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It is difficult to learn about systems that contain state variables when 
those variables are not directly observable. This paper formalizes this 
learning problem and presents a method called the @rarlve exrension 
merhod for solving it. In the iterative extension method, the learner 
gradually constructs a partial theory of the state-containing system. At 
each stage, the learner applies this partial theory to interpret the I/O 
behavior of the system and obtain additional constraints on the 
structure and values of its state variables. These constraints can be 
dpplied to extend the partial theory by hypothesizing additional 
internal state variables. The improved theory can then be applied to 
interpret more complex I/O behavior. This process continues until a 
theory of the entire system is obtained. Several sufficient conditions for 
the success of this method are presented including (a) the observabtlity 
and decomposability of the state information in the system. (b) the 
learnability of individual state transitions in the system, (c) the ability of 
the learner to perform synthesis of straight-line programs and 
conlunctive predicates from examples and (d) the ability of the learner 
to perform theory-driven data interpretation. The method is being 
implemented and applied to the problem of learning UNIX file system 
commands by observing a tutorial interaction with UNIX. 

1. Int reduction 
Many important learning tasks mvolve forming theories about 

systems that contain state variables. Virtually all software systems, for 
example, contain state variables that are difficult to observe. Examples 
include operating systems, editors, and mail programs. These systems 
contain state variables such as mode switches, default settings, 
initialization files, and checkpoint mechanisms. Many problems in the 
sciences also involve learning about systems that contain state variables. 
In molecular biology, for example. the “state” of an organism includes 
the sequence of its DNA molecules. Existing techniques of molecular 
genetics provide only very indirect means for observing this state 
information. 

Learning about a system that has internal state variables is difficult 
because the system does not always produce the same outputs when 
given the same inputs. Hence, in addition to solving the inherently 
underdetermined problem of guessing the relationship between the 
inputs and the outputs, the learner must also face the problem of 
guessing the structure and value of the state information and the 
relationship between the state information and the Inputs and outputs. 
This paper presents a method, called the iferafive extension method for 
learning about certain state-containing systems. 

The problem of learning about systems with state can be formalized 
as follows. A state-containing system, M, is a function from DX S to 
K X S, where D is the domain set of possible input values. K the range 
set of output values, and S the set of internal states of M. When M is 
given an input value and a state. it produces an output value and a new 

state. Let I be a sequence of input values, <i,, iz, . . . . i,> and so be the 
initial state. Then the sequence, 0, of output values is generated as 
M(il.sJ=(ot,st), M(i~st)=(o& . . . The learning task is to develop a 
theory of M given only the sequence 1 of inputs and the sequence 0 of 
corresponding outputs. This theory must be strong enough to predict o 
and sj given any input ij and previous state 
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In the most general case, this learning problem is unsolvable. 
However, if I, 0, and M satisfy certain conditions. then it is possible for 
a learning system to form a theory of M by employing the iterative 
extension method. During iterative extension. the learning system 
develops a sequence of ever more accurate theories. T,. Each theory 
explains additional behavior of M either by (a) proposing additional 
procedures that access and modify known state variables or (b) 
proposing the existence of additional state variables. At each step i, the 
learning system applies theory Ti to infer the values of the known state 
variables of M at as many points in the training sequence as possible. 
Given this knowledge of the state of M, the learning system then 
examines the remaining, unexplained data points, looking for some 
points that can be explained by simple extensions to T,. First, the 
learner looks for points that can be explained by proposing additional 
procedures that compute some function of the inputs and the known 
state and produce the observed output values and state changes. If no 
such points can be found, then the learning system looks for data points 
that could be explained by hypothesizing the existence of an additional 
state variabie inside M. A new theory T‘,+ , is developed by extending 
T, to include either the new procedure or the new state variable, and the 
process is repeated. The key assumption underlying this method is that 
the learner will be able to identify such procedures and state variables 
at each point in the learning process. Notice that this is a greedy 
algorithm that attempts to minimize the number of state variables 
introduced. 

This learning method is significant because it demonstrates how a 
learning system can exhibit something other than “one-shot” learnmg. 
Most existing learning systems start with some body of knowledge T,, 
move to a larger body of knowledge T,,. and halt. In this iterative 
extension method, each partial theory T, IS applied to interpret the data 
so that the next partial theory T, + 1 can be developed. There is no point 
at which the method necessarily halts. 

