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Abstract— Statistical shape models are often learned from In this paper, thebifurcating contour active shape model
examples based on landmark correspondences between annotite (BCASM) is proposed. The contours are parameterised in
examples. A method is proposed for learning such models from o of a primary contour’s landmarks along with a suitably
contours with inconsistent bifurcations and loops. Automatic . .
segmentation of tibial and femoral contours in knee x-ray images ConStra'neq warp to a secondary contour. Corresponqlenc_e_ IS
is investigated as a step towards reliable, quantitative radio- thus established between the contours. The method sinsplifie
graphic analysis of osteoarthritis for diagnosis and assessmentto a standard active shape model (ASM) in the case of a
of progression. Results are presented using various features, contour without bifurcations and can thus be considered to
Mahalanobis distance, distance _vveighted(fnearest neighbo_urs be a generalised ASM.
and two relevance vector machine based methods as quality of .
fit measure. The paper also discusses other aspects of these models

including the local appearance features used and different
methods for local appearance matching. A distance weighted
K-nearest neighbour (K-NN) method is proposed and this

Statistical models of shape based on point distributions hais compared with the commonly used Mahalanobis distance.
enjoyed considerable success, particularly for segmientat Furthermore, partially motivated by Williamet al. [3], the
tracking and recognition of biological shape variatiorg.e. use of relevance vector machines (RVM) [4] for driving the
facial and medical image analysis. The original active shapctive search is investigated.
model formulation [1] and most recent methods based upon itThe BCASM is extensively evaluated here for the task
rely on explicit inter-image correspondence being esshbli of segmenting tibial contours in x-ray images of the knee,
between landmark points. These points often lie on idebtdia a useful step towards automated radiographic assessment of
contours in the images, their positions being determindetei osteoarthritis (OA). Results are also presented for setjinien
manually or (semi-)automatically [2]. the femoral contours. Some background on this applicaton i

Consider the image contours annotated in Fig. 1. Shown gi@vided in Section II-A. Lip tracking is presented as aeoth
four examples from a radiographic image analysis appticatiexample application for BCASMs.
and four from a lip-reading application. In both cases, carg A somewhat related approach was used by Jatadd. [5]
can contain loops. Furthermore, the number of loops amsltrack the myocardial borders in ultrasound sequences. Th
the positions of the bifurcation points relative to the @b inner contour (endocardium) was tracked using a dynamic
image projection vary in a complex way. Corresponding landontour tracking method. The search for the outer contour
marks cannot be straightforwardly identified in these insaggepicardium) was constrained by using a difference-shape-
The use of bifurcation points as landmarks, for examplepace learned from the difference of the manually annotated
leads to undefined correspondence matches and unmeaningdtours. An assumption was that the endocardium was easier
variation. An alternative approach would be to treat eagb track and as such guided the search for the epicardiurs. Thi
contour as multiple contours, each sharing endpoints kirtda assumption is not necessary in the BCASM; rather contours
different paths around the loops. Modelling these contousse treated equally by the appearance model and the search.
independently results in a poorly constrained search irchvhi ~ Another related approach was proposed by Luetial. [6]
contours often find the same side of a loop or only orfer tracking lips using ASMs. The inner and outer contours
of the contours localises a section where there is no loag. the lips were manually annotated and normalised by scal-
Even if the contour landmarks are concatenated to formirsy, rotating and translating so that the line connecting th
single landmark vector representation, the result will e t endpoints of the lips was horizontal with unit length and
contours that in general will not be collinear where the expecentred on the point of origin. The landmarks were set evenly
annotation (ground-truth) would only indicate a singletoom, spaced along this horizontal. Thus, it was possible to build
a rather unsatisfactory state of affairs. In general, amsto the shape model by regarding only the vertical parameters.
would have differing landmarks on sections where the castoun subsequent work, they discarded this shape model in
are collinear. favour of a standard point distribution model since it did no
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I. INTRODUCTION



Fig. 1. Shape examples annotated with looping contours. feafiographs of the tibia. Bottom: a lip-reading applicatiblote that the number of loops and

their positions vary.
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Fig. 2.  Anatomy of the knee.

]

Fig. 3. Clinical x-ray (enhanced).

