
Learning About Systems That Contain
State Variables

Thomas G. Dietterich

Department of Computer Science

Stanford University

Stanford. CA 94305

A bst ract

It is difficult to learn about systems that contain state variables when
those variables are not directly observable. This paper formalizes this
learning problem and presents a method called the @rarlve exrension
merhod for solving it. In the iterative extension method, the learner
gradually constructs a partial theory of the state-containing system. At
each stage, the learner applies this partial theory to interpret the I/O
behavior of the system and obtain additional constraints on the
structure and values of its state variables. These constraints can be
dpplied to extend the partial theory by hypothesizing additional
internal state variables. The improved theory can then be applied to
interpret more complex I/O behavior. This process continues until a
theory of the entire system is obtained. Several sufficient conditions for
the success of this method are presented including (a) the observabtlity
and decomposability of the state information in the system. (b) the
learnability of individual state transitions in the system, (c) the ability of
the learner to perform synthesis of straight-line programs and
conlunctive predicates from examples and (d) the ability of the learner
to perform theory-driven data interpretation. The method is being
implemented and applied to the problem of learning UNIX file system
commands by observing a tutorial interaction with UNIX.

1. Int reduction
Many important learning tasks mvolve forming theories about

systems that contain state variables. Virtually all software systems, for
example, contain state variables that are difficult to observe. Examples
include operating systems, editors, and mail programs. These systems
contain state variables such as mode switches, default settings,
initialization files, and checkpoint mechanisms. Many problems in the
sciences also involve learning about systems that contain state variables.
In molecular biology, for example. the “state” of an organism includes
the sequence of its DNA molecules. Existing techniques of molecular
genetics provide only very indirect means for observing this state
information.

Learning about a system that has internal state variables is difficult
because the system does not always produce the same outputs when
given the same inputs. Hence, in addition to solving the inherently
underdetermined problem of guessing the relationship between the
inputs and the outputs, the learner must also face the problem of
guessing the structure and value of the state information and the
relationship between the state information and the Inputs and outputs.
This paper presents a method, called the iferafive extension method for
learning about certain state-containing systems.

The problem of learning about systems with state can be formalized
as follows. A state-containing system, M, is a function from DX S to
K X S, where D is the domain set of possible input values. K the range
set of output values, and S the set of internal states of M. When M is
given an input value and a state. it produces an output value and a new

state. Let I be a sequence of input values, <i,, iz, i,> and so be the
initial state. Then the sequence, 0, of output values is generated as
M(il.sJ=(ot,st), M(i~st)=(o& . . . The learning task is to develop a
theory of M given only the sequence 1 of inputs and the sequence 0 of
corresponding outputs. This theory must be strong enough to predict o
and sj given any input ij and previous state

I
s] - L’

In the most general case, this learning problem is unsolvable.
However, if I, 0, and M satisfy certain conditions. then it is possible for
a learning system to form a theory of M by employing the iterative
extension method. During iterative extension. the learning system
develops a sequence of ever more accurate theories. T,. Each theory
explains additional behavior of M either by (a) proposing additional
procedures that access and modify known state variables or (b)
proposing the existence of additional state variables. At each step i, the
learning system applies theory Ti to infer the values of the known state
variables of M at as many points in the training sequence as possible.
Given this knowledge of the state of M, the learning system then
examines the remaining, unexplained data points, looking for some
points that can be explained by simple extensions to T,. First, the
learner looks for points that can be explained by proposing additional
procedures that compute some function of the inputs and the known
state and produce the observed output values and state changes. If no
such points can be found, then the learning system looks for data points
that could be explained by hypothesizing the existence of an additional
state variabie inside M. A new theory T‘,+ , is developed by extending
T, to include either the new procedure or the new state variable, and the
process is repeated. The key assumption underlying this method is that
the learner will be able to identify such procedures and state variables
at each point in the learning process. Notice that this is a greedy
algorithm that attempts to minimize the number of state variables
introduced.

