Learning Action Models for Multi-Agent Planning

Hankz Hankui Zhuo
Dept of Computer Science,
Sun Yat-sen University,
Guangzhou, China.

zhuohank@mail.sysu.edu.cn

ABSTRACT

In multi-agent planning environments, action models fahesgent
must be given as input. However, creating such action mdulels
hand is difficult and time-consuming, because it requireshédly
representing the complex relationships among differejgatd in
the environment. The problem is compounded in multi-agent e
ronments where agents can take more types of actions. Ipdhis
per, we present an algorithm to learn action models for ragjént
planning systems from a set of input plan traces. Our legraligo-

rithm Lamras automatically generates three kinds of constraints:

(1) constraints on the interactions between agents, (Rtants
on the correctness of the action models for each individgaht
and (3) constraints on actions themselegmras attempts to sat-
isfy these constraints simultaneously using a weightedimamx
satisfiability model known as MAX-SAT, and converts the siol
into action models. We believe this to be one of the first learn
ing algorithms to learn action models in the context of magent
planning environments. We empirically demonstrate tratmas
performs effectively and efficiently in several planningrins.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning -Knowledge acquisitign
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Intelligent agents, Multiagent systems.

General Terms
Algorithms, Performance, Experimentation.

Keywords

Multi-Agent Planning, Multi-Agent Learning, Single-Agelnearn-
ing.

1. INTRODUCTION

Multi-agent environments are complex domains in which &gen
aim at pursuing their goals while interacting with each attreor
multi-agent planning, each agent requires an action masléh-a
put that takes into account the possible prerequisites atubmes,
as well as interactions with other agents. For example, antag
¢: needs to consider many complex situations wieereperative
agents provide conditions such thats actions can be executed.

Cite as: Learning Action Models for Multi-Agent Planning, Hankz Han
kui Zhuo, Hector Mufioz-Avila and Qiang YanBroc. of 10th Int. Conf.

Hector Mufioz-Avila
Dept of Computer Science &
Engineering,

Lehigh University,
Bethlehem, PA, USA
munoz@cse.lehigh.edu

Qiang Yang
Dept of Computer Science &
Engineering,
Hong Kong University of
Science and Technology,
Kowloon, Hong Kong.

gyang@cse.ust.hk

Furthermore, the action model should alloaoperativeagents to
delete conditions as side-effects when providing usefetqndi-
tions, and be able to represent otimem-cooperativeagents that
might interfere withg;’s action. Creating action models for these
agents by hand is difficult and time-consuming due to the ¢exnp
interactions among agents.

Our objective is to explore learning algorithms that carenéti-
cally learn action models in multi-agent environments tizat then
be fed to multi-agent planning systems, such asplhening first
system [11]. In the past, there have been several works omifga
action models for single agents, such/&VS [16] andSLAF [1].
However, these learning algorithms did not take into actouriti-
agent situations. One possibility in tackling this mulieat learn-
ing problem is to assume that there is@acle agentthat knows
and executes all the actions of the agents. In this situatiercan
learn the action models for the oracle agent by usiamngle-agent
learning algorithm, such a&RVS ([16]). This approach, however,
neglects to consider the interactions between the agedtsasm
result, may increase the errors of the learned models dine fod-
tentially large number of interactions among the agents.

In this paper, we present a novel multi-agent action-mashetl-
ing system known asammas. Lanmas stands for [earningAction
M odels forM ulti-AgentSystems). In order foLanmas to explic-
itly capture the interactions between ageh&nmas generates and
exploits an agent-interaction graph in which it capturesititerac-
tions between pairs of agents. Such interactions may happen
one agent’s action provides some positive, or negativectsfon
the actions of other agents. For instance, consider a dowtane
there are two agentsuck and hoist where the action “drive” of
agenttruck provides an effect “(at truck loc)” for the action “load”
of agenthoist, such that agenhoist can load a package to the
“truck” at location “loc”. In this example, the interactisrtan be
somewhat complex because the interactionspasblem-specific
i.e., building such interactions requires to explore abgble po-
tential interactions among agents, and this is difficult ¢ofar a
human designer when there are many agents involved. Tothidve
problem,Lamras builds the relations statistically from a training
data set that consists pfan tracesrom observed multi-agent plan
executions in the past. These built relations help discagent in-
teractions that can then be transformed to weighted contstrand
used in learning (Section 4).

For modeling the agents’ actions, in this work we adopt areete
ministic state-transition model expressed via$i&l PS planning
representation language [4], slightly extended to astocietions
with agents (i.e., each action is annotated with the agexttpér-

on Autonomous Agents and Multiagent Systems (AAMAS ,2011) torms it). This extended language is callsB-STRI PS [2]. In

Tumer, Yolum, Sonenberg and Stone (eds.), May, 2-6, 20lfeiTalai-
wan, pp. XXX-XXX.

Lammas, we first build three types of constraints frgstan traces

Copyright(©) 2011, International Foundation for Autonomous Agents and collected from multi-agent environments. The first type oh<

Multiagent Systems (www.ifaamas.org). All rights resetve

straints encodes the interactions among agents. The sggondf
constraint encodes the correctness requirements of plareath
agent. The third type encodes the constraints of actionsregtiby
STRI PS for each agent. We then satisfy these constraints simul-
taneously using a weighted maximum satisfiability (MAX-SAT
solver, and transform the solution into action models ohesgent.

