
Learning an Inverse Rig Mapping for Character Animation

Daniel Holden∗ Jun Saito† Taku Komura‡

University of Edinburgh Marza Animation Planet University of Edinburgh

Figure 1: Results of our method: animation is generated in the rig space for several different character rigs including a quadruped character,
a deformable mesh character, a biped character, and a facial rig. This animation is generated via some external process, yet because it is
mapped to the rig space, remains editable by animators. Dog rig and animation (c© Marza Animation Planet, Inc. 2014). Squirrel and
Stewart (c© Animation Mentor 2013). Old Man facial rig and animation (c© Faceware Technologies, Inc. 2012).

Abstract

We propose a general, real-time solution to the inversion of the rig
function - the function which maps animation data from a charac-
ter’s rig to its skeleton. Animators design character movements in
the space of an animation rig, and a lack of a general solution for
mapping motions from the skeleton space to the rig space keeps the
animators away from the state-of-the-art character animation meth-
ods, such as those seen in motion editing and synthesis. Our so-
lution is to use non-linear regression on sparse example animation
sequences constructed by the animators, to learn such a mapping
offline. When new example motions are provided in the skeleton
space, the learned mapping is used to estimate the rig space val-
ues that reproduce such a motion. In order to further improve the
precision, we also learn the derivative of the mapping, such that
the movements can be fine-tuned to exactly follow the given mo-
tion. We test and present our system through examples including
full-body character models, facial models and deformable surfaces.
With our system, animators have the freedom to attach any motion
synthesis algorithms to an arbitrary rigging and animation pipeline,
for immediate editing. This greatly improves the productivity of
3D animation, while retaining the flexibility and creativity of artis-
tic input.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: rig, animation, machine learning, approximation

∗email:s0822954@staffmail.ed.ac.uk
†email:saito@marza.com
‡email:tkomura@ed.ac.uk

1 Introduction

Professional animators design character movements through an an-
imation rig. This is a system in the 3D tool that drives the mechan-
ics of the character, e.g. joints, constraints, and deformers, through
user-defined control parameters. In the production pipeline, ani-
mation rigs are designed by specialists called riggers, who are re-
sponsible for building a rig that is as productive and expressive as
possible, so that it intuitively covers all the poses and expressions
the animators may want to create. For a complex rig there may be
hundreds of rig parameters. For example, our quadruped rig in the
examples has six hundred degrees of freedom.

Yet, most character animation research and technologies use a
skeletal representation for the character. This makes them diffi-
cult to apply in the production of animated films. After motion data
has been captured, synthesized or edited in the skeleton represen-
tation, the motion has to be mapped to the animation rig for the
animators to edit the results. However, there are often no clear cor-
respondences between the user-defined rig controls and the skeletal
representation. Previously, complex rig-specific scripts have been
created individually for each character and rig. However, these are
not general, and require revisions every time new characters and/or
rigs are introduced.

The objective of this research is to bridge this gap between character
animation research and 3D film production. More specifically, we
propose a framework to map the state of some character skeleton to
the state of some character rig. Given a set of animator-constructed
example postures, the 3D joint positions, and the corresponding rig
parameters, can be extracted. Our system then learns the mapping
from the joint positions to the rig parameters in an offline stage,
employing Gaussian Process Regression [Rasmussen and Williams
2005].

In order to cope with the inexactness of the mapping, especially
when the posture is far from the example data, we also learn the
derivative of the rig function and utilizes it to fine tune the result.
Numerical computation of Jacobian requires a series of slow eval-
uations of a rig in a 3D animation tool [Hahn et al. 2012]. To cope
with this problem, we propose to learn the mapping from the skele-

ton posture to the Jacobian of the rig function, that linearizes the
relationship of the joint positions with respect to the rig parame-
ters. The postures computed by the initial inverse mapping are then
adjusted such that the character accurately follows the 3D trajecto-
ries given in the input.

Our method can be used to apply any animation techniques that
represent a character using joint angles, joint positions or a mesh
structure, to characters driven by animation rigs. This includes,
but is not limited to, full body motion editing and synthesis, facial
animation and 3D shape deformation. In the paper we show some
of these applications as results.

The rest of the paper is structured as follows. After describing about
the related work, we discuss in detail about the nature of animation
rigs, and show how the problem of retargeting some joint positions
or angles can be equivalent to the inversion of some rig function.
Next, we will demonstrate this rig function, its behaviours, and
present the technique we use for approximating the inverse of it.
Finally, we evaluate our method, present a number of applications
of our method, and explain our results.

Our contribution is a method to invert any character rig function and
generate accurate rig attributes from joint positions in real-time.

2 Related Work

In this section, we first briefly review research related to data-driven
animation where mesh surfaces are produced by controlling blend-
ing weights of some example data. We then review techniques that
learn the mapping between parameters in the task space (i.e. joint
positions, landmark positions) and the control parameters. Finally,
we review about the work related to animation rigs, which is a pro-
fessional pipeline for animating characters.

