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Abstract

We present a novel method for multiple people tracking

that leverages a generalized model for capturing interac-

tions among individuals. At the core of our model lies a

learned dictionary of interaction feature strings which cap-

ture relationships between the motions of targets. These fea-

ture strings, created from low-level image features, lead to

a much richer representation of the physical interactions

between targets compared to hand-specified social force

models that previous works have introduced for tracking.

One disadvantage of using social forces is that all pedestri-

ans must be detected in order for the forces to be applied,

while our method is able to encode the effect of undetected

targets, making the tracker more robust to partial occlu-

sions. The interaction feature strings are used in a Ran-

dom Forest framework to track targets according to the fea-

tures surrounding them. Results on six publicly available

sequences show that our method outperforms state-of-the-

art approaches in multiple people tracking.

1. Introduction

Many computer vision tasks are related to the problem

of understanding the semantic content of a scene from a

video sequence. Humans are often the center of attention

of a scene, therefore, the ability to detect and track multiple

people from a video has emerged as one of the top tasks to

address in our field. A common approach to multiple peo-

ple tracking follows the idea of estimating the hypotheses

of the locations of people using a detector for each frame.

Those hypotheses are then associated in time, so as to form

consistent tracks for each individual. One of the problems in

tracking-by-detection methods is that they are highly depen-

dent on detection results. Methods that use a physical model

to estimate pedestrians’ motion [19, 25] are completely un-

aware of the effect of undetected pedestrians, which reduces
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Figure 1: We estimate the velocity of the pedestrian in im-

age coordinates by learning a mapping from image features

to pedestrian velocity using a Hough Random Forest (RF)

framework. The green arrow indicates the ground truth ve-

locity of the pedestrian, and in red we plot the votes made

by the corresponding leafs of the learned RF.

its effectiveness in semi-crowded environments, where it is

very common to observe occlusions and it is very hard to

estimate a pedestrian’s trajectory.

In this paper, we propose to construct a model that es-

timates how a pedestrian moves according to the motion

and appearance features around him/her. An advantage of

our approach is that we relax the dependency of tracking

on detections, since now we can compute the motion of a

pedestrian taking into account his/hers environment, even

if other pedestrians are not explicitly detected. The pro-

posed approach is based solely on image features and effi-

cient classification techniques, which means it can be po-

tentially implemented in real-time and therefore used for

tasks such as pedestrian intention detection in autonomous

car navigation.
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1.1. Related work

Multiple people tracking is a key problem for many com-

puter vision tasks, such as surveillance, animation or activ-

ity recognition. Tracking is commonly divided in two steps:

object detection and data association. First, we detect ob-

jects in each frame of the sequence and second, the detec-

tions are matched to form complete trajectories. In order

to deal with crowded environments, where occlusions and

false detections are common, researchers have focused on

creating reliable detectors that can work even if parts of the

target are occluded [12, 11, 30, 29] as well as on obtaining

a more robust data association. The data association prob-

lem is usually solved on a frame-by-frame basis [17] or one

track at a time [2], but recent works show that it is more reli-

able to jointly solve the matching problem for all tracks and

all frames, either in discrete space using Linear Program-

ming (LP) [14, 34, 26, 3] or in continuous space [1].

Most tracking systems work with the assumption that the

motion model for each target is independent, but in reality,

a pedestrian follows a series of social rules, i.e. is subject

to social forces according to other moving targets around

him/her. These have been defined in what is called the so-

cial force model (SFM) [13, 15] which has been used for

abnormal crowd behavior detection [22], crowd simulation

[24] and has only recently been applied to multiple people

tracking [27, 25, 31, 19, 6, 1] and sports analysis [18]. The

problem with these methods is that they are limited to a few

hand-designed force terms, such as collision avoidance or

group attraction. Furthermore, its inclusion in an LP frame-

work either requires an iterative approach as in [19] or com-

plex slower solvers as in [20, 5, 7]. At the same time, these

models depend heavily on detections, since the forces will

only be computed among detected pedestrians. In the case

of crowded scenes, partially occluded pedestrians will never

have an effect on the trajectory of detected pedestrians.