We organize the paper as follows. We first review related work
in single and multi-agent planning area. Then, we presenfdh
malities for our work, and give a detailed description of bantras
algorithm. Finally, we empirically evaluatearmas in several
planning domains and conclude our work with a discussioruen f
ture works.

2. RELATED WORK

In this section we review previous works on multi-agent plan
ning, learning action models, and multi-agent learning.

2.1 Multi-Agent Planning

Our work is related to multi-agent planning. In [6], Geofgat-
sented a theory of action for reasoning about events in ragknt
or dynamically-changing environments. Wilkins and Myers-p
sented a multi-agent planning architecture for integeatiiverse
technologies into a system capable of solving complex ftenn
problems [14]. Brafman and Domshlak (2008) establishedxan e
ponential upper bound on the complexity of multi-agent plag
problems depending on two parameters quantifying the lefel
agents’ coupling [2]. They quantified the notion of agentaifling
and present a multi-agent planning algorithm that scalgsmpmi-
ally with the size of the problem for fixed coupling levels. sed
on this work, Nissimet al. (2010) presented a distributed multi-
agent planning algorithm [11]. They used distributed c@st
satisfaction (CSP) to coordinate between agents and |¢taahing
to ensure consistency of the coordination points. To sdieedis-
tributed CSP efficiently, they modify some existing methtuitake
advantage of the structure of the underlying planning gnobl

2.2 Action Model Learning

Another related work is action model learning for planniil
(1994) described a system called EXPO, which learns by trapts
ping an incomplete STRIPS-like domain description augeunt
with past planning experiences [7]. Wang (1995) proposedpan
proach to automatically learn planning operators by obsgrex-
pert solution traces and refining the operators throughtipeam
a learning-by-doing paradigm [13]. Holmes and Isbell, 2004)
modeled synthetic items based on experience to constrtionac
models [9]. Walsh and Littman (2008) presented an efficiént a
gorithm for learning action schemas for describing Web isess
[12]. ARMS automatically learns action models from a set of ob-
served plan traces [16] using MAX-SAT. Amir (2005) presente
tractable, exact solutioBLAF for the problem of identifying ac-
tions’ effects in partially observable STRIPS domains [C}ess-
well et al. (2009) developed a system calle@CM designed to
carry out automated induction of action models from setxafre
ple plans. Compared with previous systein®CM learns action
models with action sequences as input, and is shown to woltk we
under the assumption that the output domain model can be-repr
sented in an object-centered representation [3]. In [18]algo-
rithm was presented to learn action models and a Hieranchask
Network (HTN) model simultaneously. In[19], an algorithailed
LAMP is presented to learn complex action models with quanti-
fiers and logical implications. Despite these successestion
model learning, most previous works only focused on lea@yiaic-
tion models forsingle agentsand few work addressed the issue for

multi-agent environments. In contrast, to the best of owvkn
edge, our systerhanmas is aimed at learning action models for
multi-agent environment®er the first time.

2.3 Multi-Agent Learning

There has been much related work in multi-agent learning. In
early work, Guestriret al. (2001) proposed a principled and effi-
cient planning algorithm for cooperative multi-agent dyna en-
vironments [8]. A feature of this algorithm is that the cdoad
tion and communication between the agents is not imposedgebu
rived directly from the system dynamics and function appra¢
tion architecture. Bowling (2005) presented a learningiaigm
for normal-form games in multi-agent environment. He prbve
that the algorithm is guaranteed to converge at most zeztage
regret, while demonstrating the algorithm converges inyreitt
uations of self-play. Wilkinsoret al. (2005) developed a system
to learn an appropriate representation for planning usitlg an
agent’'s observations and actions [15]. The approach sdived
problems, namely, learning an appropriate state-spacesemmta-
tion and learning the effects of agent’s actions. It requiehigh-
dimensional data set, such as sequences of images, to lveagive
input. Zhang and Lesser (2010) presented a new algorithin tha
augmented a basic gradient-ascent algorithm with poliediption
[17]. The key idea behind this algorithm is that a player atjjuts
strategy in response to forecasted strategies of the ddngarg, in-
stead of their current ones. None of these algorithms, hexyean
learn action models for multi-agent planning.

3. PRELIMINARIES

3.1 Satisfiability Problems

The satisfiability problem (SAT) is a decision problem in e
given a propositional logic formula, an assignmentroé andfalse
values are to be determined for the variables to make theeenti
propositional logic formula true. SAT is known to be NP-Cdatp
[5], but the flip side is that it is very powerful in its represational
ability: any propositional logic formula can be re-writtasa CNF
formula. A CNF formulaf is a conjunction of clauses. A clause is
a disjunction of literals. A literal; is a variablex; or its negation
—x;. A variablez; may take values O (for false) or 1 (for true).
The length of a clause is the number of its literals. The size o
f, denoted by|f|, is the sum of the length of all its clauses. An
assignment of truth values to the variables satisfies aliter if
x; takes the value 1, satisfies a literat; if x; takes the value 0,
satisfies a clause if it satisfies at least one literal of thesgs, and
satisfies a CNF formula if it satisfies all the clauses of thenfda.

An empty clause, denoted ki, contains no literals and cannot be
satisfied. An assignment for a CNF formiflas complete if all the
variables occurring irf have been assigned; otherwise, it is partial.

The Max-SAT problem for a CNF formuld is the problem of
finding an assignment of values to variables that minimibes t
number of unsatisfied clauses; equivalently, the aim is tcimmae
the number of satisfied clauses. There are many SAT solvers fo
Max-SAT problems, e.g., Maxsatz [10]. In this paper, we use a
weighted version of Maxsatin our Lammas system.

