f(x)) ◦Df(x)v = 0.

Lemma 6.5. The set WBi is shy.

Proof. Let F1, . . . , Ft be a basis for the nm dimensional space of linear transforma-
tions from Rn to Rm. Let β : Rn → R be a C∞ map with the following properties:

(1) β(x) = 1 for x ∈ B(yi,
5
4
ri)

(2) supp(β) = B(yi,
3
2
ri)

(3) 0 < β ≤ 1 on B(yi,
3
2
ri)

Let P be the subspace of C1(Rn,Rm) spanned by the collection {βFi : i = 1, . . . , t}
and endow P with Lebesgue measure. For any φ, the set of vectors (αi) for which

φ+ β

t∑
i=1

αiFi ∈WBi

is a subset of P of measure zero. �

Lemma 6.6. Let x ∈ Fix(f [A]) and assume that Df(x)[TxA] 6= γ · I for all γ ∈ R.
The set Zx of measurement mappings satisfying

(1) ker(Dφ(x)) ∩ TxA 6= {0} and
(2) Df(x)(ker(Dφ(x)) ∩ TxA) ⊂ ker(Dφ(x))

is a shy subset of C1(Rn,Rm).

Proof. Consider the orthogonal decomposition Rn = TxA ⊕ Ex. Let L be the
subset of Lin(Rn,Rm) consisting of maps that vanish on Ex and have norm at
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most one. Endow L with the normalized Lebesgue probability measure µ. For any
φ ∈ C1(Rn,Rm), we claim that

(6.1) µ({F ∈ L : φ+ F ∈ Zx}) = 0.

If dimTxA ≤ m then (6.1) follows from the fact that almost every linear transfor-
mation has full rank. If dimTxA > m, then it suffices to consider the scalar case
m = 1. Let d = dim(TxA) and let {φei

} be an orthonormal basis for Lin(TxA,R),
the unit ball of which we identify with L. Let φw represent Dφ(x)[TxA] with re-
spect to the basis {φei}. For a map φv ∈ Lin(TxA,R) such that v + w 6= 0, it is
necessary that v + w be an eigenvector of Df(x)[TxA]T in order to have

Df(x)(ker(φv+w) ∩ TxA) ⊂ ker(φv+w).

If Df(x)[TxA]T does not have an eigenvalue of multiplicity d, then (6.1) holds.
Finally, notice that Df(x)[TxA]T has an eigenvalue of multiplicity d if and only if
Df(x)[TxA] is a scalar multiple of the identity. �

Proposition 6.7. Suppose f is a diffeomorphism on Rn. Assume that

Fix(f [A]) and Per2(f [A])

are countable sets. Assume that for each x ∈ Fix(f [A]) we have

Df(x)[TxA] 6= γ · I for every γ ∈ R.

Then for almost every φ ∈ C1(Rn,Rm), if there is a quasidifferentiable induced
map f̄ then the measurement map φ is an injective immersion on A.

Proof. Consider the following sets:
G4 =

∞⋂
i=1

(WBi)
C

G5 =
⋂

x∈Fix(f [A])

(Zx)C

The sets G4 and G5 are prevalent by (6.5) and (6.6) respectively. For φ in the
prevalent set

5⋂
j=1

Gj ,

the existence of a quasidifferentiable induced map f̄ implies that φ is an injective
immersion on A. �

Once again Proposition 2.6 allows us to transfer some of the hypotheses of this
theorem onto the induced dynamics.

Theorem 6.8. Suppose f is a diffeomorphism on Rn. For almost every φ ∈
C1(Rn,Rm), if there is a quasidifferentiable induced map satisfying

(1) Fix(f̄) and Per2(f̄) are countable and
(2) For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 6= γ · I for every γ ∈ R

then the following hold.
(1) The measurement map φ is an injective immersion on A.
(2) Fix(f [A]) and Per2(f [A]) are countable.
(3) For each x ∈ Fix(f [A]), Df(x)[TxA] 6= γ · I for every γ ∈ R.
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Proof. It suffices to consider the cases in which the hypotheses of Proposition 6.7
fail to hold. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then for almost every φ
there cannot exist an induced map satisfying Fix(f̄) and Per2(f̄) are countable by
Proposition 2.6. Suppose there exist x ∈ Fix(f [A]) and γ ∈ R such that

Df(x)[TxA] = γ · I.

