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ABSTRACT The field of machine learning is concerned with constructing computer program that automatically improve 
its performance with experience. SVMs (Support Vector Machines) are a useful technique for data classifica-

tion. Support Vector Machine (SVM) is a linear machine working in the highly dimensional feature space formed by the 
nonlinear mapping of the N-dimensional input vector x into a K-dimensional feature space (K>N) through the use of a map-
ping Φ (x). The data points corresponding to the non-zero weights are called support vectors. The main goal is to measure 
the error to get the exact solution can be approximated by a function and also get the error accurately to determine the 
best function implemented by learning system using finite training set and testing set (unseen). The best function closely 
measure the optimization error in finite training set then the function have less approximation to lead a large estimation 
error. The main goal of learning algorithm is minimize the training set or time. Smaller constraint by the number of training 
data, the error is dominated by the approximation then the optimization error can be reduced the iterative time. 

INTRODUCTION 

Machine learning system is trained by using a sample 

set of training data. SVMs estimate a linear decision 

function; mapping of the data into a higher-

dimensional feature space may be needed. This 

mapping is characterized by the choice of a class of 

functions known as kernels [1]. The foundations of

Support Vector Machines (SVM) have been 

developed by Vapnik [2]. A step in SVM 

classification involves identification as which are 

intimately connected to the known classes. This is 

called feature selection or feature extraction. Support 

Vector Machine (SVM) is a classification and 

regression prediction tool that uses machine learning 

theory to maximize predictive accuracy while 

automatically avoiding over-fit to the data. Support 

Vector machines can be defined as systems which use 

hypothesis space of a linear functions in a high 

dimensional feature space, trained with a learning 

algorithm from optimization theory that implements a 

learning bias derived from statistical learning theory. 

Each instance in the training set contains one target 

values and several variables.

SVM CLASSIFICATION 

  The training set is said to be linearly separable when 

there exists a linear discriminant function whose sign 

matches the class of all training examples. When a 

training set is linearly separable there usually is 

infinity of separating hyperplane. When the data set is 

large this optimization problem becomes very 

challenging, because the quadratic form is completely 

dense and the memory requirements grow with the 

square of the number of data points. We present a 

decomposition algorithm that guarantees global 

optimality, and can be used to train SVM's over very 

large data sets (1, 00,000 data points) [3]. The main 

idea behind the decomposition is the iterative solution 

of sub-problems and the evaluation of optimality 

conditions which are used both to generate improved 

iterative values, and also establish the stopping 

criteria for the algorithm.

Optimal Hyperplane

The SVM classification technique and show how 

it leads to the formulation of a QP programming 

problem in a number of variables that is equal to the 

number of data points. The data set is linearly 

separable, and to find the best hyperplane that 

separates the data [4].

1)((

2

1
),min(

2

≥+

=

bxwy

wbw

i

T

i φ
                                           (1)                       

A
w

bxwsign
f bw ≤

+
=

).(
,

Dual problem:

0

0

)()(
2

1
max

1,1

=

≥

−=

∑

∑∑
==

i

i

i

i

j

T

ijji

n

ji

i

n

i

i

y

xxyyD

α
α

φφααα

(2)                    

The linear discriminant Function

∗∗

=

→

+=∑ bxxyy T

ii

i

i )()(
1

φφα                              (3)                       

Fig: 1 Linear and Non Linear Separable

Soft Margin Hyperplane

The dual formulation of this soft-margin problem 

is strikingly similar to the dual formulation (2) of the 

optimal hyperplane algorithm. The only change is the 

appearance of the upper bound C for the coefficients 

α.
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Ξ is a slack variables C is the additional parameter 

that controls the compromise between the large 

margin and small margin.
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Soft-Margin SVM problem (4) using the standard 

dual formulation (5), after computing the solution α*, 
the SVM discriminant function is
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The box constraints Ai ≤ αi ≤ Bi and the equality 

constraint Σαi = 0 define the feasible region, the 

domain of α values that satisfy the constraints. The 
optimal bias bi can be determined by returning to the 

primal problem, the box constraint 0 ≤ αi ≤ C as box 

constraint on the quantity yiαi:
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We can represent these constraints using positive 

Lagrange coefficients αi ≥ 0.

0

)(min)(

1

))(((
2

1
)(

11

2

≥
=

+−

+−+= ∑∑
==

i

i

i

T

i

n

i

i

n

i

i

wLD

bxwyCwwL

ξ
α

ξ

φαξ

(8)       

                                                                                        

otherwise

Cyif

xxKyyD

iii

jijji

n

ji

i

n

i

i

;

;0

),(
2

1

1,1

−∞=

≤=

−=

∑

∑∑
==

→

αα

ααα

The dual problem (5) is the maximization of this

expression subject to positivity constraints αi ≥ 0. The 

conditions yiαi = 0 and yi αi ≤ C appear as constraints 

in the dual problem because the cases where D (α) = 
minus infinity are not useful for a maximization.
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Suppose we can find α* and (w*, b*, ξ*) such that D 

(α*) = P (w*, b*, ξ*).  Convex optimization problems 

with linear constraints are known to have such 

solutions. This is called strong duality.