3.2 Multi-Agent Planning

Our learning problem is to acquire action models for coopera
tive Multi-Agent (MA) planning systems, in which agents act-
der complete state information, and actions have detestigrout-
comes. Specifically, we consider problems expressible infa M

Yhttp://www. laria.u-picardie.fetcli/EnglishPage.html

Table 2: An output example

action models

hoist truck airplane
CactionTift (:action drive
parameters(’>h hoist ?p - package (:action fly
- place) parametersrg‘t?ct) trIL;:CI<e’7;Lorrllt p)lace parameters(”a airplane ?from - airport
precondltlon (and (available ?h) (at ?h ?I P ot 7 Y ?to - airport)
(at 2p 71)) precondmon (3nd (ag t ?from) (;n c'l)ty precondltlon (at ?a 2from)
effect (and (not (at ?p ?loc)) fronl g) (in-city E}o ,)C)) :effect(and (not (at ?a ?from)) (at ?a ?to)))
(not (available 2h))(litting 2h 2p))) effect (and (not (at ?t ?from)) (at ?t ?to))
.. (other action models omitted)

Table 1: An input example
plan trace 1

plan trace 2

50

(lift hoist1 pkgl locl)

(load hoistl pkgl truckl locl)
(drive truckl loc1 airportl cityl)
(move hoistl locl airportl cityl)
(unload hoistl pkg1l truckl airportl]
(load hoistl pkgl airplanel airport1)
(fly airplanel airportl airport2)
g

(in-city ?I - place ?c - city)

(at ?0 - physobj ?I - place)

(in ?p - package ?v - vehicle)
(lifting ?h - hoist ?p - package)
(available ?h - hoist)

(lift ?h - hoist ?p - package ?I - place)
(drop ?h - hoist ?p - package ?I - place)
(unload ?h - hoist ?p - package ?v - vehicle ?I - place)
(load ?h - hoist ?p - package ?v - vehicle ?I - place
(move ?h - hoist ?from - place ?to - place ?c - city|
truck (drive ?t - truck ?from - place ?to - place ?c - City)
airplang (fly ?a - airplane ?from - airport ?to - airport)

sp: (in-city loc1 cityl) (in-city airportl cityl) (in-city la2 city2)

(in-city airport2 city2) (at planel airportl) (at trucklclh) (at pkgl locl)
(at hoistl loc1) (available hoist1)

g: (at pkgl airport2) (at planel airport2)

plan traces

predicates

action| hoist
head-

ings

~

extension of the STRIPS language known as MA-STRIPS [4} For
mally, a MA-STRIPS planning problem for a system of agents
® = {¢;}F_, is given by a quadruplél = (P, {A4A:}%_1,s0,9)

[2], where:

e P is a finite set of atoms (also called propositions),C P
encodes the initial situation, and C P encodes the goal
conditions,

e Forl < i < k, A, is the set of action models that the
agente; is capable of performing. Each action modek
A = |J A; has the standar8TRI PS syntax and semantics,
that is,a = (heading(a),pre(a),add(a),del(a)), where
heading(a) is composed of an action name with zero or
more parametergye(a), add(a) anddel(a) are lists of pre-
conditions, adding effects and deleting effects, respelgti

A solution to anVA- STRI PS problem is gplan which is com-
posed of a sequence of ordered actid@s, . ..,an). These ac-
tions are executed by different agents to project an irstiaieso
to a goalg. A plan traceT is composed of an initial statg, a goal
g, partially observed states, and a plafa1, . . ., an) that projects
the initial state to the goal, i.€l; = {so, a1, s1, - . ., am, g}, Wwhere
the partially observed state can be empty.

3.3 Learning Problem

We formalize our multi-agent learning problem as followiseg
a set of plan traceg, a set of predicate®, and a set of action
headingsA; for each agent);, Lanmas outputs a set of action
models.A; for each ageny;. We show an input/output example in
Tables 1 and 2. The example is taken from litgisticsdomairf,
extended with thé/A-STRI PS conventions ?<string> indicates
that <string> is a variable). In Table 1 we show an example of
plan trace 1 likewise for other plan traces, andg in plan trace
1 are the initial state and the goal, respectively. We assinate
there are three agentsist, truck, andairplane each of which has
its own actions. Ageroisthas five actionéft, drop, unload load
and move while agentdruck andairplane both have one action,
drive andfly respectively. Note that each parameter of the actions
or predicates is associated withygpe A typecan beprimitive, or
composed of other types. In Table 1, the tybysobjis composed
of the typespackage hoist andvehicle vehicleis composed of
truck andairplane andplaceis composed ofocationandairport.
Other typeshoist, package truck, airplane, location airport and
city are all primitive. In Table 2, we show an example action model
for each agent that is learned by our algorithm.

4. THE Lavwas ALGORITHM

In a nutshell, ouL.anmas algorithm performs three steps: (1)
generate constraints based on the inputs, (2) solve thestraimts
using a weighted MAX-SAT solver, and (3) extract action nlede
from the solutions. An overview of theammras algorithm can be
found in Algorithm 1. In the following subsections, we wilvg a
detailed description of each step of Algorithm 1 in turn.

Algorithm 1 An Overview of OurLammas Algorithm

Input: (1) a set of plan trace%; (2) a set of predicate@; 3
action headings for each agefit A;,i=1,.