For almost every φ ∈ C1(Rn,Rm), Dφ(x)[TxA] has full rank. If dim(TxA) > m
then the full rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA onto Tφ(x)φ(A) and
therefore the existence of a quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.

If dim(TxA) < m then the full rank of Dφ(x)[TxA] implies that Dφ(x) maps TxA
injectively into Tφ(x)φ(A) and therefore surjectively onto Tφ(x)φ(A). In this case,
the existence of a quasidifferentiable induced map would imply

Df̄(φ(x))[Tφ(x)φ(A)] = γ · I.

�

Using the manifold extension theorem we strengthen this theorem by utilizing the
previously introduced notion of a diffeomorphism on A. We recall that definition
here.

Definition 6.9. We say that a measurement map φ ∈ C1(Rn,Rm) is a diffeomor-
phism on A if φ is injective on A and if for each x ∈ A there exists an enveloping
manifold M for A at x that is mapped diffeomorphically onto an enveloping mani-
fold for φ(A) at φ(x).

Theorem 6.10. Suppose f is a diffeomorphism on Rn. For almost every φ ∈
C1(Rn,Rm), if there is a quasidifferentiable induced map f̄ satisfying

(1) Fix(f̄) and Per2(f̄) are countable and
(2) For each y ∈ Fix(f̄), Df̄(y)[Tyφ(A)] 6= γ · I for every γ ∈ R

then the following hold.
(1) The measurement map φ is a diffeomorphism on A.
(2) Fix(f [A]) and Per2(f [A]) are countable.
(3) For each x ∈ Fix(f [A]), Df(x)[TxA] 6= γ · I for every γ ∈ R.

Remark 6.11. Mera and Morán [14] provide a test for determining whether or
not observed trajectories of f̄ are consistent with the assumption that f̄ belongs to
a certain regularity class.

The C1 Theorem (6.10) is not Platonic because we assume that f is a diffeo-
morphism on Rn. We formulate a Platonic version of the C1 Theorem by selecting
new hypotheses on the induced map f̄ . The key modification is the replacement
of the dynamical assumption on the nature of Df̄(y)[Tyφ(A)] for y ∈ Fix(f̄) with
the structural assumption that dimTy(φ(A)) < m ∀y ∈ φ(A). The smoothness
of f becomes an observable in this new setting. After presenting several technical
preliminaries, we state and prove the main result. We assume only that f is a map
throughout this section.

Lemma 6.12. If dimTx(A) > m for some x ∈ A, then for almost every φ ∈
C1(Rn,Rm) one has dimTφ(x)φ(A) > m.
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Proof. The result follows from the fact that almost every linear transformation from
one finite-dimensional vector space to another has full rank. �

Lemma 6.13. Suppose there exist sequences (xi) ⊂ A, (yi) ⊂ A, and x ∈ A such
that xi → x, yi → x and xi−yi

‖xi−yi‖ → v ∈ TxA, but(
f(xi)− f(yi)
‖xi − yi‖

)
does not converge to a vector in Rn. For almost every φ ∈ C1(Rn,Rm), there does
not exist a quasidifferentiable induced map f̄ on φ(A) with dimTyφ(A) < m ∀y ∈
φ(A).

Proof. We need to consider two cases. Assume that the sequence

(6.2)
(
f(xi)− f(yi)
‖xi − yi‖

)
has two limit points, v1 and v2. There cannot exist a quasidifferentiable induced
map f̄ on φ(A) if v /∈ ker(Dφ(x)[TxA]) and v1 − v2 /∈ ker(Dφ(f(x))[Tf(x)A]).
This condition is prevalent and therefore the lemma holds in the first case. Now
suppose that the sequence (6.2) tends to infinity. If either dim(TxA) > m or
dim(Tf(x)A) > m, then Lemma 6.12 implies that for almost every φ one does not
have dimTyφ(A) < m ∀y ∈ φ(A). If both dim(TxA) < m and dim(Tf(x)A) <
m, then for almost every φ it follows that Dφ(x)[TxA] and Dφ(f(x))[Tf(x)A] are
injective. For such a φ, the existence of a quasidifferentiable induced map f̄ on
φ(A) would imply

