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1 Learning

Learning is afundamental component of intelligence, and a key consideration in designing
cognitive architectures such as Soar [Laird et al., 1986]. This chapter considers the question
of what constitutes an appropriate general-purpose learning mechanism. We are interested
in mechanisms that might explain and reproduce the rich variety of learning capabilities of
humans, ranging from learning perceptual-motor skills such as how to ride a bicycle, to
learning highly cognitive tasks such as how to play chess.

Research on learning in fields such as cognitive science, artificial intelligence, neurobiology,
and statistics hasled to theidentification of two distinct classes of learning methods: inductive
and analytic. Inductive methods, such as neural network Backpropagation, learn general laws
by finding statistical correlations and regularities among a large set of training examples. In
contrast, analytical methods, such as Explanation-Based L earning, acquire general lawsfrom
many fewer training examples. They rely instead on prior knowledge to analyze individual
training examples in detail, then use this analysis to distinguish relevant example features
fromthe irrelevant.

The question considered in this chapter is how to best combine inductive and analytical
learning in an architecture that seeks to cover the range of learning exhibited by intelligent
systems such as humans. We present a specific learning mechanism, Explanation Based
Neural Network learning (EBNN), that blendsthese two types of |earning, and present exper-
imental results demonstrating its ability to learn control strategies for a mobile robot using
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vision, sonar, and laser range sensors. We then consider the analytical learning mechanismin
Soar, caled chunking, and recent attempts to complement chunking by including inductive
mechanisms in Soar. Finaly, we suggest a way in which EBNN could be introduced as a
replacement for chunking in Soar, thereby incorporating inductive and analytical learning as
architectural capabilities.

The following section provides an overview of inductive and analytic principlesfor learning,
and argues that both are necessary for ageneral learning mechanism that scales up to handle
a broad range of tasks. The subsequent section presents the EBNN |earning mechanism,
together with experimental resultsillustratingitscapabilities. Finally, weconsider thegeneral
learning mechanism for Soar, and the question of how to best incorporate both inductive and
analytic learning within this architecture.

2 Why Combine Analysisand Induction?

At the heart of the learning problem is the question of how to successfully generalize
from examples. For instance, when people learn to ride a bicycle or learn to play chess,
they learn from specific experiences (e.g., riding a specific bicycle on a particular day in
a particular place). Somehow they are able to generalize away from the myriad details of
specific Situations, to learn general strategiesthat they expect to apply in*“similar” subsequent
situations. In doing this, they must differentiate between the many irrelevant details of the
situation (e.g., the angle of the sun on that particular day, the color of the bicyclist’s shirt),
and the few essentia features (e.g., the velocity and tilt angle of the bicycle). This section
providesbrief overviewsof analytical and inductive methodsfor generalizing from examples,
then considers the complementary benefits of these two learning paradigms.

2.1 Analytical Learning

Analytical learning uses the learner’s prior knowledge to analyze individual training exam-
ples, in order to discriminate the relevant featuresfromtheirrelevant. The most common ana-
lytical learning method is explanation-based learning [DeJong and Mooney, 1986], [Mitchell
et al., 1986]. Toillustrate, consider the problem of learning to play chess. More specifically,
consider the subtask of learning to recognize chess positions in which one’s queen will be
lost within the next few moves. A positive example of this class of chess positionsis shown
in Figure 1.

As explained in the figure caption, thisis a positive example of a chess position in which
black can beforcedtoloseitsqueen. Tolearnageneral rulefromthisexample, itisnecessary
to determine which board features are relevant to losing the queen, and which are irrelevant
details to be ignored. Inductive learning methods generalize by collecting multiple training
examples, then determining which features are common to the positive examples, but not to
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Figure 1: A positive example of the concept “chess positions in which black can be forced to lose its queen
within 2 moves.” Note the white knight is attacking both the black king and queen. Black must therefore move
itsking, enabling whiteto capture the black queen.

the negative examples. Inthe chess example above, there are many featuresthat happen to be
true (e.g., thefeature “4 white pawns are still in their original positions’), but only afew that
arerelevant (e.g., “the black king and queen are simultaneously under attack™). In this chess
example, inductive techniques will require hundreds or thousands of training example chess
boardsto statistically determine which features are relevant, and to generalize appropriately.

In analytical learning such as explanation-based learning, a justifiable generalization of the
chess position can be derived fromjust this onetraining example. Thisisaccomplished by the
learner explaining how the training example satisfies the target concept, then identifying the
features mentioned in the explanation as relevant. Given prior knowledge of the legal moves
of chess, it ispossible for the learner to construct an explanation of why the black queen is
lost in the particular training example of Figure 1. The explanation is given in the figure
caption. Notice this explanation mentionsthe feature that “the white knight is attacking both
theblack king and queen.” Thisfeatureisthusdetermined to berelevantin general, and forms
a condition under which black will in genera lose its queen. In contrast, other irrelevant
featuresthat would be considered in inductive learning (e.g., “4 white pawns are still in their
original positions’) are not even considered, because they play no part in the explanation.
Explanation-based learning generalizes through explaining and analyzing training instances
in terms of prior knowledge. While our purpose here is to examine computer learning
algorithms, it isinteresting to note that research on human learning provides support for the
conjecture that humans learn through such explanations (seg, for example, [Chi and Bassok,
1989], [Qin et al., 1992], [Ahn and Brewer, 1993)).

Analytical learning methods have been used successfully in a number of applications —
notably for learning rules to control search. For example, Prodigy [Minton et al., 1989]
is a domain-independent framework for means-ends planning that uses explanation-based
learning to acquire search control knowledge. Prodigy learns general rulesthat characterize
concepts such as “situations in which pursuing subgoal ?x will lead to backtracking.” Given
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a specific problem solving domain defined by a set of states, operators, and goals, Prodigy
learns control rules that significantly reduce backtracking when solving problems in this
domain. It has been demonstrated to learn search control rules comparable to hand-coded
rulesin avariety of task domains[Minton et al., 1989].