The outline of the paper is as follows. First, prevtous research on 
learning about systems with state ts reviewed and compared to the 
present effort. Second, a detailed example of the iterative extension 
technique is presented and its underlying assumptions are formalized. 
Third, a system, called EG, is described that applies the method to form 
theories of 13 UNIX file system commands from a trace of a tutorial 
session with UNIX. The paper concludes wnh a summary of the main 
issues. 
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2. Review of previous work 
Most research on learning has focused on the learning of pure 

functions, predicates, and procedures. Al1 of the concept learning work, 
for example, has dealt with the problem of determining a definition for 
a predicate concept in terms of some concept description language (e.g., 
Mitchell, 1977; Michalski, 1969. 1983; Quinlan, 1982; Winston, 1975). 
Research on automatic programming from examples has, for the most 
part. focused on the learning of functions in pure Lisp (Hardy. 1975; 
Shaw, Swat-tout, & Green, 1975). pure Prolog (Shapiro, 1981) and 
similar languages (Amarel, 1983. Bauer, 1975: Siklossy & Sykes, 1975: 
Sussman, 1975). The main problems addressed by this body of research 
are (a) generalization (determining the class of input values for which 
the procedure is defined), (b) loop introduction (determining when to 
introduce a loop or recursive call), (c) subroutine introduction 
(determining when to create a subroutine to share code among different 
parts of the system), (d) conditional induction (determining which 
boolean function of the inputs should be tested at a particular choice 
point in the program), and (e) planning (determining a sequence of 
actions (or a functional expression) that will compute the output as a 
function of the input). These are very difficult problems, but they are 
orthogonal to the problem of learning about state. For these authors, 
there are no state variables that retain their values from one invocation 
of the system to the next. If there are any variables at all. they serve 
only as temporary variables that disappear when each output is 
produced. 

One body of research that is superficially similar to the current effort 
is research on automatic programming from traces (Biermann & 
Krishnaswamy, 1976; Neves, 1981; VanLehn, 1983). The goal of such 
work is identical to the work described above-namely, to synthesize a 
pure procedure. The similarity with the state-learnmg task stems from 
the fact that each individual step within a trace takes place in the 
context of some global variables. However. the values of such global 
variables are provided to the learner at each point, so this body of 
research is not relevant to the present task. 

The body of research most similar to that described in this paper is 
the work on synthesis of Turing machines and finite-state machines 
from traces (Biermann, 1972; Biermann and Feldman, 1972). In the 
case of Turing machines, for exampie, the contents of the tape and the 
action of the machine at each step are given. The learning task is to 
infer the finite-state controller for the machine. This involves 
hypothesizing the number of states and the state transition matrix. It is 
appropriate to view these systems as having a single state variable 
whose value gives the current state of the controller. The internal state 
bears a particularly simple relationship to the output. The output is a 
simple table lookup given the current state and the input. Hence, the 
kind of learning taking place is rote learning of I/O pairs subject to the 
organization imposed by the attempts to minimize the number of states 
in the finite-state machine. The bulk of the state of the system is stored 
on the tape-and that state information is known to the learner. Hence, 
these methods are not relevant to the present task either. 

The conclusion to be drawn from this review of the literature is that 
little or no progress has been made on the problem of learning about 
systems that contain state variables. 

Now that we have reviewed the literature. we present the iterative 
extension method, which can be employed to learn about certain kinds 
of state-containing systems. 

3. The iterative extension method 
The easiest way to describe the iterative extension method is by 

example. Suppose that the system to be learned, M, is the following 
PASCAL-like program that computes the balance of some checking 

account. The account has an overdraft limit, and if a check would cause 
the balance to go below this limit. then it is refused and a message is 
printed. The special input “OK” causes an additional $100 to be added 
to the overdraft limit. 

