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Abstract

Converging theories suggest that organisms learn and exploit probabilistic models of their

environment. However, it remains unclear how such models can be learned in practice.

The open-ended complexity of natural environments means that it is generally infeasible

for organisms to model their environment comprehensively. Alternatively, action-oriented

models attempt to encode a parsimonious representation of adaptive agent-environment

interactions. One approach to learning action-oriented models is to learn online in the

presence of goal-directed behaviours. This constrains an agent to behaviourally relevant

trajectories, reducing the diversity of the data a model need account for. Unfortunately,

this approach can cause models to prematurely converge to sub-optimal solutions,

through a process we refer to as a bad-bootstrap. Here, we exploit the normative frame-

work of active inference to show that efficient action-oriented models can be learned by

balancing goal-oriented and epistemic (information-seeking) behaviours in a principled

manner. We illustrate our approach using a simple agent-based model of bacterial chemo-

taxis. We first demonstrate that learning via goal-directed behaviour indeed constrains

models to behaviorally relevant aspects of the environment, but that this approach is

prone to sub-optimal convergence. We then demonstrate that epistemic behaviours facili-

tate the construction of accurate and comprehensive models, but that these models are

not tailored to any specific behavioural niche and are therefore less efficient in their use of

data. Finally, we show that active inference agents learn models that are parsimonious,

tailored to action, and which avoid bad bootstraps and sub-optimal convergence. Criti-

cally, our results indicate that models learned through active inference can support

adaptive behaviour in spite of, and indeed because of, their departure from veridical repre-

sentations of the environment. Our approach provides a principled method for learning

adaptive models from limited interactions with an environment, highlighting a route to

sample efficient learning algorithms.
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Author summary

Within the popular framework of ‘active inference’, organisms learn internal models of

their environments and use the models to guide goal-directed behaviour. A challenge for

this framework is to explain how such models can be learned in practice, given (i) the rich

complexity of natural environments, and (ii) the circular dependence of model learning

and sensory sampling, which may lead to behaviourally suboptimal models being learned.

Here, we develop an approach in which organisms selectively model those aspects of the

environment that are relevant for acting in a goal-directed manner. Learning such

‘action-oriented’ models requires that agents balance information-seeking and goal-

directed actions in a principled manner, such that both learning and information seeking

are contextualised by goals. Using a combination of theory and simulation modelling, we

show that this approach allows simple but effective models to be learned from relatively

few interactions with the environment. Crucially, our results suggest that action-oriented

models can support adaptive behaviour in spite of, and indeed because of, their departure

from accurate representations of the environment.

Introduction

In order to survive, biological organisms must be able to efficiently adapt to and navigate in

their environment. Converging research in neuroscience, biology, and machine learning sug-

gests that organisms achieve this feat by exploiting probabilistic models of their world [1–8].

These models encode statistical representations of the states and contingencies in an environ-

ment and agent-environment interactions. Such models plausibly endow organisms with

several advantages. For instance, probabilistic models can be used to perform perceptual infer-

ence, implement anticipatory control, overcome sensory noise and delays, and generalize

existing knowledge to new tasks and environments. While encoding a probabilistic model can

be advantageous in these and other ways, natural environments are extremely complex and it

is infeasible to model them in their entirety. Thus it is unclear how organisms with limited

resources could exploit probabilistic models in rich and complex environments.

One approach to this problem is for organisms to selectively model their world in a way

that supports action [9–14]. We refer to such models as action-oriented, as their functional

purpose is to enable adaptive behaviour, rather than to represent the world in a complete or

accurate manner. An action-oriented representation of the world can depart from a veridical

representation in a number of ways. First, because only a subset of the states and contingencies

in an environment will be relevant for behaviour, action-oriented models need not exhaus-

tively model their environment [11]. Moreover, specificmisrepresentationsmay prove to be

useful for action [15–18], indicating that action-oriented models need not be accurate. By

reducing the need for models to be isomorphic with their environment, an action-oriented

approach can increase the tractability of the model learning process [19–24], especially for

organisms with limited resources.

Within an action-oriented approach, an open question is how action-oriented models can

be learned from experience. The environment, in and of itself, provides no distinction between

states and contingencies that are relevant for behaviour and those which are not. However,

organisms do not receive information passively. Rather, organisms actively sample informa-

tion from their environment, a process which plays an important role in both perception and

learning [23, 25–27]. One way that active sampling can facilitate the learning of efficient

action-oriented models is to learn online in the presence of goal-directed actions. Performing
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goal-directed actions restricts an organism to behaviourally relevant trajectories through an

environment. This, in turn, structures sensory data in a behaviorally relevant way, thereby

reducing the diversity and dimensionality of the sampled data (see Fig 1). Therefore, this

approach offers an effective mechanism for learning parsimonious models that are tailored to

an organism’s adaptive requirements [19, 20, 23, 24, 28, 29].

Learning probabilistic models to optimise behaviour has been extensively explored in the

model-based reinforcement learning (RL) literature [8, 30–32]. A significant drawback to

existing methods is that they tend to prematurely converge to sub-optimal solutions [33]. One

reason this occurs is due to the inherent coupling between action-selection and model learn-

ing. At the onset of learning, agents must learn from limited data, and this can lead to models

that initially overfit the environment and, as a consequence, make sub-optimal predictions

about the consequences of action. Subsequently using these models to determine goal-oriented

actions can result in biased and sub-optimal samples from the environment, further

Fig 1. The coupling of learning and control. (A) Goal-directed cycle of learning and control. A schematic overview of the coupling between a model
and its environment when learning takes place in the presence of goal-directed actions. Here, a model is learned based on sampled observations. This
model is then used to determine goal-directed actions, causing goal-relevant transitions in the environment, which in turn generate goal-relevant
observations. (B) Maladaptive cycle of learning and control.A schematic overview of the model-environment coupling when learning in the presence
of goal-directed actions, but for the case where a maladaptive model has been initially learned. The feedback inherent in the online learning scheme
means that the model samples sub-optimal observations, which are subsequently used to update the model, thus entrenching maladaptive cycles of
learning and control (bad bootstraps). (C) Observations sampled from random actions. The spread of observations covers the space of possible
observations uniformly, meaning that a model of these observations must account for a diverse and distributed set of data, increasing the model’s
complexity. The red circle in the upper right quadrant indicates the region of observation space associated with optimal behaviour, which is only
sparsely sampled. Note these are taken from a fictive simulation and are purely illustrative. (D) Observations sampled from sub-optimal goal-directed
actions.Only a small portion of observation space is sampled. A model of this data would, therefore, be more parsimonious in its representation of the
environment. However, the model prescribes actions that cause the agent to selectively sample a sub-optimal region of observation space (i.e outside the
red circle in the upper-right quadrant). As the agent only samples this portion of observation space, the model does not learn about more optimal
behaviours. (E) Observations sampled from optimal goal-directed actions.Here, as inD, the goal-directed nature of action ensures that only a small
portion of observation space is sampled. However, unlikeD, this portion is associated with optimal behaviours.

https://doi.org/10.1371/journal.pcbi.1007805.g001
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compounding the model’s inefficiencies, and ultimately entrenching maladaptive cycles of

learning and control, a process we refer to as a “bad-bootstrap” (see Fig 1).

One obvious approach to resolving this problem is for an organism to perform some

actions, during learning, that are not explicitly goal-oriented. For example, heuristic methods,

such as ε-greedy [34], utilise noise to enable exploration at the start of learning. However, ran-

dom exploration of this sort is likely to be inefficient in rich and complex environments. In

such environments, a more powerful method is to utilize the uncertainty quantified by proba-

bilistic models to determine epistemic (or intrinsic, information-seeking, uncertainty reducing)

actions that attempt to minimize the model uncertainty in a directed manner [35–40]. While

epistemic actions can help avoid bad-bootstraps and sub-optimal convergence, such actions

necessarily increase the diversity and dimensionality of sampled data, thus sacrificing the ben-

efits afforded by learning in the presence of goal-directed actions. Thus, a principled and prag-

matic method is needed to learn action-oriented models in the presence of both goal-directed

and epistemic actions.

In this paper, we develop an effective method for learning action-oriented models. This

method balances goal-directed and epistemic actions in a principled manner, thereby ensuring

that an agent’s model is tailored to goal-relevant aspects of the environment, while also ensur-

ing that epistemic actions are contextualized by and directed towards an agent’s adaptive

requirements. To achieve this, we exploit the theoretical framework of active inference, a nor-

mative theory of perception, learning and action [41–43]. Active inference proposes that

organisms maintain and update a probabilistic model of their typical (habitable) environment

and that the states of an organism change to maximize the evidence for this model. Crucially,

both goal-oriented and epistemic actions are complementary components of a single impera-

tive to maximize model evidence—and are therefore evaluated in a common (information-the-

oretic) currency [38, 40, 43].

We illustrate this approach with a simple agent-based model of bacterial chemotaxis. This

model is not presented as a biologically-plausible account of chemotaxis, but instead, is used as

a relatively simple behaviour to evaluate the hypothesis that adaptive action-oriented models

can be learned via active inference. First, we confirm that learning in the presence of goal-

directed actions leads to parsimonious models that are tailored to specific behavioural niches.