Output: action models for each agept: AL, 1= 1

. build agent constraints;

build correctness constraints;

build action constraints;

solve all the constraints using a weighted MAX-SAT solver
convert the solving result into action models, i = 1, ..., n;

aRrwdR

4.1 Agent Constraints

The first type of constraints is the coordination consteaamhong
different agents (see step 1 of Algorithm 1). With these trairsgts,
we aim at encoding the interactions between the multipletage
where one agent provides a condition that another agentsneed

2http://www.cs.toronto.edu/aips2000/

Specifically, there may be two kinds of actions that any orenag
can perform:interactiveandnon-interactive The former requires
conditions from other agents or provides conditions foeodgents.
For example, in plan trace 1 of Table 1, the action “(drivecktd
locl1 airportl cityl)” of agentruckl provides the condition “(at
truckl airportl)” for the action “(unload hoistl pkgl trdchir-
portl)” of agenthoistl Non-interactive actions have no interaction
with other agents. For example, in plan trace 1, the actitift “(
hoistl pkgl locl)” of agertioistldoes not affect other agents or is
affected by other agentsAgent constraintencode constraints for
interactiveactions.

To generate agent constraints, we first collect the set qfosh
sible conditionsPC; (a) for each actiorn of agentg; by checking
that the proposition’ parameters are included in the astio®.,

PC;i(a) = {p|para(p) C para(a),for eachp € P},

where para(p) denotes the set of parametersoflikewise for
para(a).

Example 1: In Table 1, let¢q, ¢=2, ¢3 be agentshoist, truck,
airplane respectively. We can build possible conditions for each
agent’s actions as follows:

PCi(lift) = {(at?h?l), (at ?p ?I), (lifting ?h ?p),
(available ?h);
PCy(drop) = {(at?h?l), (at ?p ?l), (lifting ?h ?p),
(available ?h);
PCi(unload) = {(at?h?l), (at?p ?I), (at ?v ?l), (in ?p ?v),
(liting ?h ?p), (available ?h)
PCi(load) = {(at?h?l), (at ?p ?I), (at ?v ?l), (in ?p ?v),
(liting ?h ?p), (available ?h)
PCi(move) = {(at ?h ?from), (at ?h ?to), (in-city ?from ?c),
(in-city ?to ?c};
PCs(drive) = {(at?t?from), (at ?t ?to), (in-city ?from ?c),
(in-city ?to ?c};
PCs(fly) = {(at?a ?from), (at ?a ?th)

After collecting all possible conditions, we compute alfracmon
conditions among pairs of actio(s, a’) from agent pairge;, ¢,).
To do this, we identify an one-to-one correspondence froobaet
of parameters of to a subset of parameters @fsuch that the pa-
rameterm and its corresponding parametef can be instantiated
with the same value. Two parameters can be instantiatedthgth
same value if (1) they have the same type or (2) one is a subfype
the other one (i.e., truck is a type of vehicle). We denote @rgy
such one-to-one correspondence a€'a, .- and the correspond-
ing parameters i@'R,, .- as pair{m, m), wherem andm’ are the
indexes of parameters afanda’. We denote the common condi-
tions for a pair of actionga, a’) of two agentsp; and¢; relative to
a correspondenc€R,, .- as PC;;(a,a’,CR,). For example,
take PC3(drive) and PC1(unload). Assuming

CRdT'i’ue,unload = {(17 3)7 (37 4)}

(i.e., the first parameter afrive corresponds to the third parame-
ter of unload and the third parameter dfive corresponds to the

3We considehoistlandhoist2as instances of the same agent be-
cause they share the same action models.

“For simplicity, we omit theypeassociated with each parameter of
each predicate (e.g., type “package” of parameter “?p” idted).

fourth parameter afinload), we have

PCs (drive, unload, C Rarive,unioad) = {(at ?t ?to}
or

PCo (drive,unload, C Rarive,unioad) = {(at ?v ?I}.

We say that an actiom of an agent; is interactivewith another
actiona’ of agentg;, if and only if there exists a correspondence
CR, . such thatPCj;(a,a’,CR, /) is not empty. Otherwise,
we say that actiom is non-interactive with actiom’, and we say
that actiona is noninteractiveif it is non-interactive with all the
actions of other agents. For example, in Example 1, adidre
is interactive with actiominload while actionlift of agenthoistlis
non-interactive.

In the next step, we generate agent constraints by findirtgell
interactiveactions among agents and building a new structure that
we call aweightedAgentinteractionGraph @-AlG). We do this
by scanning all the plan traces. We definevdAlG by a tuple
(N, E, W), whereN is a set of nodesF is a set of edges, and
W is a set of weights. The nodéé correspond to agents ib. A
directed edge i from an agent; to another agenp; is labeled
by PCi;(a,a’,CR,..), indicating that actiona € A; anda’ €
A; satisfy

(Add(a) N Pre(a’)) C PCyj(a,a’,CRy o).

It is possible that there are multiple edges between the same
agents.

Each weight inW/ is associated with an edge i, measuring
the likelihood of the existence of that edge. This likelida® com-
puted as follows. We scan the set of plan trageéslooking for
situations in whichy; executes actions immediately afigy. In
such situations, we conjecture that some actions of agyeintplan
traces probably provides some conditions for some actibagent
¢;, which corresponds to some edges froito ¢; in w-AlG. The
same edges may be repeatedly created when scanning ples. trac
Each time the same edge is found, its corresponding weidhbevi
incremented by one. The procedure for building the graphas/a
in Algorithm 2.