Il. BACKGROUND

The BCASM was initially developed to segment the kn

Unfortunately, there is still no accepted unifying stambar
for the assessment of OA. A review of existing assessment
methods, such as the first by Kellgren and Lawrence [9], the
most recent and current standard used by the Osteoarthritis
Research Society developed by Altmetnal. [10], and a new
proposal, is given by Nagaosa al. [11]. Most of these meth-
ods share the simple approach of visual comparison to standa
radiographs is used, mainly based on joint space width and
osteophytes. This leads to poor repeatability [12]. Inipaldr,
the minimum joint space width (JSW), normally used by
physicians as a quantitative measurement of joint spaseltse
in large inter- and intra-observer variation [13]. In sture-
modifying drug trials, the change of the joint space overtim
is often used as an output measure. Therefore, it is marydator
to assess it with high precision and reproducibility. Thaax
segmentation of the tibial plateaux (as presented here) and
of the femoral condyles (presented in earlier work [14] and

eﬁartially here) is an important step towards this goal.

joint from standard x-ray images as a first step towards the

automatic assessment of osteoarthritis (OA). This secfives

a brief overview of the medical background to OA and alsg- Active Shape Models
briefly reviews and describes the standard ASM.

A. Osteoarthritis

Before introducing the BCASM, the standard ASM is
first briefly reviewed. Introduced originally by Cootes and
Taylor [1], ASMs are widely used, especially in medical iraag
segmentation. Many extensions have been developed, from

Osteoarthritis is the most common joint disease and then-linear shape models based on Gaussian mixture models

most common cause of disability in older people [8], reaglti to wavelet based shape models as well as improved models
in significant economic costs to society. It is characterisef local appearance and search techniques. Applicatiods an
by an imbalance of the synthesis and degeneration of t&etensions are so numerous that they cannot be reviewed here
articular cartilage. In most cases of knee OA, the cartilagre detail. Only a few will be mentioned. A good overview is
covering the tibial plateaux and the femoral condyles iagei given by Cootes and Taylor [15].

destroyed (see Fig. 2). Two-dimensional x-ray imaging & th 1) Theory: Given a training set ofS images in which
most widely used modality for OA diagnosis and progressidhe objects of interest are suitably annotated, statlssicape
assessment. Cartilage is not visible in x-ray images so thed appearance models can be estimated [15]. Correspon-
primary radiographic sign used is the joint space between tlience must be established between training examples and
lateral (medial) femoral condyle and the lateral (medidipt this is often done manually by annotating landmark points.
plateau. Joint space decreases as cartilage is destrotregt. QAlternatively, contours can be annotated and landmarks on
signs include the formation of osteophytes (bony spurstscythe contours determined automatically based, for example,
and subchondral sclerosis. Some of these signs are diffcculion minimum description length criteria [2]. The training
quantify but for clinical trials, classification or gradimd OA examples are then aligned, typically using Procrustesyaisal
progression is often needed. to determine translation, rotation and scale parametes th



