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Abstract We present a novel algorithmic approach to object

categorization and detection that can learn category specific

detectors, using Boosting, from a visual alphabet of shape

and appearance. The alphabet itself is learnt incrementally

during this process. The resulting representation consists of

a set of category-specific descriptors—basic shape features

are represented by boundary-fragments, and appearance is

represented by patches—where each descriptor in combi-

nation with centroid vectors for possible object centroids

(geometry) forms an alphabet entry. Our experimental re-

sults highlight several qualities of this novel representation.

First, we demonstrate the power of purely shape-based rep-

resentation with excellent categorization and detection re-

sults using a Boundary-Fragment-Model (BFM), and inves-

tigate the capabilities of such a model to handle changes in

scale and viewpoint, as well as intra- and inter-class vari-

ability. Second, we show that incremental learning of a BFM

for many categories leads to a sub-linear growth of visual al-

phabet entries by sharing of shape features, while this gen-

eralization over categories at the same time often improves

categorization performance (over independently learning the

categories). Finally, the combination of basic shape and

appearance (boundary-fragments and patches) features can
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further improve results. Certain feature types are preferred

by certain categories, and for some categories we achieve

the lowest error rates that have been reported so far.
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1 Introduction and Related Work

Object class recognition is a key issue in computer vi-

sion. Compared to the topic of recognizing previously learnt

specific objects in unseen images (termed “specific object

recognition”, e.g. Ferrari et al. 2004; Sivic and Zisserman

2003; Nistér and Stewénius 2006) the task of object class

recognition brings up additional difficulties. Models for ob-

ject categories have to deal with the trade-off between mod-

eling the intra-class variability and not confusing categories

which have low inter-class variability.

There are different cues of information one could use

from a training set of still images to learn models for object

categories. Many approaches use appearance patches around

salient points (e.g. Csurka et al. 2004; Fergus et al. 2003;

Leibe et al. 2004; Ommer and Buhmann 2006) or patches

using dense grid sampling on the training images (e.g. De-

selaers et al. 2005; Epstein and Ullman 2005). But shape is

also an important cue for object categorization, for instance

humans do use shape by means of the objects silhouette to

distinguish between categories even in early vision (Quinn

et al. 2001). Using shape instead of appearance is not novel

but is less explored for the task of categorization.

We present a novel approach to object categorization and

detection (localization) that can combine shape and appear-

ance cues in a common visual alphabet. This alphabet is the
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basis for a codebook representation of object categories. It is

a learnt selection of appearance parts or boundary-fragments

from a corpus of training images. A particular instantiation

of an object class in an image is then composed from code-

book entries, possibly arising from different source images.

However, the main focus of the paper is on representation

and use of shape and geometry rather than appearance, be-

cause local appearance- (patch-) based categorization has al-

ready been extensively studied in previous research.

Examples of codebook usage include Agarwal et al.

(2004), Vidal-Naquet and Ullman (2003), Leibe et al.

(2004), Fergus et al. (2003, 2005), Crandall et al. (2005),

Bar-Hillel et al. (2005). The methods differ on the details of

the codebook, and cue of information used (shape or appear-

ance patches), but more fundamentally they differ in how

strictly the geometry of the configuration of parts constitut-

ing an object class is constrained. For example, Csurka et al.

(2004), Sivic et al. (2005), Bar-Hillel et al. (2005) and Opelt

et al. (2004) simply use a “bag of visual words” model (with

no geometric relations between the parts at all), Agarwal

et al. (2004), Amores et al. (2005), Marszalek and Schmid

(2006), Wang et al. (2006), and Vidal-Naquet and Ullman

(2003) use quite loose pairwise relations, whilst Fergus et

al. (2003) have a strongly parametrized fully connected geo-

metric model consisting of a joint Gaussian over the centroid

position of all the parts. Reducing the connectivity has led to

computationally simpler models, for instance the star model

of Fergus et al. (2005), or the k-fan of Crandall et al. (2005).

The approaches using no geometric relations are able to cat-

egorize images (as containing the object class), but generally

do not provide location information (no detection), whereas

the methods with even loose geometry are able to detect the

object’s location.

Our representation of alphabet entries with centroid votes

is inspired by the method of Leibe et al. (2004), and Leibe

and Schiele (2004), which has achieved the best detec-

tion performance to date on various object classes (e.g.

cows, cars-rear (Caltech)). They use appearance patches

as individual parts and their representation of the geome-

try is algorithmic—all parts vote on the object centroid as

in a Generalized Hough transform (which can be consid-

ered a kind of implicit definition of a generative model,

see Williams and Allan 2006). We extend this idea and

add shape by means of fragments of the object’s internal

edges and external silhouette. The codebook consists then

of boundary-fragments and appearance patches, with asso-

ciated entries recording possible locations of the object’s

centroid.

1.1 Contributions and Background

The first key contribution of this paper is dedicated to

specifically investigating the role of shape and geometry.

We present a “Boundary-Fragment-Model” (BFM) (Opelt

et al. 2006c) which is restricted to a codebook of boundary-

fragments and does not represent appearance at all. The

boundary represents the shape of many object classes quite

naturally without requiring the appearance (e.g. texture) to

be learnt and thus we can learn models using less training

data to achieve good generalization. For certain categories

(bottles, cups) where the surface markings are very variable,

approaches relying on consistency of these appearances may

fail or need a considerable amount of training data to suc-

ceed. Our BFM method, with its stress on boundary rep-

resentation, is highly suitable for such objects. The inten-

tion is not to replace appearance fragments but to develop

complementary features. As will be seen, in many cases the

boundary alone performs as well as or better than the appear-

ance and segmentation masks (mattes) used by other authors

(e.g. Leibe et al. 2004; Vidal-Naquet and Ullman 2003)—

the boundary is responsible for much of the success.

Others also used shape for object categorization. E.g. Ku-

mar et al. (2004) used part outlines as shape in their ap-

plication of pictorial structures (Felzenszwalb and Hutten-

locher 2004); Fergus et al. (2004) used boundary curves be-

tween bitangent points in their extension of the constella-

tion model; and, Jurie and Schmid (2004) detected circu-

lar arc features from boundary curves. However, in all these

cases the boundary features are segmented independently in

individual images. They are not flexibly selected to be dis-

criminative over a training set, as they are here. Bernstein

and Amit (2005) do use discriminative edge maps. How-

ever, theirs is only a very local representation of the bound-

ary; in contrast we capture the global geometry of the ob-

ject category. Recently, and independently, Shotton et al.

(2005) presented a method quite related to the Boundary-

Fragment-Model presented here. The principal differences

are: the level of segmentation required in training (Shotton et

al. 2005 requires more); the number of boundary fragments

employed in each weak detector (a single fragment in Shot-

ton et al. 2005, and a variable number here); and the method

of localizing the detected centroid (grid in Shotton et al.

2005, mean shift here). Other methods using shape include

e.g. Serre et al. (2005) who presented an approach which is

biologically motivated. Based on oriented edges, they form

complex features that allow small distortions in the image

space but are still more selective than histogram based fea-

tures. Without explicitly modeling the geometry a discrimi-

native classifier yields good recognition performance. With

slight variations on the method of Serre et al. (2005), Mutch

and Lowe (2006) achieved even better results for multiple

categories. Dalal and Triggs (2005) also use shape informa-

tion in the form of grids of Histograms of Oriented Gradients

(HOG). Studying influences of the binning of scale, orien-

tation and position they yield excellent categorization by a

SVM-based classifier.
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The second key contribution of the paper concerns the

joint learning of an alphabet that can be shared over many

categories, with the possibility of adding further categories

incrementally (Opelt et al. 2006b). With respect to shape

variation and viewpoint variation, we also address how mul-

tiple aspects of one object category can be learnt with such a

multi-class model. We build on the method of Torralba et al.

(2004) who presented a joint multi-class Boosting approach.

In their work 21 categories are jointly trained (including two

aspects of cars). Torralba et al. build a strong classifier us-

ing GentleBoost from a number of weak classifiers which

are shared between classes. Tackling the same problem, Tu

(2005) also shows a joint training in his probabilistic Boost-

ing tree. But in comparison to Torralba et al. Tu learns a

strong classifier in each node of the classification tree. Other

work on multi-class object detection includes the work of

Fan (2005), Amit et al. (2004), Fei-Fei et al. (2004), Bart

and Ullman (2005), Winn et al. (2005), and Shotton et al.

(2006). Most closely related to our approach is the recent

success by Mikolajczyk et al. (2006). A similar geomet-

ric model to our BFM is used to learn appearance clusters

built from edge based features which can be shared amongst

various object categories. In contrast to their method, ours

mainly differs in the manner the codebook is learnt and also

how the joint learning is performed. Approaches on the chal-

lenge of recognizing different aspects of one object cate-

gory (e.g. cow-front and cow-side) were recently proposed

by Seemann et al. (2006) and Thomas et al. (2006), both

also based on the geometric model of Leibe et al. (2004).

Seemann et al. (2006) use a 4-dimensional Hough Voting

space (x, y, scale and aspect) in combination with a sec-

ond stage of contour matching in the manner of Gavrila

and Philomin (1999). This method works well on persons

but seems rather restricted to this category, whereas we are

proposing a method which generalizes over a set of different

categories. Thomas et al. (2006) presented a combination of

the geometric voting of Leibe et al. (2004) and the multi-

view specific object recognition method by Ferrari et al.

(2004). This method uses integrated codebooks over views

to detect location and pose of objects in new test images. In

contrast to their approach we present a method which uses

the same algorithm for training multiple categories and mul-

tiple aspects based on shape instead of appearance patches.