Animation by Blending Example Data Data-driven approaches
are known to be effective for controlling the fine details of charac-
ters, which are difficult to produce by simple analytical approaches.
Facial animation is one of the main areas that makes use of data-
driven approaches, where the degrees of freedom of the system are
too high to be entirely modelled by the animators [Pighin et al.
1998; Zhang et al. 2007]. Traditionally, the desired expressions are
produced by blending the geometry of different expressions which
are either captured by optical cameras or are manually designed
by animators. In this case, the blending weights become the con-
trol parameters. Such data-driven approaches are also applied for
other purposes such as skinning; Pose-space deformation [Lewis
et al. 2000] maps the joint angles to the vertex positions using ra-
dial basis functions. Sloan et al. [2001] extend such an approach
for arbitrary applications of mesh deformation. These methods are
for conducting a forward mapping from the control parameters to
the surfaces, while we attempt the inverse mapping.

Inverse Mapping to Control Parameters: As directly providing
the control parameters can be inconvenient in many situations, there
is a continuing interest in the inverse mapping. Here the control
parameters are estimated from some output parameters, such as the
joint positions or the vertex positions of the mesh. One example
is inverse kinematics. Required are the control parameters (joint
angles) that realizes the task, such as moving the hand to the target
location. Classic methods include techniques such as task priority
methods [Choi and Ko 1999], singularity robust inverse [Yamane
and Nakamura 2003], and damped least squares [Buss and Kim
2004], which originally come from robotics research [Nakamura
et al. 1987; Nakamura and Hanafusa 1986; Chan and Lawrence
1988].

Researchers in computer graphics propose to directly map the joint
positions to the joint angles, using radial basis functions [Kovar and
Gleicher 2004; Rose III et al. 2001], Gaussian processes [Mukai
and Kuriyama 2005] and GPLVM [Grochow et al. 2004]. Similarly
in facial animation, researchers compute the blending weights of
different expressions from a number of landmark positions, which
allows animators to control the face in an inverse kinematics fash-
ion [Zhang et al. 2007; Bickel et al. 2008; Lewis and Anjyo 2010;
Seol and Lewis 2014]. Xian et al. [2006] proposed an optimisation
based method for the inverse mapping specific to Example Based
Skinning. The previous studies assume certain articulation or defor-
mation models such as articulated joint skeletons or blend shapes.
Our method is agnostic to the underlying rig mechanism.

Animation Rig: Character rigging is the process in a profes-
sional animation pipeline where the static geometry of a character
is embedded with various animation mechanisms, such as skeletal
structure, constraints, and deformers, and then wrapped with intu-
itive controls for animators. Controls exposed to animators often
drive underlying mechanics with custom expressions and chains
of graph-structured computation nodes. This makes the rig’s be-
haviour non-linear and difficult to formulate in general. In this
paper, we refer to this general mapping of the user-exposed con-
trol parameters to the result of the underlying animation mechanics
(more specifically, joint positions) as the rig function, and the space
defined by it as rig space. The rig functions includes all the pa-
rameters involved in the control of the character, including but not
limited to those of forward kinematics, inverse kinematics, blend
shape weights and etc.

Only a few papers treat the production animation rig as a system
with complex controls and layers of arbitrary underlying driving
mechanisms. Hahn et al. [2012; 2013] introduced the idea of the
rig function, which is a black-box mapping from user-defined con-
trols to mesh vertex positions. Where black-box means that there
is only a forward mapping provided by the system, and there is
no analytical inverse mapping available for computing the rig pa-
rameters. The major bottleneck in inverse mapping of such black-
box rig function, as discussed in [Hahn et al. 2012; Hahn et al.
2013], is computing the Jacobian by finite difference, which in-
volves thousands of calls to evaluate a complex rig customized on a
3D software package. For arbitrary and complex rigs this becomes
intractable. Seol et al. [2014] is one of the few papers inversely
mapping the face landmarks while treating the face rig as a black-
box. Their objective, however, is on retargeting plausible human
expressions to virtual characters, not inversely satisfying positional
constraints. Our work is motivated by speeding up such compu-
tations such that the inverse mapping that satisfies constraints are
obtained at interactive rates.

In summary, we propose an approach to produce an inverse map-
ping from the output of the animation pipeline to the rig parame-
ters. Although there are methods to produce such inverse mapping
for rigs consisting of simple skeletons or blendshapes, there has not
been a framework that handles arbitrary types of rig functions that
treats them as black-boxes and can compute the inverse at an in-
teractive rate. Our framework increases the precision of such an
inverse mapping by learning the Jacobian for fine tuning.

3 Rig Function

In this section, we first explain about how the rig is used to deter-
mine the posture of a character, and then describe about the require-
ments of the inverse of the rig function.

Figure 2: Typical setup of rigged character, showing animation rig,
underlying skeletal structure, and mesh.