This learning method is significant because it demonstrates how a
learning system can exhibit something other than “one-shot” learnmg.
Most existing learning systems start with some body of knowledge T,,
move to a larger body of knowledge T,,. and halt. In this iterative
extension method, each partial theory T, IS applied to interpret the data
so that the next partial theory T, + 1 can be developed. There is no point
at which the method necessarily halts.

The outline of the paper is as follows. First, prevtous research on
learning about systems with state ts reviewed and compared to the
present effort. Second, a detailed example of the iterative extension
technique is presented and its underlying assumptions are formalized.
Third, a system, called EG, is described that applies the method to form
theories of 13 UNIX file system commands from a trace of a tutorial
session with UNIX. The paper concludes wnh a summary of the main
issues.

From: AAAI-84 Proceedings. Copyright ©1984, AAAI (www.aaai.org). All rights reserved.

2. Review of previous work
Most research on learning has focused on the learning of pure

functions, predicates, and procedures. Al1 of the concept learning work,
for example, has dealt with the problem of determining a definition for
a predicate concept in terms of some concept description language (e.g.,
Mitchell, 1977; Michalski, 1969. 1983; Quinlan, 1982; Winston, 1975).
Research on automatic programming from examples has, for the most
part. focused on the learning of functions in pure Lisp (Hardy. 1975;
Shaw, Swat-tout, & Green, 1975). pure Prolog (Shapiro, 1981) and
similar languages (Amarel, 1983. Bauer, 1975: Siklossy & Sykes, 1975:
Sussman, 1975). The main problems addressed by this body of research
are (a) generalization (determining the class of input values for which
the procedure is defined), (b) loop introduction (determining when to
introduce a loop or recursive call), (c) subroutine introduction
(determining when to create a subroutine to share code among different
parts of the system), (d) conditional induction (determining which
boolean function of the inputs should be tested at a particular choice
point in the program), and (e) planning (determining a sequence of
actions (or a functional expression) that will compute the output as a
function of the input). These are very difficult problems, but they are
orthogonal to the problem of learning about state. For these authors,
there are no state variables that retain their values from one invocation
of the system to the next. If there are any variables at all. they serve
only as temporary variables that disappear when each output is
produced.

One body of research that is superficially similar to the current effort
is research on automatic programming from traces (Biermann &
Krishnaswamy, 1976; Neves, 1981; VanLehn, 1983). The goal of such
work is identical to the work described above-namely, to synthesize a
pure procedure. The similarity with the state-learnmg task stems from
the fact that each individual step within a trace takes place in the
context of some global variables. However. the values of such global
variables are provided to the learner at each point, so this body of
research is not relevant to the present task.

The body of research most similar to that described in this paper is
the work on synthesis of Turing machines and finite-state machines
from traces (Biermann, 1972; Biermann and Feldman, 1972). In the
case of Turing machines, for exampie, the contents of the tape and the
action of the machine at each step are given. The learning task is to
infer the finite-state controller for the machine. This involves
hypothesizing the number of states and the state transition matrix. It is
appropriate to view these systems as having a single state variable
whose value gives the current state of the controller. The internal state
bears a particularly simple relationship to the output. The output is a
simple table lookup given the current state and the input. Hence, the
kind of learning taking place is rote learning of I/O pairs subject to the
organization imposed by the attempts to minimize the number of states
in the finite-state machine. The bulk of the state of the system is stored
on the tape-and that state information is known to the learner. Hence,
these methods are not relevant to the present task either.

The conclusion to be drawn from this review of the literature is that
little or no progress has been made on the problem of learning about
systems that contain state variables.

Now that we have reviewed the literature. we present the iterative
extension method, which can be employed to learn about certain kinds
of state-containing systems.

3. The iterative extension method
The easiest way to describe the iterative extension method is by

example. Suppose that the system to be learned, M, is the following
PASCAL-like program that computes the balance of some checking

account. The account has an overdraft limit, and if a check would cause
the balance to go below this limit. then it is refused and a message is
printed. The special input “OK” causes an additional $100 to be added
to the overdraft limit.