f̄ ◦ φ(xi)− f̄ ◦ φ(yi)
‖φ(xi)− φ(yi)‖

=
φ ◦ f(xi)− φ ◦ f(yi)
‖φ(xi)− φ(yi)‖

→ ∞,

a contradiction. �

Theorem 6.14 (Platonic C1 Theorem). Suppose f : Rn → Rn is a map. For al-
most every φ ∈ C1(Rn,Rm), if there exists an invertible quasidifferentiable induced
map f̄ on φ(A) satisfying

(1) Fix(f̄) and Per2(f̄) are countable,
(2) dimTy(φ(A)) < m ∀y ∈ φ(A), and
(3) Df̄(y)[Tyφ(A)] is invertible ∀y ∈ φ(A),

then the following hold.
(1) The measurement mapping φ is a diffeomorphism on A.
(2) The mapping f [A] is invertible.
(3) The sets Fix(f [A]) and Per2(f [A]) are countable.
(4) The dynamical system f is quasidifferentiable on A and Df(x)[TxA] is

invertible for all x ∈ A.
(5) For each x ∈ A, dim(TxA) < m.

Proof. See Sections 5 and 6 for the definitions of the sets G1, G2, G3, and G4. Let

G6 = {φ ∈ C1(Rn,Rm) : Dφ(x)[TxA] is injective for each x ∈ Fix(f [A])}.

If Fix(f [A]) is countable and dim(TxA) < m for each x ∈ A, then G6 is prevalent.
We employ the transference method to prove the Platonic C1 Theorem.
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If f satisfies conclusions (2), (3), (4), and (5), then for φ in the prevalent set 4⋂
j=1

Gj

⋂G6,

the existence of a quasidifferentiable induced map f̄ on φ(A) implies that φ is
an injective immersion on A. If f [A] is not invertible, then for almost every φ,
no invertible induced map exists. If Fix(f [A]) ∪ Per2(f [A]) is uncountable, then
Proposition 2.6 implies that no induced map satisfying hypothesis (1) exists for
almost every φ. If there exists x ∈ A for which dim(TxA) > m, then Lemma 6.12
implies that dimTφ(x)φ(A) > m for almost every φ and for such φ hypothesis (2)
is not satisfied.

Suppose f is not quasidifferentiable on A. If f [A] is not continuous, then Lemma
5.7 implies that for almost every φ there does not exist a quasidifferentiable induced
map f̄ on φ(A). If f fails to be quasidifferentiable on A because the hypotheses of
Lemma 6.13 are satisfied, then this lemma implies that for a.e. φ there does not
exist a quasidifferentiable induced map f̄ on φ(A) with dimTyφ(A) < m ∀y ∈ φ(A).
The remaining possibility is that for some x ∈ A there exists a nonlinear map taking
TxA into Tf(x)A. For a.e. φ, this precludes the existence of a quasidifferentiable
induced map f̄ . Finally, suppose f is quasidifferentiable on A but Df(x)[TxA]
is not invertible for some x ∈ A. In this case for a.e. φ there does not exist a
quasidifferentiable induced map f̄ on φ(A) satisfying hypothesis (3). �

We finish with theorems concerning delay coordinate mappings and Lyapunov ex-
ponents.

7. Delay Coordinate Embeddings and Lyapunov Exponents

We state delay coordinate embedding versions of our results and prove the exponent
characterization theorem.

7.1. Delay Coordinate Maps. The following theorems do not follow from the
previously established corresponding theorems for the general class of smooth mea-
surement mappings because the delay coordinate mappings form a subspace of
C1(Rn,Rm). Nevertheless, their veracity is established using essentially the same
reasoning.

