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Abstract

In this paper, we present a new idea to analyze facial

expression by exploring some common and specific infor-

mation among different expressions. Inspired by the obser-

vation that only a few facial parts are active in expression

disclosure (e.g. around mouth, eye), we try to discover the

common and specific patches which are important to dis-

criminate all the expressions and only a particular expres-

sion, respectively. A two-stage multi-task sparse learning

(MTSL) framework is proposed to efficiently locate those

discriminative patches. In the first stage MTSL, expres-

sion recognition tasks, each of which aims to find dominant

patches for each expression, are combined to located com-

mon patches. Second, two related tasks, facial expression

recognition and face verification tasks, are coupled to learn

specific facial patches for individual expression. Extensive

experiments validate the existence and significance of com-

mon and specific patches. Utilizing these learned patches,

we achieve superior performances on expression recogni-

tion compared to the state-of-the-arts.

1. Introduction

Facial expressions play significant roles in our daily

communication. Recognizing these expressions has exten-

sive applications, such as human-computer interface, mul-

timedia, and security [21, 15, 23]. However, as the basis

of expression recognition, the exploration of the underline

functional facial features is still an open problem.

Studies in psychology show that facial features of ex-

pressions are located around mouth, nose, and eyes, and

their locations are essential for explaining and categoriz-

ing facial expressions. Through electrical muscle stimu-

lation, Duchenne [7, 1] found that most expressions are

invoked by a small number of facial muscles around the

mouth, nose and eyes (See Figure 1(a)). This indicates

that most of the descriptive regions for each expression are

(a) (b)

Figure 1. (a) Illustration of facial muscles distribution [7]. (b) Ma-

jor AUs for six expressions. The arrows represent for AUs.

located around certain face parts. Moreover, expressions

can be forcedly categorized into six popular ”basic expres-

sions” [10]: anger, disgust, fear, happiness, sadness and

surprise. As shown in Figure 1(b), each of these basic ex-

pressions can be further decomposed into a set of several

related action units (AUs) [8], e.g. happiness can be de-

composed to cheek raiser and lip corner puller. However,

non-existing methods statistically utilize these prior knowl-

edge about facial muscle and AUs to aid facial expression

analysis in computer vision.

Previous expression recognition methods can be gener-

ally categorized into two groups: AU-based methods and

appearance-based methods. AU-based methods [18, 19]

recognize expressions by detecting AUs, but all of them

suffer from the difficulties of AU detection. Appearance-

based methods[13, 25, 16] reveal the differences among ex-

pressions by facial appearance variations, which has been

proved to be more reliable on single images. However, these

methods assign weights to different face parts empirically,

thus it lacks statistical support for the weight settings. This

motivates us to fully make use of the prior knowledge from

facial muscles and AU studies to extract the most discrimi-

native regions, which can further assist expression analysis.

Inspired by the locations of AUs, we divide human face

into non-overlapping patches and then conceptually group

these patches into three categories: common facial patches,
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Figure 2. Discovering the common patches across six expressions using multi-task sparse learning (MTSL). Each single expression task is

the binary classification task for one expression (See Figure 4). Expression tasks are combined in a MTSL model to select out the common

patches under the group sparsity constraint.

specific facial patches, and the rest. Common facial patches

are active ones for all expressions. Specific facial patches

are only active for one particular expression. Therefore, the

most important facial patches are the common ones shared

by all expressions; specific patches are only a few and only

useful to discriminate a particular expression; the rest of the

patches are of less help to expression recognition.

A two-stage multi-task sparse learning framework is pro-

posed to explore common and specific patches statistically.

In the first stage, the binary classification problem for each

expression are treated as an individual task (see Figure 4),

then a multi-task sparse learning (MTSL) model is built

based on these related tasks to extract the common facial

patches. In the second stage, the face verification task (see

Figure 5) is designed to be coupled with the previous classi-

fication task for one expression. In this way, another MTSL

model can be constructed to find out the specific patches for

this particular expression. Similarly, the specific patches for

all the expressions can be figured out separately.

The common and specific patches, found by extensive

experiments on the Cohn-Kanade database [11] and the

MMI database [20], not only confirm the psychology dis-

coveries of the facial muscles and AUs, but also pro-

vide more accurate appearance locations. Moreover, these

patches can be used to boost the performance of expres-

sion recognition. Only using extremely small number of

patches (∼ 1/3 of the face), our method still outperforms

other methods in expression recognition.