BALANCE :- 0:
LIMIT := -100;
WHILE TRUE DO BEGIN

READ(I);
IF I=0 THEN PRINT(BALANCE)
ELSE IF (I<O) AND (BALANCE+I<LIMIT)

THEN PRINT(“CHECK REFUSED”)
ELSE IF I=“OK”

THEN LIMIT := LIMIT - 100;
PRINT(“OK”)

ELSE BALANCE := BALANCE + I;
PRINT(“NEXT?“);

END ;

This system contains two state variables: BALANCE and LIMIT.
BALANCE is directly observable when I=O, but LIMIT can only be
observed indirectly by knowing BALANCE and I when the message
CHECK REFUSED is printed. Now suppose the learning system is
given the following sequence of I/O pairs (ij,oj).

((0. 0) (0, -100)
(0. 0) (-6, CHECK REFUSED)
(10, NEXT?) (0, -100)

[is ii;
(OK, OK)

(-ilO, NEXT?)
(-6, NEXT?)
(-96, NEXT?)

(0, -100) (0, -200)
(-1, CHECK REFUSED) (-2, CHECK REFUSED)>

Given this I/O sequence, the following paragraphs present one
possible path of inferences that the learner might make in applying the
iterative extension method. Many other paths are possible.

The iterative extension process begins with a null partial theory*, T,.
The learner looks for points in the sequence for which a simple theory
can be developed. The first two I/O pairs provide such a point. The
learner can propose that whenever a 0 in given to M, a 0 is printed.
This is theory T,. Of course, T, is immediately contradicted by the
fourth and fifth I/O pairs. However, this case triggers one of the
learner’s state introduction heuristics. This heuristic-called the
constant-change-constant rule-says: If M exhibits one constant
behavior and then shifts to another constant behavior. hypothesize that
there is a state variable responsible for the behavior and that its value has
changed. Hence, the learner guesses that there is a state variable (SVl)
that is printed whenever i, = 0. The input of i, = 10 changed the value
of SVl. This is theory T,.

Now, by applying this theory, it is possible to interpret several points
in the I/O sequence and infer the value of SVl. In particular, me
learner can determine that after the step in which i, = 10, SVl = 10. and
before that step, SVl =O. This is very nice. because it reduces the
problem of learning about state-containing systems to the problem of
synthesizing pure programs from I/O pairs. In this case, the inputs are
x= 10 and y =O. and the output is z = 10. Existing methods of
expression induction (Langley, 1980; VanLehn. 1983) can be employed
at this point to guess that z = x + y. Translating this back into the
program M, the learner can obtain theory T3 that M is performing the
operation SVl : = SVl + I.

Now, T, is employed to interpret the I/O sequence. T, seems to
hold true for every point in the sequence at which NEXT? is printed.

*In addition to T,,, ,the leammg system must have some pnor knowledge and bias
about the space of possible programs.

However, for the two cases where CHECK REFUSED is printed,
something else is happening. It appears that some conditional behavior
is occurring. Techniques of concept learning can be employed at the
points where i,= - 1 and il0= - 5 to determine that CHECK REFUSED
is being printed when SVl + I < - 100. This provides theory T,.

However, T, breaks down later after the OK command. At that
point, it appears that CHECK REFUSED is being printed when SVl+ I
< -200. The constant-change-constant rule can be applied again here
to propose that there is a second state variable (SV2) that is changed by
the OK command. The final theory says that the CHECK REFUSED
message is printed whenever SVl + I < SV2.

This example shows how the learner can form theories about the
“easy cases” and then apply these theories to simplify the remaining
learning problem in order to expose additional easy cases. This is the
key idea behind the iterative extension method.

4. Conditions on the applicability of the method
What must be true in order for the iterative extension method to

work? This section attempts to formalize (a) the conditions that must
hold for the system M, (b) the conditions that must be satisfied by the
training sequences I and 0. and (c) the capabilities required of the
learning system.