The chunking mechanism in Soar [Laird et al., 1986] also provides an example of ana-
lytical learning, as explained in [Rosenbloom and Laird, 1986]. In Soar, problem solving
corresponds to search in problem spaces (a problem space is defined by problem states and
operators). Whenever Soar has no control knowledgeto chooseits next search step, it reflects
on the current situation by using a higher-level problem space, resulting in a choice of an
appropriate search step. The trace of reasoning performed in this higher level space forms
an explanation of why the selected search step is appropriate in this specific instance. The
Soar architecture automatically records this explanation whenever it reflects in this fashion,
and the chunking mechanism forms a new control rule (called a production) by collecting
the features mentioned in the explanation into the preconditions of the new rule. Soar’s
analytical chunking mechanism has been shown to learn successfully to speed up problem
solving across a broad range of domains. For example, [Doorenbos, 1993] presents results
in which over 100,000 productions are learned from such explanations within one particular
domain.

2.2 InductiveLearning

Whereas analytical learning can produce appropriate generalizations by anayzing single
training examples, it requires strong prior knowledge about its domain in order to construct
appropriate explanations. Its determination of which features are relevant will only be as
correct and complete as the prior knowledge from which explanations are formed. In many
domains, such complete and correct prior knowledge is unavailable. For example, consider
learning the concept “stocks that double in value over the next year.” In this case, an
explanation of atraining example would require explaining which features were responsible
for theincreasein value. Unlikethe chess domain, in which the effects of each possible move
are known perfectly in advance, the stock market domain cannot be modeled so correctly
and completely. In such cases, inductive techniques that identify empirical regularities over
many examples are useful.

Toillustrateinductivelearning, consider thetask of learning to driveamotor vehicle. [Pomer-
leau, 1989] describes the computer system ALVINN that learns to steer a vehicle driving at
55mph on public highways, based on input sensor datafrom avideo camera. Notice thistask
involves learning control knowledge, much like the control knowledge learned by Prodigy
and Soar. In this domain, however, a complete and correct model of the effects of different
steering actions is not known a priori. Therefore an inductive learning method, neural net-
work Backpropagation [Rumelhart et al., 1986], is used to learn a mapping from the camera
image to the appropriate steering direction. Thousands of training examples are collected
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by recording camera images and steering commands while a human drives the vehicle for
approximately 10 minutes. These human-provided training examples of visual scenes and
corresponding steering commands are generalized by the neural network to acquireageneral
mapping from scenes to steering commands. The resulting network has been demonstrated
to drive unassisted for intervalsup to 100 milesat speeds of 55 mph on public highways. The
neural network learning technique is a method for fitting hundreds of numeric parameters
in a predefined, but highly expressive non-linear functional form. These parameters are fit
by performing a gradient descent search to minimize the error (i.e., difference) between the
network output and the desired output for the training example set.

2.3 Why Combine Analytical and Inductive L earning?

Analytical and inductive learning offer complementary approaches to identifying correct
hypotheses during learning. In domains where strong prior knowledge is available, such as
chess, analytical methods such as explanation-based |earning can generalize correctly from
single examples. In domains where such strong prior knowledge is not available, inductive
methods such as neural network backpropagation offer a means of identifying empirical
regularities over large sets of training data. In the chess example above, anaytical learning
offers a means of generalizing correctly by analyzing single examples, whereas inductive
learning would probably require thousands of examplesto find appropriate regularitiesgiven
the large number of possible features. In the driving task, however, it is difficult to imagine
how to program in sufficient prior knowledge to allow explaining why a particular steering
direction is appropriate, in terms of the individual pixels of the camera image. In this
case, inductive learning can sort through the large number of potential features by finding
regul arities among thousands of training examples.

Methodsfor combining inductiveand analytical | earning have been the subject of considerable
recent research. For example, [Shavlik and Towell, 1989] describes amethod called KBANN
for using prior symbolic knowledgetoinitializethe structure and weights of aneural network,
which is then inductively refined using the Backpropagation method. A similar method has
been reported by [Fu, 1989). [Pazzani et al., 1991] describes acombined inductive/analytical
method called FOCL for learning sets of horn clauses, demonstrating its ability to operate
robustly given errorsin theinitial domain knowledge. [Ourston and Mooney, 1994] describes
a method called EITHER for refining domain theories in the light of additional empirical
data. While research in this areais very active, the question of how to best blend inductive
and analytical learning is still open. Desired properties for a combined mechanism include
the following:

e Given aperfect domain theory, learn as effectively as explanation-based learning

¢ Givenanincorrect theory, or notheory, learn aseffectively asthe best inductive methods
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Operate robustly over entire spectrum of domain theory quality

Accommodate noisy data

Support sufficiently rich representations for hypotheses

¢ Refine the domain theory with experience, at the same time as using it to learn the
target function

3 A Combined Inductive-Analytical L earning Mechanism

The Explanation-Based Neural Network (EBNN) learning mechanism integrates inductive
and analytic learning. Asthe name suggests, EBNN is based on an artificial neural network
representation of knowledge. Neural networksare used to draw inferences about the domain,
just asrulesare used to draw inferencesin symbolic representations. By using neural network
representation, pure inductive learning algorithms such as the Backpropagation algorithm
[Rumelhart et al., 1986] become applicable. In addition, EBNN includes an analyticlearning
component, based on explaining and analyzing training instancesin termsof other, previously
learned networks.

In what follows we describe the EBNN learning mechanism. We also present some results
obtained in the domain of mobile robot navigation. Based on these we discuss the role of
inductive and analytical learning in EBNN.