Theorem 7.1. Let f : Rn → Rn be a map. For almost every g ∈ C1(Rn,R), there
is an induced map f̄ satisfying

(1) f̄ is continuous and invertible, and
(2)

⋃2m
i=1 Peri(f̄) is countable

if and only if the following hold.
(1) The delay coordinate map φ(f, g) is one to one on A.
(2) The set

⋃2m
i=1 Peri(f [A]) is countable.

(3) The map f [A] is continuous and invertible.

Theorem 7.2. Let f be a diffeomorphism on Rn. For a.e. g ∈ C1(Rn,R), if there
is a quasidifferentiable induced map f̄ satisfying

(1)
⋃2m

i=1 Peri(f̄) is countable and
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(2) for each p ∈ {1, . . . ,m} and y ∈ Perp(f̄) we have

Df̄p(y)[Tyφ(f, g)(A)] 6= γ · I for every γ ∈ R
then the following hold.

(1) The delay coordinate map φ(f, g) is a diffeomorphism on A.
(2) The set

⋃2m
i=1 Peri(f [A]) is countable.

(3) For each p ∈ {1, . . . ,m} and each x ∈ Peri(f [A]), we have

Dfp(x)[TxA] 6= γ · I for every γ ∈ R.

7.2. Lyapunov Exponents. We conclude Section 7 with a discussion of Lyapunov
exponents. Assume f and f̄ are quasidifferentiable and invertible on A and φ(A),
respectively, with invertible quasiderivatives at each point x ∈ A and y ∈ φ(A).
Suppose φ is a diffeomorphism on A. Assume y ∈ φ(A) is a regular point for f̄ and
recall that this implies the existence of a decomposition

Rm =
l⊕

i=1

Ei(y)

such that

lim
k→±∞

1
k

log ‖Df̄k(y)v‖ = λj(y) (v ∈ Ej(y) \ {0} and 1 ≤ j ≤ l).

Since the set of regular points R(f̄) is invariant in the sense that
(1) y ∈ R(f̄) ⇒ f̄k(y) ∈ R(f̄) for all k ∈ Z and
(2) Df̄±1(Ei(y)) = Ei(f̄±1(y)) for i = 1, . . . , l,

we associate the Lyapunov exponents λ1 > · · · > λl with the trajectory (yk).
Counting multiplicities, there are m Lyapunov exponents associated with (yk) and
we label them χ1, . . . , χm such that

χ1 > χ2 > · · · > χm.

In light of Remark 3.10 following the manifold extension theorem, we make the
following definitions.

Definition 7.3. We say that a Lyapunov exponent λ(y, v) of f̄ is a tangent
Lyapunov exponent if v ∈ Tyφ(A). A Lyapunov exponent λ(y, v) of f̄ is said to be
a transverse Lyapunov exponent if it is not a tangent exponent.

Definition 7.4. A Lyapunov exponent λ(y, v) of f̄ is said to be a true Lyapunov
exponent if it does not depend on the choice of quasiderivative Df̄ and if it is also
a Lyapunov exponent of f at φ−1(y). We say that a Lyapunov exponent λ(y, v) of
f̄ is spurious if there exists a quasiderivative Df̄ for which

lim
k→±∞

1
k

log ‖Df̄k(y)v‖

either does not exist or is not a Lyapunov exponent of f at φ−1(y).

Theorem 7.5 (Exponent Characterization Theorem). Assume f and f̄ are quasid-
ifferentiable and invertible on A and φ(A), respectively, with invertible quasideriva-
tives at each point x ∈ A and y ∈ φ(A). Suppose φ is a diffeomorphism on A.
Assume that y ∈ φ(A) is a regular point for f̄ such that dimTzφ(A) = dimTyφ(A)
for all z ∈ (yk). The following characterizations hold for a Lyapunov exponent
λ(y, v) of f̄ .
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(1) If the exponent λ(y, v) is tangent then it is a true exponent.
(2) If the exponent λ(y, v) is transverse then it is a spurious exponent.

The tangent exponents of f̄ correspond to the tangent exponents of f .

Remark 7.6. The tangent space Tyφ(A) admits the decomposition

Tyφ(A) =
l⊕

i=1

Vi(y)

where Vi(y) is a subspace of Ei(y) for i = 1, . . . , l.