3.1 Rig Description

Although our approach does not rely on a specific rig, or 3D tool, to
give more specific details we describe our experimental set up with
an example character, a dog character as set-up in Maya.

Fig. 2 shows the rig of a character, the underlying skeletal structure,
and the mesh. This character’s rig consists of manipulators. These
are the colourful controls, which animators can translate, rotate,
or scale in 3D space. The manipulators move the skeletal struc-
ture, which in turn deforms the mesh. The skeleton itself cannot be
moved manually by the animators, nor can the mesh.

Whenever a rig attribute is changed, Maya propagates the values to
connected components in the scene. This causes Maya to recalcu-
late a new configuration for the character skeleton. After this skele-
tal configuration is found, the character mesh is deformed. In this
sense the setup is like a one way function going from rig attributes,
to skeletal joints, and finally to the character mesh.

3.2 Rig Function & Inversion

Now we describe about the mathematical characteristics of the rig
function, and the requirements of its inversion.

Given a vector representing a rig configuration y and a vector rep-
resenting the corresponding skeletal structure configuration x, the
rig computation, performed internally inside Maya for each frame
of the animation, can be represented as the function x = f(y).

We represent the skeletal configuration of the character using a vec-
tor of the global joint positions, relative to the character’s centre of
gravity x ∈ R

3j where j is the number of joints. It is worth noting
that it is also possible to construct x using the local joint angles of
a skeletal configuration. For simplicity’s sake we will only discuss
the construction using global joint positions.

Our interest in this research is in the inverse computation y =
f−1(x), where we compute the rig values given the skeletal pos-
ture. This is rather difficult due to the following characteristics of
f , and the requirements that need to be satisfied as a tool-kit for
animation purposes.

The function f is not one-to-one. For any skeletal pose there
are several possible rig configurations that could create it. This is
intuitively apparent from the fact that IK and FK controls can be
used in conjunction on the same section of character. Some user-
defined controls can manipulate multiple joints and constraints at
the same time through custom expressions and chains of computa-
tional nodes. When inverting f we should not just pick a correct y,
but also the y which an animator would naturally specify.

The function f is relatively slow to compute. Evaluation of f in
our setup requires interaction with Maya which has a fairly large
fixed overhead associated [Hahn et al. 2012]. But in any 3D pack-
age, a complex rig will also contain non negligible computation in
its evaluation. It may contain several complex systems working in
conjunction, which may be computationally intensive.

Figure 3: Method Overview. We learn an approximation of the in-
verse of the rig function and its derivative and use this to accurately
find rig attributes that match some corresponding joint positions.

The solutions to the inversion of f must be accurate. If the result
requires too much manual correction by animators it may be dis-
carded. In a film environment even small errors in the final product
are unacceptable. Any inversion should be able to find an accurate
solution that satisfies the equation.

The function f must be invertible at interactive rates. Anima-
tion is an interactive task which requires a feedback loop between
the tools and the animators. Any synthesis tools that rely on this
system should have its parameters editable in real-time, so anima-
tors can view and edit the results in conjunction with the rest of the
scene and make appropriate changes.

4 Inverse Rig Mapping

In this section we first describe how to learn the inverse rig function
and its derivative by non-linear regression. We then describe how to
refine the mapping using the learned values and derivatives during
run-time. The summary of our method is shown in Algorithm 1.

4.1 Learning the Inverse Rig Function

We conduct a non-linear regression to approximate the in-
verse rig function using Gaussian Processes Regression (GPR).
A good introduction to this can be found in Rasmussen and
Williams [2005]. Given a dataset of rig configurations denoted as
Y = {y1,y2, · · · ,yn} and the corresponding joint positions de-
noted as X = {x1,x2, · · · ,xn}, we are interested in predicting
the rig parameters y∗ at arbitrary configuration of joint positions
x∗.

We start by defining the covariance function, k(x,x′) using the
following multiquadric kernel (see Discussion), where θ0 is the
“length scale” parameter and can be set to the average distance be-
tween data points in X:

k(x,x′) =

√

||x− x′||2 + θ0
2 (1)

Using the covariance function, we can define the following covari-

ance matrix:

K =









k(x1,x1) k(x1,x2) ... k(x1,xn)
k(x2,x1) k(x2,x2) ... k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) ... k(xn,xn)









,K ∈ R
n×n

(2)

K∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)],K∗∗ = k(x∗,x∗). (3)

It is then possible to represent each dimension i of the output y∗ as
a sample from a multivariate Gaussian distribution N :

[

Yi

yi
∗

]

∼ N

(

0,

[

K K
⊺

∗

K∗ K∗∗

])

, (4)

where Yi is a vector of the i-th dimension of the data points in
Y, and yi

∗ is the i-th dimension of y∗. The likelihood of some
prediction for yi

∗ is then given by the following distribution:

y
i
∗|Y

i ∼ N(K∗K
−1

Y
i
,K∗∗ −K∗K

−1
K

⊺

∗) (5)

To compute our final prediction of yi
∗, we take the mean of this

distribution subject to Tikhonov regularization.

y
i
∗ = K∗(K+ θ1I)

−1
Y

i
(6)

Where θ1 is the “smoothing” parameter and can be set to some very
small value such as 1× 10−5 as our data is noiseless.