3.1 Introduction to EBNN

To understand the EBNN |earning mechanism, consider the example givenin Fig. 2, adapted
from [Winston et al., 1983], [Towell and Shavlik, 1989]. Suppose we are facing the problem
of learningto classify cups. More specifically, imaginewewant to train anetwork, denoted by
£, which can determine whether an object isa cup based on the featuresis_light, has_handle,
made_of_Styrofoam, color, upward_concave, open_vessel, flat_bottom, and is_expensive. One
way tolearn the new concept isto collect training instances of cupsand non-cups, and employ
the Backpropagation procedureto iteratively refine the weights of the target network. Such a
learning schemeis purely inductive. It alows learning functionsfrom scratch, in the absence
of any domain knowledge.

Now let assume one has aready learned a neural network domain theory, which represents
each individual inference step inthelogical derivation of the target concept. 1n our example,
such adomain theory may consist of three networks, the network f; which predicts whether
an object is liftable, the network f, which determines if an object can hold a liquid, and
a third network f3 that predicts if an object is a cup as a function of the two intermediate
concepts is liftable and holds liquid (cf. Fig. 3). This set of networks forms a complete
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(a) Training examples

is has made of | upward open flat is

light | handle | Styrofoam | concave | color | vessel | bottom | expensive || is_cup?

yes | yes no no blue | yes yes yes yes
no no yes yes red no yes no no

yes | no yes yes red | yes no no no
no no yes yes | green| yes yes no yes

(b) Target concept

is.cup? - isliftable, holds_liquid

is_liftable - islight, has_handle

isliftable - made_of_Styrofoam, upward_concave

holds_liquid :- open_vessd, flat_bottom

Figure 2: The cup example.

domain theory for the classification of a cup, asit alows classifying any object as a cup or
not. However, it is not necessarily correct, as the domain theory networks themselves may

have been constructed from examples.

How can this neural network domain theory be employed to refine the target network f?
EBNN learns anaytically by explaining and analyzing each training example using the

following three step procedure:

1. Explain. The domain theory is used to explain training instances by chaining together
multiple stepsof neural network inferences. In our example, the domain theory network
f1 1sused to predict the degree to which the object is liftable, network f; is employed
to predict whether the object can hold aliquid, and finally network f3; uses these two
predictions to estimate whether the object isa cup. This collection of neural network
inferences, which we will refer to as the explanation, explains why atraining instance
is a member of its class in terms of the domain theory. The explanation sets up the
inference structure necessary for analyzing and generalizing this training instance.

2. Analyze. The above explanationisanalyzedin order to generalize thetraininginstance
in feature space. Unlike symbolic approaches to EBL, which extract the weakest
precondition of the explanation, EBNN extracts slopes of the target function. More
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Figure 3: A neurd network domain theory for the classification of a cup.

specifically, EBNN extracts the output-input slopes of the target concept by computing
thefirst derivative of the neural network explanation. These slopes measure, according
to the domain theory, how infinitesimal changes in the instance feature values will
change the output of the target function.

In the cup example, EBNN extracts slopes from the explanation composed of the three
domain theory networks f1, f2, and f3. The output-input derivative of f; predicts, how
infinitesimal changes in the input space of f; will change the degree as to which f;
predictsan object to beliftable. Likewise, thederivativesof f, and f3 predict the effect
of small changesin their input spaceson their vote. Chaining these derivativestogether
results in dopes which measure how infinitesimally small changes of the individual
instance features will change the final prediction of cupness.

Slopes guide the generalization of training instances in feature space. For example,
irrelevant features, whose values play no rolein determining whether the objectisacup
(eg., thefeaturescolor and is_expensive) will have approximately zero slopes. On the
other hand, large slopes indicate important features, since small changes in the feature
value will have a large effect on the target concept according to the neural network
domain theory. Notice that the extraction of slopes relies on the fact that artificial
neural networks are differentiable, real-valued functions.

. Refine. Finally, EBNN refinesthe weights and biases of the target network both induc-
tively and analytically. Fig. 4 summarizes the information obtained by the inductive
and the analytical component. Inductive learning is based on the target value for each
individual training instance, whereas analytical learning is based on the target sopes
extracted from the explanation. When updating the weights of the network, EBNN
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Figure4: Fittingvaluesand slopesin EBNN: Let f bethetarget function for whichthreeexamples (1, f(x1)),
(z2, f(x2)), and {x3, f(x3)) are known. Based on these pointsthe learner might generate the hypothesisg. If
the slopes are aso known, the learner can do much better: h.

minimizes a combined error function which takes both value error and ope error into
account.

E = FEiaues+ OéEsIopes (1)

Here o is a parameter that trades off value fit versus slope fit, and that therefore de-
termines the relative impact of inductive versus analytical components of learning.
Gradient descent is employed to iteratively minimize £. Notice that in our implemen-
tation we used a modified version of the Tangent-Prog algorithm [Simard et al., 1992]
to refine the weights and biases of the target network [Masuoka, 1993].

What is a reasonable method for weighting the contributions of the inductive versus
analytical components of learning; that is, for selecting a value for «? Because the
domain theory might be incorrect, the analytically extracted sopes for a particular
training example might be miseading. In such cases, one would like to suppress
the analytical component («=0), relying only on the inductive component. For other
training examples the domain theory and explanation might be correct, and a=1 might
be more useful. EBNN dynamically adjusts the value of « for each individual training
example, based on the observed accuracy of the explanation: The more accurately the
domain theory predicts the known target value of the training instance, the higher the
value of « for this training example.

The accuracy, denoted by ¢, is measured as the root-mean square difference between
the true target value and the prediction by the domain theory. When refining the
weights and biases of the target network, 6 determines the weight of the target slopes
« according to the following formula.
)
= 1-— 2

o - @)
Here 6max denotes the maximum prediction error, which is used for normalization.
This weighting scheme attempts to give accurate slopes a large weight in training,
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while ignoring inaccurate slopes. This heuristic weighting scheme, called LOB*
[Mitchell and Thrun, 1993], is based on the heuristic assumption that the accuracy of
the explanation’s slopes are correlated to the accuracy of the explanation’s predictions.