Our contributions are: 1) As far as we know, we are the

first to provide a solid validation for an important psychol-

ogy discovery, that only a few facial muscles (areas) are

discriminative for expression recognition. 2) A two-stage

multi-task sparse learning framework is proposed to formu-

late the commonalities among expressions, and find out the

locations of common and specific patches for expressions.

3) Extensive experiments on two public databases demon-

strate that these active patches are effective in recognizing

expressions, and can be utilized to further improve the per-

formances of state-of-the-arts.

2. Related work

2.1. Facial expression analysis

Most appearance-based facial expression analysis meth-

ods follow the two main steps: facial representation and ex-

pression recognition.

Facial representation derives a set of features from

original facial images to effectively represent all faces. Dif-

ferent features have been applied to either the whole-face

or specific face regions to extract the facial appearance

changes, such as Gabor [13, 4], haar-like features [25],

local binary patterns (LBP) [14]. In Shan [16], facial im-

ages are equally divided into small regions, and then LBP

features are extracted from these empirically weighted sub-

regions to represent the facial appearance. The LBP fea-

tures are shown to be effective in expression recognition, so

our paper will also utilize the LBP features with the same

sub-region division strategy. Different from their work, we

will focus on learning the effective sub-regions statistically.

Expression recognition aims to correctly categorize

different facial representations. Support Vector Machine

(SVM) [4, 16, 27] is the most popular and effective learn-

ing method in facial expression recognition. Shan’s work

[16] is the most similar work with ours, so it will be con-

sidered as the baseline. For fair comparison, our paper will

also employ SVM as the the classification algorithm.

2.2. Multi­task sparse learning

Multi-task learning is an inductive transfer machine

learning approach. It aims to learn a problem together

with some related problems for better performance [2, 5].

Multi-task sparse learning was then designed in [3] for

feature selection, through encouraging multiple predictors

from different tasks to share similar parameter sparsity pat-

terns. Multi-task sparse learning also obtained a reward-

ing performance on handwritten character recognition in

[9]. Yuan [28] developed a visual classification algorithm

by learning the shared parts among different representation

tasks. Recently, Chen [6] provided a faster solution to



multi-task sparse learning problems.

Suppose there are T related tasks, and (xt
i, y

t
i), i =

1, 2, ..., Nt is the training set of task t, where each sam-

ple is represented by K-dimensional features, xt
i ∈ RK ,

and yti ∈ {−1, 1} indexes xt
i is positive or not. wt is a K-

dimensional vector of representation coefficients for task t.
All the wts are the rows of the matrix W = [wt

k]t,k, while

every column of the matrix W is a T -dimensional vector

that means the representation coefficients from the k-th fea-

ture across different tasks, wk = [w1
k, w

2
k, ..., w

T
k ]

′. Multi-

task sparse learning aims to learn the shared sparse infor-

mation among all the tasks. The formulation with L1/L2

mixed-norm regularization is as follows:

argmin
W

T∑

t=1

1

Nt

Nt∑

i=1

J t(wt, xt
i, y

t
i) + λ

K∑

k=1

‖wk‖2 (1)

where J t(wt, xt
i, y

t
i) is the cost function of the tth task, λ is

a constant to balance the sparsity, and
∑

is the mathematic

format for L1 norm. The regularization term encourages

most columns of matrix W to be zero, and the remaining

non-zero columns indicate the corresponding features are

shared features across all the tasks.

3. Proposed Work

Facial expressions are usually manifested by local facial

appearance variations. However, it is not easy to automati-

cally localize these local active areas on a facial image. A

facial image is divided into p local patches, and then local

binary pattern (LBP) features are used to represent the local

appearance of the patch. These features have been proven to

be a powerful descriptor in expression recognition [16] and

face verification [24]. We set p = 64 in the experiments

with the image size of 96 × 96, as shown in Figure 3(a).

For each patch, the uniform LBP features are extracted with

the LBP operator LBP8,1, as shown in Figure 3(b), and

mapped to a m-dimensional histogram (m = 59 in our pa-

per).

(a) (b)

Figure 3. (a)A cropped facial image is divided into 64 patches. (b)

LBP feature (P = 8, R = 1)

Based on these local patches, the common patches

across all expressions are learned for expression recogni-

tion. Then, some specific patches for each expression are

explored to further enhance the performance.
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Figure 4. Illustration of one single expression task. Each task is a

binary expression classification problem. Take Expression task of

happiness for example here.