Three sufficient conditions on M can be stated: (a) state
observability, (b) learnability of individual state transitions, and (c) state
decomposability. The condition of state observability says that every
distinct point in the state space, S, of M must lead to an observable
behavioral difference. That is, given any two distinct states, sa and +,
there must be some sequence of inputs I’ such that the sequence of
outputs Ola obtained by placing M in sa and feeding it I’ differs from
the sequence of outputs O’, obtained when M is started in sb.

To describe the remaining two conditions, several auxiliary
definitions are needed. First, let us define the decision-free
decomposition of M as follows. Assume that the true theory of M is
known. Rewrite M to gather all conditional tests into a decision tree
and all actions into straight-line programs in the leaves of that tree.
Define a new subprogram, Mi, for each leaf of this tree. The new
subprogram contains a long conditional test for applicability, C,,
(obtained by traversing the decision tree from the root down to the leaf)
plus the straight-line program, Pi taken from the leaf of the tree. This
decomposition can be viewed as representing M as a set of production
rules such that, in any given situation, the antecedent of exactly one rule
is satisfied**.

In the checking account example of the previous section, the
decision- tree decomposition is

Ml: IF I=0 THEN PRINT(BALANCE)
M,: IF (I<O) AND (BALANCE+I<LIMIT)

THEN PRINT(“CHECK REFUSED”)
M,: IF I=“OK” THEN LIMIT :- LIMIT - 100;

PRINT(“OK”)
M4: IF I>0 OR (I<O) AND (BALANCE+I>=LIMIT)

THEN BALANCE := BALANCE + I;
PRINT(‘*NEXT?“).

Roughly speaking, at each point in the iterative extension process at
least one Mi is accessible because enough is known about the state
variables of M for the learner to observe the effects of M,. Hence. the
learner is able to form a partial theory of at least one M1 at each

**This can always be accomplished, even for embedded loops and subrouunes- by
encoding control information in additional state vanabies

iteration. This partial theory is then applied to interpret more data so
that additional Ml’s will be made accessible.

It should be emphasized that the decision-tree decomposition is an
analytical fiction developed from a privileged viewpoint. The learner
need not represent its theories in production-rule or decision-tree form.

From the decision-tree decomposition, we can define an interaction
graph as follows. The nodes of the graph are the subprograms, {Ml).
Two nodes Mj and M, are connected by a directed edge from M, to M,
if M. modifies state information that is accessed by M,. The interaction

h grap for the checking account example is

M, f- M, +- M,

M2 f Ir

Since M satisfies the state observability condition, it follows that the
interaction graph can be spanned by a root-directed forest. In this case.
the roots of the forest are M, and M,. The iterative extension process
begins by developing (partial) theories of the roots of this forest and
then working backwards along the edges until all nodes have been
learned.

Two more definitions are needed, Define S, to be that portion of the
state information that is directly observable according to theory TJ. In
the checking account example, for instance, S, includes only the state
variable BALANCE, but not LIMIT. Also, define Ml/S to be the
partial theory of Mi involving only the state information o S . In the f
checking account example, M,IS,! is the rule IF I<>d THEN
BALANCE := BALANCE + I; PRINT(“NEXT? “) in which all
mention of LIMIT has been removed.
condition and action parts of M,[S,.

C,ISI and P,lS, denote the

Given these definitions, the second condition-learnability of state
transitions-can be defined as follows. For each j such that T, is a
partial theory, there must exist some M, such that PIIS is learnable from
examples. The intuition behind this condition is that giben only the
state information in Sj, it must be possible to form d straight-line
procedure for PilSj.

The third condition-state decomposability-is the most interesting.
Its role is to ensure that each Ci can be learned and additional state
variables can be hypothesized. In order to learn each such conditional,
it is important to be able to gather examples of situations in which it is
true and false. Such examples can be gathered by establishing known
prior states, {s,), exercising Mi, and then observing the resulting states
{s,+~). But, the process of establishing known prior states and
observing the resulting states requires that the learner apply its current
theory Tj. Since this theory is a partial theory, there might be unknown
side-effects of it that would interact with M, and hence confUse the
process. The state decomposability condition guarantees that this will
not happen. It requires that for each MI in the context of Sj it must be
possible to force the overall system M into a region Q, of state space in
which Ci is true and all changes wrought by P, or any of the (Mk} in T,
either change state information in Sj or else change state information
that does not take M out of the region Q,,.