Remark 7.7. From a computational point of view, one is interested in construct-
ing algorithms to efficiently and accurately compute the Lyapunov spectrum and
identify the true exponents. The existing technique ([3, 19, 15]) requires that one
modify the Eckmann and Ruelle algorithm by computing the tangent maps only
on the tangent spaces and not on the ambient space Rm. Assuming A is a smooth
submanifold, Mera and Morán [15] state conditions under which this modified ERA
converges. Clearly this technique eliminates the computation of spurious exponents.
However, one has to compute the tangent spaces along the entire orbit. In light of
the exponent characterization theorem, we propose a new algorithm that eliminates
the need to compute these tangent spaces.

Definition 7.8. A forward filtration of Rm is a nested collection of subspaces

∅ = F0(y) ⊂ F1(y) ⊂ F2(y) ⊂ · · · ⊂ Fm(y) = Rm

such that

lim
k→+∞

1
k

log ‖Df̄k(y)v‖ = χm−j+1

for v ∈ Fj(y) \ Fj−1(y).

Definition 7.9. A backward filtration of Rm is a nested collection of subspaces

∅ = B0(y) ⊂ B1(y) ⊂ B2(y) ⊂ · · · ⊂ Bm(y) = Rm

such that

lim
k→−∞

1
k

log ‖Df̄k(y)v‖ = χj

for v ∈ Bj(y) \Bj−1(y).

Suppose that forward and backward filtrations have been computed. Assume
that one may determine computationally if a given (m − 1)-dimensional subspace
of Rm contains Tyφ(A). For j = 1, . . . ,m, compute the Lyapunov vector

vj ∈ Bj ∩ Fm−j+1.

We now fix j and determine if vj ∈ Tyφ(A). If Span{vi : i 6= j} ⊃ Tyφ(A)
then vj /∈ Tyφ(A). If Span{vi : i 6= j} + Tyφ(A) then vj ∈ Tyφ(A) and χj is a
true Lyapunov exponent. The true Lyapunov exponents and Tyφ(A) have been
determined. It would be interesting to compare the performance of this algorithm
to that of existing ERA techniques.

Proof. Statement (1) follows from the fact that φ is a diffeomorphism on A. We
establish (2) with a perturbation argument. Let α > 1 and let d = dimTyφ(A).
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For each z ∈ (yk) there exists an enveloping manifold Mz for φ(A) at z with
TzMz = Tzφ(A) and dim(Mz) = d. Let

{B(z, rz) : z ∈ (yk)}
be a collection of metric balls such that

B(z, rz) ∩ φ(A) ⊂ Int(Mz).

By compactness there exists a finite subcover

{B(zi,
rzi

2
) : i = 1, . . . , N}

of (yk). We inductively construct a sequence {Df̄k : k = 1, . . . , N} of perturbations
of Df̄ . Let β : Rm → R be a C∞ map such that

(1) 1 ≤ β ≤ α,

(2) β(z) = α for z ∈ B(z1,
rz1

2
), and

(3) β(z) = 1 on Rm \B(z1, rz1).

For each z ∈ B(z1, rz1) ∩Mz1 , Rm admits the orthogonal decomposition

Rm = Tz(Mz1)⊕ Ez.

Using this decomposition we define Df̄1 as follows.
(1) Df̄1[φ(A) ∩ Rm \B(z1, rz1)] = Df̄ [φ(A) ∩ Rm \B(z1, rz1)]
(2) For z ∈ φ(A) ∩B(z1, rz1), define Df̄1(z) by

Df̄1(z)v =

{
Df̄(z)v, if v ∈ Tz(Mz1);
β(z)Df̄(z)v, if v ∈ Ez.

In this fashion we inductively construct the family of perturbations {Df̄k : k =
1, . . . , N}. For v ∈ (Tyφ(A))⊥ we have

lim
k→∞

1
k

log ‖Df̄k
N (y)v‖ ≥ λ(y, v) + log(α).

Since α > 1 was arbitrary, it follows that if λ(y, v) is transverse then it is spurious.
�
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