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Learning Active Shape Models for
Bifurcating Contours

Matthias Seise, Stephen J. McKenna∗, Ian W. Ricketts and Carlos A. Wigderowitz

Abstract— Statistical shape models are often learned from
examples based on landmark correspondences between annotated
examples. A method is proposed for learning such models from
contours with inconsistent bifurcations and loops. Automatic
segmentation of tibial and femoral contours in knee x-ray images
is investigated as a step towards reliable, quantitative radio-
graphic analysis of osteoarthritis for diagnosis and assessment
of progression. Results are presented using various features,
Mahalanobis distance, distance weightedK−nearest neighbours
and two relevance vector machine based methods as quality of
fit measure.

I. I NTRODUCTION

Statistical models of shape based on point distributions have
enjoyed considerable success, particularly for segmentation,
tracking and recognition of biological shape variation, e.g.
facial and medical image analysis. The original active shape
model formulation [1] and most recent methods based upon it
rely on explicit inter-image correspondence being established
between landmark points. These points often lie on identifiable
contours in the images, their positions being determined either
manually or (semi-)automatically [2].

Consider the image contours annotated in Fig. 1. Shown are
four examples from a radiographic image analysis application
and four from a lip-reading application. In both cases, contours
can contain loops. Furthermore, the number of loops and
the positions of the bifurcation points relative to the object’s
image projection vary in a complex way. Corresponding land-
marks cannot be straightforwardly identified in these images.
The use of bifurcation points as landmarks, for example,
leads to undefined correspondence matches and unmeaningful
variation. An alternative approach would be to treat each
contour as multiple contours, each sharing endpoints but taking
different paths around the loops. Modelling these contours
independently results in a poorly constrained search in which
contours often find the same side of a loop or only one
of the contours localises a section where there is no loop.
Even if the contour landmarks are concatenated to form a
single landmark vector representation, the result will be two
contours that in general will not be collinear where the expert
annotation (ground-truth) would only indicate a single contour,
a rather unsatisfactory state of affairs. In general, contours
would have differing landmarks on sections where the contours
are collinear.
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In this paper, thebifurcating contour active shape model
(BCASM) is proposed. The contours are parameterised in
terms of a primary contour’s landmarks along with a suitably
constrained warp to a secondary contour. Correspondence is
thus established between the contours. The method simplifies
to a standard active shape model (ASM) in the case of a
contour without bifurcations and can thus be considered to
be a generalised ASM.

The paper also discusses other aspects of these models
including the local appearance features used and different
methods for local appearance matching. A distance weighted
K-nearest neighbour (K-NN) method is proposed and this
is compared with the commonly used Mahalanobis distance.
Furthermore, partially motivated by Williamset al. [3], the
use of relevance vector machines (RVM) [4] for driving the
active search is investigated.

The BCASM is extensively evaluated here for the task
of segmenting tibial contours in x-ray images of the knee,
a useful step towards automated radiographic assessment of
osteoarthritis (OA). Results are also presented for segmenting
the femoral contours. Some background on this application is
provided in Section II-A. Lip tracking is presented as another
example application for BCASMs.

A somewhat related approach was used by Jacobet al. [5]
to track the myocardial borders in ultrasound sequences. The
inner contour (endocardium) was tracked using a dynamic
contour tracking method. The search for the outer contour
(epicardium) was constrained by using a difference-shape-
space learned from the difference of the manually annotated
contours. An assumption was that the endocardium was easier
to track and as such guided the search for the epicardium. This
assumption is not necessary in the BCASM; rather contours
are treated equally by the appearance model and the search.

Another related approach was proposed by Luettinet al. [6]
for tracking lips using ASMs. The inner and outer contours
of the lips were manually annotated and normalised by scal-
ing, rotating and translating so that the line connecting the
endpoints of the lips was horizontal with unit length and
centred on the point of origin. The landmarks were set evenly
spaced along this horizontal. Thus, it was possible to build
the shape model by regarding only the vertical parameters.
In subsequent work, they discarded this shape model in
favour of a standard point distribution model since it did not
fully capture the large variability of the inner contour of the
lips [7]. Furthermore, equally spaced landmark points gave
only imprecise correspondence and therefore a weaker shape
model. This problem is avoided here by using an automatic
method based on minimum description length criteria [2].
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Fig. 1. Shape examples annotated with looping contours. Top:radiographs of the tibia. Bottom: a lip-reading application. Note that the number of loops and
their positions vary.

Fig. 2. Anatomy of the knee. Fig. 3. Clinical x-ray (enhanced).

II. BACKGROUND

The BCASM was initially developed to segment the knee
joint from standard x-ray images as a first step towards the
automatic assessment of osteoarthritis (OA). This sectiongives
a brief overview of the medical background to OA and also
briefly reviews and describes the standard ASM.