Next, we demonstrate that learning in the presence of goal-directed actions alone can cause

agents to engage in maladaptive cycles of learning and control—‘bad bootstraps’—leading to

premature convergence on sub-optimal solutions. We then show that learning in the presence

of epistemic actions allows agents to learn accurate and exhaustive models of their environ-

ment, but that the learned models are not tailored to any behavioural niche, and are therefore

inefficient and unlikely to scale to complex environments. Finally, we demonstrate that balanc-

ing goal-directed and epistemic actions through active inference provides an effective method

for learning efficient action-oriented models that avoid maladaptive patterns of learning and

control. ‘Active inference’ agents learn well-adapted models from a relatively limited number

of agent-environment interactions and do so in a way that benefits from systematic representa-

tional inaccuracies. Our results indicate that probabilistic models can support adaptive behav-

iour in spite of, and moreover, because of, the fact they depart from veridical representations of

the external environment.

The structure of the paper is as follows. In section two, we outline the active inference for-

malism, with a particular focus on how it prescribes both goal-directed and epistemic behav-

iour. In section three, we present the results of our agent-based simulations, and in section

four, we discuss these results and outline some broader implications. In section five, we outline

the methods used in our simulations, which are based on the Partially Observed Markov
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Decision Process (POMDP) framework, a popular method for modelling choice behaviour

under uncertainty.

Results

Formalism

Active inference is a normative theory that unifies perception, action and learning under a sin-

gle imperative—the minimization of variational free energy [42, 43]. Free energy Fð�; oÞ is

defined as:

Fð�; oÞ ¼ KL½Qðxj�ÞjjPðx; oÞ�

¼ KL½Qðxj�ÞjjPðxjoÞ� � lnPðoÞ
ð1Þ

whereKL is the Kullback-Libeler divergence (KL-divergence) between two probability distri-

butions, both of which are parameterized by the internal states of an agent. The first is the

approximate posterior distribution, Q(x|ϕ), often referred to as the recognition distribution,

which is a distribution over unknown or latent variables x with sufficient statistics ϕ. This dis-

tribution encodes an agent’s ‘beliefs’ about the unknown variables x. Here, the term ‘belief’

does not necessarily refer to beliefs in the cognitive sense but instead implies a probabilistic

representation of unknown variables. The second distribution is the generative model, P(x, o),

which is the joint distribution over unknown variables x and observations o. This distribution

encodes an agent’s probabilistic model of its (internal and external) environment. We provide

two additional re-arrangements of Eq 1 in Appendix 1.

Minimizing free energy has two functional consequences. First, it minimizes the divergence

between the approximate posterior distribution Q(x|ϕ) and the true posterior distribution P(x|

o), thereby implementing a tractable form of approximate Bayesian inference known as varia-

tional Bayes [44]. On this view, perception can be understood as the process of maintaining

and updating beliefs about hidden state variables s, where s 2 S. The hidden state variables

can either be a compressed representation of the potentially high-dimensional observations

(i.e. representing an object), or they can represent quantities that are not directly observable

(i.e. velocity). This casts perception as a process of approximate inference, connecting active

inference to influential theories such as the Bayesian brain hypothesis [45, 46] and predictive

coding [47]. Under active inference, learning can also be understood as a process of approxi-

mate inference [43]. This can be formalized by assuming that agents maintain and update

beliefs over the parameters θ of their generative model, where θ 2 Θ. Finally, action can be cast

as a process of approximate inference by assuming that agents maintain and update beliefs

over control states u, where u 2 U , which prescribe actions a, where a 2 A. The delineation of

control states from actions helps highlight the fact that actions are something which occur ‘in

the world’, whereas control states are unknown random variables that the agent must infer.

Together, this implies that x = (s, θ, u). Approximate inference, encompassing perception,

action, and learning, can then be achieved through the following scheme:

�� ¼ arg min
�

Fð�; oÞ ð2Þ

In other words, as new observations are sampled, the sufficient statistics ϕ are updated in

order to minimize free energy (see the Methods section for the implementation used in the

current simulations, or [48] for an alternative implementation based on the Laplace approxi-

mation). Once the optimal sufficient statistics ϕ� have been identified, the approximate poste-

rior will become an approximation of the true posterior distribution Q(x|ϕ�)�P(x|o), meaning
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that agents will encode approximately optimal beliefs over hidden states s, model parameters θ

and control states u.

The second consequence of minimizing free energy is that it maximizes the Bayesian evi-

dence for an agents generative model, or equivalently, minimizes ‘surprisal’ −ln P(o), which is

the information-theoretic surprise of sampled observations (see Appendix 1). Active inference

proposes that an agent’s goals, preferences and desires are encoded in the generative model as

a prior preference for favourable observations (e.g. blood temperature at 37˚) [49]. In other

words, it proposes that an agent’s generative model is biased towards favourable states of

affairs. These prior preferences could be learned from experience, or alternatively, acquired

through processes operating on evolutionary timescales. The process of actively minimizing

free energy will, therefore, ensure that these favourable (i.e. probable) observations are prefer-

entially sampled [50]. However, model evidence cannot be directly maximized through the

inference scheme described by Eq 2, as the marginal probability of observations P(o) is inde-

pendent of the sufficient statistics ϕ. Therefore, to maximize model evidence, agents must act

in order to change their observations. This process can be achieved in a principled manner by

selecting actions in order to minimize expected free energy, which is the free energy that is

expected to occur from executing some (sequence of) actions [38, 51].

Expected free energy. To ensure that actions minimize (the path integral of) free energy,

an agent’s generative model should specify that control states are a-priorimore likely if they

are expected to minimize free energy in the future, thus ensuring that the process of approxi-

mate inference assigns a higher posterior probability to the control states that are expected to

minimize free energy [52]. The expected free energy for a candidate control state Gτ(ϕτ, ut)

quantifies the free energy expected at some future time τ given the execution of some control

state ut, where t is the current time point and:

Gtð�t; utÞ ¼ EQðot;xtjut ;�tÞ
½ lnQðxtjut; �tÞ � lnPðot; xtjutÞ�

� EQðot;xtjut ;�tÞ
½ lnQðxtjut; �tÞ � lnQðxtjot; ut; �tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðNegativeÞ epistemic value

�EQðot ;xtjut ;�tÞ
½ lnPðotÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðNegativeÞ instrumental value

ð3Þ

We describe the formal relationship between free energy and expected free energy in

Appendix 2. In order to evaluate expected free energy, agents must first evaluate the expected

consequences of control, or formally, evaluate the predictive approximate posterior Q(oτ, xτ|ut,

ϕτ). We refer readers to the Methods section for a description of this process.

The second (approximate) equality of Eq 3 demonstrates that expected free energy is com-

posed of an instrumental (or extrinsic, pragmatic, goal-directed) component and an epistemic

(or intrinsic, uncertainty-reducing, information-seeking) component. Note that under active

inference, agents are mandated tominimize expected free energy, and as both the instrumental

and epistemic terms are in a negative form in Eq 3, expected free energy will be minimized

when instrumental and epistemic value are maximized. We provide a full derivation of the sec-

ond equality in Appendix 3, but note here that the decomposition of expected free energy into

instrumental and epistemic value affords an intuitive explanation. Namely, as free energy

quantifies the divergence between an agent’s current beliefs and its model of the world, this

divergence can be minimized via two methods: by changing beliefs such that they align with

observations (associated with maximizing epistemic value), or by changing observations such

that they align with beliefs (associated with maximizing instrumental value).
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Formally, instrumental value quantifies the degree to which the predicted observations oτ—

given by the predictive approximate posterior Q(oτ, xτ|ut, ϕτ)—are consistent with the agents

prior beliefs P(oτ). In other words, this term will be maximized when an agent expects to sam-

ple observations that are consistent with its prior beliefs. As an agent’s generative model

assigns a higher prior probability to favourable observations (i.e. goals and desires), maximiz-

ing instrumental value can be associated with promoting ‘goal-directed’ behaviours. This for-

malizes the notion that, under active inference, agents seek to maximize the evidence for their

(biased) model of the world, rather than seeking to maximize reward as a separate construct

(as in, e.g., reinforcement learning) [49].

Conversely, epistemic value quantifies the expected reduction in uncertainty in the beliefs

over unknown variables x. Formally, it quantifies the expected information gain for the predic-

tive approximate posterior Q(xτ|ut, ϕτ). By noting that that x can be factorized into hidden

states s and model parameters θ, we can rewrite positive epistemic value (i.e. the term to be

maximized) as:

EQðot;st;yjut ;�tÞ
½ lnQðstjot; ut; �tÞ � lnQðstjut; �tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

State epistemic value

þ

EQðot;st;yjut ;�tÞ
½ lnQðyjst; ot; ut; �tÞ � lnQðyj�tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parameter epistemic value

ð4Þ

We provide a full derivation of Eq 4 in Appendix 4 and discuss its relationship to several

established formalisms. Here, we have decomposed epistemic value into state epistemic value,

or salience, and parameter epistemic value, or novelty[53]. State epistemic value quantifies the

degree to which the expected observations oτ reduce the uncertainty in an agent’s beliefs about

the hidden states sτ. In contrast, parameter epistemic value quantifies the degree to which the

expected observations oτ and expected hidden states sτ reduce the uncertainty in an agent’s

beliefs about model parameters θ. Thus, by maintaining a distribution over model parameters,

the uncertainty in an agent’s generative model can be quantified, allowing for ‘known

unknowns’ to be identified and subsequently acted upon [40]. Maximizing parameter episte-

mic value, therefore, causes agents to sample novel agent-environment interactions, promot-

ing the exploration of the environment in a principled manner.