4.2 Subsampling

In general, the more data supplied to GPR, the more accurately
it will perform. But memory usage increases quadratically with
the number of data points, so we perform a greedy active learning-
based algorithm to subsample the data if it grows too large.

Given the full data set X,Y we aim to construct a subsampled data

set X̂, Ŷ. We start by including the rest post X̂ = {x0}, Ŷ =
{y0} and then heuristically picking several points to include in our
subsampled data set. We iteratively pick the sample in the full data
set furthest from all the included samples in the subsampled data
set, and move it from the full data set to the subsampled data set.
After some small number of iterations we terminate.

xi = argmax(min(||xj − xi||) | xi ∈ X,xj ∈ X̂) (7)

X̂ := X̂ ∪ {xi},X := X \ {xi} (8)

Ŷ := Ŷ ∪ {yi},Y := Y \ {yi} (9)

We then construct a Gaussian Process conditioned on our subsam-
pled data. We regress each of the remaining data points in the full
data set and look at the error of the result. The data point with the
highest error is then moved from the full data set to the subsampled
data set.

yi = argmax(||yi − yi∗|| | yi ∈ Y,yi∗ ∈ GPR(X|X̂)) (10)

X̂ := X̂ ∪ {xi},X := X \ {xi} (11)

Ŷ := Ŷ ∪ {yi},Y := Y \ {yi} (12)

This step is repeated until we have reached the required number of
samples.

Algorithm 1 Inverse Rig Mapping

1: procedure PRE-PROCESSING

2: Sub-sample the given animation data.
3: Calculate Jacobian for each pose in the sub-sampled data
4: Learn f−1 using GPR.
5: Learn ∇f using GPR.
6: end procedure

7: procedure RUNTIME

8: Predict Rig Attributes y∗.
9: Predict Jacobian J∗.

10: Initialise rig attributes with predicted values y∗.
11: Repeatedly calculate ∆x and integrate y.
12: end procedure

4.3 Learning the Derivative

The derivative of the rig function (denoted here as J, where J =
∂x
∂y

) can be used in conjunction with gradient descent to further

improve the precision of the mapping.

At runtime, given a new target posture x∗, a corresponding Jaco-
bian J (calculated as explained in Section 4.4), and the rig values
y∗ computed using GPR, we can apply the rig values to the scene
and evaluate the rig function to get the actual posture of the char-
acter x = f(y∗). There might be some error in this prediction in
which case x 6= x∗, and we then find the difference between the
target posture x∗ and the actual posture of the character x given by
∆x = x∗ − x. This difference can be used to compute a change
in rig parameters that should be applied to minimize the error in
positioning:

∆y = (J⊺
J+ λ

2
I)−1

J
⊺∆x (13)

To ensure stability around singularities we use some damping con-
stant λ. This can be tuned by hand, or automatically selected by
examining the error using the SVD of the pseudo-inverse. For more
information see [Chan and Lawrence 1988] [Chiaverini 1993].
This process is repeated until ∆x is below a threshold or some max-
imum number of iterations is reached.

4.4 Learning the Jacobian

We treat the rig function as a black-box, so no analytical form of
the Jacobian is available. Therefore, we use finite differences to
compute an approximation of the Jacobian of the rig function at
some given pose.

Due to the large number of interactions with Maya required, the cal-
culation of the Jacobian in this way is extremely slow, particularly
when there are a large number of rig parameters [Hahn et al. 2012].
This process becomes intractable for large sequences of animation.
Therefore, we additionally learn a function to predict the Jacobian
alongside the rig values, again using GPR.

The formulation of learning the Jacobian is almost exactly the same
as learning the rig values. After computing the Jacobian at each
example pose, we flatten each Jacobian matrix Ji to create a single
vector ji, and substitute it in the place of yi.

Some of the rig attributes are not used by the animators, yet tak-
ing the pseudo-inverse may lead to these attributes being modified.
Instead, we removed any rig attributes not used by the animators
from the Jacobian matrix. This results in a gradient descent during
the refinement only changing controls which are present in the data.

Motion Method Joint Error Ground Truth Error Total Time (s) Frames per Sec

Jumping & Playing

Maya Script 209.48 37.02 2.68 26.03

GP 41.02 37.68 3.72 18.51

GP & Learned Jacobian 29.73 56.56 14.30 4.82

GP & Computed Jacobian 20.17 49.94 44.33 1.55

Turning & Galloping

Maya Script 113.02 32.12 1.17 31.54

GP 20.99 28.69 1.76 20.38

GP & Learned Jacobian 17.02 32.59 7.20 4.99

GP & Computed Jacobian 12.13 29.93 22.47 1.60

Begging Excitedly

Maya Script 42.02 17.26 2.50 33.16

GP 14.39 22.31 3.95 20.74

GP & Learned Jacobian 11.52 40.33 15.87 5.16

GP & Computed Jacobian 6.94 35.73 36.50 2.24

Table 1: Comparison of different methods.