In this paper, we aim at performing multiple people

tracking from uncalibrated monocular images. For this

goal, we introduce the interaction feature strings, which en-

code information about a pedestrian’s velocity depending

on his/her environment. These feature strings are created

using only image features (and therefore requiring no 3D

information of the scene), and then used in a Random For-

est (RF) framework, which we train to estimate the velocity

of a pedestrian at a certain frame. Random Forests [4] have

gained popularity these last years for applications like pose

estimation [28] or object detection [12], but, to the best of

our knowledge, have not been used so far in tracking for

predicting an object’s future position. A clear advantage of

our method is that it relaxes the dependency on detections,

since the effect of a partially occluded (and potentially not

detected) pedestrian can still be encoded in the interaction

feature string, while it will be ignored by common tracking-

by-detection methods [19, 16, 25].
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Figure 2: Diagram of the proposed approach. From a new

video, we compute interaction feature strings (Section 2)

and use them to train a Random Forest (Section 3), which

will output the estimated pedestrian velocity. This informa-

tion is used directly for tracking in a Linear Programming

framework (Section 4).

1.2. Contributions

The contribution of this paper is threefold:

• We propose a way to effectively estimate a pedestrian’s

velocity in image coordinates which works even under

camera motion.

• We introduce the interaction feature strings, used to

encode pedestrian interactions from low-level image

features. These lead to a much richer representation of

the physical interactions between targets when com-

pared to the previously used hand-designed, physics-

based terms of the Social Force Model.

• We are able to encode the effect of undetected pedestri-

ans, therefore relaxing the dependency of most track-

ing methods on detections.

The paper is organized as follows: in Section 2 we

present how to compute interaction feature strings using

low-level features. Section 3 introduces the Random Forest

framework used to estimate pedestrians’ velocities, while in

Section 4 we give a brief description of our tracking frame-

work. The last two sections are devoted to experimental

results and conclusions.

2. Interaction feature string

Our method is based on what we call interaction feature

strings, which encode image features that represent a par-

ticular scene configuration. A scene I(pt
i) is defined as a

patch centered around a detected pedestrian i at time t and

position (x, y) ∈ R
2 in pixel coordinates. It has a size of

[hish, hisw], where hi represents the pedestrian’s height, sh
and sw are scaling factors. The patches are scaled according

to the pedestrian’s height to obtain a scale-invariant repre-

sentation that allows us to deal with scenes both closer and

further away from the camera. We set the scaling factors to

sh = 1.1 and sw = 1 for all experiments. An example of a

scene in shown in Figures 3(a), 3(f), 3(k), 3(p).
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Figure 3: Examples of features computed for four scenes, with NB = 9 × 9 and NFR = 7. (a,f,k,p) Original image scene

centered around a pedestrian. (b,g,l,q) Mean Optical Flow (MOF). (c,h,m,r) Difference of Optical Flows (DOF). (d,i,n,s)

Ternary Optical Flow (TOF). (e,j,o,t) Ternary Angular Optical Flow (TAOF). For TOF and TOAF, the value 1 is represented

in white, −1 in grey and 0 in black.

We divide the scene in NB blocks and compute a set

of features per block. For different types of interactions

between pedestrians, different blocks will contribute to de-

scribing the scene. For example, in a scene where a pedes-

trian walks alone, as in Figure 3(a), the central blocks will

contain most of the relevant information. If there are more

pedestrians involved in a scene, the outer blocks will be-

come more and more relevant.

For each of the blocks, we compute several descrip-

tive features Fb(p
t
i) =

(

F 1
b (p

t
i), F

2
b (p

t
i) . . . F

Nf

b (pt
i)
)

∈

R
Nf , where Nf is the total number of feature channels

per block and b is the block index. We concatenate the

block features into one interaction feature string F(pt
i) =

{Fb(p
t
i)}

NB

b=1. Note that, since we are interested in motion

features, we use NFR frames ahead of the scene we are an-

alyzing. We analyze the effect of the choice of NFR as well

as NB in the experimental section.