Summary. In summary, active inference proposes that agents learn and update a probabi-

listic model of their world, and act to maximize the evidence for this model. However, in con-

trast to previous ‘perception-oriented’ approaches to constructing probabilistic models [11],

active inference requires an agent’s model to be intrinsically biased towards certain (favourable)

observations. Therefore, the goal is not necessarily to construct a model that accurately captures

the true causal structure underlying observations, but is instead to learn a model that is tailored

to a specific set of prior preferences, and thus tailored to a specific set of agent-environment

interactions. Moreover, by ensuring that actions maximize evidence for a (biased) model of the

world, active inference prescribes a trade-off between instrumental and epistemic actions. Cru-

cially, the fact that actions are selected based on both instrumental and epistemic value means

that epistemic foraging will be contextualized by an agent’s prior preferences. Specifically, epi-

stemic foraging will be biased towards parts of the environment that also provide instrumental

value, as these parts will entail a lower expected free energy relative to those that provide no

instrumental value. Moreover, the degree to which epistemic value determines the selection of

actions will depend on instrumental value. Thus, when the instrumental value afforded by a set

of actions is low, epistemic value will dominate action selection, whereas if actions afford a high

degree of instrumental value, epistemic value will have less influence on the action selection.

Finally, as agents maintain beliefs about (and thus quantify the uncertainty of) the hidden state

PLOS COMPUTATIONAL BIOLOGY Learning action-oriented models

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007805 April 23, 2020 7 / 30

https://doi.org/10.1371/journal.pcbi.1007805


of the environment and the parameters of their generative model, epistemic value promotes

agents to actively reduce the uncertainty in both of these beliefs.

Simulation details

To test our hypothesis that acting to minimize expected free energy will lead to the learning of

well-adapted action-oriented models, we empirically compare the types of model that are

learned under four different action strategies. These are the (i) minimization of expected free

energy, (ii) maximization of instrumental value, (iii) maximization of epistemic value, and (iv)

random action selection, where the minimization of expected free energy (i) corresponds to a

combination of the instrumental (ii) and epistemic (iii) strategies. For each strategy, we assess

model performance after a range of model learning durations. We assess model performance

across several criteria, including whether or not the models can prescribe well-adapted behav-

iour, the complexity and accuracy of the learned models, whether the models are tailored to a

behavioural niche, and whether or not the models become entrenched in maladaptive cycles of

learning and control (‘bad-bootstraps’).

We implement a simple agent-based model of bacterial chemotaxis that infers and learns

based on the active inference scheme described above. Specifically, our model implements the

‘adaptive gradient climbing’ behaviour of E. coli. Note that we do not propose our model as a

biologically realistic account of bacterial chemotaxis. Instead, we use chemotaxis as a relatively

simple behaviour that permits a thorough analysis of the learned models. However, the active

inference scheme described in this paper has a degree of biological plausibility [54], and there

is some evidence to suggest that bacteria engage in model-based behaviours [55–58]. This

behaviour depends on the chemical gradient at the bacteria’s current orientation. In positive

chemical gradients, bacteria ‘run’ forward in the direction of their current orientation. In neg-

ative chemical gradients, bacteria ‘tumble’, resulting in a new orientation being sampled. This

behaviour, therefore, implements a rudimentary biased random-walk towards higher concen-

trations of chemicals. To simulate the adaptive gradient climbing behaviour of E. coli, we

utilize the partially observed Markov Decision Process (POMDP) framework [59]. This frame-

work implies that agents do not have direct access to the true state of the environment, that the

state of the environment only depends on the previous state and the agent’s previous action,

and that all variables and time are discrete. Note that while agents operate on discrete repre-

sentations of the environment, the true states of the environment (i.e the agent’s position, the

location of the chemical source, and the chemical concentrations) are continuous.

At each time step t, agents receive one of two observations, either a positive chemical gradi-

ent opos or a negative chemical gradient oneg. The chemical gradient is computed as a function

of space (whether the agent is facing towards the chemical source) rather than time (whether

the agent is moving towards the chemical source) [60], and thus only depends on the agent’s

current position and orientation, and the position of the chemical source. After receiving an

observation, agents update their beliefs in order to minimize free energy. In the current simu-

lations, agents maintain and update beliefs over three variables. The first is the hidden state

variable s, which represents the agent’s belief about the local chemical gradient, and which has

a domain of {spos, sneg}, representing positive and negative chemical gradients, respectively.

The second belief is over the parameters θ of the agent’s generative model, which describe the

probability of transitions in the environment, given action. The final belief is over the control

variable u, which has the domain of {urun, utumble}, representing running and tumbling

respectively. Agents are also endowed with the prior belief that observing positive chemical

gradients opos is a-priorimore likely, such that the evidence for an agent’s model is maximized

(and free energy minimized) when sampling positive chemical gradients.
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Once beliefs have been updated, agents execute one of two actions, either run arun or tum-

ble atumble, depending on which of the corresponding control states was inferred to be more

likely. Running causes the agent to move forward one unit in the direction of their current ori-

entation, whereas tumbling causes the agent to sample a new orientation at random. The envi-

ronment is then updated and a new time step begins. We refer the reader to the Methods

section for a full description of the agents generative model, approximate posterior, and the

corresponding update equations for inference, learning and action.

Agents

All of the action strategies we compare infer posterior beliefs over hidden states, model param-

eters and control states via the minimization of free energy. However, they differ in how they

assign prior (and thus posterior) probability to control states. The first strategy we consider is

based on the minimization of expected free energy, which entails the following prior over con-

trol states:

PEFEðutÞ ¼ sð EQðot;st;yjut ;�tÞ
½ lnQðyjst; ot; ut; �tÞ � lnQðyj�tÞ�

þ EQðot;st ;yjut ;�tÞ
½ lnPðotÞ�Þ

ð5Þ

where σ(�) is the softmax function, which ensures that PEFE(ut) is a valid distribution. The

first term corresponds to parameter epistemic value, or ‘novelty’, and quantifies the amount

of information the agent expects to gain about their (beliefs about their) model parameters

θ. The second term corresponds to instrumental value and quantifies the degree to which

the expected observations conform to prior beliefs. Therefore, the expected free energy

agent selects actions that are expected to result in probable (‘favourable’) observations, and

that are expected to disclose maximal information about the consequences of action. Note

that in the following simulations, agents have no uncertainty in their likelihood distribution,

which describes the relationship between the hidden state variables s and the observations o

(see Methods). As such, the expected free energy agent does not assign probability to control

states based on state epistemic value. Formally, when there is no uncertainty in the likeli-

hood distribution, state epistemic value reduces to the entropy of the predictive approximate

posterior over s, see [38]. For simplicity, we have omitted this term from the current

simulations.

The second strategy is the instrumental, or ‘goal-directed’, strategy, which utilizes the fol-

lowing prior over control states:

PInstrumental ðutÞ ¼ sðEQðot;st;yjut ;�tÞ
½ lnPðotÞ�Þ ð6Þ

The instrumental agent, therefore, selects actions that are expected to give rise to favourable

observations. The third strategy is the epistemic, or ‘information-seeking’, strategy, which is

governed by the following prior over control states:

PEpistemic ðutÞ ¼ sðEQðot ;st ;yjut ;�tÞ
½ lnQðyjst; ot; ut; �tÞ � lnQðyj�tÞ�Þ ð7Þ

The epistemic agent selects actions that are expected to disclose maximal information about

model parameters. The final strategy is the random strategy, which assigns prior probability to

actions at random. These models were chosen to explore the relative contributions of instru-

mental and epistemic value to model learning, and crucially, to understand their combined

influence. We predict that, when acting to minimize expected free energy, agent’s will engage

in a form of goal-directed exploration that is biased by their prior preferences, leading to adap-

tive action-oriented models. In contrast, we expect that (i) the instrumental agent will
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occasionally become entrenched in bad-bootstraps, due to the lack of exploration, and (ii) the

epistemic agent will explore portions of state space irrelevant to behaviour, leading to slower

learning. An overview of the model can be found in Fig 2 and implementation details for all

four strategies are provided in the Methods section.

Fig 2. Simulation &model details. (A) Agent overview. Agents act in an environment which is described by states ψ, which are
unknown to the agent but generate observations o. The agent maintains beliefs about the state of the environment s, however, s and
ψ need not be homologous. Agents also maintain beliefs about control states u, which in turn prescribe actions a. Finally, the agent
maintains beliefs over model parameters θ, which describe the probability of transitions in s under different control states u. (B)
Actions. At each time step, agents can either run, which moves them forward one unit in the direction of their current orientation,
or tumble, which causes a new orientation to be sampled at random. (C) Approximate posterior. The factorization of the
approximate posterior, and the definition of each factor. In this figure, x denotes the variables that an agent infers and ϕ denotes the
parameters of the approximate posterior. We refer readers to Methods section for a full description of these distributions. (D)
Generative model. The factorization of the generative model and the definition of each factor. Here, λ denotes the parameters of
likelihood distribution and α denotes the parameters of the prior distribution over parameters. We again refer readers to the
methods section for full descriptions of these distributions. (E) Free energy minimization. The general scheme for free energy
minimization under the mean-field assumption. We refer readers to the Methods section for further details. (F) Control state

inference. The update equation for control state inference, where ~Q ¼ Qðot; st; yjutÞ. This equation highlights the difference
between the three action-strategies considered in the following simulations.

https://doi.org/10.1371/journal.pcbi.1007805.g002
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Model performance

We first assess whether the learned models can successfully generate chemotactic behaviour.