Finally, our approach enables appearance and shape cues

to be learnt in a unified representational model (Opelt et al.

2006d). This allows us to study how such a model bene-

fits from the different visual cues with respect to various

categories (e.g. patches might be good for spotted cats but

not so suitable for motorbikes). Mixed/complementary fea-

ture types have been used previously (Fergus et al. 2004;

Fergus et al. 2007; Opelt et al. 2006a; Zhang et al. 2005;

Zhang et al. 2007), though, for the most part, these have

been used for image classification rather than detection. For

example, Opelt et al. (2006a) presented an algorithm which

learns suitable category descriptors from a pool of differ-

ent types of descriptors for appearance regions, and Zhang

et al. (2005), used complementary descriptors (PCA-SIFT

and shape context). Fergus et al. (2005) investigated detec-

tion with mixed types of features, which is closest to our

work in terms of the used features (regions and edge bound-

aries), however their algorithm does not learn which features

to use.

The paper is organized as follows: We start with an

overview of our model and the required data for training,

validation and testing in Sect. 2, and focus on the repre-

sentation of shape by selection of boundary-fragments and

learning of a visual alphabet of shape in Sect. 3. We continue

with the learning of the Boundary-Fragment-Model (BFM)

for a single object category and describe how this model is

applied to detect instances of this category in test images in

Sect. 4. Section 5 explains how the BFM can handle changes

in scale and in-plane rotations, and explores its sensitivity to

viewpoint changes. For these sections of the paper we use

the category cows-side as a running example.

Multi-class joint and incremental learning is discussed

in Sect. 6. In the experimental results Sect. 7, we dis-

cuss the role of shape-based detection using a single-

category BFM (Sect. 7.1), present the development of a

jointly/incrementally learnt visual alphabet for many cat-

egories (Sect. 7.2), and show that recognition rates can

be improved by combining shape and appearance cues in

Sect. 7.3. General merits and limitations of our approach as

well as promising future research is discussed in Sect. 8.

2 Method and Data

Figure 1(a) gives an overview of our algorithm and the un-

derlying model representations. We refer to this model as

our “Unified Model” or UM approach in Sect. 7.3. It illus-

trates all the necessary steps of learning and detection for

a single category (UIUC cars side). The slightly more com-

plex case of multi-class joint and incremental learning is dis-

cussed later (see Fig. 15). In a similar manner to Leibe et al.

(2004), we require the following data to train the model:

• A training image set with the object delineated by a

bounding box.

• A validation image set with counter examples (the object

is not present in these images), and further examples with

the object’s centroid (but the bounding box is not neces-

sary).

Training and validation images are required to be scale-

normalized, which means that all instances of a category

have to appear at roughly the same scale. Furthermore, suf-

ficient spatial resolution is required to extract meaningful

shape cues (Boundary-Fragments).
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Fig. 1 Overview of our algorithm and the underlying model representations: (a) Learning and detection in our “Unified Model” (UM approach).

(b) Two alphabet entries (one region, one BF). (c) Two weak detectors (one region-based, one BF-based)

Learning is performed in two stages. First, alphabet

entries are added to a codebook depending on their sig-

nificance: An alphabet entry can either be a Boundary-

Fragment (BF—a piece of linked edges), or a patch (salient

region and its descriptor). Each entry also casts at least

one centroid vote, which is represented as a vector. Fig-

ure 1(b) shows a patch-based entry (wheel) with five vec-

tors (front / rear wheel of slightly different sized cars) and

a BF-based entry with three centroid votes (denoting the

bottom of a car). An alphabet entry is considered signifi-

cant if (i) it differs sufficiently from already existing entries,

(ii) it discriminates the category well from counter exam-

ples, and (iii) it gives a precise estimate of the object cen-

troid.

In the second learning stage, weak detectors are formed

as pairs of two alphabet entries, and Boosting is used to

select a strong detector that consists of many weak detec-

tors. This process favors the selection of weak detectors that

“fire” often on positive validation images (including a good

centroid estimate), and not on the negative ones. Figure 1(c)
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Fig. 2 Detection with the

BFM: An overview of the steps

involved in applying the

Boundary-Fragment-Model

detector. For clarity only a

subset of the matched boundary

fragments voting for the

centroid are shown

shows a patch-based and a BF-based weak detector for the

category cars-side.

Having learnt such a model for one category, Fig. 2 il-

lustrates how detection works in more detail using a model

for cows-side. A previously unseen test image is processed

in the same manner as the training and validation images

(edge extraction and BF formation or patch extraction, and

region description), but the detection procedure can handle a

certain range of scale variation (a factor of 0.5, . . . ,2 of the

normalized training scale). We illustrate detection using just

shape information (a Boundary-Fragment-Model BFM) on a

cows-side image. BFs from the codebook are matched to the

edge representation of the image. Matching BFs which are

learnt as a weak detector vote for one or more object cen-

troids in a Hough voting space. Using Mean-Shift-Mode-

Estimation (Comaniciu and Meer 2002) this voting space

can be searched for maxima. The values of these modes are

taken as evidence in the detection of an object. If the evi-

dence is above a certain threshold the boundary fragments

that voted for this maximum are backprojected in the test

image which results in a localization of the object and even

a rough segmentation.

2.1 Datasets

In our experiments on single-class BFM and on the combi-

nation of BFs with patches, we use a variety of datasets for

evaluation of our own algorithms, as well as for comparison

with the results of related work. The relevant references to

these data are given for each of our experiments in Sect. 7.

We had to set up our own multi-class dataset for our exper-

iments on joint and incremental learning of BFM models

of many categories as we need multiple aspects of the cate-

gories in order to evaluate sharing of shape information over

viewpoints (e.g. bikes from frontal, side, and rear views).

Our multi-class dataset consists of a combination of cat-

egories from well known datasets (e.g. Caltech, GRAZ-

02) and some new categories acquired from the Internet.

The dataset contains various object categories, some with

multiple aspects of one category (e.g. cow front and cow

side), and others with specific aspects of similar categories

(e.g. cow side and horse side). Each of the categories con-

tains a different number of training, validation and test im-

ages. Table 1 lists the 17 categories, the data sources, and

gives the exact numbers of training, validation, and test im-

ages. Note that we also include categories which are well

suited for shape based object detection, like bottles. Fig-

ure 3 illustrates the complexity of the different categories

by showing some example images of this new multi-class

dataset.1

3 Learning a Visual Alphabet of Shape

The Boundary Fragment category Model is built from weak

detectors over a set of boundary fragments selected discrim-

inatively for a particular category. In this section we describe

how boundary fragments are represented and learnt. This in-

volves two stages: first, proposing suitable fragments from a

training image set, and second, assessing the fragments suit-

ability for a category using a validation image set.

A suitable candidate boundary fragment is required to

(i) match edge chains often in the positive images but not

in the negative, and (ii) have a good localization of the cen-

troid in the positive images. These requirements are illus-

trated in Fig. 4. The idea of using validation images for dis-

criminative learning is motivated by Sali and Ullman (1999).

However, in their work they only consider requirement (i),

the learning of class-discriminate parts, but not the second

requirement which is a geometric relation. In the following

we first explain how to score a boundary fragment accord-

ing to how well it satisfies these two requirements, and then

how this score is used to select candidate fragments from the

training images.

1The complete multiclass dataset is available at http://www.emt.tugraz.

at/~pinz/data/multiclass.

http://www.emt.tugraz.at/~pinz/data/multiclass
http://www.emt.tugraz.at/~pinz/data/multiclass


Int J Comput Vis (2008) 80: 16–44 21

Table 1 Our multi-class dataset: The table lists the 17 categories, the number of training, validation and test images, and the source of the data

C Name Train Val Test Source

1 Plane 50 50 400 Caltech (Fergus et al. 2003)

2 CarRear 50 50 400 Caltech (Fergus et al. 2003)

3 Motorbike 50 50 400 Caltech (Fergus et al. 2003)

4 Face 50 50 217 Caltech (Fergus et al. 2003)

5 BikeSide 45 45 53 Graz02 (Opelt et al. 2006a)

6 BikeRear 15 15 16 Graz02 (Opelt et al. 2006a)

7 BikeFront 10 10 12 Graz02 (Opelt et al. 2006a)

8 Cars2-3Rear 17 17 18 Graz02 (Opelt et al. 2006a)

9 CarsFront 20 20 20 Graz02 (Opelt et al. 2006a)

10 Bottles 24 30 64 ImgGoogle (Opelt et al. 2006c)

11 CowSide 20 25 65 (Magee and Boyle 2002)

12 HorseSide 30 25 96 ImgGooglea

13 HorseFront 22 22 23 ImgGoogle

14 CowFront 17 17 17 ImgGoogle

15 Person 19 20 19 Graz02 (Opelt et al. 2006a)

16 Mug 15 15 15 ImgGoogle

17 Cup 16 15 16 ImgGoogle

ahttp://www.msri.org/people/members/eranb/

The cost C(γi) for each candidate boundary fragment γi

is a product of two factors:

(1) cmatch(γi): the matching cost of the fragment to the edge

chains in the validation images using a Chamfer dis-

tance (Borgefors 1988; Breu et al. 1995), see (1). This

is described in more detail below.

