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Abstract— We present a method for learning activity-based
ground models based on a multiple particle filter approach
to motion tracking in video acquired from a moving aerial
platform. Such models offer a number of potential benefits. In
this paper we demonstrate the ability of activity-based models
to improve the performance of an object motion tracker
as well as their applicability to global registration of video
sequences.
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Tracking, Particle Filters, Activity Maps.

I. I NTRODUCTION

In recent decades, the problem of acquiring accurate
ground models, or maps, has become the focus of a num-
ber of different research communities. Photogrammetry
investigates the acquisition of models from remote imag-
ing sensors flown on high-aerial aircraft or satellites [1].
Many roboticists concern themselves with the acquisition
of maps from the ground, using mobile robots operated
indoors [2], outdoors [3], underwater[4], or in the subter-
ranean world [5].

The vast majority of techniques, however, address the
acquisition ofstatic models. Moving entities, such as cars,
bicyclists, and pedestrians, are usually considered irrelevant
to the mapping problem. The thrust of our research is the
acquisition of activity-based models, which are models that
characterize places based on the type of motion activities
that occur. For example, the activities found on roads differ
from those found on sidewalks, and even among roads
motion characteristics vary significantly. Accurate activity-
based ground models offer a number of potential benefits:
they can help us understand traffic flow; they can assist
unmanned ground vehicles in navigating autonomously
(e.g., guide them to stay off a busy road), and they can help
us spot activity-related change and abnormalities. Good
activity models also facilitate the tracking of individual
moving objects, as we shall show in this paper.

The acquisition of activity-related models has been ad-
dressed previously. For example, Makris and Ellis use
video from surveillance cameras to develop an activity-
based model of entry points, exit points, paths, and junc-
tions within a scene [6]. However, their approach assumes a
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Fig. 1. The Stanford Helicopter is based on a Bergen Industrial Twin
platform and is outfitted with instrumentation for autonomousflight
(IMU, GPS, magnetometer, PC104). In the experiments reported here we
replaced the onboard laser with a color camera.

static sensor platform—which greatly facilitates the detec-
tion and tracking of moving entities. Stauffer and Grimson
also use a static sensor forest to track motion, learn patterns
of activity at a site, and classify the observed activities [7].
This approach allows them to identify abnormal behaviors
in the scene.

The problem addressed here is the acquisition of activity-
based ground models from a moving platform, such as a
helicopter. Our system has been used with the Stanford
helicopter shown in Fig. 1. This approach transforms
video acquired by the helicopter, and other moving plat-
forms, into probability distributions that characterize the
frequency, speeds, and directions of moving objects on
the ground, for eachx-y location on the ground. To
obtain such activity maps, our approach uses a pipeline
of techniques for reliably extracting tracks and updating
the map statistics. Our algorithm performs feature tracking
in the image plane, followed by an optical flow analysis
that uses EM to identify features that are likely moving
on the ground, similar to the approach taken by Jung
and Sukhatme [9]. We then apply multiple particle filters
which are spawned, merged, and killed in a manner akin to
that proposed by Vermaak, Doucet, and Pérez to reliably
identify multiple moving objects on the ground [10].
The resulting tracks from the particle filters are fed into
a histogram that characterizes the probability distribution
over speeds and orientations of motions on the ground. This
probability histogram constitutes the learned activity map.
To illustrate the utility of the activity map, we leverage it
into an improved particle filter tracker and apply it to the
problem of global image registration.



II. L EARNING ACTIVITY MAPS FROM AMOVING

PLATFORM

A. Feature Tracking

The first step of our approach involves identifying ap-
propriate features in the camera image and tracking them
over multiple frames. In the work of Burt et al., an
early approach to this problem involved mimicking the
foveation and tracking of a human eye [8]. In our approach
features are first identified using an algorithm by Shi and
Tomasi [11], which selects unambiguous feature points
by finding regions in the image containing large spatial
image gradients in two orthogonal directions. A sample of
features found by this algorithm, in an image acquired by
our helicopter, is shown in Fig. 2a.

The tracking of features is then achieved using a pyra-
midal implementation of the Lucas-Kanade tracker [12].
This approach forms image pyramids consisting of filtered
and subsampled versions of the original images. The dis-
placement vectors between the feature locations in the two
images are found by iteratively maximizing a correlation
measure over a small window, from the coarsest level up to
the original level. The result of tracking features is shown
in Fig. 2b. The optical flow of a number of features, tracked
through consecutive images and indicated by small arrows
in the direction of the flow, is shown.