BALANCE :- 0: 
LIMIT := -100; 
WHILE TRUE DO BEGIN 

READ(I); 
IF I=0 THEN PRINT(BALANCE) 
ELSE IF (I<O) AND (BALANCE+I<LIMIT) 

THEN PRINT( “CHECK REFUSED”) 
ELSE IF I=“OK” 

THEN LIMIT := LIMIT - 100; 
PRINT( “OK”) 

ELSE BALANCE := BALANCE + I; 
PRINT(“NEXT?“); 

END ; 

This system contains two state variables: BALANCE and LIMIT. 
BALANCE is directly observable when I=O, but LIMIT can only be 
observed indirectly by knowing BALANCE and I when the message 
CHECK REFUSED is printed. Now suppose the learning system is 
given the following sequence of I/O pairs ( ij,oj). 

((0. 0) (0, -100) 
(0. 0) (-6, CHECK REFUSED) 
(10, NEXT?) (0, -100) 

[is ii; 
(OK, OK) 

(-ilO, NEXT?) 
(-6, NEXT?) 
(-96, NEXT?) 

(0, -100) (0, -200) 
(-1, CHECK REFUSED) (-2, CHECK REFUSED)> 

Given this I/O sequence, the following paragraphs present one 
possible path of inferences that the learner might make in applying the 
iterative extension method. Many other paths are possible. 

The iterative extension process begins with a null partial theory*, T,. 
The learner looks for points in the sequence for which a simple theory 
can be developed. The first two I/O pairs provide such a point. The 
learner can propose that whenever a 0 in given to M, a 0 is printed. 
This is theory T,. Of course, T, is immediately contradicted by the 
fourth and fifth I/O pairs. However, this case triggers one of the 
learner’s state introduction heuristics. This heuristic-called the 
constant-change-constant rule-says: If M exhibits one constant 
behavior and then shifts to another constant behavior. hypothesize that 
there is a state variable responsible for the behavior and that its value has 
changed. Hence, the learner guesses that there is a state variable (SVl) 
that is printed whenever i, = 0. The input of i, = 10 changed the value 
of SVl. This is theory T,. 

Now, by applying this theory, it is possible to interpret several points 
in the I/O sequence and infer the value of SVl. In particular, me 
learner can determine that after the step in which i, = 10, SVl = 10. and 
before that step, SVl =O. This is very nice. because it reduces the 
problem of learning about state-containing systems to the problem of 
synthesizing pure programs from I/O pairs. In this case, the inputs are 
x= 10 and y =O. and the output is z = 10. Existing methods of 
expression induction (Langley, 1980; VanLehn. 1983) can be employed 
at this point to guess that z = x + y. Translating this back into the 
program M, the learner can obtain theory T3 that M is performing the 
operation SVl : = SVl + I. 

Now, T, is employed to interpret the I/O sequence. T, seems to 
hold true for every point in the sequence at which NEXT? is printed. 

*In addition to T,,, ,the leammg system must have some pnor knowledge and bias 
about the space of possible programs. 



However, for the two cases where CHECK REFUSED is printed, 
something else is happening. It appears that some conditional behavior 
is occurring. Techniques of concept learning can be employed at the 
points where i,= - 1 and il0= - 5 to determine that CHECK REFUSED 
is being printed when SVl + I < - 100. This provides theory T,. 

However, T, breaks down later after the OK command. At that 
point, it appears that CHECK REFUSED is being printed when SVl+ I 
< -200. The constant-change-constant rule can be applied again here 
to propose that there is a second state variable (SV2) that is changed by 
the OK command. The final theory says that the CHECK REFUSED 
message is printed whenever SVl + I < SV2. 

This example shows how the learner can form theories about the 
“easy cases” and then apply these theories to simplify the remaining 
learning problem in order to expose additional easy cases. This is the 
key idea behind the iterative extension method. 

4. Conditions on the applicability of the method 
What must be true in order for the iterative extension method to 

work? This section attempts to formalize (a) the conditions that must 
hold for the system M, (b) the conditions that must be satisfied by the 
training sequences I and 0. and (c) the capabilities required of the 
learning system. 

Three sufficient conditions on M can be stated: (a) state 
observability, (b) learnability of individual state transitions, and (c) state 
decomposability. The condition of state observability says that every 
distinct point in the state space, S, of M must lead to an observable 
behavioral difference. That is, given any two distinct states, sa and +, 
there must be some sequence of inputs I’ such that the sequence of 
outputs Ola obtained by placing M in sa and feeding it I’ differs from 
the sequence of outputs O’, obtained when M is started in sb. 