(2) cloc(γi): the distance (in pixels) between the true ob-

ject centroid and the centroid predicted by the boundary

fragment γi averaged over all the positive validation im-

ages

with C(γi) = cmatch(γi)cloc(γi). The matching cost is com-

puted as

cmatch(γi) =

∑L+

i=1 distance(γi,Pvi
)/L+

∑L−

i=1 distance(γi,Nvi
)/L−

(1)

where L− denotes the number of negative validation im-

ages Nvi
and L+ the number of positive validation images

Pvi
, and distance(γi, Ivi

) is the distance to the best matching

edge chain in image Ivi
:

distance(γi, Ivi
) =

1

|γi |
min

γi⊂Ivi

∑

t∈γi

DTIvi
(t) (2)

where DTIvi
is the distance transform, which calculates the

Euclidean distance from a point t on γi to the closest edge

pixel in Ivi
. The Chamfer distance (Borgefors 1988) is im-

plemented using 8 orientation planes with an overlap of 5

degrees. The orientation of the edges is averaged over a

length of 7 pixels by orthogonal regression. The best match

is found as the minimum distance by searching all possi-

ble positions and orientations of γi in Ivi
. Because of back-

ground clutter the best match is often located on highly tex-

tured background clutter, i.e. it is not correct. To solve this

problem we use the Nmatch = 10 best matches (with respect

to (2)), and from these we take the one with the best cen-

troid prediction. Remember that the training and validation

images are scale normalized.

3.1 Implementation Details

Linked edges are obtained for each image in the train-

ing and in the validation set using a Canny edge detec-

tor with hysteresis (we use the Canny edge detector with

σ = 1, hysteresis thresholding th1 = max(GI) ∗ 0.2 and

th2 = max(GI) ∗ 0.1 where GI denotes the gradient magni-

tude image, and an edge linking with minedgelength = 10 pix-

els to reduce clutter). Training images provide the candidate

boundary fragments γi by selecting random starting points

on the edge map of each image. Then at each such point

we grow a boundary fragment along the contour. The order-

ing of the linked edges in the bounding box is obtained by

starting with the left upper edge point, following the edge to

its endpoint and then proceeding with the next unseen edge

closest to that point. We are aware that smarter possibilities

of building such edge graphs exist (e.g. Ferrari et al. 2006).

However this straightforward method works well enough for

our purpose. Growing is performed from a certain fragment

http://www.msri.org/people/members/eranb/
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Fig. 3 Example images for

each of the 17 categories of our

multi-class dataset

Fig. 4 Two

Boundary-Fragments are

validated. The fragment in the

top row provides good centroid

localization in the positive

validation images, whereas the

fragment in the bottom row does

not. The last column shows poor

localization on counter

examples

starting length Lstart in steps of Lstep pixels until a maxi-

mum length Lstop is reached.2 At each step candidates are

2We used Lstart = 20, Lstep = 30 in both directions, and Lstop = 520

pixels.

optimized over the validation set by calculating matching

costs. Figure 5 illustrates that process on one training im-

age.

Using this procedure we obtain an alphabet of boundary

fragments each having the geometric information to vote for

an object centroid.
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Fig. 5 Growing of candidate boundary fragments on one training im-

age of the category cows-side starting from three different random

points. In each row a different random starting point is used (red dot).

On the right a zoomed out image is shown where the blue edge denotes

the BF candidate and the green dotted arrow shows the geometric in-

formation for this BF related to the objects centroid (red cross)

Fig. 6 (a) The clustering where alphabet entries on the left are se-

lected as representatives of clusters on the right which are obtained by

agglomerative clustering. (b) Alphabet entries learnt for the category

cow-side. On top of each entry the boundary fragment is shown. The

second row illustrates the centroid vectors. In the bottom row we show

the training image where this boundary fragment was extracted from

To reduce redundancy in the codebook the resulting

boundary fragment set is merged using agglomerative clus-

tering on medoids. The distance function is distance(γi, γj )

(where Ivi
in (2) is replaced by the binary image of fragment

γj ) and we cluster with a threshold of thcl = 0.2. Figure 6(a)

shows some examples of the resulting clusters for the cate-

gories cows side, and Fig. 6(b) shows examples of the learnt

alphabet entries overlaid on images. Note that each alphabet

entry can have one or more centroid vectors. This optimized

alphabet forms the basis for the next stage in learning the

one-class BFM.

4 Learning a BFM for (Single) Category Detection

In this section we describe the Boundary-Fragment-Model

(BFM) for single object category detection. We build on

the alphabet of optimized boundary fragments (each car-

rying additional geometric information for predicting the

object centroid). The BFM can be seen as a combination

of these fragments so that their aggregated estimates deter-

mine the object centroid and increase the matching preci-

sion. One could use a single boundary fragment in the same

way as single regions are used in Leibe et al. (2004). How-

ever, boundary fragments are not so discriminative and of-

ten (even with the use of various orientation planes) match

in the background on highly complex images. To overcome

this difficulty we use a combination of several (k) such

fragments (for example distributed around the actual object

boundary) which are more characteristic for an object cat-

egory. In the following we will generally set k = 2, as the

computational complexity increases dramatically with val-

ues of k > 2.

To this point the optimization procedure has chosen

boundary fragments independently. We now use AdaBoost

to find combinations of boundary fragments that fit well on

many positive validation images. Generally Boosting is used

to form a strong classifier from a weighted combination of

weak classifiers (see Freund and Schapire 1997). However,

we aim at detecting the objects in a new test image and not

just to classify the image. Hence, we use a standard Boosting

framework which is adapted to learn detection rather than

classification. This learning method chooses boundary frag-

ments which model the whole distribution of the training

data (whereas the method of the previous section can score

fragments highly if they have low costs on only a subset of
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Fig. 7 Weak detector: The

combination of boundary

fragments to form a weak

detector hi . It fires on an image

if the k boundary fragments (γa

and γb) match image edge

chains, the fragments agree in

their centroid estimates (within

an uncertainty of 2r), and, in the

case of positive images, the

centroid estimate agrees with

the true object centroid (On)

within a distance of dc

Fig. 8 Matching weak

detectors to the validation set:

The top row shows a weak

detector with k = 2, that fires on

two positive validation image

because of highly compact

center votes close enough to the

true object center (black circle).

In the last column a negative

validation image is shown.

There the same weak detector

does not fire (votings do not

concur). Bottom row: the same

as the top with k = 3

the validation images) and give good predictions for the ob-

jects centroid on many images.

4.1 Building Weak Detectors as Pairs of

Boundary-Fragments

We start with the idea of a weak classifier which is composed

of k (typically 2) boundary fragments from the discrimi-

native codebook learnt earlier. This could be selections of

boundary fragments which match edge chains in the image

and agree with their centroid estimates. However, we want

to learn weak detectors as we aim for detection rather than

classification. A weak detector hi should fire (hi(I ) = 1)

on an image I if (i) the k boundary fragments match im-

age edge chains, (ii) the centroid estimates concur, and, (iii)

in the case of positive images, the centroid estimate agrees

with the true object centroid. Figure 7 illustrates these re-

quirements for a weak detector with a positive detection in

an image (with k = 2 and the boundary fragments named γa

and γb), and Fig. 8 shows examples of firing and not firing.

The classification output hi(I ) of detector hi on an image

I is defined as:

hi(I ) =

{

1 if D(hi, I ) < thhi
,

0 otherwise

with thhi
the learnt threshold of each detector (see Sect. 4.2),

and where the distance D(hi, I ) of hi (consisting of k

boundary fragments γij ) to an image I is defined as:

D(hi, I ) =
1

m2
s

·

k
∑

j=1

distance(γij , I ). (3)
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Fig. 9 Examples of weak

detectors: Selected for the learnt

strong detector. The top row

shows examples for k = 2, and

the bottom row for k = 3

1) Perform edge detection.

2) Evaluate strong detector:

• For each weak detector hi match its boundary fragments and record the compactness of their votes (ms ) for the centroid.

Calculate D(hi , IT ).

• If D(hi , IT ) ≤ thhi
vote in Hough space with weak detector whi

for object centroid c.

• Use mean-shift-mode estimation (kernel radius R = 8 pixels) to obtain scores for the strong detector on possible object

locations.

• If the mode-value is above a threshold tdet declare a detection at position xn.

• Calculate a confidence conf (xn|W(xn)) using (5).

3) Back-project the hypotheses (the boundary fragments) that voted for these modes.

4) The back-projection of step 3 is used to segment the object.

Fig. 10 The BFM algorithm for detection and segmentation in a test image

The distance(γij , I ) is defined in (2) and ms is ex-

plained below. Any weak detector where the centroid esti-

mate misses the true object centroid by more than dc (in our

case 15 pixels), is rejected.

As shown in column 2 of Fig. 7 each fragment also esti-

mates a centroid by a circular uncertainty window. Here the

radius of the window is r . The compactness of the centroid

estimate is measured by ms (shown in the third column of

Fig. 7). ms = k if the circular uncertainty regions overlap,

and otherwise a penalty of ms = 0.5 is allocated. These de-

cision parameters are rather strict but experimental evalua-

tion showed better results than for a smooth decision region

(e.g. ms as a function of the center distances). Note, to keep

the search for weak detectors tractable, the number of used

codebook entries (before clustering) is restricted (in out ex-

periments we use the 300 entries with lowest costs).

4.2 Learning a Strong Detector

Having defined a weak detector consisting of k boundary

fragments and a threshold thhi
, we now explain how we

learn this threshold and form a strong detector H out of

T weak detectors hi using AdaBoost. First we calculate

the distances D(hi, Ij ) of all combinations of our bound-

ary fragments (using k elements for one combination) on

all (positive and negative) images of our validation set

I1, . . . , Iv . Then in each iteration 1, . . . , T we search for the

weak detector that obtains the best detection result on the

current image weighting. This selects weak detectors which

generally (depending on the weighting) “fire” often on pos-

itive validation images (classify them as correct and esti-

mate a centroid closer than dc to the true object centroid,

see Fig. 7) and not on the negative ones. Figure 9 shows ex-

amples of learnt weak detectors that finally form the strong

detector. Each of these weak detectors also has a weight whi

and a threshold thhi
. The output of a strong detector on a

whole test image is generally:

H(I) = sign

(

T
∑

i=1

hi(I ) · whi

)

. (4)

However we relax this condition such that we introduce a

threshold tdet instead of the sign function. Thus an object

is detected in the image I if H(I) > tdet and no evidence

for the occurrence of an object if H(I) ≤ tdet . As we train a

detector this summation over the whole image would be un-

suitable. Hence, Mean-Shift-Mode estimation over a proba-

bilistic voting space is used.