We quantify this by measuring an agent’s distance from the source after an additional (i.e.,

post-learning) testing phase. Each testing phase begins by placing an agent at a random loca-

tion and orientation 400 units from the chemical source. The agent is then left to act in the

environment for 1000 time steps, utilizing the model that was learned during the preceding

learning phase. No additional learning takes place during the testing phase. As the epistemic

and random action strategies do not assign any instrumental (goal-oriented) value to actions,

there is no tendency for them to navigate towards the chemical source. Therefore, to ensure a

fair comparison between action strategies, all agents select actions based on the minimization

of expected free energy during the testing phase. This allows us to assess whether the epistemic

and random strategies can learn models that can support chemotactic behaviour, and ensures

that any observed differences are determined solely by attributes of the learned models.

Fig 3a shows the final distance from the source at the end of the testing phase, plotted

against the duration of the preceding learning phase, and averaged over 300 learned models

for each action strategy and learning duration. The final distance of the expected free energy,

epistemic and random strategies decreases with the amount of time spent learning, meaning

that these action strategies were able to learn models which support chemotactic behaviour.

However, the instrumental strategy shows little improvement over baseline performance, irre-

spective of the amount of time spent learning. Note that the first learning period consists of

zero learning steps, meaning that the corresponding distance gives the (averaged) baseline per-

formance for a randomly initialized model. This is less than the initial distance (400 units) as

some of the randomly initialized models can support chemotaxis without any learning. The

final distance from the source for the expected free energy, epistemic and random agents is not

zero due to the nature of the adaptive-hill climbing chemotaxis strategy, which causes agents

to not to settle directly on the source, but instead navigate around its local vicinity. Models

Fig 3. (A) Chemotactic performance. The average final distance from the chemical source after an additional testing phase, in which agents utilized
the models learned in the corresponding learning phase. The average distance is plotted against the number of steps in the corresponding learning
phase and is averaged over 300 models for each strategy and learning duration. Note that the x-axis denotes the number of time steps in the learning
phase, rather than the number of time steps in the subsequent testing phase. Filled regions show +-SEM. (B) Examples trajectories. The spatial
trajectories of agents who successfully navigated up the chemical gradient towards the chemical source.

https://doi.org/10.1371/journal.pcbi.1007805.g003
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learned by the expected free energy strategy consistently finish close to the chemical source,

and learn chemotactic behaviour after fewer learning steps relative to the other strategies.

Model accuracy

We nowmove on to consider whether learning in the presence of goal-oriented behaviour

leads to models that are tailored to a behavioural niche. First, we assess how each action strat-

egy affects the overall accuracy of the learned models. To test this, we measure the KL-diver-

gence between the learned models and a ‘true’ model of agent-environment dynamics. Here, a

‘true’ model describes a model that has the same variables, structure and fixed parameters, but

which has had infinite training data over all possible action-state contingencies. Due to the fact

that the true generative process does not admit the notion of a prior, we measure the accuracy

of the expectation of the approximate posterior distribution over parameters θ, i.e. E½Qðyj�aÞ�.

Fig 4a shows the average accuracy of the learned models for each action strategy, plotted

against the amount of time spent learning. These results demonstrate that the epistemic and

random strategies consistently learn the most accurate models while the instrumental strategy

consistently learns the least accurate models. However, the expected free energy strategy learns

a model that is significantly less accurate than both the epistemic and random strategies, indi-

cating that the most well-adapted models are not necessarily the most accurate.

Fig 4a additionally suggests that the epistemic and random strategies learn equally accurate

models. This result may appear surprising, as the epistemic strategy actively seeks out transi-

tions that are expected to improve model accuracy. However, given the limited number of pos-

sible state transitions in the current simulation, it is plausible that a random strategy offers a

near-optimal solution to exploration. To confirm this, we evaluated the accuracy of models

learned by the epistemic and random strategies in high-dimensional state space. The results of

this experiment are given in Appendix 6, where it can be seen that the epistemic strategy does

indeed learn models that are considerably more accurate than the random strategy.

We hypothesized that the expected free energy and instrumental strategies learned less

accurate models because they were acting in a goal-oriented manner while learning. This, in

turn, may have caused these strategies to selectively sample particular (behaviourally-relevant)

transitions, at the cost of sampling other (behaviourally-irrelevant) transitions less frequently.

To confirm this, we measured the distribution of state transitions sampled by each of the strat-

egies after 1000 time steps learning, averaged over 300 agents. Because agents learn an action-

conditioned representation of state transitions, i.e. P(st|st−1, ut−1, θ), we separate state transitions

that follow agents running from those that follow agents tumbling. Here, the notion of a state

transition refers to a change in the state of the environment as a function of time, i.e. a positive

to negative state transition implies that the agent was in a positive chemical gradient at time t

and a negative chemical gradient at t + 1. These results are shown in Fig 4b. For the epistemic

and random strategies, the distribution is uniformly spread over (realizable) state transitions

(running-induced transitions from positive to negative and negative to positive gradients are

rare for all strategies, as such transitions can only occur in small portions of the environment).

In contrast, the distributions sampled by the expected free energy and instrumental strategies

are heavily biased towards a running-induced transitions from positive gradients to again a

positive gradient. This is the transition that occurs when an agent is ‘running up the chemical

gradient’, i.e., performing chemotaxis. The bias means that the remaining transitions between

states are sampled less, relative to the epistemic and random strategies.

How do the learned models differ, among the four action strategies? To address this ques-

tion, we measured the post-learning change in different distributions of the full model. This

change reflects a measure of ‘how much’ an agent has learned about that particular
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Fig 4. Model accuracy. (A) Model accuracy. The average negativemodel accuracy, measured as the KL-divergence from a ‘true’ model of agent-
environment dynamics. The accuracy is plotted against the number of steps in the corresponding learning phase and is averaged over 300 models for
each strategy. Filled regions show +-SEM. (B) Distributions of state transitions. The distribution of action-dependent state transitions for each
strategy over 1000 learning steps, averaged over 300 models for each strategy. Here, columns indicate the state at the previous time step, whereas rows
indicate the state following the transition. The top matrices display transitions that follow from tumbling, whereas the bottommatrices display
transitions that follow from running. The numbers indicate the percentage of time that the corresponding state transition was encountered. For
instance, the top left box denotes the percentage of time the agent experienced negative to negative state transitions following a tumbling action. Note
that the distribution of transitions encountered by the epistemic and random strategies corresponds, within a small margin of error, to the distribution
of transitions encountered by a ‘true’ model, i.e. a model that has been learned from infinite transitions with no behavioural biases. (C) Change in
distributions. The average change in each of the distributions of the full learned model, measured as the KL-divergence between the original
(randomly-initialized) distributions and the final (post-learning) distribution. Refer to Methods section for a description of these distributions. (D & E)
Reversed preferences. These results are the same as for panels B & C, but for the case where agents have reversed preferences (i.e. priors). Here, agents
believe running down chemical gradients to be more likely. The results demonstrate that the models of expected free energy and instrumental agent are
sensitive to prior preferences. (F) Active/passive prediction error. The cumulative mean squared error of counterfactual predictions about state
transitions, over 1000 steps learning and averaged over 300 agents. The active condition describes predictions of state-transitions following self-
determined actions, whereas the passive condition describes predictions following random actions.

https://doi.org/10.1371/journal.pcbi.1007805.g004
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distribution. As described in the Methods, the full transition model P(st|st−1, ut−1, θ) is com-

posed of four separate categorical distributions. The first describes the effects of tumbling in

negative gradients, the second describes the effects of tumbling in positive gradients, the third

describes the effects of running in negative gradients, and fourth describes the effects of run-

ning in positive gradients. Fig 4c plots the KL-divergence between each of the original (ran-

domly-initialized) distributions and the subsequent (post-learning) distributions. These

results show that the expected free energy and instrumental strategies learn substantially less

about three of the distributions, compared to the epistemic and random agents, explaining the

overall reduction of accuracy displayed in Fig 4a. However, for the distribution describing the

effects of running in positive gradients, the instrumental strategy learns as much as the episte-

mic and random strategies, while the expected free energy strategy learns substantially more.

These results, therefore, demonstrate that acting in a goal-oriented manner biases an agent to

preferentially sample particular (goal-relevant) transitions in the environment and that this, in

turn, causes agents to learn more about these (goal-relevant) transitions.

To further verify this result, we repeated the analysis described in Fig 4b and 4c, but for the

case where agents learn in the presence of reversed prior preferences (i.e. the agents believe

that observing negative chemical gradients is a-priorimore likely, and thus preferable). The

results for these simulations are shown in 4d and 4e, where it can be seen that the expected

free energy and instrumental strategy now preferentially sample running-induced transitions

from negative to negative gradients, and learn more about the distribution describing the

effects of running in negative gradients. This is the distribution relevant to navigating down

the chemical gradient, a result that is expected if the learned models are biased towards prior

preferences. By contrast, the models learned by the epistemic and random agents are not

dependent on their prior beliefs or preferences.