A. Osteoarthritis

Osteoarthritis is the most common joint disease and the
most common cause of disability in older people [8], resulting
in significant economic costs to society. It is characterised
by an imbalance of the synthesis and degeneration of the
articular cartilage. In most cases of knee OA, the cartilage
covering the tibial plateaux and the femoral condyles is being
destroyed (see Fig. 2). Two-dimensional x-ray imaging is the
most widely used modality for OA diagnosis and progression
assessment. Cartilage is not visible in x-ray images so the
primary radiographic sign used is the joint space between the
lateral (medial) femoral condyle and the lateral (medial) tibial
plateau. Joint space decreases as cartilage is destroyed. Other
signs include the formation of osteophytes (bony spurs), cysts
and subchondral sclerosis. Some of these signs are difficultto
quantify but for clinical trials, classification or gradingof OA
progression is often needed.

Unfortunately, there is still no accepted unifying standard
for the assessment of OA. A review of existing assessment
methods, such as the first by Kellgren and Lawrence [9], the
most recent and current standard used by the Osteoarthritis
Research Society developed by Altmanet al. [10], and a new
proposal, is given by Nagaosaet al. [11]. Most of these meth-
ods share the simple approach of visual comparison to standard
radiographs is used, mainly based on joint space width and
osteophytes. This leads to poor repeatability [12]. In particular,
the minimum joint space width (JSW), normally used by
physicians as a quantitative measurement of joint space, results
in large inter- and intra-observer variation [13]. In structure-
modifying drug trials, the change of the joint space over time,
is often used as an output measure. Therefore, it is mandatory
to assess it with high precision and reproducibility. The exact
segmentation of the tibial plateaux (as presented here) and
of the femoral condyles (presented in earlier work [14] and
partially here) is an important step towards this goal.

B. Active Shape Models

Before introducing the BCASM, the standard ASM is
first briefly reviewed. Introduced originally by Cootes and
Taylor [1], ASMs are widely used, especially in medical image
segmentation. Many extensions have been developed, from
non-linear shape models based on Gaussian mixture models
to wavelet based shape models as well as improved models
of local appearance and search techniques. Applications and
extensions are so numerous that they cannot be reviewed here
in detail. Only a few will be mentioned. A good overview is
given by Cootes and Taylor [15].

1) Theory: Given a training set ofS images in which
the objects of interest are suitably annotated, statistical shape
and appearance models can be estimated [15]. Correspon-
dence must be established between training examples and
this is often done manually by annotating landmark points.
Alternatively, contours can be annotated and landmarks on
the contours determined automatically based, for example,
on minimum description length criteria [2]. The training
examples are then aligned, typically using Procrustes analysis
to determine translation, rotation and scale parameters that
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minimise distances between the corresponding landmarks in
a least-squares sense. A shape is described by itsN landmark
points {(xn, yn)}N

n=1. Each training example can be written
as a 2N element vectorxs = (x

(s)
1 , y

(s)
1 , . . . , x

(s)
N , y

(s)
N )⊤.

Sample mean and covariance matrices are:

x =
1

S

S
∑

s=1

xs C =
1

S − 1

S
∑

s=1

(xs − x)(xs − x)⊤ (1)

Let Φ = (φ1|φ2| · · · |φD) denote the matrix whose columns are
theD eigenvectors corresponding to theD largest eigenvalues
λ1, . . . , λD of C. Any example of the training set,xs, can be
approximated by

xs ≈ x + Φbs , (2)

where bs is the D dimensional model parameter vector,
computed by

bs = Φ⊤(xs − x) . (3)

The number,D, of eigenvectors to retain is usually calculated
as the smallestD that satisfiesfv

∑2N

n=1 λn ≤ ∑D

d=1 λd,
where the parameterfv is the proportion of the total variance
of the data which can be explained, usually ranging between
0.900 and 0.995.

The appearance model describes the image structure around
each landmark. It is usual to use fixed-length, one-dimensional
profiles orthogonal to the contour. For each example and each
landmark a fixed number of pixels on and to either side of
the contour are sampled. Cootes and Taylor [15] originally
proposed the use of normalised first order derivative profiles.
Typically, the profile distribution is modelled as a multivariate
Gaussian. Thus, the Mahalanobis distance can be used as a
measure of the quality of fit of a profile.

Active shape model search is iterative and local. It is usually
initialised with the mean shape and translation, rotation and
scale parameters reasonably close to their ‘true’ values. At
each iteration, points on and to either side of the contour
along the normal direction are considered. Profiles centred
at each of these points are sampled and their Mahalanobis
distances calculated. The landmark position is updated as the
point with minimal Mahalanobis distance. After processing
all landmarks, the closest plausible shape is found by pro-
jecting onto the eigenspace (Equation (3)). Plausible shapes
are usually defined as those for which every shape parameter
bd is between−3

√
λd and 3

√
λd. The search is iterated a

fixed number of times or until the shape model has converged.
Search results can be improved if a multi-resolution, coarse-
to-fine search is adopted with appearance models learned for
each resolution. The segmentation result at each resolution is
used to initialise the search at the next resolution.