4.3 Detection and Segmentation Procedure

The detection algorithm is summarized in Fig. 10, and

Fig. 11 gives example qualitative results. First the edges are
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Fig. 11 Examples of processing test images with the BFM detector

detected, then the boundary fragments of the weak detectors

are matched to this edge image (step 2). In order to detect

(one or more) instances of the object (instead of classifying

the whole image) each weak detector hi votes with a weight

whi
in a Hough voting space. Votes are then accumulated in

the following probabilistic manner: for all candidate points

xn found by the strong detector in the test image IT we sum

up the (probabilistic) votings of the weak detectors hi in a

2D Hough voting space which gives us the probabilistic con-

fidence:

conf(xn) =

T
∑

i

p(c,hi) =

T
∑

i

p(hi)p(c|hi) (5)

where p(hi) = 1
∑M

q=1 score(hq ,IT )
· score(hi, IT ) describes the

pdf of the effective matching of the weak detector with

score(hi, IT ) = 1/D(hi, IT ) (see (3)) and M being the num-

ber of weak detectors matching in an image. The second

term of this vote is the confidence we have in each specific

weak detector and is computed as:

p(c|hi) =
#firescorrect

#firestotal

(6)

where #firescorrect is the number of positive and #firestotal

is the number of positive and negative validation images

the weak detector fires on. Finally our confidence of an

object appearing at position xn is computed by using a

Mean-Shift algorithm (Comaniciu and Meer 2002) (circu-

lar window W(xn)) in the Hough voting space defined as:

conf (xn|W(xn)) =
∑

Xj ∈W(xn) conf (Xj ).

The segmentation is obtained by back-projection of the

boundary fragments of weak detectors which contributed to

that center to a binary pixel map. Typically, the contour of

the object is over-represented by these fragments. We obtain

a closed contour of the object, and additional, spurious con-

tours (shown in Fig. 11, step 3). Short segments (< 30 pix-

els) are deleted, the contour is filled (using Matlab’s ‘filled

area’ in regionprops), and the final segmentation matte is

obtained by a morphological opening, which removes thin

structures (votes from outliers that are connected to the ob-

ject). Finally, each of the objects obtained by this proce-

dure is represented by the bounding box of the segmentation

matte. We postpone giving quantitative recognition results

until the experiments of Sect. 7.

5 Extending the BFM for Recognition under Scaling

and Rotation

The BFM has only a limited tolerance to scale change and

rotation in the test images. We describe here how these lim-

itations are overcome.

5.1 Search over Scale

We search over a set of scales to achieve scale invariant

recognition in testing. Two possibilities have been imple-

mented and experimentally evaluated: In the first method, a

scaled codebook representation is used for each scale. Cor-

respondingly, we normalize the parameters of the detection
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(a) (b)

Fig. 12 (a) Scale invariance: RPC-equal-error rate on the cow

dataset (Magee and Boyle 2002) depending on scale changes. In the

experiments for each scale we used the same test images, but resized

them to the selected scale. (b) Example of detection at different scales:

The second column shows the object at the size of the training images

(scale = 1.0). The scale varies from left to right as 0.5,1.0,1.5,2.0.

The second row of the last column shows a false detection (because the

detected bounding box is too small)

algorithm (Fig. 10) with respect to scale, for example the ra-

dius for centroid estimation, in the obvious way. The Mean-

Shift modes are then aggregated over the set of scales, and

the maxima explored as in the single scale case.

As a second technique we improve the first one by using

the idea of Leibe and Schiele (2004). Instead of several dis-

crete 2D Hough voting spaces, the votes are now collected

in a 3D Hough voting space (scale as the third axis) and then

a balloon-mean-shift mode estimation is performed, which

finds the modes and their corresponding scales. Leibe and

Schiele (2004) use appearance patches with a characteristic

scale (at discrete scale levels predefined by the scale-space)

which eases the voting procedure. We use again scaled ver-

sions of our codebook with a certain step size (factorsc), per-

form detection at each level and then vote in the 3D space.

The advantage of this method compared to the previous one

is a better theoretical foundation and a more reliable detec-

tion of objects of the same category with different scales in

the same image.

Figure 12(a) shows the RPC-equal-error rate on the

cow-side category depending on artificially generated scale

changes with no scale invariance and the two methods pro-

posed here (BFM 1 for re-scaled codebook and BFM 2 for

the 3D Hough voting space). The drop in the detection rate

is because of multiple false positive detections of the ob-

ject or insufficient overlap of the bounding boxes. However,

the more complicated second method does not gain much

in performance. Figure 12(b) shows results on detections on

various cows at different scales.

However, one problem is the general issue of re-scaling

contours without losing information or getting artifacts. We

use standard morphological techniques (bridging, then for

small scales dilation, finalized by a skeleton operation),

which works for scale ranges of 0.5–2.0 quite reliably, but

does fail for bigger scale changes.

5.2 In-Plane Rotation

The BFM is invariant to small (less than 20 degrees, but de-

pending on the number of orientation planes) rotations in

plane due to the orientation planes used in the Chamfer-

matching. This is a consequence of the nature of our match-

ing procedure. For many categories the rotation invariance

up to this degree may be sufficient (e.g. cars, cows) be-

cause they have a favored orientation where other occur-

rences are quite unnatural. For complete in-plane rotation in-

variant recognition we can use rotated versions of the code-

book (see Fig. 25 second column for an example). Different

Hough voting spaces for each rotation are obtained and then

the maximum over the possible rotations is selected. How-

ever, the built in invariance means that only about 15 bins of

different rotations are required.

5.3 Different Aspects and Small (Out of Plane) Viewpoint

Changes

For natural objects (e.g. cows) the perceived boundary is

the visual rim. The position of the visual rim on the object

will vary with pose but the shape of the associated bound-

ary fragment will be valid over a range of poses. The BFM

implicitly couples fragments via the centroid, and so is not

as flexible as, say, a “bag of” features model where feature
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Fig. 13 Robustness to changes

in viewpoint: The robustness of

the BFM to viewpoint changes

to rotations about a vertical axis

(V) and/or about a horizontal

(H) axis. Degrees of viewpoint

angles are stated above the

images. The circular centroid

vote gets blurred to an ellipse

corresponding to the viewpoint

rotation. Up to a certain degree

of rotation the centroid is still

prominently observable

(a) (b)

Fig. 14 The detection confidence with a change in viewpoint: The

BFM learnt for cow-side is used. In (a) the thick black solid line shows

the average confidence with this model on other objects but cows and

the red thick solid line shows the average confidence on 6 different

cows. (b) Shows the same model tested on cows rotated about a verti-

cal axis, and also on images of other categories similarly rotated

position is not constrained. We investigate qualitatively the

tolerance of the model to viewpoint change. The evaluation

is carried out on the ETH-80 dataset. This is a toy dataset,

but is useful here for illustration because it contains image

sets of various instances of categories at controlled view-

points. More realistic experiments on viewpoint change are

given in Sect. 7.

We carry out the following experiment: a BFM model is

learnt from instances of the cow category in side views. The

model is then used to detect cows in test images which vary

in two ways: (i) they contain cows (seven different object

instances) over varying viewpoints—object rotation about a

vertical and horizontal axis (see Fig. 13); (ii) they contain

instances of other categories (horses, apples, cars . . . ), again

over varying viewpoints.

Figure 13 shows the resulting Hough votes on the cen-

troid, averaged over the seven cows with viewpoint changes

about a vertical axis (second row) or changes about the ver-

tical and/or the horizontal axis (last row). It can be seen that

the BFM model is robust to significant viewpoint changes

with the mode still clearly defined (though elongated). Fig-

ure 14 summarizes the change in the detection response av-

eraged over the different cows or other objects under rota-

tion about a vertical axis (as in the top row of Fig. 13). Fig-

ure 14(a) shows the detection confidences of various cow

instances rotated about a vertical axis compared to an aver-

age of other objects. Note that the cow detection response

is above that of other non-cow category objects. The side-

trained BFM can still discriminate object class based on de-

tection responses with rotations up to 45 degrees in both di-



Int J Comput Vis (2008) 80: 16–44 29

rections. In summary: the BFM trained on one visual aspect

can correctly detect the object class over a wide range of

viewpoints, with little confusion with other object classes.

Similar results are obtained for BFM detectors learnt for

other object categories (e.g. horses), whilst for some cate-

gories with greater invariance to viewpoint (e.g. bottles) the

response is even more stable. These results allow us to cut

down the bi-infinite space of different viewpoints to a few

category relevant aspects. These aspects allow the object to

be categorized and also to predict its viewpoint.

Generally, we currently treat several viewpoints of an ob-

ject category as different categories, and the following sec-

tion on multi-class detection gives examples how such cases

are treated.