3.1. Learning Common Patches Across Expressions

Discovering the common patches across all the expres-

sions is actually equivalent to learning the shared discrim-

inative patches for all the expressions. Since Multi-task

sparse learning (MTSL) can learn common representations

among multiple related tasks [3], our problem can be trans-

fered into a MTSL problem. T related tasks are defined

as T discriminative patch learners for T facial expressions

respectively (we set T = 6 for six basic expressions). Sup-

posing each image has p patches, it can be represented by

(p × m)-dimensional LBP-based histogram features. Let

K = p ×m. However, equation (1) cannot directly model

our problem, because different from the MTSL model de-

scribed in Equation(1), we focus on the selection of com-

mon patches instead of individual features. Since a group

of consecutive features stand for one patch, and the number

of common patches are not large, group sparsity prior can

be assumed [29, 30]. Our problem is modeled as the fol-

lowing MTSL problem, in which the regularization term of

Equation(1) is modified to a patch level sparse constrain:

argmin
W

T∑

t=1

1

Nt

Nt∑

i=1

J t(wt, xt
i, y

t
i) + λ

p∑

j=1

‖wGj
‖2 (2)

Here, wGj
is a sub-matrix of matrix W , where Gj de-

notes the j-th patch, as shown in Figure 2. Figure 4 illustrate

how to set up each task. In each task, images of one partic-

ular expression are considered as positive samples, while

others are negative samples. This regularization term en-

courages the representation coefficients of the features in

most patches to be zero, and then the remaining non-zero

patches indicate the shared important representation for all

the expressions. The cost function of J t is defined as a lo-

gistic lost function:

J t(wt, xt
i, y

t
i) = ln(1 + exp(−ytix

t
i · w

t)). (3)

To solve this patch-based multi-task sparse learning, based

on the accelerated gradient method proposed in [26], we



heuristically make the representation coefficients of the fea-

tures in one patch to be zeros or non-zeros simultaneously

by step 5-9 in Algorithm 1. The detailed problem solving

procedure are summarized in Algorithm 1.

Algorithm 1 Algorithm for learning common patches

1: Input : Training data {(xt
i, y

t
i), i = 1, .., Nt}, de-

fine Xt = [xt
1; ...;x

t
Nt

], Y t = [yt1; ...; y
t
Nt

], V =

[v1; ...; vT ]. t indicates the task index, and t = 1, ..., T .

j is the group index, and j = 1, ..., p.

2: Initialize : W0 takes equal weights, V0 = W0 and

a0 = 1. Tuning parameter λ and step size η.

3: for s = 0...S do

4: wt
s+1 = vts−

η[ 1

1+exp(−(Y t)
′

Xtvt
s)
exp(−(Y t)

′

Xtvts)(−(Xt)
′

Y t)]

5: if ‖wGj ,s+1‖2 ≥ λη then

6: Set wGj ,s+1 = (1− λη
‖wGj,s+1‖2

)wGj ,s+1

7: else

8: Set wGj ,s+1 = 0
9: end if

10: as+1 = 2
s+3 , δs+1 = Ws+1 −Ws

11: Vs+1 = Ws+1 +
1−as

as
as+1δs+1

12: if ‖δs+1‖2 ≤ ǫ then

13: break

14: end if

15: end for

16: Normalization : wt = wt

‖wt‖2

17: wGj
=

∑
wt

k, where wGj
is the weight for patch j, and

wt
k ∈ Gj

18: Output : order wGj
decreasingly, and output the top

patches as the common patches for all expressions.

3.2. Learning Specific Patches For Individual Ex­
pression

Although learned common patches can discriminate all

facial expressions, the performance could not be the best,

because each expression also has its special properties be-

sides the common properties. Here, we aim to explore some

specific facial patches for each expression with the help of

face verification, and then they are used to further boost the

performance of common facial patches. The motivation to

employ the face verification task is that those special facial

patches are important face regions, which are not only use-

ful for recognizing this expression, but also very significant

for identifying the subjects. Take an expression e for ex-

ample. If recognizing e is a task and face verification is

another related task, a multi-task sparse learning model can

be used to learn the shared patches between these two tasks.