2) Review: Several improvements to the standard ASM
have been proposed. For example, more complex features
characterising texture have been used for appearance mod-
elling [16]. Active appearance models which model 2D ap-
pearance as well as shape variation using PCA are useful
in applications such as human face analysis [17] although
they often result in lower accuracy localisation of contours
than ASM [18]. When a linear model of shape variation is
inadequate, non-linear models have been used, e.g. [19], [20].

Since their conception, ASMs have been used for medical
image analysis [21], mainly to locate structures in image
modalities such as MRI and ultrasound. In Smythet al. [22]
ASMs were used to segment vertebral shapes from dual x-
ray absorptiometry (DXA) in order to find vertebral fractures.
The initial findings were good with the same accuracy for the
automatic method as for manual annotation. DXA radiographs
were also used by Sotocaet al. [23] and Thodberg and
Rosholm [24] to segment parts of the metacarpals, whole
metacarpals, medial phalanxes and proximal phalanxes. Thod-
berg and Rosholm [24] extended the ASM to the More
Active Shape Model (MASM) using a ‘translation operator’
to provide the active search with methods to move the shape
orthogonal to the local search directions. This extension was
necessary since only a part of the shaft on the metacarpal was
segmented. However, if entire bone contours are segmented,
the standard ASM can be used [23]. Quantitative segmentation
errors were not reported in either paper but the segmentation
failure rate was said to be small. Standard ASMs were used
by Hutton et al. [25] to locate landmark points on standard
x-rays of the head but with unsatisfactory results. Vogelsang et
al. [26] and Kohonenet al. [27], [28] used a combination of
the ASM shape model, edge-based energy term and simulated
annealing as a search algorithm to segment hand radiographs,
and lumbar x-ray images. Zamoraet al. [29] used a combi-
nation of template matching, ASM and deformable models to
segment the vertebrae from x-ray images of the head.

Probably the most closely related work was published by
Behiels et al. [30]. They compared different search strate-
gies (standard ASM, a minimal-cost-path (MCP) extension to
ASM, and a MAP estimate for simultaneous optimisation of
shape and pose parameters) and different feature types for
the segmentation of different bones. The presented results
indicated that MCP performed best in all cases. However,
the results must be handled with care since the initialisation
was almost perfect (using the manually annotated contours
as initialisation) and no multi-resolution search was used.
Nevertheless, the results give an idea of possible strategies
to minimise segmentation errors.

III. ASM FOR BIFURCATING CONTOURS

In order to model bifurcating contours such as those in
Fig. 1, each example is treated as two contours that share
their endpoints and take inner and outer paths at bifurcations.
One of these contours is used as aprimary contourand the
bifurcating contour is represented in terms of landmarks on
this primary contour along with a constrained warp to the
secondary contour. The warp defines corresponding landmarks
on the secondary contour. In order for these to be positioned
so as to form a good representation of shape, the warp must be
suitably constrained. A warp suitable for certain radial shapes
is to displace along the line between the centre of gravity

of the primary contour(x, y) =

(

1
N

N
∑

n=1
xn, 1

N

N
∑

n=1
yn

)

and

the corresponding landmark(xn, yn) (see Fig. 4(a)). Another
possibility is displacement along the normals. Note, however,
that both can yield inappropriate landmarking. In the case of
the example applications in Fig. 1, a suitable warp can be
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(a) (b)

Fig. 4. Two landmark warps: (a) radial and (b) parallel.

achieved by parallel displacement of the landmarks, i.e. by
translating each of theN landmarks on the primary contour,
(xn, yn), a distanceδn in a shared directionθ. For the tibia,θ
can be defined as an approximation to the dominant bone axis
(see Fig. 4(b)). This is because contour loops occur only at the
tibial plateaux. Separations in this direction are always well
defined. Specifically, the orientation of the line connecting the
two bifurcation points for each loop in each training example
was computed. The loops can clearly be distinguished as
medial or lateral,θ was set to the orientation of the angular
bisector of the median lateral and median medial bifurcation
lines. For the lip tracking application,θ was set orthogonal to
the line connecting the endpoints of the lower lip.

Each exampleSs is represented by a3N element shape
vectorxs and the dominant axisθs,

Ss = (xs, θs) wherexs = (x
(s)
1 , y

(s)
1 , δ

(s)
1 , . . . , x

(s)
N , y

(s)
N , δ

(s)
N )⊤

(4)
The correspondence between the primary contour and the
secondary contour is explicitly given by the direction of the
dominant axis and the separation,δn, for each landmark point.
Therefore, only the landmarks on the primary contours of each
shape now need to be brought into correspondence. This can
be achieved using the minimum description length method [2].