6 The BFM for Multiple Categories

The previous sections have shown that, using our basic sin-

gle category BFM, shape can be a strong cue for categoriza-

tion. This idea is now enhanced towards the learning and de-

tection of many categories. Here it is necessary to develop

algorithms with a sublinear growing effort with the num-

bers of categories instead of learning a full separate model

for each category. Thus, our multi-class BFM is based on a

novel joint learning algorithm which is a variation on that

of Torralba et al. (2004), where weak classifiers are shared

between classes. The principal differences are that our algo-

rithm allows incremental as well as joint learning, and we

learn a regressor of the object location (which is a direct im-

plementation of a detector) rather than the classification of

an image window, and detection by scanning over the whole

image as it is done in Torralba et al. (2004). A less significant

difference is that we use AdaBoost (Freund and Schapire

1997) instead of GentleBoost (Friedman et al. 1998). The

main benefits of the approach, over individual learning of

category detectors, are: (i) that we need less training data

when sharing across categories; and (ii) that we are able to

add new categories incrementally making use of already ac-

quired knowledge. This approach leads to a universal visual

alphabet of shape that is shared between many categories.

Figure 15 gives an overview of the two cases of joint

learning many categories and incremental learning of a new

category. Considering the first case, we have a training and

a validation set for each category and a set of background

images in the validation set. We proceed with every train-

ing image of every category, extract boundary-fragment can-

didates around edge seeds and calculate costs on the cor-

responding validation set. If the costs are below a certain

threshold we add the boundary-fragment with its geomet-

ric information (centroid vectors) to the alphabet. However,

now we proceed with the same boundary-fragment and eval-

uate it also on all the other validation sets of the other cat-

egories. This results in alphabet entries which have costs

for all categories specifying their ability of sharing. This in-

crementally built alphabet is then used as a basis for joint-

boost to learn a strong detector for each category which

shares weak detectors from a collection of weak detectors.

The second case of learning a newly added category incre-

mentally is based on the existing (previously learnt) knowl-

edge of an alphabet and a collection of weak detectors. We

add a new category with its training images and valida-

tion images and then learn a strong detector in a two stage

process. First existing alphabet entries and the weak detec-

tors are evaluated on the new validation set and if they can

be shared they are added to the strong detector for the new

category. These are weak detectors which discriminate the

category from the background. Then in the second stage

we learn new weak detectors which are used to discrimi-

nate the incrementally added category from the other cate-

gories.

6.1 A Universal Alphabet of Shape

Building the alphabet of shape for many categories is based

on the process for the one-class BFM (see Sect. 3). However,

we also search over other categories to see if a boundary

fragment can be shared. The search algorithm is outlined in

Fig. 16. Note that in step 4 we have to distinguish between

the following three different cases (which are illustrated in

Fig. 17):

• The boundary fragment matches on many positive valida-

tion images of another category and gives a roughly cor-

rect prediction of the object centroid. In this case we just

update the alphabet entry with the new costs for this cate-

gory and sharing is possible.

• The boundary fragment matches well on many positive

validation images, but the prediction of the object cen-

troid is not correct, though often the predictions for each

match are consistent with each other. In this case we add

a new centroid vector to the alphabet entry. We are still

able to share the boundary fragments but not the geomet-

ric information.

• The third obvious case is where the boundary fragment

matches arbitrarily in validation images of a category in

which case high costs emerge and sharing is not possible.

6.2 Incremental/Joint-Boosting

The algorithm can operate in two modes: either joint learn-

ing (as in Torralba et al. 2004); or incremental learning. In

both cases our aim is a reduction in the total number of

weak detectors required compared to independently learn-

ing each class. For C classes this gain can be measured by
∑C

i=1 Tci
− Ts (as suggested in Torralba et al. 2004) where

Tci
is the number of weak detectors required for each class
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Fig. 15 An overview of the procedure to learn a multi-class Boundary-Fragment-Model for jointly learning many categories (black, solid lines)

or adding a new category incrementally (red, dotted lines)

For each class Ci

For each training image of Ci

For each random edge seed

1) Grow candidate boundary fragment around random starting point (edge seed).

2) Evaluate the boundary fragment at each growth step on the validation set of the category. Calculate costs.

3) If the fragments costs are above a certain threshold discard this fragment, otherwise go on with step 4.

4) Evaluate the boundary fragment on the validation sets of the other categories (3 cases, see Fig. 17).

5) Add this fragment with costs on all categories and the geometric information to the alphabet.

Fig. 16 The algorithm to build the alphabet of shape for many categories

trained separately (to achieve a certain error on the valida-

tion set) and Ts is the number of weak detectors required

when sharing is used. In the separate training case this sum

is O(C), whereas in the sharing case it should grow sub-

linearly with the number of classes. The algorithm optimizes

an error rate En over all classes.

(a) Joint learning: involves for each iteration searching

for the weak detector for a subset Sn ∈ C that has the low-

est accumulated error En on all classes Sn. Subsets might

be e.g. S1 = {c2} or S3 = {c1, c2, c4}. A weak detector only

fits for a category if ǫci on this category ci is below 0.5

(and is rejected otherwise), where ǫci is the training error
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Fig. 17 Illustrates the three

cases that can occur when

alphabet entries are evaluated on

the validation sets of other

categories

of the category ci . En is the sum of all class specific er-

rors ǫci if ci ∈ Sn and a penalty error ǫp (0.6 in our im-

plementation) otherwise. Searching for a minimum of En

over a set of subsets Sn guides the learning towards sharing

weak detectors over several categories. We give a brief ex-

ample of that behavior: imagine we learn three categories,

c1, c2 and c3. There is one weak detector with ǫc1 = 0.1 but

this weak detector does not fit any other category (ǫc2 > 0.5

and ǫc3 > 0.5). Another weak detector can be found with

ǫc1 = 0.2, ǫc2 = 0.4 and ǫc3 = 0.4. In this case the algorithm

would select the second weak detector as its accumulated

error of En = 1.0 is smaller than the error of the first weak

detector of En = 1.3 (note that for each category not shared

ǫp is added). This makes the measure En useful to find de-

tectors that are suitable for both distinguishing a class from

the background, and for distinguishing a class from other

classes. Clearly, the degree of sharing is influenced by the

parameter ǫp , and this enables us to control the degree of

sharing in this algorithm (a larger ǫp encourages sharing).

Instead of exploring all 2C − 1 possible subsets Sn of the

jointly trained classes C, we employ the maximally greedy

strategy from Torralba et al. (2004). This starts with the first

class that achieves alone the lowest error on the validation

set, and then incrementally adds the next class with the low-

est training error. The combination which achieves the best

overall detection performance over all classes is then se-

lected. Torralba et al. (2004) showed that this approximation

does not reduce the performance much.

(b) Incremental learning: implements the following idea:

suppose our model was jointly trained on a set of categories

CL = {c1, c2, c3}. Hence the “knowledge” learnt is contained

in a set of three strong detectors HL = {H1,H2,H3} which

are composed from a set of weak detectors hL. The number

of these weak detectors depends on the degree of sharing

and is defined as Ts ≤
∑C

i=1 Tci
(C = 3 here). Now we want

to use this existing information to learn a detector for a new

class cnew (or classes) incrementally. To achieve this, one

can search already learnt weak detectors hL to see whether

they are also suitable (ǫcnew < 0.5) for the new class. If so,

these existing weak detectors are also used to form a detec-

tor for the new category and only a reduced number of new

weak detectors have to be learnt using the joint learning pro-

cedure.

Note that joint and incremental training reduces to stan-

dard Boosting if there is only one category.

(c) Weak detectors: are formed from pairs of fragments.

The possible combinations of k fragments define the feature

pool (the size of this set is the binomial coefficient of k and

the number of alphabet entries). This means for each sharing

of each iteration we must search over all these possibilities

to find our best weak detector. We can reduce the size of this

feature pool by using only combinations of boundary frag-

ments which can be shared over the same categories as can-

didates for weak detectors. E.g. it does not make much sense

to test a weak detector which is combined from a boundary

fragment representing a horses leg and one that represents a

bicycle wheel if the boundary horses leg never matches in

the bike images.

(d) Details of the algorithm: The algorithm is summa-

rized in Fig. 18. We train on C different classes where
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Input: Validation images (I1, ℓ0
1
), . . . , (IN , ℓC

N
),

ℓc
i
∈ {C,−1}, N = Nbg +

∑C
i=1 Nci .

Initialization: Set the weight matrices wc
i
:

wc
i

=

⎧

⎨

⎩

1
2Nci

if ℓi = c.

1

2(Nbg+
∑C

i=1,ci �=ℓi
Nci

)
else

Learn incrementally:

For ci = 1 : C

For hL(I, Sn) ∈ HL(I, c)

if ǫci < 0.5: hL = hL(I, Sn ∩ ci), update wc
i
, t = t + 1

Tci = Tci + 1

For t = 1, . . . , Tmax

1. For n = 1,2, ..,
C(C+1)

2

a) Find the best weak detector ht (I, Sn) w.r.t. the weights w
Sn

i
.

b) Evaluate error:

En =

{
∑C

c ǫc
if ǫc < 1

2
,∀c ∈ Sn

C else

with ǫc =

⎧

⎨

⎩

∑N
i=1 wc

i ·(
1
2 (ℓc

i −ht (Ii ,Sn))2)
∑N

i=1 wc
i

if ℓi ∈ Sn,

ǫp otherwise.

2. Get best sharing by selecting: n = argminnEn and pick corresponding ht , Sn

3. Update additive model and weights:

H(I, c) = H(I, c) + αtht (I, Sn)

wc
i

← wc
i

· αℓc
i ht (Ii ,c)

with αt = 1
2

log( 1−ǫc

ǫc ), and ǫc = p for c /∈ Sn

4. Update Tci , and if Tci ≥ T ∀ci → STOP

Fig. 18 Incremental/joint Adaboost learning algorithm

each class ci consists of Nci
validation images, and a set

of Nbg background validation images (which are shared for

all classes and are labeled ℓ0
i ). The total number of valida-

tion images for all classes and background is denoted by N .