5 Evaluation

In this section, we evaluate our method by comparing the error
(described below) and the performance with other existing solu-
tions. We then show results of our technique using animation of
quadruped, biped, mesh and facial characters.

5.1 Performance

In this section we compare our technique to existing methods of
approaching this problem. Presented methods include a rig spe-
cific script constructed in Maya, and several variations of our own
method. For more qualitative results please see the supplementary
video.

All comparisons are done using the quadruped character shown in
the results. This character has 78 joints, resulting in 234 degrees of
freedom in the joint space. In total there are 642 degrees of free-
dom in animation rig, but only 218 are used in the animation data
so we limit our system to only consider these. A set of animation
sequences of the quadruped, which are produced by the animator in
total 200 keyframes, are provided as the training data. We train our
system using 750 subsampled data points extracted from the data
set. The data points include frames that are produced by interpolat-
ing the keyframes.

The rig-specific Maya script, to which we compare our method, is
constructed using several of Maya’s built-in tools. This script is
specific to the quadruped character and is intended to represent ex-
isting approaches that have been used for rig retargeting. A script
has to be written manually for every new rig and therefore is labour
intensive. Primarily it makes use of positional and rotational con-
straints to place the main rig controls at corresponding joint posi-
tions, oriented in the correct directions. These constraints work by
traversing the scene hierarchy to calculate transforms for the con-
trols such that they are either placed in a specified location, or ori-
ented in a specified direction. Many of these approaches work in a
similar fashion.

We apply each method to three short animation clips. These clips
are from a different data set to the training data, chosen such that the
character is making large, fast, or extreme motions. This ensures
there exists some poses not found in the training data, and that the
retargeting task is difficult. These clips include a motion where
the dog is running around, jumping and playing, a motion where
the dog is galloping and making various sharp turns, and a motion
where the dog is begging in an excited way.

To evaluate the performance of each approach on each clip we
make two comparisons. First we compare the resulting rig attributes
found by the approach to those set by the animators. This we call
the Ground Truth Error. Secondly we apply these rig attributes to
the rig function to get joint positions and compare these to the tar-
get joint positions given as the original input. This we call the Joint
Error.

Joint Error therefore shows the average distance between the
method’s resulting joint positions, and those of the target. This is
the visual error of the method, and also represents the amount of
manual correction an animator may have to perform on the result.

Ground Truth Error shows the average distance between the rig
attributes found by the method, and those set by the animators. For
rotational rig attributes this is measured in radians. This error rep-
resents the naturalness of the key-frames produced by the method,
and shows how comfortable the animators might be to use the re-
sults. But because there are many ways to configure a rig, high
ground truth error alone may not imply an undesirable result.

We now explain the results shown in Table 1.

Maya Script - This is the quickest method to compute, but it has
largest joint error. Because the script is a heuristic method, it does
not try to find an exact solution, and so small errors accumulate
over frames, even if the general shape of the character is accurate.

GP - Using the approximate inverse rig function is fairly fast, with
low ground truth error, but with some joint error. In most cases
it can be used as a replacement to the Maya script when strictly
real-time performance is required.

GP & Computed Jacobian - Using the approximate inverse rig
function, and calculating the Jacobian manually at each frame is
the most accurate approach, with the smallest joint error. But this
approach is also the slowest, resulting in only one to two frames per
second. This approach can be used when computation time is less
important, as it achieves the most accurate results.

GP & Learned Jacobian - Our approach of using the approximate
inverse rig function and then additionally learning an approxima-
tion of the Jacobian performs two to three times as fast as comput-
ing the Jacobian at each frame, and results in significantly less joint
error than just using the approximate inverse rig function. It is still
somewhat slow compared to GP alone, as each iteration of gradi-
ent descent requires evaluation of the difference in joint positions,
which means evaluation of the rig function in Maya.

Training Frames Rig DOFs Joint DOFs

Quadruped 750 642 234

Biped 750 697 144

Facial 300 49 18

Squirrel 500 36 3375

Table 2: Numerical data of the models used in the experiments.

Figure 4: Result of Rig-space Full Body IK. From seven end effec-
tors placed at four feet, head, hip, and tail, the optimal rig attributes
are approximated by GPR and the solution is further refined by gra-
dient descent. The animators can interactively pose the character
using seven end effectors while the rig attributes are updated in real
time.

All approaches show roughly similar Ground Truth Error. This
shows that using any approach animators should be fairly happy
with the settings of the rig controls. Using the learned Jacobian can
sometimes result in larger Ground Truth Error. This is because the
pseudo-inverse is not based on the training data, but computed so
Joint Error is decreased with the smallest rig value updates. This is
a downside of using the Jacobian approximation.