A naive approach to aligning two shapes would be to treat
a vector x as defining a shape in3D space and to align
them in this 3D space. This does not work because the
3D transformations (rotation and translation) do not treat the
separation dimension appropriately. Both contours shouldbe
taken into account during alignment. Furthermore, care must
be taken to weight the effect of the two contours and the
effect of landmarks on either side of a bifurcation equally.This
is achieved by converting the double contour representation
into a vectorx̃ of 2D image vectors for both the primary
contour landmarks and those secondary contour landmarks at
which the separation in at least one example shape is non-
zero. More formally, letI = {i1, . . . , iM} denote the set of
indices where the separations are not always zero, thusim ∈
I ⇐⇒ ∃ s : δ

(s)
im

6= 0. The coordinates of the landmarks on
the secondary contour are calculated asx̃im

= xim
+δim

sin θ

and ỹim
= xim

− δim
cos θ. The concatenated shape vectors

x̃ = (x1, y1, . . . , xN , yN , x̃i1 , ỹi1 , . . . , x̃iM
, ỹiM

)⊤

are then aligned as in the standard model using Procrustes
analysis.

Principal components analysis can be applied to the shape
3N -vectorsx of Equation (4) analogously to standard ASM
(Equations (1)–(3)). Furthermore, this model is well defined in
the sense that any shapex generated by Equation (2) can have
a non-zero separationδn at landmarkn only if the contours
are separated at this landmark in at least one training example.
When all separations are zero for all training examples, a
standard (single contour) ASM is recovered.

As explained in detail in [31] there are different methods
to define plausible shapes. In most ASM applications, the
D-dimensional shape parametersb from Equation (2) are
constrained by|bd| < 3

√
λd for all d = 1, ...,D. Here, the

more principled method was adopted of constrainingb to a
hyperellipsoid by

D
∑

d=1

b2
d

λd

< T (5)

with T being theγ-quantile of theχ2 distribution in order
to have a proportionγ of plausible shapes in the training set.
This quantile can be computed numerically andγ = 0.98 is
used in all experiments reported here.

A. Local Appearance Models and Search

The local appearance can be modelled and searched as in
the standard ASM at landmarks where no double contour is
possible. At landmarks with non-zero separation, it makes
sense to use profiles in the direction of the warp instead of
perpendicular to the contour. This is because these landmark
points are constrained to move in this direction during search.
Adopting another direction would necessitate a complicated
and numerically unstable recalculation of the displacement at
each search step. The dominant axis direction is often similar
to the contour normal direction so the resulting appearance
models are similar.

Possible approaches are to use (i) long fixed-length profiles
which cover the corresponding landmarks on both contours,
(ii) variable length profiles which cover the corresponding
landmarks on both contours plus a fixed number of pixels
to either side of the contour, or (iii) two separate, shorter
profiles centred at the inner and outer contour landmarks. A
disadvantage of the first two approaches is that the profiles
are longer, requiring more training examples. The second ap-
proach would require the comparison of profiles with different
lengths. The third approach was adopted here. A drawback of
this approach is that the local appearance models at the inner
and outer contour are treated as independent when in fact they
are likely to be quite strongly coupled. (Note that a related
limitation applies to standard ASM models which model the
appearance of adjacent landmarks independently).

When the number of training examples is limited, appear-
ance models learned separately for each landmark can become
unreliable. A windowing method is therefore adopted in which
training profiles from nearby landmarks are pooled in order
to estimate the appearance model. More specifically, for each
landmark, profiles from theW adjacent landmarks to its left
and theW landmarks to its right on the contour are used in
addition to profiles at the landmark itself in order to estimate
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the local appearance model. At both ends of the contour the
training profiles of the end and adjacentW −1 landmarks are
used. This windowing is used for all landmarks (both single
and double contour).

Behielset al. [30] reported significantly better segmentation
of the femur in x-ray images using alternative features. There-
fore, several different features were compared here, namely
raw intensity, unnormalised gradient, normalised intensity,
normalised gradient, scaled intensity and scaled gradient(as
used by Behielset al.), and additionally G-scaled intensity and
G-scaled gradient. For an arbitrary vectorg = (g1, . . . , gM ),
the normalised vector is

ĝ =

(

g1
∑M

m=1 gm

, . . . ,
gM

∑M

m=1 gm

)

,

the scaled vector is

g̃ =

(

g1 − min
m

gm

max
m

gm − min
m

gm

, . . . ,
gM − min

m
gm

max
m

gm − min
m

gm

)

and the G-scaled vector is defined as

˜̃g =

(

g1 − g

σg

, . . . ,
gM − g

σg

)

,

with g being the mean andσg the standard deviation of the
vectorg.