Active and passive accuracy

The previous results suggest that learning in the presence of goal-directed behaviour leads to

models that are biased towards certain patterns of agent-environment interaction. To further

elucidate this point, we distinguish between active accuracy and passive accuracy. We define

active accuracy as the accuracy of a model in the presence of the agents own self-determined

actions (i.e. the actions chosen according to the agent’s strategy), and passive accuracy as the

accuracy of a model in the presence of random actions. We measured both the passive and

active accuracy of the models learned under different action strategies following 300 time-

steps of learning. To do this, we let agents act in their environment for an additional 1000 time

steps according to their action strategy, and, at each time step, measured the accuracy of their

counterfactual predictions about state transitions. In the active condition, agents predicted the

consequence of a self-determined action, whereas, in the passive condition, agents predicted

the consequence of a randomly selected action. We then measured the mean squared error

between the agents’ predictions and the ‘true’ predictions (i.e. the predictions given by the

‘true’ model, as described for Fig 4a). The accumulated prediction errors for the passive and

active conditions are shown in Fig 4f, averaged over 300 learned models for each strategy. As

expected, there is no difference between the passive and active condition for the random strat-

egy, as this strategy selects actions at random. The epistemic strategy shows the highest active

error, which is due to the fact that the epistemic strategy seeks out novel (and thus less predict-

able) transitions. The instrumental strategy has the lowest active prediction error, and there-

fore the highest active accuracy. This is consistent with the view that learning in the presence

of goal-directed behaviour allows agents to learn models that are accurate in the presence of

their self-determined behaviour. Finally, the expected free energy strategy has an active error
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that is lower than the epistemic and random strategies, but higher than the instrumental strat-

egy. This arises from the fact that the expected free energy strategy balances both goal-directed

and epistemic actions. Note that, in the current context, active accuracy is improved at the cost

of passive accuracy. While the instrumental strategy learns the least accurate model, it is the

most accurate at predicting the consequences of its self-determined actions.

Pruning parameters

We now consider whether learning in the presence of goal-directed behaviour leads to simpler

models of agent-environment dynamics. A principled way to approach this question is to ask

whether each of the model’s parameters are increasing or decreasing the Bayesian evidence for

the overall model, which provides a measure of both the accuracy and the complexity of a

model. In brief, if a parameter decreases model evidence, then removing—or ‘pruning’—that

parameter results in a model with higher evidence. This procedure can, therefore, provide a

measure of how many ‘redundant’ parameters a model has, which, in turn, provides a measure

of the complexity of a model (assuming that redundant parameters can, and should, be

removed). We utilise the method of Bayesian model reduction [61] to evaluate the evidence for

models with removed parameters. This procedure allows us to evaluate the evidence for

reduced models without having to refit the model’s parameters.

We first let each of the strategies learn a model for 500 time-steps. The parameters opti-

mized during this learning period are then treated as priors for an additional (i.e., post-learn-

ing) testing phase. During this testing phase, agents act according to their respective strategies

for an additional 500 time-steps, resulting in posterior estimates of the parameters.

Given the prior parameters α and posterior parameters ϕα, we can evaluate an approxima-

tion for the change in model evidence under a reduced model through the equation:

DF ¼ lnBð�aÞ þ lnBða0Þ � lnBðaÞ � lnBð�a þ a0 � aÞ ð8Þ

where ln B(�) is the beta function, α0 are the prior parameters of the reduced model, and F is

the variational free energy, which provides a tractable approximation of the Bayesian model

evidence. See [40] for a derivation of Eq 8. If DF is positive, then the reduced model—

described by the reduced priors α0—has less evidence than the full model, and vice versa. We

remove each of the prior parameters individually by setting their value to zero and evaluate

Eq 8. Fig 5a shows the percentage of trials that each parameter was pruned for each of the

action strategies, averaged over 300 trials for each strategy. For the instrumental and epistemic

agents, the parameters describing the effects of running in negative gradients and tumbling in

positive gradients are most often pruned, as these are the parameters that are irrelevant to che-

motaxis (which involves running in positive chemical gradients and tumbling in negative

chemical gradients). In Fig 5b we plot the total number of parameters pruned, averaged over

300 agents. These results demonstrate that the expected free energy strategy entails models

that have the highest number of redundant parameters, followed by the instrumental strategy.

Under the assumption that redundant parameters can, and should, be pruned, the expected

free energy and instrumental strategies learn simpler models, compared to the epistemic and

random strategies. These results additionally suggest that pruning parameters will prove to be

more beneficial (in terms of model complexity) for action-oriented models.

Bad bootstraps and sub-optimal convergence

In the Introduction, we hypothesized that ‘bad-bootstraps’ occur when agents (and their mod-

els) become stuck in maladaptive cycles of learning and control, resulting in an eventual failure

to learn well-adapted models. To test for the presence of bad-bootstraps, we allowed agents to
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learn models over an extended period of 4,000-time steps. We allowed this additional time to

exclude the possibility that opportunities to learn had not been fully exploited by agents. (We

additionally conducted the same experiment with 10,000-time steps; results were unchanged).

We then tested the learned models on their ability to support chemotaxis, by allowing them to

interact with their environment for an additional 1,000 time-steps using the expected free

energy action strategy. To quantify whether the learned models were able to perform chemo-

taxis in any form, we measured whether the agent had moved more than 50 units towards the

source by the end of the testing period.

After 4,000 learning steps, all the agents that had learned models using the expected free

energy, epistemic or random strategies were able to perform at least some chemotaxis. In con-

trast 36% of the agents that had learned models under maximization of instrumental value did

not engage in any chemotaxis at all. To better understand why instrumental agents frequently

failed to learn well-adapted models, even after significant learning, we provide an analysis of a

randomly selected failed model. This model prescribes a behavioural profile whereby agents

continually tumble, even in positive chemical gradients. This arises from the belief that tum-

bling is more likely to give rise to positive gradients, even when the agent is in positive gradi-

ents. In other words, the model encodes the erroneous belief that, in positive gradients,

running will be less likely to give rise to positive chemical gradients, relative to tumbling.

Given this belief, the agent continually tumbles, and therefore never samples information that

disconfirms this maladaptive belief. This exemplifies a ‘bad bootstrap’ arising from the goal-

directed nature of the agent’s action strategy.

Finally, we explore how assigning epistemic value to actions can help overcome bad boot-

straps. We analyse an agent which acts to minimize expected free energy, quantifying the rela-

tive contributions of epistemic and instrumental value to running and tumbling. We initialize

an agent with a randomly selected maladapted model and allow the agent to interact with (and

learn from) the environment according to the expected free energy action strategy (i.e using

the E.F.E agent). In Fig 6a, we plot the (negative) expected free energy of the running and tum-

bling control states over time, along with the relative contributions of instrumental and episte-

mic value. These results show that the (negative) expected free energy for the tumble control

state is initially higher than that of the running control state because the agent believes there is

less instrumental value in running. This causes the agent to tumble, which in turn causes the

agent to gather information about the effects of tumbling. Consequently, the model becomes

Fig 5. Model complexity. (A) Number of pruned parameters. Percentage of times each parameter was pruned, averaged over 300 agents. A parameter
was pruned if it decreased the evidence for agents model. (B) Total pruned parameters. The average number of total number of pruned parameters,
averaged over 300 agents.

https://doi.org/10.1371/journal.pcbi.1007805.g005

PLOS COMPUTATIONAL BIOLOGY Learning action-oriented models

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007805 April 23, 2020 16 / 30

https://doi.org/10.1371/journal.pcbi.1007805.g005
https://doi.org/10.1371/journal.pcbi.1007805


less uncertain about the expected effects of tumbling, thereby decreasing the epistemic value of

tumbling (and thus the (negative) expected free energy of tumbling). This continues until the

negative expected free energy of tumbling becomes less than that of running, which has

remained constant (since the agent has not yet gained any new information about running).

At this point, the agent infers running to be the more likely action, which causes the agent to

run. The epistemic value of running now starts to decrease, but as it does so the new sampled

observations disclose information that running is very likely to cause transitions from positive

to positive gradients (i.e., to maintain positive gradients). The instrumental value of running

(and thus the negative expected free energy of running) therefore sharply increases in positive

gradients, causing the agent to continue to run in positive gradients. Note that this agent did

not fully resolve its uncertainty about tumbling. This highlights the fact that, under active

inference, the epistemic value of an action is contextualized by current instrumental

imperatives.

Discussion

Equipping agents with generative models provides a powerful solution to prescribing well-

adapted behaviour in structured environments. However, these models must, at least in part,

be learned. For behaving agents—i.e., biological agents—the learning of generative models

necessarily takes place in the presence of actions; i.e., in an ‘online’ fashion, during ongoing

behaviour. Such models must also be geared towards prescribing actions that are useful for the

agent. How to learn such ‘action-oriented’ models poses significant challenges for both

computational biology and model-based reinforcement learning (RL).