To describe the remaining two conditions, several auxiliary 
definitions are needed. First, let us define the decision-free 
decomposition of M as follows. Assume that the true theory of M is 
known. Rewrite M to gather all conditional tests into a decision tree 
and all actions into straight-line programs in the leaves of that tree. 
Define a new subprogram, Mi, for each leaf of this tree. The new 
subprogram contains a long conditional test for applicability, C,, 
(obtained by traversing the decision tree from the root down to the leaf) 
plus the straight-line program, Pi taken from the leaf of the tree. This 
decomposition can be viewed as representing M as a set of production 
rules such that, in any given situation, the antecedent of exactly one rule 
is satisfied**. 

In the checking account example of the previous section, the 
decision- tree decomposition is 

Ml: IF I=0 THEN PRINT(BALANCE) 
M,: IF (I<O) AND (BALANCE+I<LIMIT) 

THEN PRINT( “CHECK REFUSED”) 
M,: IF I=“OK” THEN LIMIT :- LIMIT - 100; 

PRINT( “OK”) 
M4: IF I>0 OR (I<O) AND (BALANCE+I>=LIMIT) 

THEN BALANCE := BALANCE + I; 
PRINT( ‘*NEXT?“). 

Roughly speaking, at each point in the iterative extension process at 
least one Mi is accessible because enough is known about the state 
variables of M for the learner to observe the effects of M,. Hence. the 
learner is able to form a partial theory of at least one M1 at each 

**This can always be accomplished, even for embedded loops and subrouunes- by 
encoding control information in additional state vanabies 

iteration. This partial theory is then applied to interpret more data so 
that additional Ml’s will be made accessible. 

It should be emphasized that the decision-tree decomposition is an 
analytical fiction developed from a privileged viewpoint. The learner 
need not represent its theories in production-rule or decision-tree form. 

From the decision-tree decomposition, we can define an interaction 
graph as follows. The nodes of the graph are the subprograms, {Ml). 
Two nodes Mj and M, are connected by a directed edge from M, to M, 
if M. modifies state information that is accessed by M,. The interaction 

h grap for the checking account example is 

M, f- M, +- M, 

M2 f Ir 

Since M satisfies the state observability condition, it follows that the 
interaction graph can be spanned by a root-directed forest. In this case. 
the roots of the forest are M, and M,. The iterative extension process 
begins by developing (partial) theories of the roots of this forest and 
then working backwards along the edges until all nodes have been 
learned. 

Two more definitions are needed, Define S, to be that portion of the 
state information that is directly observable according to theory TJ. In 
the checking account example, for instance, S, includes only the state 
variable BALANCE, but not LIMIT. Also, define Ml/S to be the 
partial theory of Mi involving only the state information o S . In the f 
checking account example, M,IS,! is the rule IF I<>d THEN 
BALANCE := BALANCE + I; PRINT(“NEXT? “) in which all 
mention of LIMIT has been removed. 
condition and action parts of M,[S,. 

C,ISI and P,lS, denote the 

Given these definitions, the second condition-learnability of state 
transitions-can be defined as follows. For each j such that T, is a 
partial theory, there must exist some M, such that PIIS is learnable from 
examples. The intuition behind this condition is that giben only the 
state information in Sj, it must be possible to form d straight-line 
procedure for PilSj. 

The third condition-state decomposability-is the most interesting. 
Its role is to ensure that each Ci can be learned and additional state 
variables can be hypothesized. In order to learn each such conditional, 
it is important to be able to gather examples of situations in which it is 
true and false. Such examples can be gathered by establishing known 
prior states, {s,), exercising Mi, and then observing the resulting states 
{s,+~). But, the process of establishing known prior states and 
observing the resulting states requires that the learner apply its current 
theory Tj. Since this theory is a partial theory, there might be unknown 
side-effects of it that would interact with M, and hence confUse the 
process. The state decomposability condition guarantees that this will 
not happen. It requires that for each MI in the context of Sj it must be 
possible to force the overall system M into a region Q, of state space in 
which Ci is true and all changes wrought by P, or any of the (Mk} in T, 
either change state information in Sj or else change state information 
that does not take M out of the region Q,,. 