The features we use include:

• Mean Optical Flow (MOF): We take the Optical

Flow of a scene I(pt
i) in several consecutive frames

{t, . . . , t+NFR}, let us call them OFt, . . . ,OFt+NFR
.

Note that all Optical Flows are computed on the scene

centered around pt
i, i.e. pedestrian i at time t, regard-

less of the timestamp of the image. We then aver-

age the Optical Flows in time, divide the scene in NB

blocks, and take the mean of the Optical Flows of the

pixels inside each block as feature channel. This yields

2×NB feature channels per scene, one for each image

axis and block.

• Difference of Optical Flows (DOF): We take the Op-

tical Flows as before OFt, . . . ,OFt+NFR
and make

the difference between consecutive Optical Flows, i.e.

[OFt − OFt−1, . . . ,OFt−NFR+1 − OFt−NFR
]. We

then divide the scene in NB blocks, and take the mean

Difference of Optical Flows of the pixels inside each

block. We have again 2 × NB feature channels per

scene.

• Histogram of Optical Flows (HOF): We take the Opti-

cal Flows OFt, . . . ,OFt+NFR
and average them. We

then divide the scene in NB blocks, and take the his-

togram of the angles of the Optical Flows of the pixels

inside each block. We use 8 bins for the histograms,

therefore we have 8×NB feature channels per scene.

• Ternary Optical Flow (TOF): We compute OFt and

OFt+NFR
, and take the mean of the flows inside each

of the NB blocks. We then compare the norm of the

two OF descriptors and create a new descriptor TOF.

Each bin b of the new descriptor, which corresponds to

a block in our scene, will have the following values:

TOF(b) =











0 if ‖OFt(b)‖ = ‖OFt+NFR
(b)‖

1 if ‖OFt(b)‖ > ‖OFt+NFR
(b)‖

−1 if ‖OFt(b)‖ < ‖OFt+NFR
(b)‖

We have NB feature channels per scene. The idea of

TOF is to capture the general trend of the motion of

the scene, in a similar way as is done in [33] for action

recognition. The TOF is useful to disambiguate be-

tween pedestrians walking in different directions, see

Figures 3(a)-3(e) and 3(k)-3(o).

• Ternary Angular Optical Flow (TAOF): As before, we

have OFt and OFt+NFR
, and take the mean of the

flows inside each of the NB blocks. We then compare

the angle of the two OF descriptors and create a new

descriptor TAOF. Each bin b of the new descriptor will

have the following values:

TAOF(b) =











1 if ∠(OFt(b),OFt+NFR
(b)) ≥ π

4

−1 if ∠(OFt(b),OFt+NFR
(b)) ≤ −π

4

0 otherwise

The TAOF is useful to disambiguate between different in-

teractions, such as pedestrians walking together vs. pedes-

trians walking in opposite directions, see Figures 3(f)-3(j)

and 3(p)-3(t).



An example of the features for four different scenes is

shown in Figure 3. Note that we do not compensate for

camera motion, and therefore it is included in our feature

strings and will also be taken into account in the pedestrian

velocity estimation. This is an important property of our

feature strings, since we are tracking in image coordinates.

Once we have a descriptive set of features for a scene, the

goal is to train a Random Forest to be able to estimate the

velocity of a pedestrian.

3. Hough Random Forests

Once we have the set of interaction feature strings ob-

tained from training data, we need a framework that al-

lows us to estimate pedestrians’ velocities. We make use

of a powerful discriminative learning technique, Random

Forests. Given a scene, we compute the interaction feature

string out of low-level features and then use it as input for

the Random Forest to produce the most likely pedestrian ve-

locity. This information is then used in a probabilistic track-

ing framework, such as Linear Programming, as we detail

in Eqs. (5) and (8), to obtain the final set of trajectories.