These results were collected on a Windows 7 Laptop using a Intel
Core i7 2.7Ghz CPU with 16GB of RAM.

5.2 Results

In this section, we present results of applying our system to char-
acter models such as quadrupeds, bipeds, deformable models and
facial models. The readers are referred to the supplementary video
for the details. Numerical values of the models and the training data
are shown in Table 2.

In Fig. 4 we apply a full body inverse kinematics system to a char-
acter using our technique. Given some user-positioned end effec-
tors we move a copy of the characters underlying skeleton using
Jacobian full body inverse kinematics toward the end effectors. We
extract the global joint positions from the full body IK system and
input them into our method to generate corresponding rig parame-
ters. The generated rig parameters accurately follow the skeleton
state.

In Fig. 6 we show an example of using an inverse mapping where
the inputs are only the foot positions. Instead of learning the map-
ping using all of the joint positions we simply learn it from the four
foot positions. A trajectory of the foot positions is then generated
from a dog dancing sequence and is fed into the system to compute
the rig parameters. It can be observed that our system produces
sensible prediction of the full body motion compared to the ground
truth motion designed by the animator.

In Fig. 5 we show the application of motion editing using our tech-
nique. We synthesize some locomotion using animator supplied
data and use Spatial Descriptors [Al-Asqhar et al. 2013] to edit the
result. This advanced motion editing technique expresses an ani-
mation in terms of its environment which allows an animation to

Figure 5: Result of Motion Editing. Joint positions are synthesized
by generating a locomotion animation, bending it along a curve,
and projecting it onto terrain. For all the edited poses, rig attributes
are found that match the new joint positions accurately.

Figure 6: The posture of a dog predicted from the foot positions
(left) and the ground truth designed by the animator (right).

be naturally deformed to follow some terrain. First we generate a
long locomotion clip in a straight line. Then we generate Spatial
Descriptors on the floor, which we bend into a curve and project
onto some terrain. After projecting the descriptors, we integrate
them to get the new joint positions deformed to fit the terrain. This
is performed for each frame. Once we have the final joint positions
our method accurately updates the character rig attributes to match
these new joint positions.

In Fig. 7, we show an example of importing motion capture data
and mapping it to a biped character by our method. The character
follows the joint positions well, while the resulting trajectories of
the rig controllers are smooth and continuous, and as such they are
ready for further edits by the animator.

In Fig. 8, we show an example of applying our system to a de-
formable mesh character. A specialized rig that deforms the entire
surface of a squirrel character is prepared in this example. Using
the rig, the posture of the squirrel can be adjusted and the entire
shape of the squirrel is deformed in a cartoonish fashion. Also, the
rig is designed such that collisions are avoided when the deforma-
tion happens, i.e., the neck part sinks when the neck bends forward
so that the teeth do not penetrate the body. Various example poses
of the squirrel are designed by the rig and are used as examples for
the training. Next, a deformable model of the squirrel is automati-
cally produced from the default pose of the squirrel using the Maya
nCloth functionality and its deformation is simulated. We place
joints at each mesh vertex, pass their positions to our system and
the rig parameters are computed using the learned inverse mapping.
The poses of the squirrel match the deformation, but also express
characteristic features of the rig. As can be observed in Fig. 8, the
shape of the rigged character is deformed such that the teeth does
not penetrate the body when it is squashed.

Finally, an example of applying our method to facial animation is
shown in Fig. 9. Facial rigs have very complex structures that are
composed of multiple controllers including shape deformers and
blend shapes. Here, we present the results in a form of FaceIK. This
is comparable to [Zhang et al. 2007; Lewis and Anjyo 2010] except
that it is not limited facial rigs using the blendshapes deformation

Figure 7: Application to Biped. Our approach is generalizable
across all rig types. Given data, it immediately works on a charac-
ter with a different rig, and unique controls.

Figure 8: A snapshot of a deformable character whose movements
are computed by physics simulation (left). Some represented ver-
tices are used as the input for the inverse mapping and the rig ani-
mation is produced (right). The rig is carefully designed such that
the teeth does not penetrate the body; this effect can be observed in
the animation produced by the rig.

model. Joints are placed at a few facial feature points and the user
specifies the desired location of these joints. The facial expression
that satisfies these constraints is automatically computed.

The strength of our method is that it is highly general, as it can be
applied to various types of characters controlled by different types
of rigs. Specialized scripts for each type of character can be writ-
ten, but they are not applicable once the rig structure changes. In
contrast, our method can be applied under the same principle, irre-
spective of degrees of freedom of the model.

6 Discussion

In this section, we first discuss about the framework that we have
chosen. We then briefly discuss the applications of our system.