The weights are initialized for each class separately. This

results in a weight vector wc
i of length N for each class ci ,

normalized with respect to the varying number of positive

validation images Nci
. In each iteration a weak detector for

a subset Sn is learnt. To encourage the algorithm to focus

also on the categories which were not included in Sn we

vary the weights of these categories slightly for the next it-

eration (ǫc = p,∀c /∈ Sn, with p = 0.47 in our implemen-

tation). Note that we use a fixed number of weak detec-

tors, T , per category rather than train until the validation

error is below some threshold (as is done by Torralba et al.

2004). In Torralba et al. (2004) the authors use weak classi-

fiers on subwindows of the training images and can so eas-

ily track the training error at each iteration. However, we

are learning weak detectors and to achieve a proper evalua-

tion of the training error in each iteration for each category

we would have to perform the whole Hough voting detec-

tion procedure. This slows down the training a lot and our

experimental results show that a fixed number of weak de-

tectors per category gives excellent results. Still for further

improvement one could include this full Hough evaluation,

and thereby save some effort for certain categories where

fewer weak detectors are sufficient to form a suitable model.

6.3 Detection in the Multi-Class Case

Learning the strong detectors results in a collection of weak

detectors which are shared among the categories. If one

wants to detect objects in a new test image, then one could

simply follow the procedure of the single class BFM detec-

tion algorithm (Fig. 10) for each class independently. How-

ever, it is straightforward to extend the procedure to include

multiple categories. Each of the weak detectors from the col-

lection of weak detectors is applied to the test image. We

have separate voting spaces for each category. If the weak

detector matches it votes in the corresponding Hough voting

spaces for those categories that share this specific weak de-

tector. After testing all the weak detectors we perform Mean-

Shift-Mode estimation on all voting spaces. Modes above a

certain threshold are treated as detection of the category this

voting space belongs to (see Fig. 19). The resulting bound-

ing box and rough segmentation is obtained as in the one-

class BFM. Note that this procedure can handle multiple de-

tections of a specific category (more than one mode above



Int J Comput Vis (2008) 80: 16–44 33

Fig. 19 Shows how detection is

performed using the multi-class

BFM

threshold in this categorie’s voting space), as well as detec-

tions of several categories in one image (significant modes in

several voting spaces). Detection time is linear in the num-

ber of categories (O(C)).

7 Experimental Results

Our experiments are structured into three subsections. First,

the features of our basic BFM for single categories are eval-

uated and compared with related work on common datasets.

These results in Sect. 7.1 show that shape alone is a strong

cue for category detection, and that our BFM performs com-

parably or even better than other state of the art categoriza-

tion approaches which are based on appearance patches or

on shape features. Next, in Sect. 7.2 we investigate the multi-

class BFM on our novel multi-class dataset. The emphasis

of our experiments is to analyze the visual shape alphabet

(which grows sublinearly with the number of categories),

to compare incremental and joint learning, and to compare

with detection results of related work on a number of in-

dividual categories from the multi-class dataset. Finally, in

Sect. 7.3 we return to the unified approach which is outlined

in Fig. 1. We combine boundary-fragments and appearance

patches in a unified framework and show that this combina-

tion of diverse cues improves detection rates as compared to

our BFM as well as to related patch- and shape-based ap-

proaches.

Unless stated otherwise, our experiments were performed

with the following parameter settings (details about the

parameters can be found throughout the paper): Canny

minedgelength = 10; growing of candidate boundary frag-

ments Lstart = 20, Lstep = 30 and Lstop = 520; chamfer

matching with 8 orientation planes, 5 degrees overlap, orien-

tation averaged over 7 pixels, and Nmatch = 10 best matches

of a boundary fragment; agglomerative clustering threshold

thcl = 0.2; centroid uncertainty r = 10 and centroid estimate

tolerance dc = 15; k = 2 boundary fragments form a weak

Table 2 Comparison of the BFM detector to other published results

on cows

Method Caputo et al.

(2004)

Leibe et al.

(2004)

Our approach

RPC-equal-err 2.9% 0.0% 0.0%

detector; T = 200 weak detectors form a strong detector;

detection threshold for a strong detector tdet = 8.

We consider a detection as correct (true positive) if the

bounding box predicted by the algorithm BBpred has at least

50% area of overlap ao with the ground truth bounding box

BBgt . As suggested by Everingham et al. (2005) this ratio of

area of overlap is defined by ao =
area(BBpred

⋂

BBgt)

area(BBpred

⋃

BBgt)
.

7.1 Experimental Results for Single-Category BFM

(a) Cows: First we give quantitative results on the cow

dataset. We used 20 training images (validation set: 25 pos-

itive 25 negative) and tested on 80 unseen images half be-

longing to the category cows and half to counter examples

(cars and motorbikes). Note that we provided contours as su-

pervision for this dataset as was done in Leibe et al. (2004).

In Table 2 we compare our results to those reported by Leibe

et al. (2004) and Caputo et al. (2004) (Images are from the

same test set—though the authors do not specify which ones

they used). We perform as well as the result in Leibe et

al. (2004), clearly demonstrating that in some cases just the

contour is sufficient for an excellent detection performance.

Figure 20 shows example segmentations of detected objects.

The segmentation uses the back-projected outline of the ob-

ject to delineate a foreground region.

Kumar et al. (2004) also give an RPC curve for cow de-

tection with an ROC-equal-error rate of 10% (though they

use different test images). Note, that our detector can iden-

tify multiple instances in an image, as shown in Fig. 21.
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Table 3 Comparison of the BFM detector to other published results

on the Caltech dataset. The first two columns give the actual object

detection error reported in RPC-equal-error (BFM-D) and the remain-

ing columns the categorization of the images (BFM-C) given by the

ROC-equal error rates

Cat. BFM-D Leibe

et al.

(2004)

BFM-C Fergus

et al.

(2003)

Opelt

et al.

(2004)

Sivic

et al.

(2005)

Amores

et al.

(2005)

Bar-Hillel

et al.

(2005)

Fergus

et al.

(2005)

Thureson

and

Carlsson

(2004)

Zhang

et al.

(2005)

Caputo

et al.

(2004)

Cars-rear 2.25 6.1 0.05 9.7 8.9 21.4 3.1 2.3 0.7 9.8 – 2.2

Airplane 7.4 – 2.6 7.0 11.1 3.4 4.5 10.3 4.7 17.1 5.6 –

Motorbikes 4.4 6.0 3.2 6.7 7.8 15.4 5.0 6.7 6.2 6.8 5.0 –

Faces 3.6 – 1.9 3.6 6.5 5.3 10.5 7.9 17.0 16.9 0.3 7.6

Fig. 20 Segmentation of cows: Example segmentations obtained using the BFM cow detector

Fig. 21 Detecting multiple objects in one image

(b) Variation in performance with number of training im-

ages: The results on the cow dataset reported above have

been achieved using 20 training images. Figure 22(a) shows

how the number of training images influences the perfor-

mance of the BFM detector. Even with five images our

model achieves detection results of better than 10% RPC-

equal-error rate. The performance saturates at twenty in this

case, but this number is dependent on the degree of within

class variation (e.g. see Fig. 22(b) for the category Cars-

Rear) and the amount of supervision.

(c) Caltech datasets: From the widely used Caltech

datasets we performed experiments on the categories Cars-

Rear, Airplanes, Motorbikes and Faces. Table 3 shows our

results compared with other state of the art approaches on

the same test images as reported in Fergus et al. (2003).

First we give the detection results (BFM-D) and compare

them to the best (as far as we know) results on detection by

Leibe et al. (2004) (scale changes are handled as described

in Sect. 5.1). We achieve superior results—even though we

only require the bounding boxes in the training images.

For the classification results (BFM-C) an image is clas-

sified, in the manner of Fergus et al. (2003), if it contains

the object, but localization by a bounding box is not consid-

ered. Compared to recently published results on this data we

again achieve the best results. Note that the amount of su-

pervision varies over the methods where e.g. Thureson and

Carlsson (2004) use labels and bounding boxes (as we do);

Amores et al. (2005), Bar-Hillel et al. (2005), Caputo et al.

(2004), Fergus et al. (2003), Opelt et al. (2004) use just the

object labels; and Sivic et al. (2005) uses no supervision. It

should be pointed out that we use just 50 training images,

and 50 positive as well as 50 negative validation images for

each category, which is less than the other approaches use.

Figure 22(b) shows the error rate depending on the number

of training images (again, the same number of positive and

negative validation images are used). However, it is known

that the Caltech images are now not sufficiently demanding,

so we consider some more challenging datasets in Sect. 7.2.

(d) Horses and cow/horse discrimination: To address the

topic of how well our method performs on categories that

consist of objects that have a similar boundary shape we at-

tempt to detect and discriminate horses and cows. We use

the horse data from http://www.msri.org/people/members/

eranb/ to be comparable to others. In the following we com-

pare three models. In each case they are learnt on 20 training

images of the category and a validation set of 25 positive and

25 negative images that is different for each model. The first

model for cows (cow-BFM) is learnt using no horses in the

negative validation set (13 cars, 12 motorbikes). The second

model for horses (horse1-BFM) is learnt using also cows in

the negative validation set (8 cars, 10 cows, 7 motorbikes).

Finally we train a model (horse2-BFM) which uses just cow

http://www.msri.org/people/members/eranb/
http://www.msri.org/people/members/eranb/
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Fig. 22 (a) The

RPC-equal-error rate depending

on the number of training

images for the cow dataset.