A Random Forest consists of a set of random trees [4]

that are trained to learn a mapping from a feature string

F(pt
i) to a hypothesis space H. In our case, hypothesis h

represents the velocity of a pedestrian v = [vx, vy]. Since

v is a continuous variable, we make use of Hough Random

Forests [12]. The mapping is learned as explained in Sec-

tion 3.1 and is used to solve the data association problem in

multiple object tracking as detailed in Section 4.

3.1. Training

For each scene I(pt
i) at a given pedestrian position pt

i,

we compute an interaction feature string F(pt
i). We also

assume we have the annotated ground truth velocity vt
i of

the pedestrian. Each tree T in the forest is therefore trained

with the set S = {F(pt
i),v

t
i}. Each leaf L of the tree stores

the probability distribution of pedestrian velocities p(v|L).

Binary tests. Following the standard random forest

framework [8], we start training at the root and choosing

a binary test to separate the training set S into the two child

nodes, left and right, such that SL ∩ SR = ∅. At each child

node we follow the same procedure until a termination cri-

terion is met; in our case we define the maximum tree depth

DT . The final node, called a leaf node, should contain the

training examples with similar features. We consider two

types of binary tests or weak classifiers:

1. A decision stump classifier:

B1 =

{

0, if Fj
b (p

t
i) > τ1

1, otherwise
(1)

2. A classifier that compares different features in differ-

ent blocks:

B2 =

{

0, if F
j1
b1
(pt

i) > F
j2
b2
(pt

i) + τ2

1, otherwise
(2)

For each type of weak classifier, we perform a

set of tests, with randomly chosen parameters

{b, j, b1, b2, j1, j2, τ1, τ2}. From this pool of binary

tests we choose the best one according to the split criterion

explained next.

Split criterion. A good classifier should split the parent

set in such a way as to minimize the uncertainty of the child

sets. We use a similar measure as [12], namely the offset

uncertainty, defined as:

H(S) =
∑

v∈S

‖v − vA‖
2

(3)

where vA is the mean of all velocities in set S . At any given

node, the set is then evaluated with our pool of binary tests

and the one that minimizes the uncertainty is chosen:

argmin
s,b,j,b1,b2,j1,j2,τ1,τ2

(H(SL|Bs = 0) +H(SR|Bs = 1))

(4)

3.2. Testing

At testing time, we feed each tree T with the feature

string of the scene and aim to estimate the pedestrian ve-

locity. Based on the input F(pt
i), the test example reaches

a certain leaf L. We use a voting scheme to estimate the

final velocity of the pedestrian vRF. The votes are collected

from all the NT trees of the forest.

4. Tracking with Linear Programming

In this section, we present the tracking framework where

we incorporate the velocity vRF learned by the Random For-

est in order to solve the data association problem and im-

prove pedestrian tracking.

Let O = {pt
i} be a set of object detections with pt

i =
(x, y, t), where (x, y) is the 2D image position and t is the

time stamp. A trajectory is defined as a list of ordered ob-

ject detections Tk = {pt1
k1
,pt2

k2
, · · · ,ptN

kN
}, and the goal

of multiple object tracking is to find the set of trajectories

T ∗ = {Tk} that best explains the detections. This can be

formulated as a minimization with the following objective

function:

T ∗ = argmin
T

∑

i

Cin(i)fin(i) +
∑

i

Cout(i)fout(i)

+
∑

i

Cdet(i)f(i) +
∑

i,j

Ct(i, j)f(i, j) (5)
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Figure 4: Pedestrian velocity estimation error (degrees) wrt. several parameters: (a) Number of frames NFR used to compute

the features. (b) Number of blocks NB used to represent a scene. (c) Number of trees NT of the Random Forest. (d) Depth

DT of those trees. Results plotted for each dataset: BAHNHOF (black squares), SUNNYDAY (pink diamonds), JELMOLI

(cyan crosses), LINTHESCHER (blue stars). Mean results for all datasets (yellow triangles).

subject to edge capacity constraints, flow conservation at

the nodes and exclusion constraints. This formulation cor-

responds to a Linear Program. We refer the interested reader

to [19, 34] for more details on the formulation.