minimise distances between the corresponding landmarks irSince their conception, ASMs have been used for medical
a least-squares sense. A shape is described by Imdmark image analysis [21], mainly to locate structures in image
points {(x,,y,)}\_,. Each training example can be writtermodalities such as MRI and ultrasound. In Smegthal. [22]
as a2N element vectors, = (z{",5{",... 23, 4)T. ASMs were used to segment vertebral shapes from dual x-
Sample mean and covariance matrices are: ray absorptiometry (DXA) in order to find vertebral fractsire
LS i The initial findings were good with the same accuracy for the
- _ 1 _ = T automatic method as for manual annotation. DXA radiographs
x= S;XS C= S—1 ;(XS X)xs =% (D) were also used by Sotocet al. [23] and Thodberg and
B o ) Rosholm [24] to segment parts of the metacarpals, whole
Let® = (¢1]¢s| - -[¢p) denote the matrix whose columns argnetacarpals, medial phalanxes and proximal phalanxesi-Tho
the D eigenvectors corresponding to tma!argest eigenvalues berg and Rosholm [24] extended the ASM to the More
A1y, Ap of C. Any example of the training sek,, can be  active Shape Model (MASM) using a ‘translation operator’
approximated by to provide the active search with methods to move the shape
Xs 2 X+ @by @) orthogonal to the local search directions. This extensias w
where b, is the D dimensional model parameter vector'€cessary since only a part _of the shaft on the metacarpal was
computed by segmented. However, if entire bone contqur; are segmen'ged,
by = &7 (x, — X) . ) the standard ASM can be used [23]. Quantitative segmentatio
errors were not reported in either paper but the segmentatio
The numberD, of eigenvectors to retain is usually calculatedailure rate was said to be small. Standard ASMs were used
as the smallestD that satisfiesf, foll An < ZdDzl Ad, by Hutton et al. [25] to locate landmark points on standard
where the parametef, is the proportion of the total variancex-rays of the head but with unsatisfactory results. Vogelst
of the data which can be explained, usually ranging betweah [26] and Kohoneret al. [27], [28] used a combination of
0.900 and 0.995. the ASM shape model, edge-based energy term and simulated
The appearance model describes the image structure aroandealing as a search algorithm to segment hand radiographs
each landmark. It is usual to use fixed-length, one-dimersio and lumbar x-ray images. Zamoea al. [29] used a combi-
profiles orthogonal to the contour. For each example and eaddtion of template matching, ASM and deformable models to
landmark a fixed number of pixels on and to either side gkegment the vertebrae from x-ray images of the head.
the contour are sampled. Cootes and Taylor [15] originally Probably the most closely related work was published by
proposed the use of normalised first order derivative psofileBehiels et al. [30]. They compared different search strate-
Typically, the profile distribution is modelled as a muliiiede gies (standard ASM, a minimal-cost-path (MCP) extension to
Gaussian. Thus, the Mahalanobis distance can be used &sS41, and a MAP estimate for simultaneous optimisation of
measure of the quality of fit of a profile. shape and pose parameters) and different feature types for
Active shape model search is iterative and local. It is uguathe segmentation of different bones. The presented results
initialised with the mean shape and translation, rotatind aindicated that MCP performed best in all cases. However,
scale parameters reasonably close to their ‘true’ valuds. the results must be handled with care since the initiabgati
each iteration, points on and to either side of the contowas almost perfect (using the manually annotated contours
along the normal direction are considered. Profiles centrad initialisation) and no multi-resolution search was used
at each of these points are sampled and their MahalanoNisvertheless, the results give an idea of possible stesegi
distances calculated. The landmark position is updatetieas to minimise segmentation errors.
point with minimal Mahalanobis distance. After processing
all landmarks, the closest plausible shape is found by pro- [1l. ASM FORBIFURCATING CONTOURS
jecting onto the eigenspace (Equation (3)). Plausible ehap |n order to model bifurcating contours such as those in
are usually defined as those for which every shape parametgy. 1, each example is treated as two contours that share
by is between—3\/A; and 3v/A;. The search is iterated atheir endpoints and take inner and outer paths at bifuncstio
fixed number of times or until the shape model has convergedne of these contours is used apramary contourand the
Search results can be improved if a multi-resolution, @arspifurcating contour is represented in terms of landmarks on
to-fine search is adopted with appearance models learnedtfi§ primary contour along with a constrained warp to the
each resolution. The segmentation result at each resoligio secondary contour. The warp defines corresponding landmark
used to initialise the search at the next resolution. on the secondary contour. In order for these to be positioned
2) Review: Several improvements to the standard ASMo as to form a good representation of shape, the warp must be
have been proposed. For example, more complex featusgsably constrained. A warp suitable for certain radiaifss
characterising texture have been used for appearance mgdto displace along the line between the centre of gravity
elling [16]. Active appearance models which model 2D ap-

N N
i =@ = (L1 1
pearance as well as shape variation using PCA are usdfLthe Primary contour(z, ) = (N Zl Ty N 2 y") and

n= n

in applications such as human face analysis [17] althougfie corresponding landmaxk:,,, y,) (see Fig. 4(a1)). Another
they often result in lower accuracy localisation of contoumossibility is displacement along the normals. Note, hawev
than ASM [18]. When a linear model of shape variation ithat both can yield inappropriate landmarking. In the case o
inadequate, non-linear models have been used, e.g. [Y], [Zhe example applications in Fig. 1, a suitable warp can be



Principal components analysis can be applied to the shape
3N-vectorsx of Equation (4) analogously to standard ASM
(Equations (1)—(3)). Furthermore, this model is well dediire
the sense that any shapeyenerated by Equation (2) can have
a non-zero separatiof), at landmarkn only if the contours
are separated at this landmark in at least one training ekeamp
When all separations are zero for all training examples, a
standard (single contour) ASM is recovered.

(b) As explained in detail in [31] there are different methods
Fig. 4. Two landmark warps: (a) radial and (b) parallel. to define plausible shapes. In most ASM applications, the
D-dimensional shape parametes from Equation (2) are
constrained byiby| < 3v/A4 for all d = 1,..., D. Here, the
achieved by parallel displacement of the landmarks, i.e. Byore principled method was adopted of constrainingo a
translating each of th& landmarks on the primary contour,hyperellipsoid by
(zn,yn), a distance),, in a shared directiofl. For the tibia,¢ D
can be defined as an approximation to the dominant bone axis Z
(see Fig. 4(b)). This is because contour loops occur onlgeat t d=1
tibial plateaux. Separations in this direction are alwayslw with T being they-quantile of thex? distribution in order
defined. Specifically, the orientation of the line connegtine to have a proportiony of plausible shapes in the training set.
two bifurcation points for each loop in each training exaeplIThis quantile can be computed numerically apg= 0.98 is
was computed. The loops can clearly be distinguished ased in all experiments reported here.
medial or lateralg was set to the orientation of the angular
bisector of the median lateral and median medial bifurcati
lines. For the lip tracking applicatiod, was set orthogonal to