Fig 6. Overcoming bad-bootstraps. (A) Expected free energy. A plot of expected free energy for run and tumble control states
overtime for an agent with an initially maladapted model. This model encodes the erroneous belief that running is less likely to give rise
to positive chemical gradients, relative to tumbling. Therefore, at the start of the trial, the instrumental value of tumbling (green dotted
line) is higher than the instrumental value of running (purple dotted line). The epistemic value of both running and tumbling (brown
and red dotted lines, respectively) is initially the same. As the (negative) expected free energy for tumbling (orange line) is higher than
the (negative) expected free energy for running (blue line), the agent tumbles for the first 900 time steps. During this time, agents gain
information about the effects of tumbling, and the epistemic value of tumbling decreases, causing the negative expected free energy for
tumbling to also decrease. This continues until the negative expected free energy is for tumbling is lower than the negative expected free
energy for running, which has remained constant. Agents then run and gather information about the effects of running. This causes the
epistemic value of running to decrease, but also causes the instrumental value of running to sharply increase, as the new information
disconfirms their erroneous belief that running will not give rise to positive gradients.

https://doi.org/10.1371/journal.pcbi.1007805.g006
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In this paper, we have demonstrated that the active inference framework provides a princi-

pled and pragmatic approach to learning adaptive action-oriented models. Under this

approach, the minimization of expected free energy prescribes an intrinsic and context-sensi-

tive balance between goal-directed (instrumental) and information-seeking (epistemic) behav-

iours, thereby shaping the learning of the underlying generative models. After developing the

formal framework, we illustrated its utility using a simple agent-based model of bacterial che-

motaxis. We compared three situations. When agents learned solely in the presence of goal-

directed actions, the learned models were specialized to the agent’s behavioural niche but were

prone to converging to sub-optimal solutions, due to the instantiation of ‘bad-bootstraps’.

Conversely, when agents learned solely in the presence of epistemic (information-seeking)

actions, they learned accurate models which avoided sub-optimal convergence, but at the cost

of reduced sample efficiency due to the lack of behavioural specialisation.

Finally, we showed that the minimisation of expected free-energy effectively-balanced goal-

directed and information-seeking actions, and that the models learned in the presence of these

actions were tailored to the agent’s behaviours and goal, and were also robust to bad-boot-

straps. Learning took place efficiently, requiring fewer interactions with the environment. The

learned models were also less complex, relative to other strategies. Importantly, models learned

via active inference departed in systematic ways from a veridical representation of the environ-

ment’s true structure. For these agents, the learned models supported adaptive behaviour not

only in spite of, but because of, their departure from veridicality.

Learning action-oriented models: Good and bad bootstraps

When learning generative models online in the presence of actions, there is a circular dynamic

in which learning is coupled to behaviour. The (partially) learned models are used to specify

actions, and these actions provide new data which is then used to update the model. This circu-

lar dynamic (or ‘information self-structuring’ [20]) raises the potential for both ‘good’ and

‘bad’ bootstraps.

If actions are selected based purely on (expected) instrumental value, then the resulting

learned models will be biased towards an agent’s behavioural profile and goals (or prior prefer-

ences under the active inference framework—see Fig 4c & 4e), but will also be strongly con-

strained by the model’s initial conditions. In our simulations, we showed that learning from

instrumental actions was prone to the instantiation of ‘bad-bootstraps’. Specifically, we dem-

onstrated that these agents typically learned an initially maladapted model due to insufficient

data or sub-optimal initialisation, and then subsequently used this model to determine goal-

directed actions. This resulted in agents engaging with the environment in a sub-optimal and

biased manner, thereby reintroducing sub-optimal data and causing models to become

entrenched within local minima. Recent work in model-based RL has identified this coupling

to be one of the major obstacles facing current model-based RL algorithms [62]. More gener-

ally, it is likely that bad-bootstraps are a prevalent phenomenon whenever parameters are used

to determine the data from which the parameters are learned. Indeed, this problem played a

significant role in motivating the (now common) use of ‘experience replay’ in model-free RL

[63]. Experience replay describes the method of storing past experiences to be later sampled

from for learning, thus breaking the tight coupling between learning and behaviour.

In the context of online learning, one way to avoid bad-bootstraps is to select actions based

on (expected) epistemic value [37, 40, 53], where agents seek out novel interactions based on

counterfactually informed beliefs about which actions will lead to informative transitions. By

utilising the uncertainty encoded by (beliefs about) model parameters, this approach can pro-

actively identify optimally informative transitions. In our simulations, we showed that agents
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using this strategy learned models that asymptoted towards veridicality and, as such, were not

tuned to any specific behavioural niche. This occurred because pure epistemic exploration

treats all uncertainties as equally important, meaning that agents were driven to resolve uncer-

tainty about all possible agent-environment contingencies. While models learned using this

strategy were able to support chemotactic behaviour (Fig 3a), learning was highly sample-

inefficient.

We have argued that a more suitable approach is to balance instrumental and epistemic

actions in a principled way during learning. This is what is achieved by the active inference

framework, via minimization of expected free energy. Minimizing expected free energy means

that the model uncertainties associated with an agent’s goals and desires are prioritised over

those which are not. Furthermore, it means that model uncertainties are only resolved until an

agent (believes that it) is sufficiently able to achieve its goals, such that agents need not resolve

all of their model uncertainty. In our simulations, we showed that active inference agents

learned models in a sample-efficient way, avoided being caught up in bad bootstraps, and gen-

erated well-adapted behaviour in our chemotaxis setting. Our data, therefore, support the

hypothesis that learning via active inference provides a principled and pragmatic approach to

the learning of well-adapted action-oriented generative models.

Exploration vs. exploitation

Balancing epistemic and instrumental actions recalls the well-known trade-off between explo-

ration and exploitation in reinforcement learning. In this context, the simplest formulation of

this trade-off can be construed as a model-free notion in which exploration involves random

actions. One example of this simple formulation is the ε-greedy algorithm which utilises noises

in the action selection process to overcome premature sub-optimal convergence [34]. While

an ε-greedy strategy might help overcome ‘bad-bootstraps’ by occasionally promoting explor-

atory actions, the undirected nature of random exploration is unlikely to scale to complex

environments.

The balance between epistemic and instrumental actions in our active inference agents is

more closely connected to the exploration-exploitation trade-off in model-based RL. As in our

agents, model-based RL agents often employ exploratory actions that are selected to resolve

model uncertainty. As we have noted, such actions can help avoid sub-optimal convergence

(bad bootstraps), especially at the early stages of learning where data is sparse. However, in

model-based RL it is normally assumed that, in the limit, a maximally comprehensive and

maximally accurate (i.e., veridical) model would be optimal. This is exemplified by approaches

that conduct an initial ‘exploration’ phase—in which the task is to construct a veridical model

from as few samples as possible—followed by a subsequent ‘exploitation’ phase. By contrast,

our approach highlights the importance of ‘goal-directed exploration’, in which the aim is not

to resolve all uncertainty to construct a maximally accurate representation of the environment,

but is instead to selectively resolve uncertainty until adaptive behaviour is (predicted to be)

possible. Moreover, we have demonstrated that goal-directed exploration allows exploration to

be contextualised by an agent’s goals. Specifically, we have shown that acting to simultaneously

explore and exploit the environment causes exploration to be biased towards parts of state

space that are relevant for goal-directed behaviour, thereby increasing the efficiency of explo-

ration. Therefore, our work suggests that acting to minimise expected free energy can benefit

learning by naturally affording an efficient form of goal-directed exploration.

This kind of goal-directed exploration highlights an alternative perspective on the explora-

tion-exploitation trade-off. We demonstrated that “exploitation”—traditionally associated

with exploiting the agent’s current knowledge to accumulate reward—can also lead to a type of
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constrained learning that leads to ‘action-oriented’ representations of the environment. In

other words, our results suggest that, in the context of model-learning, the “explore-exploit”

dilemma additionally entails an “explore-constrain” dilemma. This is granted a formal inter-

pretation under the active inference framework—as instrumental actions are associated with

soliciting observations that are consistent with the model’s prior expectations. However, given

the formal relationship between instrumental value in active inference and the Bellman equa-

tions [43], a similar trade-off can be expected to arise in any model-based RL paradigm.

Model non-veridicality

In our simulations, models learned through active inference were able to support adaptive

behaviour even when their structure and variables departed significantly from an accurate

representation of the environment. By design, the models utilized a severely impoverished

representation of the environment. An exhaustive representation would have required models

to encode information about the agent’s position, orientation, the position of the chemical

source, as well as a spatial map of the chemical concentrations so that determining an adaptive

action would require a complex transformation of these variables. In contrast, our model was

able to support adaptive behaviour by simply encoding a representation of the instantaneous

effects of action on the local chemical gradient. Therefore, rather than encoding a rich and

exhaustive internal mirror of nature, the model encoded a parsimonious representation of sen-

sorimotor couplings that were relevant for enabling action [64]. While this particular ‘action-

oriented’ representation was built-in through the design of the generative model, it nonetheless

underlines that models need not be homologous with their environment if they are to support

adaptive behaviour.

By evaluating the number of ‘redundant’ model parameters (as evaluated through Bayesian

model reduction), we further demonstrated that learning in the presence of goal-directed

behaviour leads to models that were more parsimonious in their representation of the environ-

ment, relative to other strategies (Fig 5b). Moreover, we showed that this strategy leads to

models that did not asymptote to veridicality, in terms of the accuracy of the model’s parame-

ters (Fig 4a). Interestingly, these agents nevertheless displayed high ‘active accuracy’ (i.e., the

predictive accuracy in the presence of self-determined actions), highlighting the importance of

contextualising model accuracy in terms of an agent’s actions and goals.