This completes the description of the EBNN learning mechanism. To summarize, EBNN
refines the target network using a combined inductive-analytical mechanism. Inductive
training information is obtained through observation, and analytical training information
is obtained by explaining and analyzing these observations in terms of the learner’s prior
knowledge. Inductive and analytical learning are dynamically weighted by a scheme that
estimates the accuracy of the domain theory for explaining individual examples.

Both componentsof |earning, inductiveand analytical, play animportantrolein EBNN. Once
areasonabledomaintheory isavailable, EBNN benefitsfromitsanal ytical component, sinceit
gradually replacesthe pure syntactical biasin neural networksby abiasthat captures domain-
specific knowledge. Theresult isimproved generalization fromlesstraining data. Of course,
anaytic learning still requires the availability of a domain theory that allows explaining the
target function. If such adomain theory isweak or not available, EBNN degradesto a purely
inductive neural network learner. It isthe inductive component of EBNN which ensures that
learning is possible even in the total absence of domain knowledge.

3.2 Experimental Results

EBNN has been applied to various domains, including classification, prediction, game play-
ing, perception and robot control. Here we report an application of EBNN to learning mobile
robot navigation using Q-Learning [Watkins, 1989].

Xavier [O' Sullivan, 1994], the robot at hand, is shown in Fig. 5. Xavier is equipped with a
ring of 24 sonar sensors, alaser range finder, and a color camera mounted on a pan/tilt head.
Sonar sensors return approximate echo distances along with noise. The laser range finder
measures distances more accurately, but its perceptual field islimited to asmall rangein front
of the robot. The task of the robot was to learn to navigate to a specifically marked target
location in alaboratory environment. 1n some experiments, the location of the marker was
fixed throughout the course of learning, in othersit was moved across the laboratory and only
kept fixed for the duration of a single training episode. Sometimes parts of the environment
were blocked by obstacles. The marker was detected using a visua object tracking routine
that recognized and tracked the marker in real-time using the pan/tilt head. The robot was
rewarded if it managed to stop in front of the marker. 1t was penalized for losing the sight of
the marker.

Sensor input was encoded by a 46-dimensional vector, consisting of 24 sonar distance
measurements, 10 distance measurements by the laser range finder, and an array of 12 values
coding the angle of the marker position relative to the robot (cf. Fig. 6). Every 3 seconds the
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Figure5: The Xavier robot.

robot could chose one of 7 possible actions, ranging from sharp turnsto straight motion. In
order to avoid collisions, the robot employed a pre-coded obstacle avoidance routine based
on potential field navigation [Khatib, 1986]. Whenever the projected path of the robot was
blocked by an obstacle, the robot decelerated and, if necessary, changed its motion direction
(regardless of the commanded action). Xavier was operated continuoudly in real-time. Each
learning episode correspondsto a sequence of actionswhich startsat arandom initial position
and ends either when the robot loses sight of the target object, for which it is penalized, or
when it haltsin front of the marker, in which caseit is rewarded.

In order to learn to generate actionsfrom delayed reward, we applied EBNN in the context of
Q-Learning [Watkins, 1989]. Inessence, Q-Learning constructsutility functions Q(s, a) that
map sensations s and actions« to task-specific utility values. @-valueswill be positivefor final
successes and negativefor final failures. In between, utilitiesare calcul ated recursively using
an asynchronous dynamic programming technique [Barto et al., 1991]. More specifically,
the utility Q(s;,a;) a time ¢ is estimated through a mixture of the utilities of subsequent
observation-action pairs, up to the fina utility at the end of the episode. The exact update
eguation used in the experiments, combined with methods of temporal differencing [Sutton,
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1988], is:

+100 if a, final action, robot reached goal
—100 if a, final action, robot lost sight of the marker

Qtarget(stv at) — (3)
7 |(A=A) - max Q(spya,a) + A Q% (5,11, ay41)
otherwise

Here v (0<~<1) is a discount factor that, if v<1, favors rewards reaped earlier in time.
A (0<A<1) is again parameter trading off the recursive component and the non-recursive
component in the update equation. Once the function Q has been learned, steepest descent
in the utility space resultsin optimal paths to the goal. Hence, learning control amounts to
learning appropriate Q-functions. In our implementation, the Q function was represented by
acollection of artificial neural networks which mapped sensations s to utility values, one for
each action a.

Recently, Q-Learning and other related dynamic programming algorithms have been applied
successfully to game playing domains [Tesauro, 1992] and robotics [Gullapalli, 1992]. In
these previous approaches, the update of the target networks was purely inductive. EBNN,
applied to Q-Learning, extends inductive learning by an analytical component. Just as for
the classification example given in the previous section, EBNN requires the availability of
an appropriate neural network domain theory. Here the learner is given a collection of
predictive action models f,, one for each action «, that allow predicting the sensation and
reward at timet+1fromthe sensationsof timet¢. Such aneura network domain theory allows
explaining (post-facto predicting) sensations and final outcomes of each individual learning
episode. In Xavier's case, each action model maps 46 input values to 47 output values. The
models were |learned beforehand using the Backpropagation training procedure, employing
a cross-validation scheme to prevent overfitting the data. Initially, we used atraining corpus
of approximately 800 randomly generated actions, which was gradually increased through
the course of this research to 3,000 actions, taken from some 700 episodes. These training
examples were distributed roughly equally among the 7 action model networks.