B. Identifying Moving Objects on the Ground

The principal difficulty of interpreting the optical flow
arises from the fact that most of the flow is caused by the
platform’s ego-motion. The flow shown in Fig. 2b is largely
due to the helicopter’s own motion; the only exception is
the flow associated with the dark vehicle in the scene.

Our approach uses the EM algorithm to identify the
nature of the flow. Let{xi, yi, x

′

i, y
′

i} be the set of features
returned by Lucas-Kanade, where(xi, yi) corresponds to
image coordinates of a feature in one frame, and(x′

i, y
′

i)
corresponds to the image coordinates of that feature in
the next frame. The displacement between these two sets
of coordinates is the velocity of a feature relative to
the camera plane (but not the ground!). The probability
that {xi, yi, x

′

i, y
′

i} corresponds to a moving object on
the ground is now calculated using the EM algorithm.
Specifically, we define the binary variableci that indicates
whether thei-th feature is moving. Initially, we setci = 0
for all i, meaning that all features are assumed to be non-
moving. The flow represented by{xi, yi, x

′

i, y
′

i} is then
used to estimate the image plane transformation that results
from ego-motion of the platform. We represent the image
plane transformation with an affine model that captures
translation, rotation, scaling, and shearing. Due to the
small amount of camera motion between individual frames,
and the small depth of field of the scene relative to the
platform altitude, an affine transformation is a reasonable
approximation in most cases. For each point(xi, yi) the
affine transformation determines its position(x′

i, y
′

i) in the

subsequent frame:
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Using the set of feature correspondences{xi, yi, x
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i},
the linear least squares solution provides the optimal affine
parameters~a and~b.

The key to the identification of moving features is now
the E-step: Based on the estimated image plane transforma-
tion, our approach calculates the expectation of the binary
variableci:
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and η is a normalization factor. The matrixΣD is a
diagonal matrix of size 2-by-2, containing variances for the
x and y components. The subsequent M-step iterates the
calculation of the model parameters, but now weighted by
the expectations calculated in the E-step. A small number
of iterations then leads to an improved ego-motion estimate
and, more importantly, an estimate of the probability that
a feature is moving,p(ci).

Fig. 2c shows the result of the EM: The flow vectors
shown there as small white arrows all correspond with high
likelihood to a moving object. In this example, our algo-
rithm correctly identifies the features associated with the
vehicle as moving, whereas most features corresponding to
static objects have been identified correctly as static (and
are therefore omitted in Fig. 2c).

C. Tracking Moving Objects with Particle Filters

Unfortunately, the data returned by the EM analysis
is still too noisy for learning activity-based maps. Our
affine model assumes an orthographic projection, and is
therefore, in general, insufficient to model all possible
platform motion. In addition, some features appear to have
a high probability of belonging to moving objects due
to association error in the Lucas-Kanade algorithm. The
resulting activity map would then show high activity in
areas where our affine assumption breaks down or Lucas-
Kanade errs.

To improve the quality of the tracking, our approach
employs multiple particle filters. This approach is capable
of tracking a variable number of moving objects, spawning
an individual particle filter for each such object. We chose
to experiment with particle filters because of the ease of
implementation. Let(s[m]

k v
[m]
k )T be the them-th particle

in thek-th particle filter (corresponding to thek-th tracked
object). Note: throughout this papersi will refer to a
feature’s coordinates andvi to its velocity. The prediction
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Fig. 2. (a) Features identified using an algorithm by Shi and Tomasi [11].
(b) Optical flow based on a short image sequence, for an image containing
a moving object (dark car). (c) The “corrected” flow after compensating
for the estimated platform motion, which itself is obtained from the image
flow. The reader may notice that this flow is significantly higher for the
moving car. These images were acquired with the Stanford helicopter.

step for this particle assumes Brownian motion:
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whereε is a random variable modeling the random changes
in vehicle velocity, with zero mean and covarianceσ.
The importance weights are set according to the motion
extracted in the previous step. Specifically,
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,

(si vi)
T are the motion tracks extracted as described

in the previous section, andp(ci) are the corresponding
expectations. The matrixΣw is a diagonal matrix of
size 4-by-4, with two variances for the noise in location,
and two for the noise in velocity. This matrix essentially
convolves each track(si vi)

T with a Gaussian with
covarianceΣw.
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Fig. 3. (a) Multiple particle filters, used for tracking multiple moving
objects on the ground. Shown here is an example of tracking three moving
objects on the ground, a bicyclist and two pedestrians (the truck in the
foreground is not moving). (b) the center of each particle filter in a
different frame in the sequence clearly identifies all moving objects.