While these results demonstrate that models can support adaptive behaviour in spite of

their misrepresentation of the environment and that these misrepresentations afforded bene-

fits in terms of sample efficiency and model complexity, the active inference framework addi-

tionally provides a mechanism whereby misrepresentation enables adaptive behaviour. Active

inference necessarily requires an organism’s model to include systematic misrepresentations

of the environment, by virtue of the organism’s existence. Specifically, an organism’s genera-

tive model must encode a set of prior beliefs that distinguish it from its external environment.

For instance, the chemotaxis agents in the current simulation encoded the belief that observing

positive chemical gradients was a-priorimore likely. From an objective and passive point of

view, these prior beliefs are, by definition, false. However, these systematic misrepresentations

can be realized through action, thereby giving rise to apparently purposeful and autopoietic

behaviour. Thus, under active inference, adaptive behaviour is achieved because of, and not

just in spite of, a models departure from veridicality [15].

Encoding frugal and parsimonious models plausibly afford organism’s several evolutionary

advantages. First, the number of model parameters will likely correlate with the metabolic cost

of that model. Moreover, simpler models will be quicker to deploy in the service of action and

perception and will be less likely to overfit the environment. This perspective, therefore,
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suggests that the degree to which exhaustive and accurate models are constructed should be

mandated by the degree to which they are necessary for on-going survival. If the mapping

between the external environment and allostatic responses is complex and manifold, then

faithfully modelling features of the environment may pay dividends. However, in the case that

frugal approximations and rough heuristics can be employed in the service of adaptive behav-

iour, such faithful modelling should be avoided. We showed that such “action-oriented” mod-

els arise naturally under ecologically valid learning conditions, namely, learning online in the

presence of goal-directed behaviour. However, action-oriented behaviour that was adapted to

the agent’s goals only arose under the minimisation of expected free energy.

It is natural to ask whether there are scenarios in which action-oriented models might

impede effective learning and adaptation. One such candidate scenario is transfer learning

[65], whereby existing knowledge is reapplied to novel tasks or environments. This form of

learning is likely to be important in biology, as for many organisms preferences can change

over time. If the novel task or environment requires a pattern of sensorimotor coordination

that is distinct from learned patterns of sensorimotor coordination, then a more exhaustive

model of the environment might indeed facilitate transfer learning. However, if adaptation in

the novel task or environment can be achieved through a subset of existing patterns of sensori-

motor coordination (i.e. in going from walking to running), then one might expect an action-

oriented representation to facilitate transfer learning, in so far as such representations reduce

the search space for learning the new behaviour. This type of transfer learning is closely related

to curriculum learning [66], whereby complex behaviours are learned progressively by first

learning a series of simpler behaviours. We leave it to future work to explore the scenarios in

which action-oriented models enable efficient transfer and curriculum learning.

Active inference

While any approach to balancing exploration and exploitation is amenable to the benefits

described in the previous sections, we have focused on the normative principle of active infer-

ence. From a purely theoretical perspective, active inference re-frames the exploration-exploi-

tation dilemma by suggesting that both exploration and exploitation are complementary

perspectives on a single objective function—the minimization of expected free energy. How-

ever, an open question remains as to whether this approach provides a practical solution to

balancing exploration and exploitation. On the one hand, it provides a practically useful recipe

by casting both epistemic and instrumental value in the same (information-theoretic) cur-

rency. However, the balance will necessarily depend on the shape of the agent’s beliefs about

hidden states, beliefs about model parameters, and prior beliefs about preferable observations.

In the current work, we introduced an artificial weighting term to keep the epistemic and

instrumental value within the same range. The same effect could have been achieved by con-

structing the shape (i.e. variance) of the prior preferences P(o).

Active inference also provides a suitable framework for investigating the emergence of

action-oriented models. Previous work has highlighted the fact that active inference is consis-

tent with, and necessarily prescribes, frugal and parsimonious generative models, thus provid-

ing a potential bridge between ‘representation-hungry’ approaches to cognition espoused by

classical cognitivism and the ‘representation-free’ approaches advocated by embodied and

enactive approaches [6, 12, 13, 64, 67–75].

This perspective has been motivated by at least three reasons. First, active inference is pro-

posed as a description of self-organization in complex systems [6]. Deploying generative mod-

els and minimizing free energy are construed as emergent features of a more fundamental

drive towards survival. On this account, the purpose of representation is not to construct a
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rich internal world model, but instead to capture the environmental regularities that allow the

organism to act adaptively.

The second reason is that minimizing free energy implicitly penalizes the complexity of the

generative model (see Appendix 1). This implies that minimizing free energy will reduce the

complexity (or parameters) required to go from prior beliefs to (approximately) posterior

beliefs, i.e. in explaining some observations. This occurs under the constraint of accuracy,

which makes sure that the inferred variables can sufficiently account for the observations. In

other words, minimizing free energy ensures that organism’s maximize the accuracy of their

predictions while minimizing the complexity of the models that are used to generate those

predictions.

As discussed in the previous section, active inference also requires agents to encode sys-

tematic misrepresentations of their environment. Our work has additionally introduced a

fourth motivation for linking active inference to adaptive action-oriented models, namely,

that the minimization of expected free energy induces a balance between self-sustaining

(and thus constrained) patterns of agent-environment interaction and goal-directed

exploration.

The arguments and simulations presented in this paper resonate with previous work which

views an active inference agent as a ‘crooked scientist’ [76, 77]. Here, an agent is seen as a ‘sci-

entist’ insofar as it seeks out information to enable more accurate predictions. However, this

work additionally highlights the fact that agents are biased by their own non-negotiable prior

beliefs and preferences, leading them to seek out evidence for these hypotheses. We have built

upon this previous work by exploring the types of models that are learned when an agent acts

as a ‘crooked scientist’.

Conclusion

In this paper, we have demonstrated that the minimization of expected free energy (through

active inference) provides a principled and pragmatic solution to learning action-oriented

probabilistic models. These models can make the process of learning models of natural envi-

ronments tractable, and provide a potential bridge between ‘representation-hungry’

approaches to cognition and those espoused by enactive and embodied disciplines. More-

over, we showed how learning online in the presence of behaviour can give rise to ‘bad-boot-

straps’—a phenomenon that has the potential to be problematic whenever learning is

coupled with behaviour. Epistemic or information-seeking actions provide a plausible mech-

anism for overcoming bad-bootstraps. However, to exploration to be efficient, the epistemic

value of actions must be contextualized by agents goals and desires. The ability to learn

adapted models that are tailored to action provides a potential route to tractable and sample

efficient learning algorithms in a variety of contexts, including computational biology and

model-based RL.

Methods

The generative model

The agent’s generative model specifies the joint probability over observations o, hidden state

variables s, control variables u and parameter variables θ. To account for temporal dependen-

cies among variables, we consider a generative model that is over a sequence of variables

through time, i.e. ~x ¼ fx
1
; :::; xtg, where tilde notation indicates a sequence from time t = 0 to

the current time t, and xt denotes the value of x at time t. The generative model is given by the
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joint probability distribution Pð~o;~s; ~u; yjl; aÞ, where:

Pð~o;~s; ~u; yjl; aÞ ¼ PðyjaÞ
YT

t¼1

Pðotjst; lÞPðstjst�1; ut�1; yÞPðutÞ

Pðotjst; lÞ ¼ CatðlÞ

Pðstjst�1; ut�1; yÞ ¼ CatðyÞ

PðyjaÞ ¼ DirðaÞ

PðutÞ ¼ sð�~GÞ

ð9Þ

where σ(�) is the softmax function. For simplicity, we initialize P(st=0) as a uniform distribu-

tion, and therefore exclude it from Eq 9.

The likelihood distribution specifies the probability of observing some chemical gradient ot
given a belief about the chemical gradient st. This distribution is described by a set of categori-

cal distributions, denoted Cat(�), where each categorical distribution is a distribution over k

discrete and exclusive possibilities. The parameters of a categorical distribution can be

represented as a vector with each entry describing the probability of some event pi, with
Pk

i¼1 pi ¼ 1. As the likelihood distribution is a conditional distribution, a separate categorical

distribution is maintained for each hidden state in S, (i.e. spos and sneg), where each of these

distributions specifies the conditional probability of observing some chemical gradient (either

opos and oneg). The parameters of the likelihood distribution can therefore be represented as a

2 x 2 matrix where each column j is a categorical distribution that describes P(ot|st = j, λ). For
the current simulations, we provide agents with the parameters λ and do not require these

parameters to be learned. The provided parameters encode the belief that there is an unambig-

uous mapping between spos and opos, and between sneg and oneg, meaning that λ can be

encoded as an identity matrix.

The prior probability over hidden states st is given by the transition distribution P(st|st−1,

ut−1, θ), which specifies the probability of the current hidden state, given beliefs about the pre-

vious hidden state and the previous control state. In other words, this distribution describes an

agent’s beliefs about how running and tumbling will cause changes in the chemical gradient.