OPTIMALITY CRITERIA

Let α*= (α1*, α2*, α3*… αn*) be solution of the 

dual problem (5). Obviously α* satisfies the dual 

constraints. Let d*= (d1*, d2*, d3*,…, dn*) be the 

derivatives of the dual objective function in α*
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These values satisfy the constraints of the primal 

problem (4). 

Support Vectors
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A short derivation using (10) then gives 
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Support Vectors
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Let B represent the best error achievable by a linear 

decision boundary in the chosen feature space. When 

the training set size n becomes large, one can expect 

about Bn misclassified training examples, that is to 

say 0)( <
→

kk xyy . All these misclassified data’s are 

bounded support vectors [5] [6]. Therefore the 

number of bounded support vectors scales at least 

linearly with the number of data’s. The total number 

of support vectors is asymptotically equivalent to 

2Bn.

SVM Linear mapping function

SVMs is to make use of a (nonlinear) mapping 

function Φ that transforms data in input space to data 

in feature space in such a way mapped back into input 

space via Φ-1
.

Linear Separable - when Φ is trivial

Positively labelled data points in R
2 
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Since the data is linearly separable [7].
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Fig: 2 Positively Labeled Data Points in R
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Given x, the classification f(x) is given by the 

equation where β (z)) returns the sign of z. classify 

the point x= (5, 6)
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Fig: 3 linearly labeled data
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DIRECT ITERATIVE PROCESS

Assume we are given a starting point x that satisfies 

the constraints of the quadratic optimization problem 

(5). A direction v = (v1 . . . vn) is a feasible direction if 

move the point α along direction v. The set S of all 
coefficients μ ≥ 0 such that the point α + μv satisfies 

the constraints [8] [9]. This set always contains 0; v is 

a feasible direction if S is not the singleton {0}. 

Because the feasible region is convex and bounded, 

the set S is a bounded interval of the form [0, μmax]. 

The simple optimization problem values of the D 

(α+μv) as a function of α.

)(maxarg vD µαµ +=∗
                       (11)                                                                                                                             

The location of its maximum α* is easily computed 

using Newton’s formula
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Where vector d and matrix H are the gradient and the 

Hessian of the dual objective function D (α),

This formula is the basis for a family of optimization 

algorithms. Starting from an initial feasible point, 

each iteration selects a suitable feasible direction and 

applies the direction Iterative formula (11) until 

reaching the maximum. The best direction v
ij

requires 

iterating over the n (n − 1) possible pairs of indices.
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Maximal gain working set selection may reduce the 

number of iterations; it makes each iteration very 

slow. We may have to check the n (n − 1) possible 

pairs (i, j).
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This computation requires a time proportional to n.

Iterative Algorithm

Each iteration selects a working set and solves the 

corresponding sub problem using any suitable 

optimization algorithm [10] [11].
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Iterative Algorithm:

Step: 1 Initial coefficient αk →0
Step: 2 Initial Iterative dk→1
Step: 3 max yidi ; yiαi < Bi

Step: 4 min yjdj :  Aj <yjαj

Step: 5 max ≤ min Optimality condition
Step: 6 Select a working set B contain 1 to n

Step: 7 
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Step: 9 update coefficient αi '→αi

Numerical Accuracy

Numerical accuracy matters because many parts of 

the algorithm distinguish the variables αi that has 

reached their bounds from the other variables. To 

solve the SVM dual optimization problem with 

accuracy that comfortably exceeds the needs of most 

machine learning applications.  Approximate 

optimization can yield considerable speedups because 

there is no point in achieving a small optimization 

error when the estimation and approximation errors 

are relatively large [12 [13].

CONCLUSION
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CONCLUSION

Once the system has learned, it is used to perform the 

required function based on the learning experienced. 

SVM learning algorithm is quickly reduce the 

optimization error comfortably below the expected 

approximation and estimation errors. Approximate 

optimization can yield considerable speedups because 

there is no point in achieving a small optimization 

error when the estimation and approximation errors 

are relatively large. In the case of Support Vector 

Machines, it remains difficult to achieve the benefits 

of these methods without partly losing the benefits of 

sparse solution. The iterative solution of sub-

problems and the evaluation of optimality conditions 

which are used to generate improved iterative values 

reduce the optimization error and give the maximum 
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→1
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accuracy of the QP finite training set and the 

optimization error can be reduced the iterative time.
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