The costs Cin and Cout define how probable it is for a

trajectory to start or end. The detection cost Cdet is directly

linked to the probability of the detection according to the

detector used.

The cost of a link edge encodes the velocity estimation,

and is expressed as:

Ct(i, j) = wRF · CRF(i, j) + (1− wRF) · Cd(i, j) (6)

where Cd(i, j) is a term based on the distance between

detections pt
i and pt+∆t

j :

Cd(i, j) = − log

(

1−
‖(pt+∆t

j
−p

t
i‖

Vmax∆t

)

(7)

where Vmax is the maximum speed of a pedestrian in pixels.

The term CRF(i, j) includes the information given by the

Random Forest. It evaluates how close the detection pt+∆t
j

is to the prediction of the position of pt
i given the estimated

velocity vRF:

CRF(i, j) = − log

(

1−
‖(pt+∆t

j
−(pt

i+vRF))‖

Vmax∆t

)

(8)

The confidence weight wRF determines how much we

trust the Random Forest estimation. We fix this value at

wRF = 0.9. The Linear Program in Eq. (5) can be effi-

ciently solved using Simplex [19] or k-shortest paths [3].

5. Experimental results

In order to evaluate the multiple people tracking per-

formance of the proposed algorithm, we use four publicly

available datasets: BAHNHOF, SUNNYDAY and JEL-

MOLI from [10] and LINTHESCHER from [9]. These

datasets are taken from a mobile camera moving around in

crowded scenarios. Note that we do not use calibration or

odometry data, since we track in image coordinates.

5.1. Pedestrian velocity estimation

This set of experiments aims at showing how well our

approach estimates the velocity of a pedestrian. The setup

of this experiment is the following: we use one sequence

for testing and the other three for training. We measure the

error in degrees between the estimated pedestrian velocity

and the ground truth.

In the first experiment, we analyze how results are af-

fected by the parameters of our method, namely: (i) the

feature parameters described in Section 2, i.e. the number

of blocks NB and the number of frames we take to com-

pute the features NFR; (ii) the Random Forest parameters

from Section 3, i.e. the number of trees NT and the depth

of the trees DT . Results are presented in Figure 4, for

each sequence individually and also the mean for all four

sequences, which is shown in yellow triangles.

As we can see in Figure 4(a), taking 3 frames to compute

the interaction feature strings is not enough to create a sig-

nificant motion estimator. If we take 11-14 frames, which

corresponds to 0.8-1 second, we obtain much more accurate

velocity estimations. In Figure 4(b), we plot the results re-

garding the number of blocks NB . Best results are obtained

with 15 × 15 or 21 × 21 blocks. If we use less blocks, it

is possible that the Optical Flow of different pedestrians is

mixed into one block, creating features which are not de-

scriptive enough for the level of detail we are interested
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0

0.2

0.4

0.6

Features used

TOF   TAOF! 1 2
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0.4

0.6
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Figure 5: (a) Normalized histogram of the features used at

the nodes of the Random Forest. (b) Normalized histogram

of the weak classifiers used at the nodes (B1 and B2).
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Figure 6: (a) Comparison of pedestrian velocity estimation error (degrees) obtained by Optical Flow prediction, Social

Force Model prediction and the proposed approach. (b) Histogram of velocity estimation errors given by Optical Flow. (c)

Histogram of velocity estimation errors given by the Social Force Model. (d) Histogram of velocity estimation errors given

by the proposed approach. Mean results on the BAHNHOF, SUNNYDAY, JELMOLI and LINTHESCHER datasets.

in. If we look at the parameters of the Random Forest, we

see in Figure 4(c) that in general using more trees yields

a lower error, as expected. The depth of the trees, on the

other hand, reaches an optimum at 15, as we can see in Fig-

ure 4(d). After that, the Random Forest suffers from over-

fitting, specially for datasets with less training data, such

as BAHNHOF, SUNNYDAY or LINTHESCHER. For JEL-

MOLI (shown as cyan stars), which has the largest amount

of training data, results are greatly improved once we reach

depth 15 or more. For tracking, we take the values of

NFR = 11, NB = 15, DT = 15 and NT = 10.