(b) The error depending on the

number of training images (for

Cars-Rear)

Fig. 23 Example of BFM

detections for horses

Table 4 Confusing cows and horses: The first 3 rows show the failures

made by the three different models (FP = false positive, FN = false

negative, M = multiple detection). The last row shows the RPC-equal-

error rate for each model

Cow-BFM Horse1-BFM Horse2-BFM

FP 0 3 0

FN 0 13 12

M 0 1 2

RPC-eq. 0% 23% 19%

images as negative validation images (25 cows). We now

apply all three models on the same test set, containing 40

images of cows and 40 images of horses. Figure 23 shows

example detection results and Fig. 24 shows some segmen-

tations. Table 4 shows the failures and the RPC-equal er-

ror rate of each of these three models on this test set. The

cow model is very strong (no failures) because of the low

intra-class variability of this category it needs no knowledge

of another object class even if its boundary shape is simi-

lar. Horse1-BFM is a weaker model (this is a consequence

of greater variations of the horses in the training and test

images). The model horse2-BFM obviously gains from the

cows in the negative validation images, as it does not have

any false positive detections. Overall this means our mod-

els are good at discriminating classes of similar boundary

shapes, but need either more data or more consistent train-

ing objects.

For quantitative comparison we trained on 20 horse im-

ages, with 30 horses for validation and 30 background im-

Table 5 Results on Weizman horse dataset: This table shows how the

performance of the BFM increases if more supervision is used. BFM

performs slightly worse than the method of Shotton et al. (2005), but

a direct comparison of these two methods is hard (see text for further

discussion)

Approach RPC-equal-error

BFM (bounding box) 18.7

BFM (pre-segmented) 10.8

Shotton et al. (2005) 7.9

ages from the Caltech dataset. Tests were performed on 277

other horse images (approx. scale normalized) and 277 Cal-

tech background images as in Shotton et al. (2005). We

trained once using just the bounding boxes as supervision

and in a second test we used pre-segmented training ob-

jects. The results are summarized in Table 5. The results

reported by Shotton et al. (2005) used similar conditions.

These results also point out that a direct comparison of meth-

ods sometimes is quite hard. Shotton et al. use only 10 seg-

mented images, we use 20. But we extract boundary frag-

ments only from 20 training images, using just centroid in-

formation from the remaining 30 positive validation images,

whereas Shotton et al. extract contour information from all

50 training images. This second point probably explains the

slightly better results for their method. Horse shapes show

significant intra-class variability so that more shape training

data are beneficial.

(e) Bottles: To show the advantage of an approach relying

on the shape of an object category we set up a new dataset

of bottle images. This consists of 118 images collected us-
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Fig. 24 Segmentation of horses: Example segmentations obtained using the BFM detector on horses

Fig. 25 Example of BFM

detections for bottles: The first

row shows the bounding box of

the detection and the second row

shows the back-projected

boundary fragments for these

detections. Note the in-plane

rotation in the second column

Fig. 26 Examples of BFM

detections on the UIUC car

dataset

ing Google Image Search. Negative images are provided by

the Caltech background image set. We separated the images

in the test/training/validation-set (64/24/30) and added the

same proportion of negative images in each case. We achieve

an RPC-equal error rate of 9%. Figure 25 shows some de-

tection examples.

(f) UIUC car dataset: This dataset consists of 549 train-

ing and 170 test images. We only used a subset of the avail-

able training data (50 training images) and a random se-

lection of 40 test images as a validation set (+ 40 nega-

tive training images, no positive training images could be

used for validation as they are too simple for validation pur-

pose). On this dataset we again show that our model can

learn by only providing the bounding box of the object—

though there is a performance penalty: on these low reso-

lution images this noisy training data contains a high num-

ber of edges on the background surrounding the training ob-

ject. It was necessary to use slightly different parameters for

this set because of this low image resolution of the training

images (σ = 0.2, tdet = 1, seeds grown from 20 pixels in

steps of 10 to 240 pixels). Table 6 shows our results com-

pared to those reported by Agarwal et al. (2004), Leibe et

al. (2004) and Fergus et al. (2003). Note that the results of

Leibe et al. (2004) were achieved using pre-segmented cars

for training. Shotton et al. (2005) also used some (10) pre-

Table 6 Comparison of the BFM detector to others on the UIUC car

database

Method RPC-equal-err

Agarwal et al. (2004) 21.0%

Fergus et al. (2003) 11.5%

Leibe et al. (2004) 9.0%

Leibe et al. (2004) + Verif. 2.5%

Amores et al. (2005) 10.0%

Shotton et al. (2005) 7.2%

BFM approach 15.0%

segmented training images. Additionally Leibe et al. (2004)

added a final verification procedure that improved their per-

formance after Hough voting. We would also benefit from a

similar verification procedure. However, this category points

out a drawback of our method based on boundary fragments,

namely the need of a sufficient resolution of the training ob-

jects.

7.2 Learning BFMs for Many Categories on

the Multi-Class Dataset

(a) The alphabet: When we train on 17 categories each of the

alphabet entries is on average shared over approximately 5



Int J Comput Vis (2008) 80: 16–44 37

Fig. 27 Left: similarity matrix of the alphabet entries of the different categories. Right: a dendrogram generated from this similarity matrix

categories. The sublinear growth of the number of alphabet

entries with an increasing number of categories can be seen

in Fig. 29(a). Further, the alphabet can be used to take a first

glance at class similarities. Figures 27(a) and (b) show the

alphabet similarities using a similarity matrix and a dendro-

gram illustration. The correlations visible in the similarity

matrix are due to alphabet entries that can be shared over

categories. The matrix is calculated by using the alphabet

entries for each category specified by the row, and measur-

ing their matching costs when matching them to the train-

ing images of the categories. Each column shows the values

of the performance on a different category. We further use

the row vectors as description vectors, normalize them, and

perform agglomerative clustering. This results in the shown

dendrogram which directly visualizes category similarities.

The dendrogram for the 17 categories shows some intuitive

similarities (e.g. for the CarRear and CarFront classes).

Figure 28 shows some examples of the learnt alphabet for

these 17 categories. Note how the more basic shapes have

more centroid vectors as they occur in different categories

at different positions.

(b) Incremental learning: Here we investigate our incre-

mental learning at the alphabet level, and on the number of

weak detectors used. We compare its sharing abilities to in-

dependent and joint learning. A new category can be learnt

incrementally, as soon as one or more categories have al-

ready been learnt. This saves the effort of a complete re-

training procedure, but only the new category will be able to

share weak detectors with previously learnt categories, not

the other way round. However, with an increasing number

of already learnt categories the pool of learnt weak detec-

tors will enlarge and give a good basis to select shareable

weak detectors for the new unfamiliar category. We thus

can expect a sublinearly growing number of weak detec-

tors when adding categories incrementally. The more sim-

ilar the categories the more that can be shared. This can be

confirmed by a simple experiment where the category Hors-

eSide is incrementally learnt, based on the previous knowl-

edge of an already learnt category CowSide, resulting in

18 shared weak detectors. In comparison, the joint learn-

ing shares a total of 32 detectors (CowSide also benefits

from HorseSide features). For the 17 categories incremen-

tal learning shows its advantage at the alphabet level. We

observe (see Fig. 29(a)) that the alphabet requires only 779

entries (worst case approximately 1700 for our choice of the

threshold thK , giving roughly a set of 100 boundary frag-

ments per category).

Figure 29(a) shows the increase in the number of shared

weak detectors, as new categories are added incrementally,

one category at a time. Assuming we do learn 100 weak

detectors per category the number of the worst case (1700)

can be reduced to 1116 by incremental learning. Learning

all categories jointly reduces the number of used weak de-

tectors even further to 623. However, a major advantage of

the incremental approach is the significantly reduced com-

putational complexity. Whilst joint learning with I valida-

tion images requires O(2CI ) steps for each weak detec-

tor, incremental learning has a complexity of only O(|hL|I )

for those weak classifiers (from already learnt weak classi-

fiers) that can be shared (here |hL| is the number of already

learnt weak detectors, and C is the total number of classes).
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Fig. 28 Examples of the

alphabet entries learnt for the

multi-class dataset. The top of

each entry shows the boundary

fragment (shape), the middle

shows the centroid vectors and

the bottom shows the image this

alphabet entry originates from

(a) (b)

Fig. 29 (a) The increase in the number of alphabet entries w.r.t. the

number of classes, and increase of the number of weak detectors when

adding new classes incrementally or training a set of classes jointly.

The values are compared to the worst case (linear growth, dotted line).

For weak detectors the worst case is training independent and given

by (
∑C

i=1 Tci
), and for the alphabet we approximate the worst case by

assuming an addition of 100 boundary fragments per category. Classes

are taken sequentially (Planes(1), CarRear(2), Motorbike(3), . . . ). Note

the sublinear growth. (b) Error averaged for 6 categories (Planes, Car-

Rear, Motorbike, Face, BikeSide and HorseSide) either learnt indepen-

dently or jointly with a varying number of training images per category.

Note, a large value indicates a smaller error

One could use the information from the dendrogram from

Fig. 27(b) to find out the optimal order of the classes for the

incremental learning, but this is future work.