(®)

y‘n.w

A. Local Appearance Models and Search

the line connecting the endpoints of the lower lip. The local appearance can be modelled and searched as in
Each exampleS, is represented by 4N element shape the standard ASM at landmarks where no double contour is
vectorx, and the dominant axié., possible. At landmarks with non-zero separation, it makes
sense to use profiles in the direction of the warp instead of
S, = (xs,0,) wherex, = (xg >7y1 $) 5( Sl ,yN) 5 )) perpendicular to the contour. This is because these lahdmar

(4) points are constrained to move in this direction during cear

The correspondence between the primary contour and thdopting another direction would necessitate a complitate
secondary contour is explicitly given by the direction oé thand numerically unstable recalculation of the displacenaen
dominant axis and the separatiop, for each landmark point. €ach search step. The dominant axis direction is often aimil
Therefore, only the landmarks on the primary contours oheat® the contour normal direction so the resulting appearance
shape now need to be brought into correspondence. This &a@dels are similar.
be achieved using the minimum description length method [2] Possible approaches are to use (i) long fixed-length profiles
A naive approach to aligning two shapes would be to trewhich cover the corresponding landmarks on both contours,
a vectorx as defining a shape i8D space and to align (i) variable length profiles which cover the corresponding
them in this 3D space. This does not work because th@ndmarks on both contours plus a fixed number of pixels
3D transformations (rotation and translation) do not treat t0 either side of the contour, or (iii) two separate, shorter
separation dimension appropriately. Both contours shbeld Profiles centred at the inner and outer contour landmarks. A
taken into account during alignment. Furthermore, caretmisadvantage of the first two approaches is that the profiles
be taken to weight the effect of the two contours and tt¥€ longer, requiring more training examples. The secord ap
effect of landmarks on either side of a bifurcation equdllyis Proach would require the comparison of profiles with differe
is achieved by converting the double contour represemtati¢ngths. The third approach was adopted here. A drawback of
into a vectorx of 2D image vectors for both the primarythiS approach is that the local appearance models at the inne
contour landmarks and those secondary contour landmark$@@ outer contour are treated as independent when in fact the
which the separation in at least one example shape is n@he likely to be quite strongly coupled. (Note that a related
zero. More formally, letl = {i,... iy} denote the set of limitation applies to standard ASM models which model the
indices where the separations are not always zero, hus appearance of adjacent landmarks independently).
[ e Js:6 £ 0. The coordinates of the landmarks on When the number of training examples is limited, appear-

Tm

the secondary contour are calculatedias = z;, +4; sing ance models learned separately for each landmark can become
andj; =a; —0; cosf. The concatenated shape . vectorsunreliable. A windowing method is therefore adopted in whic
training profiles from nearby landmarks are pooled in order
K= (L1, YL s ENSYN Ty iy oo s Bings Jing) to estimate the appearance model. More specifically, fon eac
landmark, profiles from théV adjacent landmarks to its left
are then aligned as in the standard model using Procruséesl thelV landmarks to its right on the contour are used in

analysis. addition to profiles at the landmark itself in order to estiena



the local appearance model. At both ends of the contour tfesolution using allV landmarks, and at each lower level using
training profiles of the end and adjacémt— 1 landmarks are every second landmark from the level above. This not only
used. This windowing is used for all landmarks (both singlgpeeds up the search, it also resolves some problemate&sissu
and double contour). when the resolution of the image is so low compared to the
Behielset al. [30] reported significantly better segmentatiorshape that different landmarks have the same coordinates an
of the femur in x-ray images using alternative features.ré&he the perpendicular direction is not well defined. This kind of
fore, several different features were compared here, namaiulti-resolution search is of course only useful if the tota
raw intensity, unnormalised gradient, normalised intgmsi number of landmarks fulfilsv > 27,
normalised gradient, scaled intensity and scaled gradant

used by Behielet al), and additionally G-scaled intensity andg  Rejevance Vector Machines for Learning Displacements

G-scaled gradient. For an arbitrary vece= (g4, ..., , - -
g : y o= (91 gum) Williams et al.[3] used RVMs to build displacement experts
the normalised vector is . : : . .
and drive a tracking algorithm trained on image patches.
L g1 IM It should also be possible to use RVM's to improve the
&= ZMﬂgm""’ ZMﬂQm ’ appearance model an obtain more robust and accurate ASM
" " search. Explaining RVM in detail is out of the scope of this

the scaled vector is paper; see for instance [4]. (Note that the notation in the
} g1 — H}}Ln gm gm — H}}Ln Im following brief explanation is taken from [4].) In brief, R¥s
g= : Yo : are a Bayesian treatment of sparse learning and are used here
max gm — min gm max gnL — min gm . . .
m m m m for regression. The output functional is

and the G-scaled vector is defined as N
(nox i) yxsw) = 3 K (x.x,) + 100 = Wl

Qe

gee ey

n=1
Og Og

i i .M i
with g being the mean and, the standard deviation of theWh_erex IS an input vectory : RY — R the Ol-thpUt fungtlon,
vectorg. K is the kernel function ansv = [wo,...,wy]  the weights