We also plot in Figure 5(a) a normalized histogram of the

features used by each node to split the data. The Histogram

of Optical Flows (HOF) is the one that is most used by the

Random Forest to split the data, since it contains a lot of

detailed information about the scene. Note in Figure 5(b),

that the decision stump weak classifier or binary test B1

(see Section 3.1) is by far the most used, since the Optical

Flow of the pedestrian we are tracking is the most important

source of information to determine his/her velocity. The

other classifier B2 is used mainly to disambiguate between

difficult situations, e.g. when two pedestrians cross vs. when

they walk together.

The second experiment aims at comparing the perfor-

mance of our method with two baselines: (i) the Social

Force Model (SFM) [13] and (ii) the Optical Flow (OF). We

compare how well each method can estimate the velocity of

a pedestrian. Note that the SFM is computed in 3D real

world coordinates and contains three terms, namely con-

stant velocity assumption, collision avoidance and group at-

traction, as in [19, 31, 25]. The Optical Flow method takes

the mean Optical Flow of the central block of our method as

velocity of the pedestrian. These baselines will also be used

later for tracking. In Figure 6(a), we show the error in de-

grees of each method. As we can see, the proposed method

is able to estimate a pedestrian’s velocity 20 degrees more

accurately than SFM, and up to 40 degrees more accurately

than OF. In Figures 6(b), 6(c) and 6(d) we plot the quan-

tized relative frequency of the velocity estimation errors in

degrees. As we can see, our method makes more than 50%

of the estimations with less than 10 degrees of error, com-

pared to 20% of OF and 30% of SFM.

5.2. Multiple people tracking: knowledge transfer

In this section, we apply the learned model for multi-

ple people tracking. We compare the results with [32, 23]

which are presented on the BAHNHOF and SUNNYDAY

datasets. We use the same detections and the metrics de-

scribed in [21], which measure: Recall (correctly matched

detections / total detections in ground truth); Precision (cor-

rectly matched detections / total detections in the tracking

result); number of Mostly Tracked trajectories (MT, ≥ 80%
of the track is correct); Mostly Lost (ML, ≤ 20%); Par-

tially Tracked (PT, > 20% and < 80%); track fragmen-

tations (Frg), number of times a ground truth trajectory is

fragmented; and total number of identity switches (Ids).

Furthermore, since 3D calibration is available for both

sequences, we compare with the following state-of-the-art

trackers which use 3D detections:

• [34], a tracking algorithm based on Linear Program-

ming.

• [25], which includes social behavior, using the code

provided by the authors.

• [19], which includes social and grouping behavior on

a Linear Programming framework, using the code pro-

vided by the authors.

We also create two baselines using the same Linear Pro-

gramming formulation as presented in this paper. For all 3

methods, the same parameters will be used:

• LP + 2D: Linear Programming using only pixel dis-

tance between pedestrians to solve the data association

problem.

• LP + OF: Linear Programming with pedestrian veloc-

ity estimation coming only from Optical Flow.

• Proposed: Linear Programming formulation presented

in this paper with pedestrian velocity estimation

trained using Random Forests.



Method Rec. Prec. MT PT ML Frg Ids

Zhang et al. [34] 74.6 77.8 55.6 38.1 6.2 178 138

Leal-Taixé et al. [19] 74.1 75.3 55.1 36.9 7.9 184 131

Pellegrini et al. [25] 72.3 84.1 51.6 42.7 5.6 206 77

Milan et al. [23] 77.3 87.2 66.4 25.4 8.2 69 57

Yang & Nevatia [32] 79.0 90.4 68.0 24.8 7.2 19 11

LP + 2D 80.7 83.6 64.1 29.6 6.2 91 70

LP + OF 76.1 80.2 55.9 33.5 10.5 104 75

Proposed 83.8 79.7 72.0 23.3 4.7 85 71

Table 1: Results on BAHNHOF and SUNNYDAY datasets.