(c) Joint learning: Here we investigate joint learning for

a varying number of classes. First we learn detectors for

different aspects of cows, namely the categories CowSide

and CowFront independently, and then compare this per-

formance with joint learning. For CowSide the RPC-equal-

error is 0% for both cases. For CowFront the error is reduced

from 18% (independent learning) to 12% (joint learning). At

the same time the number of learnt weak detectors is reduced

from 200 to 171. We have carried out a similar compari-
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Table 7 Recognition results. In the first row we compare categories

to previously published results. We distinguish between detection D

(RPC-eq.-err.) and classification C (ROC-eq.err.). Then we compare

our model, either trained by the independent method (I) or by the

joint (J) method, and tested on the class test set T or the multiclass

test set M. On the multiclass set we count the best detection in an

image (over all classes) as the object category. The abbreviations

are: B = Bike, H = Horse, Mb = Motorbike, F = Front, R = Rear,

S = Side, 23 = two thirds Rear view

Class Plane CarR Mb Face B-S B-R B-F Car23 CarF Bottle CowS H-S H-F CowF Pers. Mug Cup

Ref. 6.3 6.1 7.6 6.0 0.0

(Fergus et

al. 2003),C

(Leibe et

al. 2004),D

(Shotton et

al. 2005),D

(Shotton et

al. 2005),D

(Leibe et

al. 2004),D

I,T 7.4 2.3 4.4 3.6 28.0 25.0 41.7 12.5 10.0 9.0 0.0 8.2 13.8 18.0 47.4 6.7 18.8

J,T 7.4 3.2 3.9 3.7 22.4 20.8 31.3 12.5 7.6 10.7 0.0 7.8 11.5 12.0 42.0 6.7 12.5

I,M 1.1 7.0 6.2 1.4 10.3 7.7 8.5 5.2 7.6 7.1 1.6 10.0 8.2 9.5 29.1 5.1 8.0

J,M 1.5 4.3 4.5 1.6 8.9 5.9 7.7 3.8 8.5 6.1 1.3 11.0 4.7 6.8 27.7 5.8 8.3

Fig. 30 Examples of weak detectors that have been learnt for the

whole dataset (resized to the same width for this illustration). The black

rectangles indicate which classes share a detector. Rather basic struc-

tures are shared over many classes (e.g. column 2). Similar classes (e.g.

rows 5, 6, 7) share more specific weak detectors (e.g. column 12, indi-

cated by the arrow, where parts of the bike’s wheel are shared)

son for horses which again shows the same behavior. This

is due to the reuse of some information gathered from the

side aspect images to detect instances from the front. Infor-

mation that is shared here is e.g. legs, or parts of the head.

This is precisely what the algorithm should achieve—fewer

weak detectors with the same or a superior performance. The

joint algorithm has the opportunity of selecting and sharing

a weak detector that can separate both classes from the back-

ground. This only has to be done once. On the other hand,

the independent learning does not have this opportunity, and

so has to find such a weak detector for each class.

In Fig. 29(b) we show that joint learning can achieve bet-

ter performance with less training data as a result of sharing

information over several categories (we use 6 categories in

this specific experiment).

Finally we focus on many categories, and compare inde-

pendent learning performance to that achieved by learning

jointly. Table 7 shows the detection results on the single cat-

egory’s test set (category images and background images),

denoted by T and on the multiclass test set (M) for both

cases. It also gives comparisons to some other methods that

used this data in the single category case where we used the

same test data. The joint learning procedure does not sig-

nificantly reduce the detection error (although we gain more

than we loose), but we gain in requiring just 623 weak de-

tectors instead of the straightforward 1700 (i.e. 100 times

the number of classes for independent learning). Errors are

more often because of false positives than false negatives.

We are superior or similar in our performance compared to

state-of-the-art approaches (note that classification is easier

than detection) as shown in Table 7. Looking at the mul-

ticlass case (I, M, and J, M, in error per image), we ob-

tain comparable error rates for independent and joint learn-

ing.

Figure 30 shows examples of weak detectors learnt in

this experiment, and their sharing over various categories.

Finally, in Fig. 31 we illustrate some qualitative detection

results on various categories of this dataset.
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Fig. 31 Examples of detection results using the multi-class detector. On the left we show the matched weak-detectors in red and on the right the

resulting detection result as a bounding box

7.3 Combination of Shape And Appearance Cues

In the overview of our approach, Fig. 1(a) shows that we can

use the very same procedure to learn such diverse features

as boundary fragments and patches in a unified framework

(which we call the “Unified Model”, or UM approach be-

low). At detection, this UM can use one combined strong

detector and one common Hough voting space. It can be
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Fig. 32 Intermediate steps

towards a unified model—the

“Combination of Models” (CM)

approach: This CM method is a

combination of the BFM (shown

on the top) and the “Region

Model” (RM) (illustrated on the

bottom)

expected, that the UM approach will lead to a very flexi-

ble selection of class-specific features during learning of the

class-specific strong detectors.

To be able to study the effects of shape, appearance, and

their combination, we have also implemented two interme-

diate steps on the way to this UM framework: a “Region

Model” and a “Combination Model”. Figure 32 shows at the

top the BFM for single categories (as explained in detail in

Sects. 3 and 4). The BFM learns a strong detector, which at

runtime (processing of a test image) casts votes into a BFM

Hough voting space. At the bottom of Fig. 32, the very same

situation is shown for a purely region-based model (“Region

Model” RM). In particular, we extract interest points us-

ing the Harris-Laplace combined with the Hessian-Laplace

(from http://www.robots.ox.ac.uk/~vgg/software). But our

implementation is flexible and could use other techniques,

e.g. Affine-Harris, as well. The regions are scale normalized

and described by a SIFT descriptor (Lowe 1999). As for the

BFM, we first learn an alphabet of appearance, that includes

regions which appear in many positive training images, do

http://www.robots.ox.ac.uk/~vgg/software
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Table 8 Comparison of Boundary-Fragment-Model BFM, Region

Model RM, Combination of Models CM, and Unified Model UM

approach with other state-of-the-art approaches on several categories

from the Caltech database and the UIUC cars-side. Note that we report

detection results here in terms of RPC-equal-error rates

Cat. BFM RM CM UM Leibe et al. (2004) Shotton et al. (2005)

Cars-side (UIUC) 15.0 10.5 6.2 7.0 9.0 7.2

Cars-rear (Caltech) 2.3 2.9 0.0 0.5 6.1

Airplanes (Caltech) 7.4 22.5 4.2 13.4 – –

Motorbikes (Caltech) 4.4 4.0 2.0 3.7 6.0 7.6

Faces (Caltech) 3.6 2.4 1.0 3.2 – 6.0

Fig. 33 The first ten weak detectors learnt in the UM for the categories: Cars-side (UIUC), Cars-rear, Airplanes, Motorbikes and Faces (Caltech)

not appear in counter examples, and provide good centroid

votes on the positive training images. Next, we combine

k = 2 alphabet entries to form weak detectors, which pro-

vide good centroid votes on the validation images, and fi-

nally learn a strong detector from the pool of weak detectors

using Boosting. At runtime, the RM detector casts votes into

a separate RM Hough voting space. In the middle of Fig. 32,

we present the straightforward solution to combining BFM

and RM by a simple linear combination of the two Hough

voting spaces (with weights fτ ). We term this straightfor-

ward combination method CM (“Combination of Models”).

Our experiments compare BFM, RM, CM, and UM on a

number of test data sets, and provide also a comparison with

related work, where available. Table 8 shows the resulting

error rates and Fig. 33 shows examples of the learnt weak

detectors for each category. In general identical weights fτ

for the different models in the Combined Models approach

(CM) are a reasonable choice. More detailed investigation

of the weight parameter shows e.g. for motorbikes that the

lowest error rate of 1.3% can be achieved at f = [0.3,0.7].

However, tuning of this parameter requires human supervi-

sion as there is often no error on the validation set (which

could serve as possibility for automatic tuning) and is thus

not always useful. This a disadvantage of the CM compared

to the Unified Model (UM).

The CM algorithm is robust to the combination of a re-

liable with an unreliable model (i.e. one that achieves poor

detection results). This is because the method of searching

modes by Mean-Shift mode estimation in a Hough space

is robust against the addition of a random distribution (the

votes of the poor model) and thus the correct modes from

the reliable model do not get too distracted by the addition of

this second Hough voting space. For the UM algorithm we

would expect it to achieve at least the minimum of the error

rate that the separate models (RM and BFM) for each feature

type achieve. This is generally true. However, in the case

of airplanes the UM model achieves poor results. More de-

tailed investigation shows that this is caused by over-fitting

on the validation set, whereas restricting the model to only

one feature type is sufficient to prevent over-fitting in this

case.

8 Conclusion and Discussion

We have presented a unified approach for object category

detection which combines shape, appearance and geome-

try. Starting from our one-class Boundary-Fragment-Model

(BFM), where we showed high performance on common

datasets, we proposed a multi-class BFM. On the basis of

that model we presented algorithms which can learn various

categories jointly or can add new categories incrementally.
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A clearly sublinear growth in the number of weak detec-

tors with the increasing number of categories gives evidence

that shape is well shared amongst different classes. Results

on our multi-class dataset show excellent detection perfor-

mance and little confusion between classes. Finally, the Uni-

fied Model (UM) combines shape and appearance, so that

we are now able to learn an alphabet of shape and appear-

ance that can be shared over many categories. Experimental

results show that selection of features (preference for shape

over appearance or vice-versa) is category specific. Further-

more, it is obvious, that object categorization and detection

clearly benefits from models like ours, which allows a flexi-

ble integration of diverse visual cues.

These results for the combination of boundary fragments

with appearance patches show the way for future catego-

rization research. As the field is rapidly developing towards

multi-class detection of many categories, models which use

just one type of information will certainly lack in their dis-

criminative power. Future work should try to integrate more

cues, like color, texture and segments.

There remain several hard problems for future research

work. The required amount of supervision should be dramat-

ically reduced to make the learning of such category models

more practical. What can be done to learn centroid votes

without providing centroids in training and validation data?

Treatment of scale is much harder for boundary fragments

than for patches (where affine covariant detectors and affine

invariant descriptors have reached a certain maturity).
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