In step 4 of Algorithm 2,lengthof(t) returns the number of
actions int. In step 8,findCR(ax,ass) returns a set of corre-
sponding parameters betweeranda’. For example, leti;, and
ar, be actions “(drive truckl locl airportl cityl)” and “(untba
hoistl pkgl truckl airportl)”. The first parameter “truckdf’ay,
is the same as the third parameteragf, and the third parameter
“airportl” of ay, is the same as the fourth parametengf. Thus,
the procedurgindC R(ax, ay) returns{(1, 3), (3,4)} as the cor-
responding parameters betweeanda’. In step 13V (e) records
the times that edgeis repeatedly found.

Example 2: From Example 1, we can easily buildiaAlG after
scanning plan trace 1, as shown in Figure 1. After scanniag pl
trace 1, we know that the first two actiolif andload are executed
by agenthoistl, and the third actiordrive is executed by agent
truckl Since thatift is noninteractiveholds, it is not included. For
actionload, sincePC12(load, drive, {(3,1), (4,2)}) # 0, a new
edgee is created, and its weight is set as one. Likewise, we can
create other edges by scanning plan trace 1.

Once thew-AIG is generated, the last step is to generate agent
constraints. Let be an edge that connects an agénto another
agent¢;. We can build the constraints to denote that some action
of agentg; provides some condition for some action of agent
Formally, for each edge connecting agento agents; with a la-
bel PC;;(a,a’,CR,. '), We create the following constraints (one

Algorithm 2 Building w-AlG: G = buildwAIG(T)
input: a set of plan trace®.

output: aw-AlG G = (N, E,W).

1: letN =&, E = (;

2: for eacht € T do

3 n=1;

4: whilen <lengthof(t) do
5: find the maximal numberh,

such that actions

an, ... ,antn Nt are all executed by agetit;
6: find the maximal numberh’, such that actions
Gn+ht1s- -+, Aninin INEare executed by agent;
7: for each two integers € [n,n + k] andk’ € [n + h +
1,m+h+ h']do
8: assumingz, anda, are instances of actiom anda’
respectively, buildC R, .+ = findCR(ax, ax);
9: calculatePCij;(a,a’,CR, o1);
10: if PCU (CL7 a', CRa,a/) ;é (¢ then
11: create an edge with label PC;;(a,a’,CR, o);
12: if e € F then
13: Wi(e) =W(e)+1;
14: else
15: E=FEU{e},andW(e) = 1;
16: end if
17: end if
18: end for
19: n=n+h+1,
20: end while
21: end for

22: return (N, E,W);

PCis(load, fly, {(3,1), (4,2)})

PCiy(load, drive, {(3,1), (4,2)})
W=

-1
PCy(drive, move, {(2,2), (3,3), (4.4)})
-1
i PCyy(drive, unload, {(1,3), (3,4)})

w=1

airplanel

Figure 1: An example ofw-AlG

for eachp € PCij(a,a’,CR, 41)):
p € Addi(a) Ap € Pre;(a’).

The weights of these constraints are directly assigneddyah
ues of W.

4.2 Correctness Constraints

In step 2 of Algorithm 1, we buil@orrectness constraintdirst
introduced by [16]), where we require that the action molelmed
are consistent with the training plan traces. These cdngtrare
imposed on the relationship between ordered actions in ldne p
traces to ensure that the causal links in the plan tracesohtgror
ken. That is, for each preconditigrof an actiona; in a plan trace,

eitherp is in the initial state, or there is an actian (i < j) prior
to a; that addg and there is no action, (i < k < j) between
a; anda; that delete®. For each literal in a states;, eitherg is
in the initial stateso, or there is an action; befores; that addsy
while no actionay, deletes;.

We formulate these constraints as follows.

p € Pre(a;) Ap € Add(a;) A p & Del(ay)
and
g€ gN(qg€soV(qge Add(as) Ng & Del(ar)))

where: < k < j, Del(a;) is a set of deleting predicates of the
actiona; andg is the goal which is composed of a set of proposi-
tions.

In order to ensure that the correctness constraints arenmaéyi
satisfied, we assign these constraints with a maximal weaiglong
all weightsV in w-AIG.

4.3 Action Constraints

In step 3 of Algorithm 1, we build another kind of constraint
known asaction constraintgintroduced by [16]). We introduce
two categories of action constraints. The first is the reshie se-
mantics ofSTRI PS [4], while the second is the result of the statisti-
cal information extracted from the plan traces (i.e., thati@enship
between states and actions revealed by plan traces). $péyifi
we build the constraints as follows.

1. In STRI PS, if a predicatep is a precondition of an action
a, i.e.,p € pre(a), then it should not be added hy i.e.,
p & Add(a); on the other hand, if a predicaies added by
an actiona, i.e.,q € Add(a), then it should not be deleted
by a at the same time, i.e¢q ¢ Del(a). Formally, these
constraints can be represented by

(p € Pre(a) — p € Add(a))
and
(¢ € Add(a) — q & Del(a))

for any actiona from any agent. The weights of these con-
straints are also set as the maximal valu&ofn w-AlG.