The learned patches should embed some specific signatures

of the face identity. This multi-task sparse learning model

(w
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Figure 5. The design of Face Verification task. Image pairs from

the same subject are considered as positive samples. Otherwise,

negative samples.

is the same as the model of learning the common patches

except the different task design. The individual expression

analysis task is organized in the same way as in Figure 4.

Figure 5 illustrates how to organize the task of face verifica-

tion. For face verification, we need to compare two images

and label them as the same person or not, so we organize the

training data of this task by the feature difference between

two images. Assuming (x2
i , y

2
i )

N2

i=1 is the training set, x2
i

is the feature difference between two images in i-th image

pair. y2i ∈ {−1, 1} indicates whether the two images in i-
th pair come from one subject or not. N2 is the number of

image pairs. The superscript 2 means this task is the second

task in the multi-task sparse learning model. The proce-

dure for solving this problem is the same with Algorithm

1. Because there are six expressions, six multi-task sparse

learning models are needed to built to learn their specific

patches respectively.

The specific patches have overlap with the learned com-

mon patches. Since the common patches will be used for

all expressions, the overlapped patches are removed from

the specific patches. The rest patches are considered as the

final specific patches.

3.3. Classifier Design

With the extracted common and specific patch features

based on the training data, classifiers are then built based

on these features for testing data. Multi-task sparse learning

model can directly give out classification results [28]. How-

ever, to fairly compare with previous work [12, 16], SVM

is adopted to learn the expression classifiers and the one-

against-all strategy is employed to decompose the six class

problem into multiple binary classes problem. The perfor-

mances of common patches and the combination of com-

mon and specific patches are evaluated respectively. For

expression e, denotes the common patches as Pc, and the

specific patches as {P e
s }

6
e=1. When both common and spe-

cific patches are investigated, the features from Pc and P e
s



are concatenated to represent facial images, and train the

SVM classifiers; While only use the features of Pc when

common patches are tested.

4. Experiments

We evaluate the learned common and specific patches for

facial expression recognition. All methods are compared on

two datasets, the Cohn-Kanade database [11] and the MMI

database [20], which are widely used for facial expression

recognition algorithms. Our methods are denoted as CPL

and CSPL respectively (see Table 1). To efficiently evaluate

the performance of our proposed methods, they are com-

pared with [16], which is the most recent comprehensive

study on expression recognition with remarkable results.

In [16], two methods are evaluated, denoted as ADL and

AFL respectively. ADL uses Adaboost to select important

patches and then perform SVM on the extracted LBP fea-

tures of these patches. AFL uses all the patches to train

the classifier without feature selection. For fair comparison,

all the methods are based on the same patch(sub-region) di-

vision strategy, same feature representation, and the same

classification method (SVM). The only difference for the

methods are the patches they use. All method abbreviations

are listed in table 1. 10 folds cross-validation is employed

for all methods.

Table 1. Method abbreviations.
CPL only use Common Patches. (our method)

CSPL use Common and Specific Patches. (our method)

ADL only use patches selected by ADaboost are used.

AFL All patches of the whole Face are used.

4.1. Experiments On the Cohn­Kanade Database

The Cohn-Kanade database consists of 100 university

students aged from 18 to 30 years old, of which 65% were

female, 15% were African-American and 3% were Asian or

Latino. Subjects were instructed to perform a series of 23

facial displays, six of which were based on description of

prototypic emotions. For our experiments, image sequences

are selected out from 96 subjects, whose sequences could be

labeled as one of the six basic emotions. For each sequence,

we only use the three peak frames with the most expres-

sions. The faces are detected automatically by Viola’s face

detector [22], and then they are normalized to 96× 96 as in

Tian [17] based on the location of the eyes. Figure 6 shows

some normalized samples with all expressions.

Figure 6. Example of six basic expressions from the Cohn-Kanade

database.(Anger, Disgust, Fear, Happiness, Sadness and Surprise).
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Figure 8. The expression recognition rate with different number

of common patches. The patch number for the three faces images

marked with selected common patches are 10, 20, 40 respectively.

4.1.1 Analysis of Common Patches

As described in section 2.1, the proposed multi-task sparse

learning aims to select the shared patches instead of the

shared features, so we apply the L1/L2 norm regulariza-

tion on the patch level to obtain patch-based group sparsity.

Figure 7 reports the representation coefficient results for six

expression tasks. We can see that the representation coef-

ficients of features are not only sparse, but also show the

property of patch-based group sparsity. It is also clear to

see the index correspondences for non-zero values across

six expressions, which indicates the commonalities among

them. So, this result demonstrates the effectiveness of our

proposed algorithm in learning the shared common patches

for expressions.