6.1 Framework

Multiquadric Kernel We find the performance of the multi-
quadric kernel that we have adopted is better than other kernels
including Gaussian, Linear and Polynomial kernels. Other kernels
perform poorer in terms of interpolation and extrapolation, often
resulting in instability and large error, even after optimizing ker-
nel parameters. The reason that the multiquadric kernel performs
the best can be considered as follows: When interpolating with lots
of data present, the multiquadric kernel is smooth, and so approxi-
mates the popular squared exponent kernel, which has proven effec-
tive for many machine learning tasks. Yet, when there are large gaps
between data points, or the function is extrapolating, the squared
exponent kernel results in the interpolated value tending toward
zero. The multiquadric kernel on the other hand begins to approxi-
mate a linear function, and so results in piecewise linear interpola-
tion of the data points. Due to the high dimensionality, and sparsity
of our data, there are often irregular gaps and spacing. Using a
squared exponent kernel would therefore result in a landscape with

Figure 9: Application to facial model in a FaceIK fashion. The
user moves the control points and the rig parameters of the face are
computed to satisfy the constraints.

Figure 10: Purely optimisation based techniques can result in the
joints technically ending up near their targets, but the results are
unusable due to rig controls drifting along manifolds in the rig
space, away from valid values the animators might set.

large peaks and troughs where it irregularly drops to zero. The mul-
tiquadric kernel instead results in a stiffer landscape, and therefore
extrapolates more accurately. The multiquadric function is condi-
tionally positive definite rather than positive semi-definite, and thus
is not strictly speaking a valid covariance - but the increasing nature
of the kernel is what results in the approximate of piecewise linear
interpolation instead of dropping to zero. And has no impact on the
computational results.

Inverse Rig Function Derivative In our method we approximate
the inverse rig function, and the rig function derivative separately,
before taking the pseudo-inverse of the predicted Jacobian. It can
be observed that it should be possible to take the first derivative of
the approximate inverse rig function instead.

We predict the Jacobian separately because kernel based methods
such as GPR or RBF are known to approximate the 0th order deriva-
tive (the actual function values) much more accurately than they
approximate 1st, 2nd, or following derivatives [Mai-Duy and Tran-
Cong 2003]. This is something we confirmed in our initial experi-
ments.

One common way to reduce this error is to incorporate gradient
constraints into the GP formulation. This results in having to solve
a matrix which is of the order O(N2D2) where N is the number
of samples and D is the dimensionality of the input space. In our
problem, where D can be as large as 250 this quickly becomes in-
tractable. In this sense, interpolating the Jacobian independently

has remarkable performance, because although (when flattened) it
can be 50000 dimensions in size, the matrix to solve is only pro-
portional to the number of data samples. Even so, this is an area
we are very interested in and wish to do more research to try to find
an appropriate technique which can be used under realistic memory
constraints.

Rig Function Ambiguity There are many possible ways to set
the rig controls to construct the same pose, but lots of these configu-
rations are undesirable because they are not how an animator would
naturally animate. Using purely optimisation-based approaches re-
sults in the rig controls drifting along manifolds which technically
result in accurate joint positions, but have terrible rig values. This
is shown in Fig. 10. Using machine learning solves this implic-
itly by using the animator supplied data to additionally learn what
are “valid” or “sensible” rig control settings. Even if we perform a
small amount of gradient descent, using an initial guess generated
from data ensures the error in the rig does not get too high to make
the result unusable.

Limitations The memory usage of methods such as Gaussian
Processes increase quadratically with respect to the number of sam-
ple points, which limits the approach to be applied to relatively
small problems. For larger scale problems such as production fa-
cial rigs with thousands of poses, approaches which classify the
data and conduct learning in local regions are required, such as re-
gression forests [Breiman 2001], or Local Gaussian Process Re-
gression [Nguyen-tuong et al. 2009].

6.2 Applications

Our work has a large number of applications in key-framed ani-
mation environments, as it allows for the better use of character
animation research and technology on rigged characters. Primarily
it means that data-driven animation techniques can be effectively
combined with animator artistry to save time and cost in the pro-
duction of animated entertainment.

Our work allows animators to use Motion Capture, Motion Warp-
ing, and Motion Editing techniques on the motions they construct
for characters. For example our work could be used in conjunction
with Motion Layers [Lee and Shin 2001], Motion Warping [Witkin
and Popovic 1995], Full-Body Inverse Kinematics [Yamane and
Nakamura 2003], and Relationship Descriptors [Al-Asqhar et al.
2013]. Because our approach is in real-time it allows for a tight
feedback loop between these motion tools and animator edits. This
greatly increases the speed and efficiency at which animators can
work.

7 Conclusion

We present a link between a character rig, and its underlying skele-
ton in the form of a rig function f . We show our method for in-
version of this rig function, and evaluate it against potential alter-
natives. The resulting ability to quickly and effectively invert this
rig function has broad applications in key-framed animation envi-
ronments as it allows for a tight feedback loop between animators,
and animation tools that work in the space of joint positions.

Acknowledgement

We would like to thank Marza Animation Planet for their support of
this research as well as their permission to use the Dog character rig
and animation data. We thank Faceware Technologies for permis-
sion to use their facial rig, as well as their facial animation data for

training and demonstrating our system. We also thank Animation
Mentor for permission to use their two character rigs Stewart and
Squirrel in our research.