This condition as stated is difficult to understand. The problems to 
look for are cases in which Pi (or one of the {Mk} in Tj) changes a state 
variable that is tested by C . If this state variable IS not observable 
according to the current pakial theory, then it must be possible-by 
controlling the inputs and the values of other state variables-to keep 
Ci true. 

Each of the Mi in the checking account example satisfies this 
decomposability condition. Notice in particular that although C, tests 
the value of BALANCE and P4 modifies this value, BALANCE is 
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already observable according to T,. Suppose for a moment that 
BALANCE is not observable or is modified by M,. M, would still 
satisfy the condition because C, does not test BALA6ICE <n the region 
of state space for which DO. 

We can obtain a system that violates the decomposability condition 
by modifying M, to read IF (I<O) AND (BALANCE+I<LIMIT) 
THEN LIMIT*=LIMIT . - 20; PRINT( “CHECK REFUSED”). 
This rule M, violates the condition because it modifies LIMIT in such a 
way that & condition C, is no longer true, and LIMIT is not in Si. 
Every time the learner t&s to observe the value of LIMIT, it change;. 
This makes it impossible for the iterative extension approach to 
succeed. 

Now that we have described the requirements for the learned system, 
M, we turn our attention to the requirements for the training sequence. 
The training sequence of I/O pairs must exercise a directed spanning 
forest of the interaction graph. Furthermore, at the point in the 
training sequence where the learning system is attempting to form a 
theory of C,l!$, the training sequence must force M into the region Q,, 
where valid’ training examples can be obtained and the sequence must 
include appropriate surrounding inputs so that the states before and 
after M, can be inferred. In other words, the training sequence must 
include ‘controlled experiments for each C,IS,. The exact requirements 
for the training sequence depend somewhat on the power of the 
learning system. 

The requirements for the learning system are quite stringent. First, 
the learner must be able to perform theory-driven data interpretation. 
In other words, given a partial theory Ti, the learning system must be 
able to apply that theory to interpret the ‘training data and thereby infer 
the values of the observable state variables. In the case of procedural 
theories, this involves reasoning both forwards and backwards through 
a partial program to obtain constraints on the state variables accessed by 
that program. This problem is very difficult because of the 
combinatorial explosion of alternative interpretations of the partial 
program when the values of the state variables are unknown and 
because programs are generally not invertible. 

Second, the learner must be able to perform program synthesisfrom 
I/O pairs. The principle difficulty here is the straight-line planning 
task of finding a sequence of actions Pi that will produce the outputs 
from the inputs. Most of the problems encountered in standard AI 
planning tasks are met here (e.g., goal interaction, the desire to plan a 
single act to achieve multiple goals, combinatorial explosion of operator 
choices). 

Third, the learner must be able to induce the conditions C, under 
which the Pi occur. This is an instance of concepf learning with the 
additional twist that the learner is permitted to introduce new state 
variables. The learner must have a set of state-introduction heuristics 
similar to the constant-change-constant heuristic. Two other heuristics 
deserve mention here. One is the toggle rule. It says: If repeated inputs 
i seem to shift the system from one behavior to another and back again. 
/hen propose that i. causes a boolean state variable to be toggled and that 
the Mi’s test this variable. Another heuristic is the information flow rule: 
/f unusual input 5 appears as an output at a later time. then suggest the 
existence of a new state variable that stores the value of $. 

5. An application of the method: forming theories 
of UNIX 

A program, called EG, is being developed that applies the iterative 
extension strategy to the task of learning the file system commands of 
the UNIX operating system. This section gives a brief overview of the 
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UNIX learning task and of the two principle components of EG: the 
program reasoner and the theory-formation engine. 

The UNIX learning task is shown in Figure 5-1. This task was 
selected with the goal of developing an automatic knowledge 
acquisition system for the Stanford IA project. The IA project is an 
attempt to build an intelligent front-end for the diverse operating 
systems of the Arpanet UNIX is notoriously difficult to learn 
(Norman, 1981). Nonetheless, this learning task satisfies the conditions 
of learnability set forth in the preceding section. 

Given: ‘A programming language and a set of primitive 

operations 

The syntax for 13 UNIX file system commands (Is, 

mv. cp, rm, In, mkdir. rmdir. chmod, umask, create. 

type, pwd, cd) 

A partial theory for 2 of these commands (1s. type) 

A tutorial session with UNIX where each of the 

commands is exercised in detail 

Find: Procedural theories for each of the 13 commands. 