This condition as stated is difficult to understand. The problems to
look for are cases in which Pi (or one of the {Mk} in Tj) changes a state
variable that is tested by C . If this state variable IS not observable
according to the current pakial theory, then it must be possible-by
controlling the inputs and the values of other state variables-to keep
Ci true.

Each of the Mi in the checking account example satisfies this
decomposability condition. Notice in particular that although C, tests
the value of BALANCE and P4 modifies this value, BALANCE is

98

already observable according to T,. Suppose for a moment that
BALANCE is not observable or is modified by M,. M, would still
satisfy the condition because C, does not test BALA6ICE <n the region
of state space for which DO.

We can obtain a system that violates the decomposability condition
by modifying M, to read IF (I<O) AND (BALANCE+I<LIMIT)
THEN LIMIT*=LIMIT . - 20; PRINT(“CHECK REFUSED”).
This rule M, violates the condition because it modifies LIMIT in such a
way that & condition C, is no longer true, and LIMIT is not in Si.
Every time the learner t&s to observe the value of LIMIT, it change;.
This makes it impossible for the iterative extension approach to
succeed.

Now that we have described the requirements for the learned system,
M, we turn our attention to the requirements for the training sequence.
The training sequence of I/O pairs must exercise a directed spanning
forest of the interaction graph. Furthermore, at the point in the
training sequence where the learning system is attempting to form a
theory of C,l!$, the training sequence must force M into the region Q,,
where valid’ training examples can be obtained and the sequence must
include appropriate surrounding inputs so that the states before and
after M, can be inferred. In other words, the training sequence must
include ‘controlled experiments for each C,IS,. The exact requirements
for the training sequence depend somewhat on the power of the
learning system.

The requirements for the learning system are quite stringent. First,
the learner must be able to perform theory-driven data interpretation.
In other words, given a partial theory Ti, the learning system must be
able to apply that theory to interpret the ‘training data and thereby infer
the values of the observable state variables. In the case of procedural
theories, this involves reasoning both forwards and backwards through
a partial program to obtain constraints on the state variables accessed by
that program. This problem is very difficult because of the
combinatorial explosion of alternative interpretations of the partial
program when the values of the state variables are unknown and
because programs are generally not invertible.

Second, the learner must be able to perform program synthesisfrom
I/O pairs. The principle difficulty here is the straight-line planning
task of finding a sequence of actions Pi that will produce the outputs
from the inputs. Most of the problems encountered in standard AI
planning tasks are met here (e.g., goal interaction, the desire to plan a
single act to achieve multiple goals, combinatorial explosion of operator
choices).

Third, the learner must be able to induce the conditions C, under
which the Pi occur. This is an instance of concepf learning with the
additional twist that the learner is permitted to introduce new state
variables. The learner must have a set of state-introduction heuristics
similar to the constant-change-constant heuristic. Two other heuristics
deserve mention here. One is the toggle rule. It says: If repeated inputs
i seem to shift the system from one behavior to another and back again.
/hen propose that i. causes a boolean state variable to be toggled and that
the Mi’s test this variable. Another heuristic is the information flow rule:
/f unusual input 5 appears as an output at a later time. then suggest the
existence of a new state variable that stores the value of $.

5. An application of the method: forming theories
of UNIX

A program, called EG, is being developed that applies the iterative
extension strategy to the task of learning the file system commands of
the UNIX operating system. This section gives a brief overview of the

99

UNIX learning task and of the two principle components of EG: the
program reasoner and the theory-formation engine.

The UNIX learning task is shown in Figure 5-1. This task was
selected with the goal of developing an automatic knowledge
acquisition system for the Stanford IA project. The IA project is an
attempt to build an intelligent front-end for the diverse operating
systems of the Arpanet UNIX is notoriously difficult to learn
(Norman, 1981). Nonetheless, this learning task satisfies the conditions
of learnability set forth in the preceding section.