In standard ASM, Mahalanobis distance is used for mea-
suring the quality of fit of a new profile to the learned
model. This does not take into account information about
the appearance distributions off the contour. Furthermore, the
underlying assumption that the profiles can be modelled as
Gaussian is often not well satisfied. De Bruijneet al. [32] used
a K-nearest neighbour classifier constructed using examples
of profiles both on and off the contour to estimate the
probability that a given profile lies on a contour. Note that
such an estimate can only takeK + 1 different values. In this
paper, distance weightedK-NN is used instead. For every
landmark, on contour profile examples are sampled as for
standard ASM. In addition,off contour examples are obtained
by sampling profiles translated in the profile direction. The
distance between two profilesp1 = (p

(1)
1 , . . . , p

(1)
J ) andp2 =

(p
(2)
1 , . . . , p

(2)
J ) is taken to be the sum of absolute differences:

d(p1,p2) =
∑J

j=1 |p
(1)
j − p

(2)
j |. The goodness of fit of a new

profile pf whose K nearest neighbours arep1, . . . ,pK is
defined as

f(pf ) =
∑K

k=1 wk

wherewk =

{

0 if pk is an off example
1

d(pf ,pk)2 if pk is an on example
(6)

In the unlikely event of anon example exactly matchingpf ,
the goodness of fit is taken to be maximal.

In standard ASM, multi-resolution search is used to avoid
convergence to the wrong local structure and to speed up the
search. Usually the search only changes the resolution of the
underlying image, i.e. by subsampling the appearance model.
Here a further step is used by subsampling the shape space
too, as originally proposed in [33]. A shape model is built
as described above for allL levels of search, at the highest

resolution using allN landmarks, and at each lower level using
every second landmark from the level above. This not only
speeds up the search, it also resolves some problematic issues
when the resolution of the image is so low compared to the
shape that different landmarks have the same coordinates and
the perpendicular direction is not well defined. This kind of
multi-resolution search is of course only useful if the total
number of landmarks fulfilsN ≫ 2L.

B. Relevance Vector Machines for Learning Displacements

Williams et al. [3] used RVMs to build displacement experts
and drive a tracking algorithm trained on image patches.
It should also be possible to use RVM’s to improve the
appearance model an obtain more robust and accurate ASM
search. Explaining RVM in detail is out of the scope of this
paper; see for instance [4]. (Note that the notation in the
following brief explanation is taken from [4].) In brief, RVMs
are a Bayesian treatment of sparse learning and are used here
for regression. The output functional is

y(x;w) =
N
∑

n=1

wnK(x,xn) + w0 = wφ(x)

wherex is an input vector,y : R
M → R the output function,

K is the kernel function andw = [w0, . . . , wN ]⊤ the weights
determined by training. It is assumed that the training dataare
sampled with additive noise

tn = y(xn;w) + ǫn

whereǫn ∼ N (0, σ2). The prior over the weights is a zero-
mean Gaussian with diagonal covariance matrix. The use of
such a prior enables sparsity to be obtained. After determining
the weights from the training data, prediction of the target
value t∗ for a new unknown datumx∗ results in

t∗ ∼ N (y∗, σ
2
∗
) (7)

with

y∗ =
N
∑

n=1

µnK(x∗,xn) = µ⊤φ(x∗)

σ2
∗

= σ2
MP + φ(x∗)

⊤Σφ(x∗)

whereµ, σ2
MP andΣ are also determined during the training

steps.
The idea was to train RVMs for the appearance at every

landmark and use them to drive active search using the
probabilistic outputs. In detail,2T + 1 fixed length profiles
p1, . . . , p2T+1 were sampled orthogonal to the contour, the
centre offset byt1 = −T, . . . , t2T+1 = T pixels from the
contour. Theseti were also the target values for training the
RVMs. The RVMs were trained for the current resolution and
landmark to output the expected offset from the true contour
for any input profile. For training, the source code provided
by M Tipping based on Ref. [34] was used.

Two different methods are proposed here to use trained
RVMs during active search. The first method is slow but
should yield superior results since it uses the probabilistic
prediction of the target value from Equation (7). In detail,for
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every landmark, search profilesp1, . . . , pM were sampled or-
thogonal to the contour(M ≤ 2T +1). The output of the RVM
for a profilepm is a Gaussian posterior density overtm with
the meantm and the standard deviationσtm

(Equation (7)).
Since the error-bars have the strange property of being smallest
when the input data are far from the training set (see [4],
App. D), σtm

was set to infinity andtm to zero if |tm| > T .
Assuming conditional independence, the landmark position
was updated tot∗ which minimisesf(t) =

∑M

m=0
(t−tm)2

σ2

tm

.
Using all the information around the landmark should lead to
more robust fitting and therefore higher accuracy.

In the second method, for every landmark only one profile
p centred on and orthogonal to the contour is sampled. The
output of the RVM gives the expected displacement of the
current contour to the ‘real’ contour. The current landmarkis
updated by the expected offsett. This method is much faster,
since for every landmark the RVM is called once instead of
M times. The performance of both methods suffers from the
long training times of RVMs, but this is done offline. The
expected sparsity should give a performance gain in terms of
computational costs for the second method compared to the
K-NN method and be comparable to the use of Mahalanobis
distance.