Before evaluating the recognition performance of the

common patches, we want to inspect the performance when

a different number of common patches is selected. Fig-

ure 8 reports the results with different number of the com-

mon patches. We can see that the recognition rate increases

quickly with the first leading common patches, and when

the number of the selected patches reaches around 20, it

will get a recognition rate of 88.42%. If too many common

patches are selected, the performance goes down slightly

and fluctuates. It means that only some common patches are

discriminative for all the expressions. When some patches

with little importance are selected as the common patches,

they will introduce some noises and influence the discrimi-

native power of the common patches. We set the number of

the common patches to be 20 in the following experiments.

Figure 9 shows the superimposing effect of the selected

common patches over the 10 fold experiments. There are

great overlaps between different fold experiments. It in-

dicates that our algorithm is robust to the selection of the

training set. The selected common patches are basically

around the areas of mouth, eye, and eyebrows, which are

consistent with AU-based analysis in FACS [8].
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Figure 7. Results for six expressions in the coefficient matrix after multi-task sparse learning for learning the common patches. X-axis

corresponds to the feature index in the coefficient matrix, where features index are ordered consecutively as group by patches. Y-axis is the

weight value for features in each task after multi-task sparse learning. The non-zeros parts are grouped, and matches across all tasks.

Figure 9. The distribution of selected common patches on faces.

The darker the red color is, the more times (shown as numbers)

the patch has been selected as common patches in 10-fold experi-

ments.

Table 2 reports the detail recognition performance of the

common patches on each expression, where the expressions

of anger, disgust, fear, happiness, sadness, surprise are de-

noted as ag, dg, fa, hp, sd, and sp for simplicity. Promis-

ing recognition rates are obtained on all the expressions ex-

cept anger. Anger is often misclassified as sadness. This

is because these two expressions have similar appearance

variations on the common patches. This problem can be

alleviated by adding some specific patches, which will be

discussed next.

4.1.2 Analysis of Specific Patches

Although a rewarding recognition result can be obtained

by only using the common patches, the performance can

be further improved by integrating some specific patches

of each expression. Figure 10 shows the top three learned

specific patches for each expression based on the proposed

multi-task learning. We can see the locations of these

patches are highly related to expression types. Taking sur-

prise for example. The selected specific patches show the

characteristics of surprise expression, in which special ap-

pearance changes are distributed in opened mouth, on stared

eye, and raised eyebrow. In CSPL, the common patches and

the specific patches are integrated together, and the exper-

imental results are reported in Table. 3. Compared to the

results of CPL (Table. 2), we can see that adding specific

patches can further improve the performances of the com-

mon patches.

Table 2. The confusion matrix of CPL on the Cohn-Kanade

database.(Measured by recognition rate: %)

ag dg fa hp sd sp

ag 65.56 8.33 0 0 25.28 0.83

dg 2.67 92.67 0.67 2 2 0

fa 0 1.98 78.97 13.25 5.79 0

hp 0.33 0.67 4.24 94.76 0 0

sd 6.20 1.67 3.33 0 87.69 1.11

sp 0 0 1.25 0 0.48 98.27

Table 3. The confusion matrix of CSPL on the Cohn-Kanade

database.(Measured by recognition rate: %)

ag dg fa hp sd sp

ag 71.3889 7.5 0 0.83 19.44 0.83

dg 2.67 95.33 0 0 2 0

fa 0 2.46 81.11 10 6.43 0

hp 0.33 0.33 3.58 95.42 0.33 0

sd 7.45 1.25 2.92 0 88.01 0.37

sp 0 0 1.25 0 0.48 98.27

4.1.3 Experimental Comparisons

To further evaluate the proposed CPL and CSPL, we com-

pare them to ADL and AFL developed in [16]. Table 4 lists



Figure 10. The top 3 specific patches for six expressions after elim-

inating the shared patches on the Cohn-Kanade database.

the recognition rates of these four methods. AFL gets the

recognition rate of 86.94%, which is much worse than our

methods. It shows the importance of selecting discrimina-

tive patches. Although ADL also uses Adaboost to select

the patches, it does not take the commonalities among all

the expressions into account. ADL gets a recognition rate

of 82.26% with the selected patches (highest rate with 20±3
patches), while the recognition rates of CPL and CSPL are

88.42% and 89.89% respectively. It demonstrates that the

learned common and specific patches by our proposed two-

stage multi-task sparse learning can really improve the per-

formance of expression recognition. As far as we know, this

is also the first time to validate the facial muscles and AUs

on large real data.