Given: ‘A programming language and a set of primitive

operations

The syntax for 13 UNIX file system commands (Is,

mv. cp, rm, In, mkdir. rmdir. chmod, umask, create.

type, pwd, cd)

A partial theory for 2 of these commands (1s. type)

A tutorial session with UNIX where each of the

commands is exercised in detail

Find: Procedural theories for each of the 13 commands.

Figure S-1: The UNIX learning task

UNIX is clearly a state-containing system. The principle state
variables are (a) the file system (including the directory structure, the
attributes and contents of every file, and so on), (b) the current working
directory, and (c) the default file protection code. Within the file
system there is some state information that is only indirectly observable.
For example, information indicating which files are alias file names for
one another is not printed by the default 1 s command. This
information can be observed by, for example, modifying one file and
then checking the contents of the other files. Also information about
the configuration of the file system across several disk devices is not
directly observable. UNIX commands are sufficiently complex that the
training sequence must be carefully designed to guarantee that the
conditions described in the previous section are met.

Notice in Figure 5-l that EG is given some information besides the
I/O training sequence (tutorial session). In particular, EG is given an
initial theory of the 1s and type commands. This was necessary
because EG does not have a state-introduction heuristic capable of
guessing the structure of the file system merely by observing the
training sequence. Indeed, for most applications of the iterative
extension method, it will be necessary to provide the learner with a
starting theory that connects some part of the internal state information
to some observable output.

EG is also given the syntax of the UNIX commands. This
simplification is intended to insulate EG from user interface issues so
that the basic problem of learning about state can be addressed.

The EG program contains two major subprograms: the program
reasoner and the theory-formation engine. The program reasoner is a
general interpreter and symbolic executor for programs expressed in
the language of the programmer’s apprentice “deep plans”
representation (Rich and Shrobe, 1976). It operates in a manner similar
to the EL system (Stallman and Sussman, 1977). EG uses the program
reasoner to perform theory-driven data interpretation. Given a theory
T. and some input and output values, the program reasoner is invoked
td propagate the input and output values through Tj to infer the values

of UNIX state variables. For example, given the output of a directory
listing and a theory of the directory listing command, the program
reasoner can infer the names and attributes of the files in the given
directory.

The program reasoner operates by propagating input and output
values through the partial program just as EL propagates values
through a circuit. As with EL. when the program reasoner cannot
propagate a value, it creates a variable and propagates expressions
involving that variable around the program. One important difference
between EL and the EG program reasoner is that in EG, constraints on
the possible values of the variable can also be propagated. Hence, EG
may not know the exact value of a list, but it may know that the list
begins with (A B C). Another important departure from EL is that the
program reasoner pursues several interpretations in parallel. This is
essential, because it is a rare case that the I/O data admit of only one
interpretation.

The theory-formation engine is a means-ends analysis planner
similar to NOAH (Sacerdoti, 1977). Given starting and ending states of
UNIX, it attempts to construct a plan that will get from the starting
state to the ending state. The operators available to the planner are the
primitive operators in the language (e.g., operators to manipulate lists,
sets, and finite mappings) and any procedures that were included in one
of the previous theories, Tj. EG is capable of developing conditional
plans, but not loops or recursive programs.

6. Summary and Concluding Remarks
The problem of learning about state-containing systems is difficult to

solve because, in addition to solving standard problems of induction
from I/O pairs, the learner must also hypothesize the structure and
values of the internal state variables of the system. For systems that
satisfy the three conditions of state observability, state decomposability,
and state-transition learnability, the iterative extension strategy can be
applied to learn them,

The iterative extension method shows how a learning system can go
beyond “one-shot” learning. Prior knowledge is applied to acquire
further knowledge. The way in which the prior knowledge aids the
learning process is by enabling the learner to interpret additional data
from the training sequence. Theory T, can be applied to interpret
additional data so that T, + 1 can be developed.

A critical condition for the success of the iterative extension method
is that the training sequence be properly structured. An important
question for future research is whether a learning system can be built
that develops its own training sequence by performing controlled
experiments. What additional constraints on the learned system must
hold in order for experimentation to succeed?