IV. EMPIRICAL EVALUATION

A. Bone segmentation

The methods described were applied to a data set of30 stan-
dard clinical x-rays of non-osteoarthritic knees. Concavities in
the tibial plateaux result in distinct image contours correspond-
ing to the anterior and posterior rims of the plateaux. It is very
difficult to determine which contour is which on the basis of
the AP radiograph. The contours are therefore referred to as
the inner contour and theouter contour in a 2D sense. These
double contours are not always present on both the lateral and
medial plateaux. Furthermore, the contour bifurcation points
vary quite widely between example images.

The radiographs were digitised with a resolution of 150dpi
(1 pixel is about 0.17mm) and 8 bit grayscale depth. The image
size was between 1312x928 and 1760x1408 pixels. Images
of left knees were mirrored so that they appeared as right
knees. Inner and outer contours were manually annotated in all
images and leave-one-out validation was used for evaluation.
Automatic initialisation was based on a simple threshold
method to find the centre line of the shafts of the tibia and
femur and the gap between the heads of the bones. Addition-
ally, average rotation and scaling of the initialisation template
were learned from the training data. The inner contours were
used as primary contours and the outer contours as secondary
contours. Different images showed different portions of the
shaft of the tibia. Therefore, the MDL approach [2] with added
curvature [35] was used in two steps. The first step truncated
the training set, i.e. the endpoints were loosely determined. In
the second step, the factor for the curvature term was increased
to bring the shapes into better correspondence by taking
advantage of the specific shape around the tibial plateaux.
Each BCASM estimated was used to perform segmentation
of its ‘left out’ test image.
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Fig. 6. Generalisation and Specificity of the Tibia measured in the shape
space (note the different logarithmic scale).

A commonly used measurement for contour segmentation
accuracy is the point-to-contour error defined as the average
Euclidean distance from the obtained landmark positions tothe
annotated contour (which is treated as ground truth). LetEs

denote this error for thesth test example. Overall performance
was characterised using the mean test error,E and its standard
deviationσE .

There are different approaches possible to find the appropri-
ate number,D, of retained dominant eigenvectors after PCA.
The commonly used one was described in Section II-B, using
a fixed proportion of the total variance. A different heuristic
also described in [15] uses generalisation ability and specificity
instead. The generalisation ability is calculated using leave-
one-out reconstruction by building the shape model from
the remaining training examples and calculating the mean
point-to-point reconstruction error in theshape space. The
generalisation of the model is then the mean over all leave-one-
out experiments. The specificity was calculated as described
in [36] by sampling randomly 1000 plausible shapes, calculat-
ing the point-to-point errors for all training shapes per sample,
and summing their minimum values. Reconstruction errors and
specificity measure could also be computed in image space,
resulting in error measures in pixels. Since only the shapesof
the curves are of interest, this is not necessary.

1) Tibia segmentation:Fig. 6 shows specificity and recon-
struction error curves for the tibia. Considering both these
curves,D = 17 was chosen.

Automatic initialisation failed completely in 1 of the 30
examples so that the point-to-contour errors were larger than
20 pixels for all tested parameter combinations. Therefore,
this example was excluded in the following quantitative eval-
uations.

A typical overall segmentation result with automatic initiali-
sation is shown in Fig. 5 for the Mahalanobis distance as well
as weightedK−NN. The BCASM algorithm was evaluated
extensively for all 8 features, window parameter values of
W = {0, 2, 4, 6, 8, 10}, Mahalanobis distance and weighted
K−NN with K = {5, 10, 15, 20, 25, 30}. Fig. 7 plots the
segmentation errors obtained using Mahalanobis distance and
weightedK−NN with K = 5. Plots are given for window
parameter values ofW = {0, 2, 4, 6, 8, 10} for each of the8
feature types with median errors lower than 10 pixels.

The overall lowest mean error of2.54 pixels (min = 1.60,
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(a) Manual annotation (b) Initialisation (c) Segmentation using Maha-
lanobis distance (Es = 1.81)

(d) Segmentation using weight-
ed K-NN (Es = 1.60)

Fig. 5. BCASM tibia segmentation (W = 10, scaled gradient,K = 10).
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Fig. 7. Effect of profile feature and window size onE andσE . Left: Mahalanobis distance. Right: WeightedK − NN (K = 5). (Note that both graphes
are cropped to show the important parts of the data.)
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Fig. 9. Effect ofK and feature type onE andσE usingW = 0.

max = 4.37, σE = 0.65) was achieved using weightedK-NN,
K = 5, W = 6 and G-scaled gradient features. Depending on
whether Mahalanobis distance or weightedK-NN was used,
the feature types have a significant influence on accuracy.
Unnormalised intensity and gradient as well as normalised
intensity performed worst using Mahalanobis distance with
mean errors greater than 20 pixels for all parameter settings,

whereas normalised gradient and G-scaled gradient performed
best. This finding stands in contrast to Ref. [30] in which
scaled intensity seemed to perform best for segmenting the
cranial end of thefemur. When using weightedK-NN, the
difference between the features types was much smaller,
with even the worst performers, usually unnormalised and
normalised intensity, having far less than 20 pixels mean error.
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Fig. 10. Histogram of segmentation errorsEs when usingK − NN

regression (K = 25, normalised gradient,W = 2).