MT = mostly tracked. PT = partially tracked. ML = mostly

lost. Frg = fragmented tracks. Ids = identity switches.

We show the comparative results averaged for both

datasets in Table 1. As we can see, our method obtains

the highest recall rate, outperforming state-of-the-art by al-

most 5%. Precision is slightly lower, mostly due to dou-

ble detections which create ghost trajectories easily treated

during post-processing. A high recall rate is more meaning-

ful for tracking, as is also shown by the fact that we have

a mostly tracked (MT) rate of 72% vs. 68% of state-of-the-

art. We also see that results with LP+2D are better than with

LP+OF, which estimates a pedestrian velocity only with the

Optical Flow direction. Even though the proposed method

strongly relies on OF information, its integration within our

framework increases the rate of mostly tracked (MT) pedes-

trians by 8% when compared to LP+2D. Note that LP+2D,

LP+OF and the proposed method all use the same parame-

ters for the LP. In general, methods working in 3D and with

Social Force Models depend highly on the proper calibra-

tion of the cameras. Since odometry information is found

automatically and is prone to errors, this severely affects the

efficacy of [19] and [25].

Next, we show the results on each sequence separately.

Aside from the four sequences used before, we also re-

port results on CROSSING and PEDCROSS2 from [9], for

which we do not have odometry information, and there-

fore we cannot report the results of methods that work

with 3D coordinates. For the sequences BAHNHOF and

SUNNYDAY we use the detections of [32], while for

the LINTHESCHER, JELMOLI, CROSSING and PED-

CROSS2, we use a part-based model detector [11].

In Table 2 we can see the results on all six sequences.

The proposed method outperforms all other methods with

higher recall rates and less mostly lost (ML) tracks. For

SUNNYDAY and CROSSING, we also obtain few identity

switches, 3 and 5 respectively. As we can see, even if Opti-

cal Flow features contain a lot of information on the pedes-

trian velocity, their naive use leads to a poor performance

as shown by the results obtained with LP+OF. This shows

that the proposed method is able to take the most out of a

feature channel (OF) that on its own is not able to provide

good velocity estimations.