In standard ASM, Mahalanobis distance is used for megv_atermined_ by trai_n_ing. It_is assumed that the training data
suring the quality of fit of a new profile to the IearnecfSampled with additive noise
model. This does not take into account information about tn = y(Xn; W) + €
the appearance distributions off the contour. Furthermibie . ] ]
underlying assumption that the profiles can be modelled Wg€ree, ~ N(0,02). The prior over the weights is a zero-
Gaussian is often not well satisfied. De Bruijeieal. [32] used Mean Gaussian with diagonal covariance matrix. The use of
a K-nearest neighbour classifier constructed using exampfyh @ prior enables sparsity to be obtained. After detengin
of profiles both on and off the contour to estimate thihe weights from the training data, predlct!on of the target
probability that a given profile lies on a contour. Note thaf@lueét. for a new unknown datunx. results in
such an estimate can only také+ 1 different values. In this ty ~ N(ys,0?) @
paper, distance weighte®-NN is used instead. For every
landmark, on contour profile examples are sampled as fovith

N
standard ASM. In additionff contour examples are obtained _ T
by sampling profiles translated in the profile direction. The b = Z:IM"K(X*’X") = H Bx.)
distance between two profilgs = (p{",...,p(") andp, = an , .
Y, ... ,p?) is taken to be the sum of absolute differences: oy = onp + O(a:) Bp(z.)
d(p1,p2) = Y, p{" —p*)|. The goodness of fit of a newwherep, o2, and S are also determined during the training
profile p; whose K nearest neighbours ane;,...,px iS steps.
defined as The idea was to train RVMs for the appearance at every
f(ps) = ZkK_l w Iandma_r_k _and use them to drive agtive search usi_ng the
0 it py, is an off example  (6) probabilistic outputs. In detaiRT + 1 fixed length profiles
wherew;, = { = . if ps is an on example Pi,---,Pery Were sampled orthogonal to_the contour, the
P :Pk) centre offset byt; = —T,...,tory1 = T pixels from the
In the unlikely event of aron example exactly matchingy, contour. These; were also the target values for training the
the goodness of fit is taken to be maximal. RVMs. The RVMs were trained for the current resolution and

In standard ASM, multi-resolution search is used to avoldndmark to output the expected offset from the true contour
convergence to the wrong local structure and to speed up tbe any input profile. For training, the source code provided
search. Usually the search only changes the resolutioneof thy M Tipping based on Ref. [34] was used.
underlying image, i.e. by subsampling the appearance modelTwo different methods are proposed here to use trained
Here a further step is used by subsampling the shape spBs#s during active search. The first method is slow but
too, as originally proposed in [33]. A shape model is buikhould yield superior results since it uses the probaiailist
as described above for all levels of search, at the highestprediction of the target value from Equation (7). In dettal,



every landmark, search profilgs, ..., p,, were sampled or-
thogonal to the contoul{ < 27'+1). The output of the RVM
for a profilep,,, is a Gaussian posterior density ovegr with
the meant,, and the standard deviationy,, (Equation (7)).
Since the error-bars have the strange property of beingeshal
when the input data are far from the training set (see [4],
App. D), 0,, was set to infinity and,, to zero if [¢,,| > T.
Assuming conditional independence, the landmark position
was updated td, which minimisesf(t) = S _, “;;7*")2 | oo
Using all the information around the landmark should'lead to 0 5 10 15 20 2 0
more robust fitting and therefore higher accuracy. Number of etained eigenvectors

In the second method, for every landmark only one PfOfilﬂg. 6. Generalisation and Specificity of the Tibia measurethe shape
p centred on and orthogonal to the contour is sampled. Thgce (note the different logarithmic scale).
output of the RVM gives the expected displacement of the
current contour to the ‘real’ contour. The current landmiark
updated by the expected offsetThis method is much faster, A commonly used measurement for contour segmentation
since for every landmark the RVM is called once instead @ccuracy is the point-to-contour error defined as the aeerag
M times_ The performance of both methods Suffers from tl%]clidean distance from the obtained landmark pOSitiOIﬁlSEtO
long training times of RVMs, but this is done offline. Theannotated contour (which is treated as ground truth). et
expected sparsity should give a performance gain in termsd§inote this error for the’” test example. Overall performance
computational costs for the second method compared to #@S characterised using the mean test effaand its standard