Following previous work [38], we assume that agents know which control state was executed

at the previous time step. As with the likelihood distribution, the prior distribution is described

by a set of categorical distributions. Each categorical distribution j specifies the probability dis-

tribution P(st|st−1 = j, θ), such that P(st|st−1, θ) can again be represented as a 2 x 2 matrix. How-

ever, the transition distribution is also conditioned on control states u, meaning a separate

transition matrix is maintained for both urun and utumble, such that the transition distribu-

tion can be represented as a 2 x 2 x 2 tensor. Agents, therefore, maintain separate beliefs about

how the environment is likely to change for each control state.

We require agents to learn the parameters θ of the transition distribution. At the start of

each learning period, we randomly initialize θ, such that agents start out with random beliefs

about how actions cause transitions in the chemical gradient. To enable these parameters to be

learned, the generative model encodes (time-invariant) prior beliefs over θ in the distribution

P(θ|α). This distribution is modelled as Dirichlet distribution, denotedDir(�), where α are the

parameters of this distribution. A Dirichlet distribution represents a distribution over the

parameters of a distribution. In other words, sampling from this distribution returns a vector
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of parameters, rather than a scalar. By maintaining a distribution over θ, the task of learning

about the environment is transformed into a task of inferring unknown variables.

Finally, the prior probability of control states is proportional to a softmax transformation of

�~G, which is a vector of (negative) expected free energies, with one entry for each control

state. This formalizes the notion that control states are a-priorimore likely if they are expected

to minimize free energy. We provide a full specification of expected free energy in the follow-

ing sections.

The approximate posterior

The approximate posterior encodes an agent’s current approximately posterior beliefs about

the chemical gradient s, the control state u and model parameters θ. As with the generative

model, the approximate posterior is over a sequence of variables Qð~s; ~u; yj�Þ, where ϕ are the

sufficient statistics of the distribution.

In order to make inference tractable, we utilize the mean-field approximation to factorize

the approximate posterior. This approximation treats a potentially high-dimensional distribu-

tion as a product of a number of simpler marginal distributions. Heuristically, this treats cer-

tain variables as statistically independent. Practically, it allows us to infer individual variables

while keeping the remaining variables fixed. This approximation makes inference tractable, at

the (potential) price of making inference sub-optimal. For inference to be optimal, the factori-

zation of the approximate posterior must match the factorization of the true posterior.

Here, we factorize over time, the beliefs about the chemical gradient, the beliefs about

model parameters and the beliefs about control states:

Qð~s; ~u; yj�Þ ¼ Qðyj�aÞ
YT

t¼0

Qðstj�st
ÞQðutj�ut

Þ

Qðyj�aÞ ¼ Dirð�aÞ

Qðstj�st
Þ ¼ Catð�st

Þ

Qðutj�ut
Þ ¼ Catð�ut

Þ

ð10Þ

Inference, learning and action

Having defined the generative model and the approximate posterior, we can now specify how

free energy can be minimized. In brief, this involves updating the sufficient statistics of the

approximate posterior ϕ as new observations are sampled. To minimize free energy, we iden-

tify the derivative of free energy with respect to the sufficient statistics @Fð�;oÞ

@�
, solve for zero, i.e.

@Fð�;oÞ

@�
¼ 0, and rearrange to give the variational updates that minimize free energy. Given the

mean-field assumption, we can perform this scheme separately for each of the partitions of ϕ,

i.e �st
, �ut

and ϕα.

For the current scheme, the update equations for the hidden state parameters ϕs are (see

Appendix 5 for a full derivation):

�st
¼ sð lnPðotjst; lÞ þ lnPðstjst�1; ut�1; yÞÞ ð11Þ
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This equation corresponds to state estimation or ‘perception’ and can be construed as a

Bayesian filter that combines the likelihood of the current observation with a prior belief that

is based on the previous hidden state and the previous control state. To implement this update

in practice, we rewrite Eq 11 in terms of the relevant parameters and sufficient statistics (see

Appendix 5):

�st
¼ sð lnl � ~ot þ

�yut�1 � �st�1
Þ

�yut�1 ¼ EQðyj�aÞ
½ lnyut�1 �

¼ cð�ut�1
aij
Þ � cð

Xn

i¼1

�ut�1
aj
Þ

ð12Þ

Here, ~ot is a one-hot encoded vector specifying the current observation, θ
u specifies the

transition distribution corresponding to control state u, and ψ(�) is the digamma function.

Note that the parameters of the likelihood distribution λ are point-estimates of a categorical

distribution, meaning it is possible to straightforwardly take the logarithm of this distribution.

However, the beliefs about θ are described by the Dirichlet distribution Q(θ|α), meaning that

the mean of the logarithm of this distribution (denoted �y) must be evaluated (leading to lines

two and three of Eq 12).

Learning can be conducted in a similar manner by updating the parameters ϕα (see Appen-

dix 5 for a full derivation):

�u
a
¼ au þ

XT

t¼1

½at�1 ¼ ut�1� � x�st
�st�1

ð13Þ

where [�] is an inversion bracket that returns one if the statement inside the bracket is true and

zero otherwise, and ξ is an artificial learning rate, set to 0.001 for all simulations. Note that we

update the parameters ϕα after each iteration, but use a small learning rate to simulate the dif-

ference in time scales implied by the factorization of the generative model and approximate

posterior. This update bears a resemblance to Hebbian plasticity, in the sense that the probabil-

ity of each parameter increases if the corresponding transition is observed (i.e. ‘fire together

wire together’).

Finally, actions can be inferred by updating the parameters �ut
, where the update is given

by (see Appendix 5 for a full derivation):

�ut
¼ sð�~GÞ ð14Þ

This equation demonstrates that the (approximately) posterior beliefs over control states

are proportional to the vector of negative expected free energies. In other words, the posterior

and prior beliefs about control states are identical.

Expected free energy

In this section, we describe how to evaluate the vector�~G. This is a vector of negative expected

free energies, with one for each control state u 2 U . As specified in the formalism, the negative

expected free energy for a single control state is defined as −Gτ(ut), where τ is some future
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time point, and, for the current simulations:

�GtðutÞ ¼ EQðot;st;yjut ;�tÞ
½ lnQðyjst; ot; ut; �tÞ � lnQðyj�tÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parameter epistemic value

þEQðot;st;yjut ;�tÞ
½ lnPðotÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Instrumental value

ð15Þ

As described in the results section, we ignore the epistemic value for hidden states, as there

is no uncertainty in the likelihood distribution. Moreover, for all simulations, τ = t + 1, such

that we only consider the immediate the immediate effects of action. This scheme is, however,

entirely consistent with a sequence of actions, i.e. a policy.

In order to evaluate expected free energy, we rewrite Eq 15 in terms of parameters. By not-

ing that EQðot ;st ;yjut ;�tÞ
½ lnPðotÞ� ¼ EQðot jut ;�tÞ

½ lnPðotÞ�, we can write instrumental value as:

EQðotjut ;�tÞ
½ lnPðotÞ� ¼ �ot

� r ð16Þ

where �ot
are the sufficient statistics of Q(oτ|ut, ϕτ), and ρ are the parameters of P(oτ), which is

a categorical distribution, such that ρ is a vector with one entry for each o 2 O. In order to

evaluate parameter epistemic value, we utilise the following approximation:

EQðot ;st;yjut ;�tÞ
½ lnQðyjst; ot; ut; �tÞ � lnQðyj�tÞ� � �st

�Wut � �st

W
ut ¼

Xn

i¼1

��1
aj
� ��1

a

ð17Þ

For details of this approximation, we refer the reader to [40]. For a given control state ut,

negative expected free energy can, therefore, be calculated as:

�GtðutÞ ¼ �st
�Wut � �st

þ dð�ot
� rÞ ð18Þ

where �st
are the sufficient statistics of Q(sτ|ut, ϕτ) and δ is an optional weighting term. For all

simulations, this is set to 1/10. To calculate Eq 18, it is first necessary to evaluate the expected

beliefs Q(sτ|ut, ϕτ) and Q(oτ|ut, ϕτ). The expected distribution over hidden states Q(sτ|ut, ϕτ) is

given by EQðst jut ;�tÞ
½Pðstjst; ut; yÞ�. Given these beliefs over future hidden states, we can evaluate

Q(oτ|ut, ϕτ) as EQðst jut ;�tÞ
½Pðotjst; lÞ�.

The full update scheme for the agents is provided in algorithm 1:

Algorithm 1 Active inference MDP algorithm
Require: parameters of likelihood distribution λ, parameters of prior
distribution over transition distribution parameters α, prior proba-
bility of observations ρ
1: for t in T do
2: ot  env.observe() ⊲ Sample observation from environment
3: �st

¼ sðln l � ~ot þ
�yut�1 � �st�1

Þ ⊲ Hidden state
inference
4: �ut

¼ sð�~GÞ ⊲ Control state inference
5: where� GtðutÞ ¼ �st

�Wut � �st
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Epistemic agent

þ �ot
� r

|fflffl{zfflffl}

Instrumental agent
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Expected free energy agent

6: �u
a
¼ au þ

PT

t¼1½at�1 ¼ ut�1� � x�st
�st�1

⊲ Learning inference
7: at � Qðutj�ut

Þ ⊲ Sample action
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8: env.update(at) ⊲ Perform action
9: end for
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