A system, called EG, is being constructed that applies the iterative
extension strategy to learn the semantics of UNIX file system
commands.

7. Acknowledgments
I wish to thank James Bennett and Bruce Buchanan for valuable

criticism of drafts of this paper. Advice from Bruce Buchanan and
Mike Genesereth has been extremely valuable in guiding this research.
I thank IBM for supporting this research through an IBM graduate
fellowship.

8. References
Amarel, S., Program synthesis as a theory formation task--problem

representations and solution methods, Rep. No. CBM-TR-135, Dept.
of Computer Science, Rutgers University, 1983.

Bauer. M., A basis for the acquisition of procedures from protocols,
IJCAI-4,226-231, 1975.

Biermann, A. W., On the inference of Turing machines from sample
computations, Artificial Intelligence. Vol. 3, 181-198. 1972.

Biermann, A. W., and Feldman, J. A., On the synthesis of finite-state
machines from samples of their behavior, IEFF Transactions on
Computers, Vol. C-21,592-597. 1972.

Biermann, A. W., and Krishnaswamy, R., Constructing programs from
example computations, IEEE Transacttons on Software Engineering,
Vol. SE-2, 141-153, 1976.

Hardy, S., Synthesis of LISP functions from examples, lJCA1 4,
240-245, 1975.

Langley, P. W., Descriptive discovery processes: Experiments in
Baconian science. Rep. No. CS-80-121, Computer Science
Department, Carnegie-Mellon University, 1980.

Michalski, R. S. On the quasi-minimal solution of the general covering
problem, in V International Symposium on Information Processing,
FCIP 69, Yugoslavia, Vol. A3, 2-12, 1969.

Michalski. R. S., A theory and methodology of inductive learning,
Artificial Intelligence. Vol. 20, 111-161, 1983.

Mitchell, T. M. Version spaces: an approach to concept learning. Rep.
No. STAN-CS-78-711, Computer Science Dept., Stanford
University. (Doctoral dissertation.) 1977.

Neves, D. M., Learning procedures from examples. Unpublished
doctoral dissertation, Department of Psychology, Carnegie-Mellon
University, Pittsburgh, PA, 1981.

Norman, D., The trouble with UNIX, Datamarion, 139-150. November,
1981.

Quinlan. J. R. Learning efficient classification procedures and their
application to chess end-games, in Machine Learning, Michalski,
R. S., Carbonell, J. G., and Mitchell, T. M., eds.. Palo Alto: Tioga,
1982.

Rich, C., and Shrobe, H. E., Initial report on a Lisp programmer’s
apprentice, Rep. No. AI-TR-354. Artifcial Intelligence lab. MIT,
1976.

Sacerdoti, E. D.. A structure for plans and behavior. North-Holland.
1977.

Shapiro, E. Y., Inductive inference of theories from facts. Res. Rept.
192, Department of Computer Science, Yale University, 1981.

Shaw, D. E.. Swartout, W. R., Green, C. C., Inferring LISP programs
from examples, IJCAI4, 351-356, 1975.

Siklossy, L, and Sykes, D., Automatic program synthesis from examples
problems, IJCAI-4,268-273, 1975.

Stallman. R. M., and Sussman. G. J., Forward reasoning and
dependency-directed backtracking in a system for computer-aided
circuit analysis, Artificial Intelligence. Vol. 9. No. 2, 1977.

Sussman, G. J., A computer model of skill acquisition, New York:
American Elsevier, 1975.

Utgoff, P. E., Adjusting bias in concept learning, Proceedmgs of the
International Machine Learning Workshop, Department of
Computer Science, University of Illinois, Urbana. 1983.

VanLehn, K., Felicity conditions for human skill acquisition:
validating an AI-based theory, Rep. No., CIS-21, Xerox Palo Alto
Research Center, 1983.

Winston, P. H., Learning structural descriptions from examples, in The
psychology of computer vision, New York: McGraw-Hill, 157-209,
1975.