Xavier’spredictiveaction modelsfaceahighly stochastic situation. There are many unknown
factorswhich influence the actual sensations. First, sensors are generally noisy, i.e, thereis
acertain likelihood that the sensor returns corrupted values. Second, the obstacle avoidance
routineisvery sensitive to small and subtle detailsin thereal world. For example, if the robot
facesan obstacle, it is often very hard to predict whether its obstacle avoidance behavior will
makeit turn left or right. Third, the delay in communication, imposed by the radio Ethernet
link, turned out to be rather unpredictable. These delays, which influenced the duration of
actions, were anywherein therange of 0.1 up to 3 seconds. For all those reasons, the domain
theory functions f, captured only typical aspects of the world by modeling the average
outcome of actions, but were clearly unable to predict accurately. Empirically we found,
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Figure 6: Prediction and slopes. A neural network action model predicts sensations and reward for the next
time step. The large matrix displays the output-input slopes of the network. White boxes refer to negative and
black boxesto positive values. Box sizesindicate absolute magnitudes. Notice the positive gradients along the

main diagonal.

however, that they were well-suited for extracting useful slopes. Fig. 6 gives an example of
adope array extracted from adomain theory network applied to a typical world state.

Having trained the domain theory networks, we finally attacked the primary goal of learning,
namely learning Q. The explanation and analysis of episodesin Q-Learning is analogousto
the analysis of training instances in the cup example. EBNN explains episodes by chaining
together predictive action models. For each state-action pair in the episode, EBNN extracts
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Figure 7: a. The ssimulated robot world. b. Actions. ¢. The squared generalization error of the domain theory
networks decreases monotonically as the amount of training data increases. These nine alternative domain
theorieswere used in the experiments.

target slopes of the utility function viathe first derivative of the explanation of the episode:
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We performed five compl ete |earning experiments, each consisting of 30-40 episodes. When
trainingthe Q networks, weexplicitly memorized al training data, and used arecursivereplay
technique similar to “experience replay” described in [Lin, 1992]. The update parameter ~
was set t0 0.9, and A was set to 0.7.

In al cases Xavier learned to navigate to a static target location in less than 19 episodes,
each of which was between 2 and 11 actionsin length. It consistently learned to navigate to
arbitrary target locations (which wasrequiredin 4 out of 5 experiments) alwaysin lessthan 25
episodes. Although the robot faced a high-dimensional sensation space, it always managed
to learn the task in less than 25 episodes, which is less than 10 minutes of robot operation,
and, on average, less than 20 training examples per Q-network. This training time does not
include the time for collecting the training data to learn the domain theory action models.
In general, we assume the cost of learning such domain-specific but task-independent action
models can be amortized over many control learning tasks faced by the robot within its
environment. Hence, only a small fraction of this cost should be considered as relevant to
thistask.

When testing the robot, we also confronted it with situations which were not part of its
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training experience. In one case, we kept the location of the marker fixed and moved it only
in the testing phase. 1n a second experiment, we blocked the robot’s path by large obstacles,
even though it had not experienced obstacles during training. It was here that the presence of
an appropriate domain theory was most important. While without domain theory the robot
almost always failed to approach the marker under these new conditions, it reliably (> 90%)
managed this task when it was trained with the help of the domain theory networks. This
is because the domain theory provides a knowledgeable bias for generalization to unseen
situations.

In order to investigate and characterize EBNN more thoroughly, we applied EBNN to a
simulated robot navigation task, which is depicted in Fig. 7a. The robot, indicated by the
small circle, hasto navigate to the fixed goal location (large circle) while avoiding acollision
with the obstacle and the surrounding walls. Its sensors measure the distances and the angles
to both the center of the obstacle and the center of the goal, relative to the robot’s view. At
any time, five different actions are available to the robot, depicted in Fig. 7b. Note that this
learning task is completely deterministic.

Thelearning setup was analogous to the robot experiments described above. Beforelearning
an evaluation function, we trained 5 neural network action models, one for each individua
action. Subsequently, 5 Q-functions were trained to evaluate the utility of each individual
action.? In a first experiment, we were interested in the merit of the analytic learning
component of EBNN. We trained the model networks using alarge training corpus of 8,192
training instanceseach. EBNN wasthen applied to thetask of learning control. Fig. 8displays
the performance as a function of the number of training episodes. As can easily be seen,
standard inductive learning learns slower than the combined inductive and analytic learning
in EBNN. This is because the analytic component of EBNN provides a knowledgeable,
domain-dependent bias, which partially replaces the purely syntactical, inductive bias. Of
course, asymptotically, with an unlimited amount of training data, both approaches might be
expected to exhibit equivalent performance.

Clearly, EBNN outperformed pure inductive learning because it was given a domain theory
trained with alargenumber of training examples. Inorder to test theimpact of weaker domain
theories on EBNN, we conducted a series of experiments in which we trained different sets
of domain theory networks using 5, 10, 20, 35, 50, 75, 100, and 150 training examples
per action network. As shown in Fig. 7c, the number of training examples determines the
accuracy of the resulting domain theory. Fig. 9 displays the performance graphs resulting
from using these different domain theories. As can be seen, EBNN degrades gracefully to
the performance of a pure inductive learner as the accuracy of the domain theory decreases.

The graceful degradation of EBNN with decreasing accuracy of the domain theory is due to

2In thisimplementation we used areal-val ued approximation scheme using nearest-neighbor generalization
for the @-functions. This scheme was empirically found to outperform Backpropagation.
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Figure8: EBNN: Performance curvesfor EBNN with (black) and without (gray) analytical traininginformation
(dlopefitting) for three examples each, measured on an independent set of problem instances. The dashed lines
indicate average performance. In this experiment, the agent used well-trained predictive action models as its
domain theory.

the fact that mideading slopes are identified and their influence weakened (cf. Eqg. (2)). In
other experiments reported elsewhere [Thrun and Mitchell, 1993] it was demonstrated that
EBNN will fail tolearn control if the domain theory ispoor and « iskept fixed. These results
also indicate that in cases where the domain theory is poor a pure analytical learner would
be hopelesdy lost. In the experiments reported here EBNN recovered from poor domain
theories because of its inductive component, which enabled it to overturn misleading bias
extracted from inaccurate prior knowledge.