Table 4. Recognition performances for CPL, CSPL, AFL, ADL

on the Cohn-Kanade database.
Methods CPL CSPL AFL ADL

Recognition Rate% 88.42 89.89 86.94 82.26

4.2. Results on the MMI database

The MMI database includes 30 students and research

staff members aged from 19 to 62, of whom 44% are fe-

male, having either a European, Asian, or South American

ethnic background. In this database, 213 sequences have

been labeled with six basic expressions, in which 205 se-

quences are with frontal face. Different from [16], in which

only the experimental data are collected from 99 selected

sequences, we conduct our experiments on the data from

all the 205 sequences. As in [16], the apex images are ex-

tracted from the sequences as the experimental data. Facial

image are corpped based on locations of eyes, and resize it

to 96× 96 too, same as on Cohn-Kanada database.

MMI is a more challenging database than the Cohn-

Kanade database. First, the subjects make expressions non-

uniformly. Different people make the same expression in

different ways. Second, some subjects wear accessories,

such as glasses, headcloth, or moustache. Additionally, in

Table 5. Recognition performances for CPL, CSPL, AFL, ADL

on the MMI database.
Methods CPL CSPL AFL ADL

Recognition rate % 49.36 73.53 47.74 47.78

Table 6. The confusion matrix of CSPL on the MMI

database.(Measured by recognition rate: %)

ag dg fa hp sd sp

ag 50.28 10.56 5.56 2.50 28.61 2.50

dg 5.50 79.83 3.50 2.17 9.00 0

fa 1.67 4.13 67.14 15.56 8.97 2.54

hp 2.63 0.67 12.82 82.91 0.67 0.30

sd 16.34 2.87 13.98 4.54 60.28 1.99

sp 0.42 0 4.94 0.83 5.30 88.51

some sequences, the apex frames are not with high expres-

sion intensity. All these factors will greatly degrade the

recognition performance.
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Figure 11. Recognition rate with different common patch number.

Result of one fold experiment is shown.

We first investigate the performance of the common

patches with different patch number, and Figure 11 shows

the results. It can be seen that the results are similar to the

results on the Cohn-Kanade database. About 20 common

patches are discriminative for all the expressions, so we set

the number of the common patches as 20 on this database

too. Table 5 lists the recognition rates of CPL, CSPL, AFL,

and ADL respectively. Same as on the Cohn-Kanade data,

CPL and CSPL are superior to AFL and ADL. However,

the performances of all four methods are much lower than

the Cohn-Kanade database, because this database have sev-

eral challenging factors as mentioned above. CSPL obtains

much better performance than CPL. This is because each

expression has a very big variance due to the diversity of

the subjects in this database, but the common patches can-

not describe these specific variations. Although a much bet-

ter result of 86.7% is reported in [16], their experimental

data are carefully chosen 99 sequences, while we perform

the experiments on all the 205 sequences. Besides, they

adopt sliding and multi-scale windows to extract much more

patches. We only divide the facial image into 64 patches,

and we also obtain a recognition rate of 73.53% on more

than double size of the data than [16]. Table 5 lists the



confusion matrix of CSPL.

The experimental results indicate the location of learned

common and specific patches, which confirms the previous

knowledge about active facial parts in psychology. The re-

warding performances of these patches in facial expression

recognition provide a solid basis for patches selection and

weight setting in similar applications. Our work opens the

road for the researches of utilizing the prior knowledge of

facial muscles in psychology, and further improve the per-

formances of existing methods in computer vision.

5. Conclusions

In this paper, a new method to analyze facial expressions

is proposed. Different from previous work, we aimed at ex-

ploring the commonalities among the expressions by dis-

covering the common and specific patches. A two-stage

sparse learning model is proposed to learn the locations of

these patches based on the prior knowledge of facial mus-

cles and AUs. The effectiveness of these patches are eval-

uated by facial expression recognition. Extensive experi-

ments show that common patches can generally discrimi-

nate all the expressions, and the recognition performance

can be further improved by integrating specific patches. The

learned location information of these patches also confirms

the discovery in psychology.
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