References

AL-ASQHAR, R. A., KOMURA, T., AND CHOI, M. G. 2013. Re-
lationship descriptors for interactive motion adaptation. In Pro-
ceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation.

BICKEL, B., LANG, M., BOTSCH, M., OTADUY, M. A.,
AND GROSS, M. 2008. Pose-space animation and trans-
fer of facial details. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 57–
66.

BREIMAN, L. 2001. Random forests. Machine learning 45, 1,
5–32.

BUSS, S. R., AND KIM, J.-S. 2004. Selectively damped least
squares for inverse kinematics. Journal of Graphics Tools 10,
37–49.

CHAN, S., AND LAWRENCE, P. 1988. General inverse kinematics
with the error damped pseudoinverse. In Robotics and Automa-
tion, 1988. Proceedings., 1988 IEEE International Conference
on, 834–839 vol.2.

CHIAVERINI, S. 1993. Estimate of the two smallest singular val-
ues of the jacobian matrix: Application to damped least-squares
inverse kinematics. Journal of Robotic Systems 10, 8, 991–1008.

CHOI, K.-J., AND KO, H.-S. 1999. On-line motion retargetting.
Journal of Visualization and Computer Animation 11, 223–235.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND

POPOVIĆ, Z. 2004. Style-based inverse kinematics. In ACM
Transactions on Graphics (TOG), vol. 23, ACM, 522–531.

HAHN, F., MARTIN, S., THOMASZEWSKI, B., SUMNER, R.,
COROS, S., AND GROSS, M. 2012. Rig-space physics. ACM
Trans. Graph. 31, 4 (July), 72:1–72:8.

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R. W.,
AND GROSS, M. 2013. Efficient simulation of secondary
motion in rig-space. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and
parameterization of motions in large data sets. In ACM Transac-
tions on Graphics (TOG), vol. 23, ACM, 559–568.

LEE, J., AND SHIN, S. Y. 2001. A coordinate-invariant approach
to multiresolution motion analysis. Graphical Models 63, 2, 87
– 105.

LEWIS, J., AND ANJYO, K.-I. 2010. Direct manipulation blend-
shapes. IEEE Computer Graphics and Applications 30, 4, 42–
50.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: A unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of SIGGRAPH,
165–172.

MAI-DUY, N., AND TRAN-CONG, T. 2003. Approximation of
function and its derivatives using radial basis function networks.
Applied Mathematical Modelling 27, 3, 197–220.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical motion
interpolation. In Proceedings of SIGGRAPH, 1062–1070.

NAKAMURA, Y., AND HANAFUSA, H. 1986. Inverse kinematic
solutions with singularity robustness for robot manipulator con-
trol. Journal of dynamic systems, measurement, and control 108,
3, 163–171.

NAKAMURA, Y., HANAFUSA, H., AND YOSHIKAWA, T. 1987.
Task-priority based redundancy control of robot manipulators.
The International Journal of Robotics Research 6, 2, 3–15.

NGUYEN-TUONG, D., PETERS, J. R., AND SEEGER, M. 2009.
Local gaussian process regression for real time online model
learning. In Advances in Neural Information Processing Sys-
tems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds. Curran Associates, Inc., 1193–1200.

PIGHIN, F. H., HECKER, J., LISCHINSKI, D., SZELISKI, R., AND

SALESIN, D. 1998. Synthesizing realistic facial expressions
from photographs. In Proceedings of SIGGRAPH, 75–84.

RASMUSSEN, C. E., AND WILLIAMS, C. K. 2005. Gaussian pro-
cesses for machine learning (adaptive computation and machine
learning).

ROSE III, C. F., SLOAN, P.-P. J., AND COHEN, M. F. 2001.
Artist-directed inverse-kinematics using radial basis function in-
terpolation. In Computer Graphics Forum, vol. 20, 239–250.

SEOL, Y., AND LEWIS, J. P. 2014. Tuning facial animation in a
mocap pipeline. In ACM SIGGRAPH Talks, 13:1–13:1.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 Symposium on
Interactive 3D Graphics, 135–143.

WITKIN, A., AND POPOVIC, Z. 1995. Motion warping. In Pro-
ceedings of the 22Nd Annual Conference on Computer Graphics
and Interactive Techniques, 105–108.

XIAN, X., SOON, S. H., FENG, T., LEWIS, J. P., AND FONG,
N. 2006. A powell optimization approach for example-based
skinning in a production animation environment. In Computer
Animation and Social Agents.

YAMANE, K., AND NAKAMURA, Y. 2003. Natural motion an-
imation through constraining and deconstraining at will. Visu-
alization and Computer Graphics, IEEE Transactions on 9, 3,
352–360.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M.
2007. Spacetime faces: High-resolution capture for˜ modeling
and animation. In Data-Driven 3D Facial Animation. Springer,
248–276.