3.3 Why areBoth Induction and Analysis Needed?

Theinductive component of learningin EBNN isthe standard Backpropagation algorithm for
updating network weightsto fit observed training example values. The analytical component
of learningin EBNN isthe use of prior knowledgeto explain observed training examples, and
the use of dopes extracted from these explanations to further update the weights of the target
network. EBNN blends these two mechanisms, weighting the contribution of analytical
learning on an example by example basis, depending on the accuracy of the domain theory
in explaining the particular observed training example.

Theimportanceof analytical learning liesinitsability to generalize more correctly from fewer
examples. As demonstrated by the experimental results from EBNN, prior knowledge leads
to a significantly steeper learning curve. Thisin turn allows scaling up the learning system
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Figure 9: How does domain knowledge improve generalization? Averaged results for EBNN domain theories
of differing accuracies, pre-trained with 5 to 8,192 training examples. In contrast, the bold gray line reflects
the learning curve for pure inductive @-Learning. (b) Same experiments, but without dynamically weighting
the analytical component of EBNN by its accuracy. All curves are averaged over 3 runs and are also localy
window-averaged. The performance (vertical axis) ismeasured on an independent test set of starting positions.

to more complex learning tasks. We conjecture that with increasing task complexity, the
analytic component of learning will gaininimportance. Thisis because for each inductively
derived target value, the analytic component of EBNN will generate n target dopes, where
n isthe input dimension of the target network. Intheidea case, asingletraining examplein
EBNN might therefore be as effective asn + 1 training examplesin pure inductive learning.
These numbers match very roughly our empirical findings.

The importance of inductive learning lies in its ability to extend the system’s knowledge
beyond that which can be inferred fromits starting knowledge. It isobviousin domainssuch
as robot control and speech recognition that manually developing a perfect domain theory
is unrealigtic. In the case of Xavier, for example, one would have to apply an incredible
effort to manually input action model s that would meet the requirements of purely analytical
learning. An appropriate domain theory would have to include accurate descriptions of the
particular sensor noise of ultrasonic and visual sensors, as well as the physics of the robot
and its environment. Even the communication delay caused by heavy network traffic would
have to be explainable, since it matters crucialy for the outcome of the robot’s actions.
While past research has illustrated the feasibility of hand-coding models for idealized and
usually noise-free learning scenarios [Laird and Rosembloom, 1990], [Mitchell, 1990], in a
domain as complex and as stochastic as Xavier’'sworld thiswill be an unreasonably difficult
undertaking. The importance of induction is that it enables learning observed empirical
regularities that can contradict prior knowledge.
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4

Induction and Analysisin Soar

Since Soar isintended as a general architecture for intelligent systems, the question of how
to best incorporate both Iearning mechanisms within Soar seems central to its success. The
first subsection below briefly summarizes current approaches, and the following subsection
considers the possibility of incorporating EBNN within Soar.

4.1 Current Learning Mechanismsin Soar

Soar has a single, analytical learning mechanism embedded in the architecture: chunking.
Chunking is avariant of explanation-based learning, as discussed in [Rosenbloom and Laird,
1986]. For the current discussion, the key points regarding learning in Soar are:

e Chunking is the only architectural learning mechanism in Soar. It has been claimed

[Laird et al., 1986] that chunking is a sufficient architectural learning mechanism.

¢ The chunking mechanism preserves the correctness of Soar’s prior knowledge. More

precisely, each production rule created by chunking follows deductively from previous
rules in the system. If the prior knowledge is correct, any rule learned by chunking
will aso be correct. If prior knowledge isincorrect, learned rules may be incorrect.

In cases where Soar’sinitial knowledgeisincorrect and internally inconsistent, chunk-
ing may learn contradictory rules when given multiple examples. In this case, the
ill effects of one incorrect rule may be screened by a second (contradictory) rule that
applies to some of the same situations (e.g., see [Rosenbloom et al., 1987]). Whether
this beneficial screening will occur depends on the form of the initial knowledge, and
on the sequence in which training examples are presented. Thus, while learning of
individual rulesisatruth-preserving step, learning sets of rulesfrominconsistent initial
knowledge can lead to behavior that improves over the behavior of theinitial inconsis-
tent knowledge. Thisis possible because of the screening of incorrect rules. Because
this effect depends on the observed training examples, and can result in behavior not
produced by the initial knowledge, we will consider this an inductive effect.

Explicit inductive learning methods have also been implemented on top of the Soar
architecture by providing problem spaces that perform induction (e.g., [Rosenbloom
and Aasman, 1990], [Miller and Laird, 1991]). The detailed implementation of this
inductive mechanism relies on the above effect of screening incorrect rules by learning
new rules that better fit the observed data. The explicit programming of induction
in problem spaces is accomplished by providing a problem space in which reason-
ing traces follow the general-to-specific ordering of possible concepts, and in which
chunking provides the mechanism for creating new rules from reasoning tracesin this
problem space. The initial knowledge in this problem space is genera enough to
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“explain” any example observed by the system, so that the particular sequence of ex-
amples encountered determineswhich reasoning traces are produced, and hence which
productions are learned.

As the above summary indicates, Soar’s chunking mechanism provides aform of analytical
learning, and the screening effect of new learned rules on inconsistent prior knowledge allows
for an inductive component to Soar’s learning. Whereas the capabilities of Soar’s analytical
learning mechanism have been convincingly demonstrated in a variety of domains (e.g.,
[Tambe et al., 1992]), its inductive learning capabilities have yet to be demonstrated on the
same scale.