Overall, the windowing parameterW had almost no in-
fluence on the accuracy independent of the other parameters
(Fig. 8), whereas theK parameter had, dependent on the
feature type used, an effect on the mean accuracy and standard
derivation. However, the influence was significant in only a
few cases (Fig. 9).

The distribution of the point-to-contour errors for one of
the best results is shown in Fig. 10 using normalised gradient,
W = 2 andK = 25.

2) Femur segmentation:The BCASM was also evaluated
on the task of segmenting the femur and, since no multiple
contours occur, it is equivalent to the standard shape model.
The data set consisted of the same radiographs as for the
segmentation of the tibia. Experiments were performed for the
same parameter sets as in the tibia experiments. For the femur
the automatic initialisation failed completely in 2 out of the 30
images, i.e. the segmentation error was larger than 20 pixels
for all tested parameter sets. Detailed results, excluding these
2 cases, using Mahalanobis distance andK-NN (K = 10,
no windowing) are given in Table I with normalised gradient,
scaled gradient and scaled intensity as feature types. These
parameter sets showed the best results. The other findings were
similiar to the tibia results.

3) ASM and the Relevance Vector Machine:RVMs were
trained using profiles of length 11 and offsetT = 7 to
give enough information about the appearance on and off
the contour. The learning algorithm, using Gaussian kernels
(σ = 0.5) centred on the test data, did not converge for all
feature types. RVMs were only trained for normalised gradient,
scaled gradient and scaled intensity, since these gave the best
results using Mahalanobis distance and weightedK-NN. No
windowing was used for the same reason.

Detailed results for the RVM segmentation compared to
the same experiments using Mahalanobis distance andK-NN
(K = 10, no windowing) are given in Table I. WeightedK-
NN always performed significantly better than the first variant
of using RVM. The median and the minimum segmentation
errors were significantly worse using RVMs compared to
weightedK-NN. The second (fast) method performed almost
as well asK-NN and Mahalanobis distance. The sparsity of
the RVMs depends strongly on the actual appearance around
the landmark point and can range between 4 and 435 relevance
vectors at the highest resolution (maximum of435 = 29 · 15).
The number of relevance vectors was about 30 for normalised
gradient, 340 for scaled gradient and 100 for scaled intensity.

B. Lip tracking

As a second example application, BCASM was used for
lip tracking. A sequence of 194 images (135x214 pixel, 8
bit grayscale, uncompressed) was used. The first 33 images
were manually annotated as shown in Fig. 1 to provide the
training set and the remainder were used as test images.
Manual annotation was performed on colour images whilst
the algorithm ran on grayscale images.

Annotation of the lower lip as a closed contour was used
to provide the appearance model with information about the
appearance of the left and right ends of the lips. (Experiments
with only the inner contours of the lips failed since the search
and sampling profiles were in the direction of the dominant
axis, so the model could not converge to the left and right
corners of the mouth.)

The primary contour was the closed contour around the
lower lip and the secondary contour was the inner contour
of the upper lip. The MDL approach was used to bring the
primary contours into correspondence, this time without using
the curvature term. TheD = 6 dominant eigenvectors were
used to build the shape model. Active search was initialisedin
each frame with the shape and pose of the previous frame and
in the first frame with the mean shape and pose. Since multi-
resolution search was used and the images were relatively
small, initialisation with mean shape and pose in every image
would have given qualitatively similar results.

Results are shown for normalised gradient as feature
type, no windowing (W = 0) and Mahalanobis dis-
tance as quality-of-fit measure. The whole sequence can be
downloaded from http://www.computing.dundee.
ac.uk/staff/mseise/work.html. Results for some
frames are shown in Fig. 11.

V. D ISCUSSION ANDCONCLUSIONS

The BCASM was introduced as a method for modelling
and segmenting contours with inconsistent loops and bifur-
cations. Its performance was mainly evaluated on the task
of segmenting tibia contours in knee x-rays and secondly
on a lip tracking application. The method should be more
broadly applicable since occlusions, rotations in depth ofnon-
convex objects in optical images, and projections of non-
convex objects in transmissive imaging modalities often result
in bifurcating contours. The proposed BCASM was explained
here for shapes with two contours since in the presented
applications only two contours could occur. For applications
with shapes having more than two contours, the method can
be extended in a straight-forward way and as such can be
considered as a generalised ASM for shapes with multiple
bifurcations.