2. In general, if a predicatefrequentlyoccurs before an action
a in plan traces (i.ep frequently occurs in the state where
is executed), thenis likely a precondition ofi. Similarly, if
a predicatey frequently occurs aftet (i.e., ¢ frequently oc-
curs in the state afteris executed), theqis likely an added
effect ofa. This idea can be formulated via the following
constraints:

(p € before(a) = p € Pre(a))
and
(¢ € after(a) — q € Add(a))

wherebe fore(a) indicates a set of predicates that occur fre-
quently beforea, while after(a) indicates a set of predi-
cates that occur frequently afterwhere the ternfrequently

is used to indicate that the number of occurrences is larger
than a pre-defined threshold; in each domain we need to ad-
just the threshold value empirically. The weights of these
constraints are set as the number of their occurrences.

4.4 Attaining Action Models

After all three types of constraints are built, we satisfiycain-
straints using a weighted MAX-SAT solver (Step 4 of Algonith
1). Before that, we introduce three new paramel¢(s < i < 3)
to control the relative importance of the three kinds of ¢aists
(which is similar to [18]). We adjust the weights of each kioid
constraints by replacing their weights wigli\iTiwi, wherew; is
the weight of theith kind of constraints. By adjusting; from 0
to 1, we can adjust the weight from 0 #0. The weighted MAX-
SAT solution returns a truth value for each atom. We are éstexd
specifically in the truth values of atoms of the form & pre(a)’,
“p € add(a)’, and “p € del(a)’. We convert the MAX-SAT solu-
tion to action models directly: if an atomp“c Add(a)” is assigned
with true, p will be converted to an adding effect of actian We
can likewise transform an atom to a precondition or a negafv
fect of an action.

5. EXPERIMENTS

In order to verify the effectiveness afammas, we developed
a prototype system, which we compare to a baseline algomthm
three multi-agent domains derived from IPC (InternatioRkin-
ning Competition) domains. These domains are multi-aganayv
tions oflogistics, rover$ andopenstacks

5.1 Dataset and Criterion

In the first domairogistics a set of packages should be moved
on a roadmap from their initial to their target locationsngsthe

ma-openstackgespectively. The action models of these extended
domains were built by hand and usedgasund truthaction mod-
els. Using theground truthaction models, we generated 200 plan
traces from each domain, which was used as the training data f
Lanmas.

We compare the learned action models with the ground truth ac
tion models to calculate the error rates. If a preconditippears
in the precondition list of our learned action model but nothe
precondition list of its corresponding ground-truth actimodel,
the error count of preconditions, denoted By, is incremented
by one (this is a false positive). If a precondition appearthie
precondition list of a ground truth action model but not ia thre-
condition list of the corresponding learned action mod#gl. also
is incremented by one (this is a false negative). Likewise grror
count in the actions’ adding (or deleting) lists is denotgdHaqq
(or Eq4e)). False positives restrict the potential plans that codd b
generated, and they measure the loss in terms of the comedste
of planning. False negatives can give rise to incorrectgland
thus they measure the loss in the soundness.

We us€Tpre, TadaaNdTye to denote the number of all the possible
preconditions, add-effects and delete-effects of an aatiodel,
respectively. We define the error rate of an action maded

_1 (Epre Fadd | Edel
3 Tpre Tadd Tael
where we assume the error rates of preconditions, addiegteff

and deleting effects are equally important, and the rangerrof
rate R(a) is within [0,1]. Furthermore, we define the error rate of

k(a)

given vehicles. The packages can be loaded onto and unloadedhll the action models from agendsin a domain as

off the vehicles, and each vehicle can move along a certdin su
set of road segments. We extend this domain by introduciregth
kinds of agent#oist truck andairplane, each of which has its own
actions, as it is described in Table 1. These agents coeptrat
achieve the specific goals, e.g.haistagent uploads a package to
a truck in its starting location; tiuck agent takes the package from
this location to an airport, hoist agent then unloads the package
from the truck and loads it into an airplane,@rplane agent takes
the package from an airport to another airport and so forthe T
second domain isovers which is inspired by a planetary rovers
planning problem. The domaioverstasks a collection of rovers
with navigating a planetary surface, finding samples (sodk and
image), analyzing them, and communicating the results baek
lander. We extend this domain by introducing four kinds dratg:
soilrover, rockrover, imageroverandcommunicanteach of which
has its own actions. Specifically, the agestélrover, rockrover
andimagerovemerform actions related to sampling soil, rocks, and
images, respectively. In other words, they are respon&ibleans-
porting the soil to agertommunicant The agencommunicants

in charge of analyzing the soil, rocks and images, and conymun
cating the results back to a lander. In the last donopienstacksa
manufacturer has a number of orders, each consisting of hinam
tion of different products, and can only make one producttiha.
We extend this domain by introducing three kinds of agergs:
ceiver, produceranddeliveryman Agentreceiverreceives orders
from clients and passes them to producers. Ageatiucerpro-
duces products according to the orders and passes theniviergel
men. Agentdeliverymandelivers products to clients according to
the orders. With these extended domains, we can test omirlgar
algorithm in multi-agent conventions. In what follows, vefar to
these extended multi-agent domainsres|ogistics ma-roversand

Shttp://www.cs.toronto.edu/aips2000/
Shttp://planning.cis.strath.ac.uk/competition/
"http://zeus.ing.unibs.it/ipc-5/

1
R(®)= Zie@ A Z Z e

i€D acA;

where, |.4;| is the number of action models that the agentis
capable of performing. Using this definition of error ratetlas
performance metric, we present our experimental resutteinext
subsection.