Our assessment is that while combining inductive and analytical learning will be important
tothe goal of Soar asageneral model of learning, we foresee two difficultieswith the current
strategy of combining an architectural chunking mechanism with explicit programming of
inductive mechanisms in problem spaces. First, it is not clear whether an inductive process
that produces new rulesbut doesnot refineold rulescan efficiently support statistical induction
in which each example contributes a small change to a continuously evolving hypothesis.
For example, consider the problem of learning to drive Pomerleau’'s ALVINN system. To
succeed, Soar would have to acquire control knowledge from training data involving many
hundreds of noisy, complex images, for which inductive regularities emerge only from the
statistics of large numbersof training examples. Inthiskind of application, initial knowledge
isdifficultto derive, sothat analytical learningisinapplicableand theburdenfallsoninductive
mechanisms. Here, it appears that Soar’s inductive mechanism would require producing a
new production each time a new training example was encountered that was inconsistent
with the current hypothesis, leading to an enormous number of generated rulesthat are |ater
screened. Second, it isnot clear how Soar’s current inductive processes would behave in the
face of noisein the training data. Because new rules screen old, one can imagine a scenario
in which noisy data leads the system to learn rule A, then to screen it by rule B (which is
consistent with the new example), then to relearn A, etc. Whileit has not been demonstrated
that such difficulties are insurmountabl e by the proposed Soar inductive methods, neither has
it been demonstrated that they can successfully deal with these difficulties.

Because EBNN has been demonstrated to successfully learn statistical regularitiesfrom high
dimensional, noisy data, guided by approximate domain knowledge, it is worthwhile to
consider the feasibility of incorporating it within a Soar-like architecture for problem solving
and learning. This possibility is considered in the following section.

4.2 Embedding EBNN in Soar
Herewe consider the possibleincorporation of the EBNN |earning mechanism within a Soar-

like architecture. The benefit of such a union would be to combine the inductive-analytical
learning capabilities of EBNN with the architectural capabilities of Soar to organizelearning
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and problem solving. One way to incorporate EBNN within Soar would be to substitute
EBNN for chunking, with the following correspondences:

e Theproblem solving tracesthat provide dependencies used by chunking would become
the explanations used by EBNN.

e As with chunking, EBNN would be invoked each time a problem-solving impasse
occurs (i.e., whenever the next search action isnon-obvious). The types of information
learned (to preempt subsequent impasses) would be the same as for chunking.

¢ Unlikechunking, in which adistinct ruleislearned from each explanation, in EBNN a
distinct network would belearned only for each distinct type of impassefor each distinct
problem space. When future impasses of the same type occurred for the same problem
space, the existing network would be refined (both analytically and inductively) using
the EBNN algorithm.

e In order for the explanations to provide dope information for EBNN, the production
rules on which they were based would be modeled by separate neural nets — one for
each type of rule. In general, for each Soar production rule concluding some value
for attribute A, a corresponding network for concluding A would be created, and used
to provide slope information whenever the corresponding rule was involved in some
explanation.

e In Soar, an impasse is resolved once deliberation chooses how to continue beyond
the search impasse (e.g., by selecting which operator to apply next in the search).
At this point, chunking is invoked. In order to support the inductive component of
EBNN learning, and to allow for the possibility that deliberation wasbased onincorrect
knowledge, a separate empirical evaluation of the impasse resolution will be required
(e.g., to determine whether the selected operator truly succeeds). This empirical
evaluation might be obtained, for example, by monitoring the final outcome of the
search, or by estimating its likelihood of success based on independent knowledge
(e.g., asin reinforcement learning).

Let usrefer to such asystem as EBNN-Soar, and to the current version of Soar as Chunking-
Soar. Key differences between these two systems would include:

e Learning in EBNN-Soar would support pureinduction at the architecturelevel, aswell
as analytical learning and blends of these two. We expect this would provide more
robust learning in the face of approximate prior knowledge and noise in the training
data
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e Analytical learning in EBNN-Soar will be slower than in Chunking-Soar. More pre-
cisely, analytical learning in EBNN-Soar will incrementally refine the neural network
that encodes knowledge for a particular impasse/problem-space pair, mediated by
the companion inductive learning component of EBNN. This will lead to less abrupt
changes to system knowledge than in Chunking-Soar, where acomplete rule isformu-
lated based solely on the analysis of asingle example. Othershave noted [Rosenbloom,
1983] that learning in Chunking-Soar may betoo abrupt to be acorrect model of human
learning.

e EBNN-Soar may avoid the average growth effect encountered by Chunking-Soar
[Tambe et al., 1992], in which the large number of learned chunks can lead to signifi-
cant lowdown in processing. By representing knowledge using a bounded collection
of neural nets (one per <impasse, problem-space> pair), the cost of applying such
knowledge cannot grow indefinitely.

e Because it would use a bounded set of networks for representing learned knowledge,
EBNN-Soar may encounter difficulties not present in Chunking-Soar. In particular,
its bounded-space representation of control knowledge may have too little capacity
to accurately represent complex control knowledge. As aresult, it may be necessary
to develop a more elaborate memory organization than the simple approach sketched
here.

5 Summary and Conclusions

The main points of this paper include:

¢ Both inductive and analytical learning mechanisms will be needed to cover the range
of learning exhibited by humans and other intelligent systems. Analytical mechanisms
arerequired in order to scale up to learning complex concepts, and to handle situations
inwhich availabletraining dataislimited. Inductive mechanisms arerequiredin order
to learn in situations where prior knowledge isincomplete or incorrect.

¢ Explanation-based neural network (EBNN) learning provides a robust combination of
inductive and analytical learning. Experimental results demonstrate that EBNN can
learn to control amobile robot, from noisy dataincluding vision, sonar, and laser range
sensors, and based on approximate knowledge that was previously learned by the robot
itself. Given strong prior knowledge, EBNN learns from considerably less data than
pure induction (exemplified by the neural network Backpropagation algorithm). As
the accuracy of this prior knowledge decreases, EBNN’s ability to generalize degrades
gracefully until it reaches the same level of performance as pure induction.
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e Soar’sarchitectural learning mechanism, chunking, is a purely analytical mechanism.
Recent research on Soar has explored ways of incorporating inductive |earning mech-
anisms by including problem spaces that, when coupled with chunking, result in
inductive learning within Soar. We have suggested an alternative way to combine ana-
lytical and inductive learning within a Soar-like architecture: replace Soar’s chunking
mechanism by EBNN. We believe such an architecture would have significant advan-
tagesin handling statistical learning from noisy data. Such a change would introduce
changes to the architecture’s representation (neural network versus symbolic produc-
tions), memory organization (one neural network replaces multiple productions), and
scaling properties (reducing the average growth effect problem, but raising new prob-
lems arising from the bounded expressive capability of fixed-size networks). While
the details of such an architecture remain to be designed, we believe the demonstrated
abilities of EBNN warrant further exploration of this alternative.