K-NN method and be comparable to the use of Mahalanot§{§viationo . _ . _
distance. There are different approaches possible to find the appropri

ate numberD, of retained dominant eigenvectors after PCA.
The commonly used one was described in Section 1I-B, using
) a fixed proportion of the total variance. A different heudst
A. Bone segmentation also described in [15] uses generalisation ability andiipitg

The methods described were applied to a data s&t efan- instead. The generalisation ability is calculated usirayéde
dard clinical x-rays of non-osteoarthritic knees. Conti@siin one-out reconstruction by building the shape model from
the tibial plateaux result in distinct image contours cspend- the remaining training examples and calculating the mean
ing to the anterior and posterior rims of the plateaux. Itasyv point-to-point reconstruction error in thehape spaceThe
difficult to determine which contour is which on the basis ofeneralisation of the model is then the mean over all leaee-0
the AP radiograph. The contours are therefore referred to @# experiments. The specificity was calculated as destribe
the inner contour and theuter contour in a 2D sense. Thesen [36] by sampling randomly 1000 plausible shapes, cateula
double contours are not always present on both the latedal ang the point-to-point errors for all training shapes penpie,
medial plateaux. Furthermore, the contour bifurcatiomf®i and summing their minimum values. Reconstruction errods an
vary quite widely between example images. specificity measure could also be computed in image space,

The radiographs were digitised with a resolution of 150dpésulting in error measures in pixels. Since only the shapes
(1 pixel is about 0.17mm) and 8 bit grayscale depth. The images curves are of interest, this is not necessary.
size was between 1312x928 and 1760x1408 pixels. Imaged) Tibia segmentationFig. 6 shows specificity and recon-
of left knees were mirrored so that they appeared as rigdttuction error curves for the tibia. Considering both éhes
knees. Inner and outer contours were manually annotatdt incurves,D = 17 was chosen.
images and leave-one-out validation was used for evaluatio Automatic initialisation failed completely in 1 of the 30
Automatic initialisation was based on a simple thresholekamples so that the point-to-contour errors were largam th
method to find the centre line of the shafts of the tibia argD pixels for all tested parameter combinations. Therefore
femur and the gap between the heads of the bones. Addititimis example was excluded in the following quantitativeleva
ally, average rotation and scaling of the initialisatiomfdate uations.
were learned from the training data. The inner contours wereA typical overall segmentation result with automatic iliti
used as primary contours and the outer contours as secondatjon is shown in Fig. 5 for the Mahalanobis distance as well
contours. Different images showed different portions o thas weightedK —NN. The BCASM algorithm was evaluated
shaft of the tibia. Therefore, the MDL approach [2] with addeextensively for all 8 features, window parameter values of
curvature [35] was used in two steps. The first step truncatdd = {0, 2,4, 6, 8,10}, Mahalanobis distance and weighted
the training set, i.e. the endpoints were loosely deterchitre  K—NN with K = {5,10,15,20,25,30}. Fig. 7 plots the
the second step, the factor for the curvature term was isetkasegmentation errors obtained using Mahalanobis distande a
to bring the shapes into better correspondence by takinmgighted K—NN with K = 5. Plots are given for window
advantage of the specific shape around the tibial plateaparameter values diV = {0,2,4,6,8,10} for each of thel
Each BCASM estimated was used to perform segmentatif@ature types with median errors lower than 10 pixels.
of its ‘left out’ test image. The overall lowest mean error @f54 pixels (uin = 1.60,
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IV. EMPIRICAL EVALUATION



(a) Manual annotation (b) Initialisation (c) Segmentation using Maha-(d) Segmentation using weight-
lanobis distance s = 1.81) ed K-NN (Es = 1.60)
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max = 4.37, op = 0.65) was achieved using weightdd-NN, whereas normalised gradient and G-scaled gradient pegtbrm
K =5, W = 6 and G-scaled gradient features. Depending drest. This finding stands in contrast to Ref. [30] in which
whether Mahalanobis distance or weight&dNN was used, scaled intensity seemed to perform best for segmenting the
the feature types have a significant influence on accuracyanial end of thefemur When using weighted<-NN, the
Unnormalised intensity and gradient as well as normaliselifference between the features types was much smaller,
intensity performed worst using Mahalanobis distance withith even the worst performers, usually unnormalised and
mean errors greater than 20 pixels for all parameter ssttingormalised intensity, having far less than 20 pixels mesaor.er



B. Lip tracking

As a second example application, BCASM was used for
lip tracking. A sequence of 194 images (135x214 pixel, 8
bit grayscale, uncompressed) was used. The first 33 images
were manually annotated as shown in Fig. 1 to provide the
training set and the remainder were used as test images.
L o [T e Manual annotation was performed on colour images whilst
the algorithm ran on grayscale images.