5.2 Experimental Results

We test ouLammas algorithm in the following way. First, we
compare between odrammas algorithm andARMS. Second, we
vary the weights of each type of constraints and observenthe i
pact on performance. Finally, we report on the running tirhe o
Lammas.

5.2.1 Comparison betweeamms and ARMS

One way to conduct the comparison is to consider the existenc
of anoracle agentwhich knows all the actions of each agent in the
multi-agent system, such that the multi-agent system caiebed
as a single-agent system. This will enable the learning tére
for the oracle agent by using previous single-agent actiodel
learning algorithms such a#RMS. These single-agent learning al-
gorithms, however, do not consider the coordination infation
involved in the various agents. lanmmas this information is cap-
tured by the agent constraints. We hypothesize that tramas
algorithm can handle these interactions better, resuitimgduced
error rates.

We set the percentage of observed statds/ &swhich indicates

that one in five consecutive states can be observed. We set the

percentage of observed propositions in each observedastafs.

We also set all\; (1 < i < 3) as 0.5 without any bias. We ran
Lammas andARMS five times by randomly selecting the states and
propositions in plan traces, and calculate the averageof eates.
The comparison result is shown in Figure 2.

(a). ma-logistics

(b). ma-rovers

(c). ma—-openstacks

% ARMS

Lammas

0.25

R(®)

0.15

60

90
plan traces

120 150 180 60

90
plan traces

120 150 180 120 150 180

90
plan traces

Figure 2: The comparison betweerLamras and ARVS

From Figure 2, we can see that the error ra&%) of both

By comparing the\; columns betweemna-logisticsand ma-

Lamras andARMS generally decrease as the number of plan traces rovers we can see that the value &f should be higher iima-

increases, which is consistent with the intuition that wieore
training data is given the percentage of error will decre&seob-
servation, we can also find that the error r&feb) of our Lanmas
algorithm is generally smaller than that ARMS, which suggests
that the agent constraints generated frorAIG can indeed help
improve the learning result in multi-agent environmentstonf
the curves for different domains, ouammas algorithm functions
much better in both domains ofa-logisticsand ma-openstacks
than in the domaima-rovers The results are statistically signifi-
cant; we performed the Student’s t-test and the results .@00
for ma-logistic$0.0416 foma-roversand 0.0002 foma-openstacks
This suggests that the agent constraints work betteradogistics
and ma-openstackshan in ma-rovers The reason for this dif-
ference is because agentsnia-logisticsand ma-openstackbave
more interactions between each other than thatdrrovers

5.2.2 Varying weights of constraints

The importance of different kinds of constraints may beediff
ent in the learning process. We test this hypothesis by ngrtfie
weights of the different kinds of constraints. We fix and A3 as
0.5 and set\; as different values of 0, 0.25, 0.5, 0.75 and 1. We
run Lammas and calculate the error rates with respect to different
values of\;. The error rates are shown in the second/fifth/eighth
columns of Table 3. Likewise, we calculate the error rateh dif-
ferent values of; or A3 when fixing the other twa values at 0.5,
as shown in Table 3. In the table, we highlight the smallesirer
rates of each column with boldface; e.g., in the second coltira
smallest error rate is 0.0601 whexe = 0.75.

From Table 3, we find that; cannot be set too high (the highest
being 1) or set too low (the lowest being 0); otherwise its&or
sponding error rates will be high. This suggests that thgkisiof
constraints cannot be set too high or too low to offset theaichpf
other constraints. Hence, all three kinds of constrairésnaeded
for learning high quality result. For instance, whinis set too
high, its corresponding kind of constraints plays a majée vehile
the other two kinds of constraints play a relatively minder@n
an extreme case, they play no effect when= 1) on the learning
result. On the other hand, whey; is set too low, the importance
of its corresponding kind of constraints is reduced. In tkieegne
case, they have no effect whan= 0.

logistics (to make error rates smaller) than mma-rovers which
suggests agent constraintsnma-logisticsare more important than

in ma-rovers The reason for this is because there are more inter-
actions among agents ima-logisticsthan inma-rovers Hence,
exploiting the agent’s interaction information helps ioye the
learning result.

5.2.3 Running time

To test the running time of tHeanmas algorithm, we sed; (1 <
1 < 3) as 0.5 and ruhanmas with respect to different number of
plan traces. The result is shown in Figure 3. As can be seem fro
the figure, the running time increases polynomially with ioen-
ber of input plan traces. This can be verified by fitting thatieh-
ship between the number of plan traces and the running tirae to
performance curve with a polynomial of order 2 or 3. For exlamp
the fit polynomial forma-logisticsis —0.0002z% + 0.0541z% —
3.1616x + 52.6667.

ARMS also runs in polynomial time on the size of the input
traces. Hence, since both ARMS andnmas are designed to run
off-line there is no real advantage of using one or the otlmer o
based on their running times. However, our experiments ghaw
Lammas has the advantage that it can learn more accurate models
than ARMS for multi-agent environments.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an action-model learnisg sy
tem known ad.ammas, which performs well in multi-agent do-
mains. We learn the structure information to reflect agetgrin
actions, which is shown empirically to improve the qualifyttoe
learned action models. Our approach builds-AIG graph to re-
veal the potential interactions among agents, which regukigent
constraints that are used to capture agent interactiomsgrhting
these agent constraints with previously used action caingtrare
shown to give better learning performance. Our experimsimbsy
thatLanmas is effective in three benchmark domains.