New particle filters are started if at the border of the
camera field a large number of features with high proba-
bility p(ci) exist that are not associated with any of the
existing particle filters. This operation uses tiled mean-
shift operators which begin by spanning the image plane,
therby detecting all large peaks of motion, and spawns new
particle filters when no existing filters are within a specified
distance to each peak in the image plane. Particle filters are
discontinued when particle tracks leave the image or when
the total sum of all importance weights drops below a user-
defined threshold. This, in addition to the fact that filters
are discontinued when they begin to overlap heavily, helps
to ensure that the filters do not mix into each other over
time.

Fig. 3 shows the result of the particle filter tracking.
Fig. 3a shows a situation in which three different particle
filters have been spawned, each corresponding to a different
object. Because the particles also maintain an estimate of
each object’s velocity, the system tends to be robust to
objects whose paths cross with temporary occlusion of one
of the objects by the other. Fig. 3b show the center of each
particle filter—in this example all three moving objects are
correctly identified (the large truck in the foreground did
not move in the image sequence). Fig. 5 shows a shot of



Fig. 4. Example of a learned activity map of an area on campus, using data acquired from a camera platform undergoing unknown motion. The arrows
indicate the most likely motion direction modes in each grid cell; their lengths correspond to the most likely velocity of that mode, and the thickness
represents the probability of motion. This diagram clearly shows the main traffic flows around the circular object; it also shows the flow of pedestrians that
moved through the scene during learning. Video of learning grid being constructed over time is available atwww.motiontracking.info/learning-grid.avi.

Fig. 5. Two moving objects being tracked in video taken from a
helicopter as part of a DARPA demo.

tracking video taken from the Stanford helicopter during a
demo for the Defense Advanced Research Projects Agency
(DARPA). The two moving objects in the video have been
correctly identified and tracked from overhead.

D. Learning The Activity-Based Ground Model

The final step of our approach involves the acquisition
of the behavior model. For that, we anchor the map using

features in the image plane that, with high likelihood,
are not moving. In this way, the activity map refers to
a projection of a patch of ground into the camera plane,
even when that patch of ground is not presently observable
by the camera. This ground plane projection remains static
with respect to the ground and does not refer to relative
locations in the camera image.

The activity map is then calculated by histogramming
the various types of motion observed at different locations.
More specifically, our approach learns a 4-dimensional
histogramh(x, y, v, θ), indexed overx-y locations in the
projection of the ground in the camera plane and the veloc-
ity of the objects observed at these locations, representedby
a velocity magnitudev and an orientation of object motion
θ. Specifically, each time the k-th particle filter’s state
[s′ v′], wheres′ = 1

m
·
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intersects with anx-y cell in the histogram, we increment

the counterh(x, y, v, θ) wherex =

(

1
0

)
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to the x-coordinate ofs′, y =
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)

·s′ to itsy-coordinate,

v = ||v′||2 to the magnitude of the velocity vector, and
θ = cos−1[(v−1 0) · v′] to its orientation.

Fig. 4 shows the result of the learning step. Shown here is
an activity map overlayed with one of the images acquired
during tracking. Blue arrows correspond to the most likely
motion modes for each grid cell in the projection of the
ground in the camera plane; if the likelihood of zero motion



(a) Tracking without learned activity map

(b) Tracking with learned activity map

Fig. 6. Example of two tracks (a) without and (b) with the learned
activity map. The track in (a) is incomplete and misses the mov-
ing object for a number of time steps. The activity map enables the
tracker to track both objects more reliably. Full video is available at
www.motiontracking.info/comparison.avi.

exceeds a threshold, no arrow is displayed. Further, the
length of each arrow indicates the most likely orientation
and velocity at each location, and its thickness corresponds
to the frequency of motion. As this image clearly illustrates,
the activity models acquired by our approach are informa-
tive of the motions that occur on the ground.