Finally, we show some examples of velocity estimation

in Figure 7, where the ground truth velocity in pixel coor-

Dataset Method Rec. Prec. MT PT ML Frg Ids

[19] 73.3 75.4 51.1 41.5 7.4 155 107

[25] 71.6 84.9 46.8 48.9 4.3 173 62

Bahnhof LP+2D 79.2 85.8 60.6 34.0 5.4 80 62

LP+OF 75.3 81.5 53.2 37.2 9.6 90 67

Proposed 82.4 80.6 70.3 25.5 4.2 81 68

[19] 78.1 75.3 73.3 16.7 10.0 29 24

[25] 75.5 80.5 66.6 23.3 10.1 33 15

Sunnyday LP+2D 87.5 73.7 80.0 10.0 10.0 11 8

LP+OF 82.0 71.9 63.3 26.7 10.0 12 6

Proposed 90.4 75.6 80.0 13.3 6.7 4 3

[19] 61.1 64.6 23.1 37.0 39.9 149 107

[25] 59.7 75.2 20.2 40.4 39.4 168 44

Linthesch. LP+2D 66.8 62.4 33.6 29.3 37.1 144 115

LP+OF 64.8 60.4 27.9 33.2 38.9 140 40

Proposed 67.9 58.6 31.7 33.2 35.1 172 132

[19] 55.4 70.6 14.9 51.1 34.0 36 25

[25] 53.5 76.7 17.0 46.8 36.2 48 15

Jelmoli LP+2D 62.8 68.2 27.5 40.5 32.0 30 25

LP+OF 51.1 66.3 19.1 42.5 38.4 14 15

Proposed 64.7 64.4 27.7 40.4 31.9 37 32

LP+2D 77.9 61.3 38.5 34.6 26.9 12 9

Crossing LP+OF 63.5 66.9 26.9 38.5 34.6 8 6

Proposed 78.8 56.6 42.3 30.8 26.9 8 5

LP+2D 57.6 62.6 26.0 36.0 38.0 71 65

Pedcross2 LP+OF 43.2 68.8 10.7 43.3 46.0 62 42

Proposed 58.2 60.0 25.3 40.7 34.0 67 72

Table 2: Results on six publicly available sequences. MT =

mostly tracked. PT = partially tracked. ML = mostly lost.

Frg = fragmented tracks. Ids = identity switches.

dinates is plotted in a green arrow and the one estimated by

our method in a red arrow. We can see the high accuracy of

the velocity estimations, even when the pedestrian is walk-

ing at low speed or along with the camera motion.

6. Conclusions

In this paper, we presented a novel method for multiple

people tracking on monocular images. Using only low-level

image features, we computed what we call the interaction

feature strings, which contain not only a rich representa-

tion of the velocity of the pedestrian, but also of the phys-

ical interaction between targets. The latter was previously

modeled using the Social Force Model, which needed ac-

curate 3D information of the pedestrian’s position and was

highly dependent on the detection rate. On the contrary, our

method implicitly encodes the effect of undetected targets,

making the tracker more robust to partial occlusions. The

interaction feature strings are then used to train a Random

Forest to estimate the velocity of a pedestrian. Results on

six publicly available datasets show that our method outper-

forms state-of-the-art approaches in multiple people track-

ing, obtaining higher recall rates and lower rates of com-

pletely untracked pedestrians.



Figure 7: Examples of estimated pedestrian velocities (red arrow) vs. ground truth velocities (green arrow). The proposed

method is able to estimate both direction and norm accurately, even in cases where pedestrians have very low speed.
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[20] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn. Branch-and-price

global optimization for multi-view multi-object tracking. CVPR,

2012. 2

[21] Y. Li, C. Huang, and R. Nevatia. Learning to associate: hybrid

boosted multi-target tracker for crowded scene. CVPR, 2009. 6

[22] R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior de-

tection using social force model. CVPR, 2009. 2

[23] A. Milan, K. Schindler, and S. Roth. Detection- and trajectory-level

exclusion in multiple object tracking. CVPR, 2013. 6, 7

[24] N. Pelechano, J. Allbeck, and N. Badler. Controlling individual

agents in high-density crowd simulation. Eurographics/ACM SIG-

GRAPH Symposium on Computer Animation, 2007. 2

[25] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll never

walk alone: modeling social behavior for multi-target tracking.

ICCV, 2009. 1, 2, 6, 7

[26] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Globally-optimal

greedy algorithms for tracking a variable number of objects. CVPR,

2011. 2

[27] P. Scovanner and M. Tappen. Learning pedestrian dynamics from the

real world. ICCV, 2009. 2

[28] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose recog-

nition in parts from a single depth image. CVPR, 2011. 2

[29] S. Walk, N. Majer, K. Schindler, and B. Schiele. New features and

insights for pedestrian detection. CVPR, 2010. 2

[30] C. Wojek, S. Walk, S. Roth, and B. Schiele. Monocular 3d scene

understanding with explicit occlusion reasoning. CVPR, 2011. 2

[31] K. Yamaguchi, A. Berg, L. Ortiz, and T. Berg. Who are you with and

where are you going? CVPR, 2011. 2, 6

[32] B. Yang and R. Nevatia. An online learned crf model for multi-target

tracking. CVPR, 2012. 6, 7

[33] L. Yeffet and L. Wolf. Local trinary patterns for human action recog-

nition. ICCV, 2009. 3

[34] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-

object tracking using network flows. CVPR, 2008. 2, 5, 6, 7