Figure S-1: The UNIX learning task 

UNIX is clearly a state-containing system. The principle state 
variables are (a) the file system (including the directory structure, the 
attributes and contents of every file, and so on), (b) the current working 
directory, and (c) the default file protection code. Within the file 
system there is some state information that is only indirectly observable. 
For example, information indicating which files are alias file names for 
one another is not printed by the default 1 s command. This 
information can be observed by, for example, modifying one file and 
then checking the contents of the other files. Also information about 
the configuration of the file system across several disk devices is not 
directly observable. UNIX commands are sufficiently complex that the 
training sequence must be carefully designed to guarantee that the 
conditions described in the previous section are met. 

Notice in Figure 5-l that EG is given some information besides the 
I/O training sequence (tutorial session). In particular, EG is given an 
initial theory of the 1s and type commands. This was necessary 
because EG does not have a state-introduction heuristic capable of 
guessing the structure of the file system merely by observing the 
training sequence. Indeed, for most applications of the iterative 
extension method, it will be necessary to provide the learner with a 
starting theory that connects some part of the internal state information 
to some observable output. 

EG is also given the syntax of the UNIX commands. This 
simplification is intended to insulate EG from user interface issues so 
that the basic problem of learning about state can be addressed. 

The EG program contains two major subprograms: the program 
reasoner and the theory-formation engine. The program reasoner is a 
general interpreter and symbolic executor for programs expressed in 
the language of the programmer’s apprentice “deep plans” 
representation (Rich and Shrobe, 1976). It operates in a manner similar 
to the EL system (Stallman and Sussman, 1977). EG uses the program 
reasoner to perform theory-driven data interpretation. Given a theory 
T. and some input and output values, the program reasoner is invoked 
td propagate the input and output values through Tj to infer the values 



of UNIX state variables. For example, given the output of a directory 
listing and a theory of the directory listing command, the program 
reasoner can infer the names and attributes of the files in the given 
directory. 

The program reasoner operates by propagating input and output 
values through the partial program just as EL propagates values 
through a circuit. As with EL. when the program reasoner cannot 
propagate a value, it creates a variable and propagates expressions 
involving that variable around the program. One important difference 
between EL and the EG program reasoner is that in EG, constraints on 
the possible values of the variable can also be propagated. Hence, EG 
may not know the exact value of a list, but it may know that the list 
begins with (A B C). Another important departure from EL is that the 
program reasoner pursues several interpretations in parallel. This is 
essential, because it is a rare case that the I/O data admit of only one 
interpretation. 

The theory-formation engine is a means-ends analysis planner 
similar to NOAH (Sacerdoti, 1977). Given starting and ending states of 
UNIX, it attempts to construct a plan that will get from the starting 
state to the ending state. The operators available to the planner are the 
primitive operators in the language (e.g., operators to manipulate lists, 
sets, and finite mappings) and any procedures that were included in one 
of the previous theories, Tj. EG is capable of developing conditional 
plans, but not loops or recursive programs. 

6. Summary and Concluding Remarks 
The problem of learning about state-containing systems is difficult to 

solve because, in addition to solving standard problems of induction 
from I/O pairs, the learner must also hypothesize the structure and 
values of the internal state variables of the system. For systems that 
satisfy the three conditions of state observability, state decomposability, 
and state-transition learnability, the iterative extension strategy can be 
applied to learn them, 

The iterative extension method shows how a learning system can go 
beyond “one-shot” learning. Prior knowledge is applied to acquire 
further knowledge. The way in which the prior knowledge aids the 
learning process is by enabling the learner to interpret additional data 
from the training sequence. Theory T, can be applied to interpret 
additional data so that T, + 1 can be developed. 

A critical condition for the success of the iterative extension method 
is that the training sequence be properly structured. An important 
question for future research is whether a learning system can be built 
that develops its own training sequence by performing controlled 
experiments. What additional constraints on the learned system must 
hold in order for experimentation to succeed? 

A system, called EG, is being constructed that applies the iterative 
extension strategy to learn the semantics of UNIX file system 
commands. 
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