The BCASM algorithm was evaluated extensively for the
segmentation of the tibia. The results with mean errors be-
tween 2 and 3 pixels are promising but should be improved
for practical applications like measuring the joint space.One of
the limiting factors for higher accuracy seems to be the manual
annotation, even for non-osteoarthritic bones. Contours can be
blurred, occluded by other bones, noise and clutter. Therefore,
it is not possible to manually annotate the contours of the
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Feature Method Median error Mean error Standard deviation Minimal error Maximal error
medEs E σE min

s
Es max

s
Es

normalised gradient RVM 2.00 4.71 9.18 1.26 41.43
RVM (fast) 1.78 7.62 21.44 1.16 111.29
Mahalanobis distance 3.22 12.87 24.01 0.86 98.34
weightedK-NN (K = 10) 1.05 1.36 0.81 0.75 4.42

scaled gradient RVM 4.63 9.27 15.16 1.76 79.23
RVM (fast) 1.42 1.52 0.47 0.88 2.79
Mahalanobis distance 1.01 1.22 0.41 0.82 2.60
weightedK-NN (K = 10) 1.03 1.41 1.29 0.78 7.55

scaled intensity RVM 6.98 7.83 5.15 1.65 24.59
RVM (fast) 1.73 7.14 20.43 0.96 106.82
Mahalanobis distance 2.73 14.10 25.58 0.99 93.37
weightedK-NN (K = 10) 1.13 6.27 18.67 0.73 93.53

TABLE I

SEGMENTATION ERRORS FOR FEMUR USINGRVM, M AHALANOBIS DISTANCE RESPECTIVELY WEIGHTEDK-NN (SEE TEXT).

124

(a) Frame 124/194,Es = 0.76

134

(b) Frame 134/194,Es = 0.70

140

(c) Frame 140/194,Es = 0.88

144

(d) Frame 144/194,Es = 1.89

164

(e) Frame 164/194,Es = 0.59

174

(f) Frame 174/194,Es = 0.71

180

(g) Frame 180/194,Es = 1.23

194

(h) Frame 194/194,Es = 0.57

Fig. 11. Results for the lip tracking application using Mahalanobis distance and normalised gradient

bone to one pixel accuracy. Furthermore, systematic errorscan
occur,from the use of linear interpolation between landmark
points in the MDL approach. Consequently, the shape and,
more importantly, the appearance models are trained on noisy
data which can lead to lower accuracy. Using the manual
annotation as ground truth can of course also result in wrong
error measurements, since it is conceivable that the automatic
segmentation is closer to the truth than manual segmentation.
Nevertheless, the reported results show that automatic segmen-
tation of the tibia is feasible using BCASM.

A probable reason for the poor performance of the first
method of using RVMs is the degenerative covariance function
which leads to unusable predictive variance. This weaknessof
RVMs was recently highlighted by Rasmussen and Quin̋onero-
Candela [37]. They demonstrated significantly worse predic-
tion rates compared to Gaussian processes which are non-
sparse. The fast method using RVM shows promising results.
The accuracy in the majority of the cases is as good as
using K-NN or Mahalanobis distance and has the same
magnitude as the expected error in the manual annotation.
Future developments in sparse Bayesian inference are likely
to yield improved performance.

The finding that (G-)scaled gradient features were most
effective and that normalised intensity was least effective

using Mahalanobis distance stands in contrast to Ref. [30] in
which scaled gradient seemed to perform significantly worse
than scaled intensity for segmenting thecranial end of the
femur. This demonstrates that even for similar applications, the
optimal appearance models can vary and be difficult to find.
Direct comparison to the results for segmenting the tibia isnot
possible since important information like image resolution and
how the tibia was annotated (outer, inner or both contours) are
missing. Furthermore, the active search was initialised using
the known ground truth and was not multi-resolution. Using
the mean shape aligned to the ground truth as initialisation,
Behiels et al. [30] reported a mean point-to-boundary error
for the tibia of 2.40 pixels using standard ASM and were
1.71 pixels using MCP. Results for segmenting the femur were
also reported with a mean error of 3.39 pixels using ASM
and 1.96 pixels using MCP. Table I shows some results (no
windowing) for the same task using the described framework
with Mahalanobis distance and weightedK-NN as quality-
of-fit measures. The overall best mean point-to-contour error
was given using scaled gradient, Mahalanobis distance and
windowing,W = 2 and was 1.19 pixels, significantly smaller
than reported by Behielset al. [30].

The use of Mahalanobis distance as quality-of-fit measure
often yields good results in terms of mean error and is much
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faster than using weightedK-NN. The strong point ofK-
NN is the reduced sensitivity to feature type and the smaller
variance, especially with small values ofK.

The reported results are a promising step towards assessing
osteoarthritis from standard clinical x-rays. The resultsshow
that with the proposed BCASM the segmentation of anterior
and posterior rims of the tibial plateaux is achieved. This seg-
mentation along with the segmentation of the femoral condyles
should lead to better measurements, more highly correlated
with the actual volume of cartilage than the commonly used
minimum joint space width. Furthermore, a more accurate
segmentation offers the potential to automatically measure and
count osteophytes and ultimately to define a new outcome
measure for the progression of osteoarthritis.
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