Our work can be extended to more complex multi-agent do-
mains. For example, in a multi-player computer game setdggnts
have their own utilities, and they may cooperate with eablerobr
work against each other. In such situations, we may incatpor
more types of constraints to model adversarial situations.

Table 3: Error rates with respect to different \ values

\. values ma-logistics ma-rovers ma-openstacks
) A1 A2 A3 A1 A2 A3 A1 A2 A3
1 0.1552| 0.1784| 0.1744| 0.1305| 0.1714| 0.1552| 0.1202| 0.1323| 0.1544
0.75 0.0601| 0.2020| 0.1561| 0.1329| 0.1081| 0.1271| 0.0986 | 0.0633| 0.1561
0.5 0.0623| 0.0623| 0.0623| 0.1302| 0.1302| 0.1302| 0.0794| 0.0794| 0.0794
0.25 0.0943| 0.1436| 0.1594| 0.1164| 0.1490| 0.0962 | 0.1118| 0.1561| 0.1294
0 0.1236| 0.1934| 0.2479| 0.1610| 0.1648| 0.2124 | 0.1638| 0.2134| 0.1979
(a) ma—logistics (b) ma-rovers (c) ma—openstacks
250 250 250
;gzoo gzoo ;gzoo mi
o o o
8150 § 150 8 150
£100 2100 2100
3 = =
g 50 3 50 g 50
0 | — ’_‘
30 60 90 120150 180 30 60 90 120 150 180 30 60 90 120 150 180
plan traces plan traces plan traces
Figure 3: The running time of the Lanmas algorithm
Acknowledgement In In Advances in Neural Information Processing Systems 17

Hankz Hankui Zhuo thanks China Postdoctoral Science Foeunda
tion funded project(Grant N0.20100480806) and NationaiuNa
ral Science Foundation of China (61033010) for support of th
research. Qiang Yang thanks Hong Kong RGC/NSFC grant N
HKUST624/09 for support of this research. Hector Munozldvi
thanks the National Science Foundation grant 0642882 fouat

of this research.

[10]

[11]

[12]
7. REFERENCES

[1] E. Amir. Learning partially observable deterministictian

models. InProceedings of IJCAI'052005.

R. I. Brafman and C. Domshlak. From one to many:

Planning for loosely coupled multi-agent systems. In

Proceedings of ICAPS'Q&008.

S. Cresswell, T. L. McCluskey, and M. M. West. Acquisitio

of object-centred domain models from planning examples. In

Proceedings of the Nineteenth International Conference on

Automated Planning and Scheduling (ICAPS;()09.

R. Fikes and N. J. Nilsson. STRIPS: A new approach to the

application of theorem proving to problem solvirgtificial

Intelligence Journalpages 189-208, 1971.

M. R. Garey and D. S. Johnson. Computers and

intractability: A guide to the theory of np-completeness.

W.H. Freeman1979.

M. Georgeff. A theory of action for multiagent planninig.

Proceedings of AAAI'841984.

[7] Y. Gil. Learning by experimentation: Incremental refiment
of incomplete planning domains. In Proceedings of the
Eleventh International Conference on Machine Learning
(ICML-94), pages 87-95, 1994.

[8] C. Guestrin, D. Koller, and R. Parr. Multiagent planningh
factored mdps. IfProceedings of NIPS'Q2001.

[9] M. P. Holmes and C. L. Isbell, Jr. Schema learning:
Experience-based construction of predictive action nsdel

[13]
(2]

[3] [14]
[15]
(4]

[16]
(5]

[17]
(6]

(18]

[19]

(NIPS-04) 2004.

C. M. LI, F. Manya, and J. Planes. New inference rules for
Max-SAT. Journal of Artificial Intelligence Research
30:321-359, October 2007.

R. Nissim, R. I. Brafman, and C. Domshlak. A generallyful
distributed multi-agent planning algorithm. Broceedings

of AAMAS’102010.

T.J. Walsh and M. L. Littman. Efficient learning of aatio
schemas and web-service descriptiondnlRroceedings of
the Twenty-Third AAAI Conference on Atrtificial Intelligenc
(AAAI-08) pages 714-719, 2008.

X. Wang. Learning by observation and practice: An
incremental approach for planning operator acquisitinnl
Proceedings of the Twelfth International Conference on
Machine Learning (ICML-95)pages 549-557, 1995.

D. E. Wilkins and K. L. Myers. A multiagent planning
architecture. IrfProceedings of AIPS'98998.

D. Wilkinson, M. Bowling, and A. Ghodsi. Learning
subjective representations for planning Aroceedings of the
Nineteenth International Joint Conference on Atrtificial
Intelligence (IJCAI) pages 889—894, 2005.

Q. Yang, K. Wu, and Y. Jiang. Learning action models from
plan examples using weighted MAX-SAAtificial
Intelligence Journal171:107-143, February 2007.

C. Zhang and V. Lesser. Multi-Agent Learning with Pglic
Prediction. InProceedings of the 24th National Conference
on Artificial Intelligence (AAAI'10)Atlanta, GA, USA,
2010.

H. H. Zhuo, D. H. Hu, C. Hogg, Q. Yang, and

H. Mufioz-Avila. Learning HTN method preconditions and
action models from partial observations.Rroceedings of
IJCAI, pages 1804-1810, 2009.

H. H. Zhuo, Q. Yang, D. H. Hu, and L. Li. Learning complex
action models with quantifiers and logical implications.
Artificial Intelligence Journal 174(18):1540-1569, 2010.