III. A PPLICATIONS

A. Using the Activity Model for Improved Tracking

To understand the accuracy of the activity model, we
have applied it to improve the quality of the particle filter
tracking. Specifically, in our improved tracking algorithm
the importance weightsw[m] are modified to take into
account how well a feature’s motion matches motion seen
previously in that grid cell, according to the histogramh:

w
[m]
improved = w[m] + k · p(v

[m]
k , θ

[m]
k | x

[m]
k , y

[m]
k )(6)

The second term represents the probability of each parti-
cle’s motion, given itsx−y location, times a constant scale
factork. This second term was added to and not multiplied
by the original weights so that no single effect, either the

Fig. 7. The single-frame alignment of two independent video sequences
based on the activity-based models acquired from each. This registration
is performed without image pixel information, only activity information
from the learning grid.

original importance weight or the histogram-based motion
reward, dominates.

In the rich literature of activity learning, we are un-
aware of an approach for using learned activity models
for improving the accuracy of the motion tracker. On a
2100-frame test data sequence, tracking accuracy (defined
as the number of correct tracks, minus the number of false
positives, divided by the total number of moving objects)
was 0.85 without using the learning data, and 0.89 when
using the learning data. This corresponds to roughly a 27%
reduction in the number of incorrectly identified or missed
moving objects. Note: when a red indicator circle was
located over a moving object it was counted as a correct
track while when a red circle was located over a stationary
part of the scene it was considered a false positive. No
segmentation of the moving objects was performed once
they had been identified. Automatic segmentation of mov-
ing objects has been addressed previously in the literature,
and our goal for this paper was simply to recognize and
track moving objects.

Fig. 6 compares the tracking without (top panel) and with
(bottom panel) the learned activity map. More specifically,
the top diagram is the result of using the standard impor-
tance weights to update the particle filters, whereas the
bottom diagram uses our learned activity map for tracking,
on independent testing data. As is easily seen, the track in
the bottom diagram is more complete than the one in the
top diagram, illustrating one of the benefits of our learned
activity model.

B. Registration

By encoding the major activity modes of each learned
grid cell as pixel intensity values, traditional image regis-



tration techniques can be applied to align video sequences
based on observed activity (but not the actual image pixel
values). In this manner, independent activity maps of
the same terrain can be merged, and previously acquired
activity maps can easily be updated with additional learning
data. Furthermore, registration of activity-based models
would enable autonomous systems to characterize and later
identify locations on the ground based on the motions
observed. For example, an autonomous helicopter or other
aerial platform could distinguish a four-way stop from a
traffic circle and orient itself based on the motions of the
vehicles it observes. In a similar manner, video sequences
of terrains lacking sufficient static image landmarks for
traditional registration or whose characteristics changeover
time (e.g. a desert road or maritime shipping channels)
could still be aligned.

Fig. 7 shows a single-frame alignment of two indepen-
dent video sequences based solely on the activity-based
models acquired from each video. While the alignment is
not perfect, surprisingly accurate results can be obtained
solely from the observed motion data.

IV. D ISCUSSION

We have presented a system for learning activity models
of outdoor terrain from a moving aerial camera. Our
approach acquires such models from a camera that is
undergoing unknown motion. To identify moving objects
on the ground, our approach combines image-based feature
tracking with an EM-approach for estimating the image
transformation caused by the camera’s ego-motion. This
identifies features whose motion is counter to the flow in-
duced by the estimated ego-motion. We then apply multiple
particle filters to identify and track moving objects. The
object motion is then cached into a histogram that learns
the probability distribution of different motions at different
places in the world. Applications of the learned activity
model include improved tracking and global registration of
two different models based on the activity patterns.

Our approach runs at 20Hz on a 2.4GHz PC. To help
distinguish slowly moving objects from the background,
and increase the disparity between ego-motion and object
motion, a full calculation is performed once every six
frames. Particle filter information for interleaved framesis
interpolated.

While most elements of our approach are well-known

the literature, we believe that it defines the state-of-the-art

in finding moving objects on the ground from a helicopter

platform. Further, we believe that the use of learned

activity models for tracking and registration is unique.

Certainly, our system has been found to be robust in

tracking moving objects and learning useful activity

models of ground-based motion. These models have

proven to be applicable to problems of general interest.
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