Annotation of the lower lip as a closed contour was used
to provide the appearance model with information about the
appearance of the left and right ends of the lips. (Experimen
] ) . with only the inner contours of the lips failed since the skar
Overall, the windowing parametéi” had almost no in- 544 sampling profiles were in the direction of the dominant

fluence on the accuracy independent of the other parameters 5o the model could not converge to the left and right
(Fig. 8), whereas thek parameter had, dependent on theq,iers of the mouth.)

feature type used, an effect on the mean accuracy and sthndafrhe primary contour was the closed contour around the
derivation. prever, the influence was significant in only g\er lip and the secondary contour was the inner contour
few cases (Fig. 9). of the upper lip. The MDL approach was used to bring the
The distribution of the point-to-contour errors for one Obrimary contours into correspondence, this time withoings
the best results is shown in Fig. 10 using normalised gradiethe curvature term. Thé = 6 dominant eigenvectors were
W =2andK = 25. used to build the shape model. Active search was initialised
2) Femur SegmentaﬁonThe BCASM was also e\/a|uatedeaCh frame with the Shape and pose of the previous frame and
on the task of segmenting the femur and, since no multiple the first frame with the mean shape and pose. Since multi-
contours occur, it is equivalent to the standard shape modésolution search was used and the images were relatively
The data set consisted of the same radiographs as for #feall, initialisation with mean shape and pose in every ienag
segmentation of the tibia. Experiments were performedtfer twould have given qualitatively similar results.
same parameter sets as in the tibia experiments. For the femlResults are shown for normalised gradient as feature
the automatic initialisation failed completely in 2 out b&t30 type, no windowing V' = 0) and Mahalanobis dis-
images, i.e. the segmentation error was larger than 20sixt#nce as quality-of-fit measure. The whole sequence can be
for all tested parameter sets. Detailed results, excluding thé§wwnloaded fromhttp://www. conputi ng. dundee.
2 cases, using Mahalanobis distance d@ieNN (K = 10, ac.uk/staff/nmsei se/work. htnl. Results for some
no windowing) are given in Table | with normalised gradienframes are shown in Fig. 11.
scaled gradient and scaled intensity as feature types.eThes
parameter sets showed the best results. The other findings we V. DISCUSSION ANDCONCLUSIONS
similiar to the tibia results.

Point-to-contour error

Fig. 10. Histogram of segmentation errofs when usingK — NN
regression K = 25, normalised gradieniy’ = 2).

The BCASM was introduced as a method for modelling

3) ASM and the Relevance Vector Machir®Ms were and segmenting contours with inconsistent loops and bifur-
trained using profiles of length 11 and offsét = 7 to cations. Its performance was mainly evaluated on the task
give enough information about the appearance on and eff segmenting tibia contours in knee x-rays and secondly
the contour. The learning algorithm, using Gaussian kernejn a lip tracking application. The method should be more
(c = 0.5) centred on the test data, did not converge for 8roadly applicable since occlusions, rotations in depthaf-
feature types. RVMs were only trained for normalised gratlie convex objects in optical images, and projections of non-
scaled gradient and scaled intensity, since these gaveeite Bonvex objects in transmissive imaging modalities oftesuite
results using Mahalanobis distance and weight®®N. No in bifurcating contours. The proposed BCASM was explained
windowing was used for the same reason. here for shapes with two contours since in the presented

Detailed results for the RVM segmentation compared tpplications only two contours could occur. For applicagio
the same experiments using Mahalanobis distancelamMN  with shapes having more than two contours, the method can
(KX = 10, no windowing) are given in Table I. Weighted- be extended in a straight-forward way and as such can be
NN always performed significantly better than the first vatria considered as a generalised ASM for shapes with multiple
of using RVM. The median and the minimum segmentatidmifurcations.
errors were significantly worse using RVMs compared to The BCASM algorithm was evaluated extensively for the
weighted K-NN. The second (fast) method performed almostegmentation of the tibia. The results with mean errors be-
as well asK-NN and Mahalanobis distance. The sparsity dfveen 2 and 3 pixels are promising but should be improved
the RVMs depends strongly on the actual appearance arododpractical applications like measuring the joint spagee of
the landmark point and can range between 4 and 435 relevattelimiting factors for higher accuracy seems to be the rmanu
vectors at the highest resolution (maximumddt = 29-15). annotation, even for non-osteoarthritic bones. Contoarshe
The number of relevance vectors was about 30 for normaliseldirred, occluded by other bones, noise and clutter. Thezef
gradient, 340 for scaled gradient and 100 for scaled intgnsit is not possible to manually annotate the contours of the



Feature Method Median error | Mean error | Standard deviation| Minimal error | Maximal error
medEs E oE rnsin Es max Es
normalised gradienf RVM 2.00 4.71 9.18 1.26 41.43
RVM (fast) 1.78 7.62 21.44 1.16 111.29
Mahalanobis distance 3.22 12.87 24.01 0.86 98.34
weighted K-NN (K = 10) 1.05 1.36 0.81 0.75 4.42
scaled gradient RVM 4.63 9.27 15.16 1.76 79.23
RVM (fast) 1.42 152 0.47 0.88 2.79
Mahalanobis distance 1.01 1.22 0.41 0.82 2.60
weighted K-NN (K = 10) 1.03 141 1.29 0.78 7.55
scaled intensity RVM 6.98 7.83 5.15 1.65 24.59
RVM (fast) 1.73 7.14 20.43 0.96 106.82
Mahalanobis distance 2.73 14.10 25.58 0.99 93.37
weighted K-NN (K = 10) 1.13 6.27 18.67 0.73 93.53
TABLE |

SEGMENTATION ERRORS FOR FEMUR USINGRVM, MAHALANOBIS DISTANCE RESPECTIVELY WEIGHTEDK -NN (SEE TEXT).

= &

(a) Frame 124/194F; = 0.76 (b) Frame 134/194F; = 0.70 (c) Frame 140/194F, = 0.88 (d) Frame 144/194E, = 1.89

A A I I

(e) Frame 164/194Fs = 0.59 (f) Frame 174/194F; = 0.71 (g) Frame 180/194F; = 1.23 (h) Frame 194/194F; = 0.57

Fig. 11. Results for the lip tracking application using Mimebis distance and normalised gradient

bone to one pixel accuracy. Furthermore, systematic ecaors using Mahalanobis distance stands in contrast to Ref. |80] i
occur,from the use of linear interpolation between landmawhich scaled gradient seemed to perform significantly worse
points in the MDL approach. Consequently, the shape artan scaled intensity for segmenting tbeanial end of the
more importantly, the appearance models are trained ory ndismur. This demonstrates that even for similar applicatidie
data which can lead to lower accuracy. Using the manugbtimal appearance models can vary and be difficult to find.
annotation as ground truth can of course also result in wroBjrect comparison to the results for segmenting the tibiaois
error measurements, since it is conceivable that the atitomaossible since important information like image resolutémd
segmentation is closer to the truth than manual segmentatibow the tibia was annotated (outer, inner or both contouss) a
Nevertheless, the reported results show that automatineseg missing. Furthermore, the active search was initialisadgus
tation of the tibia is feasible using BCASM. the known ground truth and was not multi-resolution. Using

A probable reason for the poor performance of the firlhe mean shape aligned to the ground_ truth as initialisation
method of using RVMs is the degenerative covariance functiGeniels et al. [30] reported a mean point-to-boundary error
which leads to unusable predictive variance. This weakagss©" the tibia of 2.40 pixels using standard ASM and were
RVMs was recently highlighted by Rasmussen andi@nero- 1.71 pixels using MCP. Results for segmentlr_1g the femur were
Candela [37]. They demonstrated significantly worse predi@lSC reported with a mean error of 3.39 pixels using ASM
tion rates compared to Gaussian processes which are ndfd 1-96 pixels using MCP. Table | shows some results (no

sparse. The fast method using RVM shows promising resulfdndowing) for the same task using the described framework

The accuracy in the majority of the cases is as good Wih Mahalanobis distance and weightéGNN as quality-

using K-NN or Mahalanobis distance and has the sarr?é'ﬁt measures. The overall bgst mean point—t_o—cqntomrerr
magnitude as the expected error in the manual annotatidfS 9iven using scaled gradient, Mahalanobis distance and

Future developments in sparse Bayesian inference arg likifindowing, W' = 2 and was 1.19 pixels, significantly smaller
to yield improved performance. than reported by Behielst al. [30].

The finding that (G-)scaled gradient features were mostThe use of Mahalanobis distance as quality-of-fit measure
effective and that normalised intensity was least effectivften yields good results in terms of mean error and is much



faster than using weighte&-NN. The strong point of (- [15]
NN is the reduced sensitivity to feature type and the smaller computer vision,” University of Manchester, Tech. Rep.,£20Online].
variance, especially with small values &f. [16]
The reported results are a promising step towards assessing Viergever, “Active shape model segmentation with optimal Jess,”
osteoarthritis from standard clinical x-rays. The resshsw
that with the proposed BCASM the segmentation of anteriﬂrﬂ
and posterior rims of the tibial plateaux is achieved. This seg-
mentation along with the segmentation of the femoral cozgly!
should lead to better measurements, more highly correlatéd
with the actual volume of cartilage than the commonly used
minimum joint space width. Furthermore, a more accuralt]
segmentation offers the potential to automatically memasnd
count osteophytes and ultimately to define a new outcomeg,
measure for the progression of osteoarthritis.
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