6 Acknowledgments

This paper has benefited from a number of discussions over the years with Allen Newell,
John Laird, and Paul Rosenbloom regarding the sufficiency of chunking and the potential
role of inductive learning in Soar.

This research is sponsored in part by the National Science Foundation under award IRI-
9313367, and by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel
Command, USAF, and the Advanced Research Projects Agency (ARPA) under grant num-
ber F33615-93-1-1330. Views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing official policies or en-
dorsements, either expressed or implied, of NSF, Wright Laboratory or the United States
Government.

References

[Ahn and Brewer, 1993] Woo-Kyoung Ahn and William F. Brewer. Psychologica studies
of explanation-based learning. In Gerald DeJong, editor, I nvestigating Explanation-Based
Learning. Kluwer Academic Publishers, Boston/Dordrecht/London, 1993.

[Barto et al., 1991] Andy G. Barto, Steven J. Bradtke, and Satinder P. Singh. Real-time
learning and control using asynchronous dynamic programming. Technical Report COINS
91-57, Department of Computer Science, University of Massachusetts, MA, August 1991.

[Chi and Bassok, 1989] Michelene T.H. Chi and Miriam Bassok. Learning from examples
via self-explanations. In Lauren B. Resnick, editor, Knowing, learning, and instruction :
essaysin honor of Robert Glaser. L. Erlbaum Associates, Hillsdale, N.J., 1989.

22



[DeJong and Mooney, 1986] Gerald DeJong and Raymond Mooney. Explanation-based
learning: An alternative view. Machine Learning, 1(2):145-176, 1986.

[Doorenbos, 1993] Robert E. Doorenbos. Matching 100,000 learned rules. In Proceeding
of the Eleventh National Conference on Artificial Intelligence AAAI-93, pages 290—296,
Menlo Park, CA, 1993. AAAI, AAAI Press’The MIT Press.

[Fu, 1989] Li-Min Fu. Integration of neural heuristics into knowledge-based inference.
Connection Science, 1(3):325-339, 1989.

[Gullapalli, 1992] Vijaykumar Gullapalli. Reinforcement Learning and its Application to
Control. PhD thesis, Department of Computer and Information Science, University of
Massachusetts, 1992.

[Khatib, 1986] Oussama Khatib. Real-time obstacle avoidance for robot manipulator and
mobilerobots. The International Journal of Robotics Research, 5(1):90-98, 1986.

[Laird and Rosembloom, 1990] John E. Laird and Paul S. Rosembloom. Integrating execu-
tion, planning, and learning in soar for external environments. In Proceeding of the Eigth
National Conference on Artificial Intelligence AAAI-90, pages 1022-1029, Menlo Park,
CA, 1990. AAAI, AAAI PressThe MIT Press.

[Laird et al., 1986] John Laird, Paul Rosenbloom, and Allen Newell. Chunking in SOAR:
The anatomy of a general learning mechanism. Machine Learning, 1(1):11-46, 1986.

[Lin, 1992] Long-Ji Lin. Self-supervised Learning by Reinforcement and Artificial Neu-
ral Networks. PhD thesis, Carnegie Mellon University, School of Computer Science,
Pittsburgh, PA, 1992.

[Masuoka, 1993] Ryusuke Masuoka. Noise robustness of EBNN learning. In Proceedings
of the International Joint Conference on Neural Networks, October 1993.

[Miller and Laird, 1991] Craig S. Miller and John E. Laird. A constraint-motivated lexical
acquisition model. In Proceedings of the Thirteenth Annual Meeting of the Cognitive
science Society, pages 827—831, Hillsdale, NJ, 1991. Erlbaum.

[Minton et al., 1989] Steve Minton, Jaime Carbonnel, Craig A. Knoblock, Dan R. Kuokka,
Oren Etzioni, and Yolanda Gil. Explanation-based learning: A problem solving perspec-
tive. Artificial Intelligence, 40:63-118, 1989.

[Mitchell and Thrun, 1993] Tom M. Mitchell and Sebastian B. Thrun. Explanation-based
neural network learning for robot control. In S. J. Hanson, J. Cowan, and C. L. Giles,
editors, Advancesin Neural Information Processing Systems5, pages287-294, San Mateo,
CA, 1993. Morgan Kaufmann.

23



[Mitchell etal., 1986] Tom M. Mitchell, Rich Keller, and Smadar Kedar-Cabelli.
Explanation-based generalization: A unifying view. Machine Learning, 1(1):47-80,
1986.

[Mitchell, 1990] Tom M. Mitchell. Becoming increasingly reactive. |n Proceedings of 1990
AAAI Conference, Menlo Park, CA, August 1990. AAAI, AAAI Press/ The MIT Press.

[O' Sullivan, 1994] Joseph O’ Sullivan. Xavier manual. Carnegie Mellon University, Learn-
ing Robot Lab Internal Document - contact josullvn@cs.cmu.edu, January 1994,

[Ourston and Mooney, 1994] Dirk Ourston and Raymond Mooney. Theory refinement com-
bining analytical and empirical methods. Artificial Intelligence, 66:311-344, 1994.

[Pazzani et al., 1991] Michael J. Pazzani, Clifford A. Brunk, and Glenn Silverstein. A
knowledge-intensive aproach to learning relational concepts. In Proceedings of the Eigth
International Workshop on Machine Learning, pages 432-436, Evanston, IL, June 1991.

[Pomerleau, 1989] D. A. Pomerleau. ALVINN: an autonomous land vehicle in a neura
network. Technical Report CMU-CS-89-107, Computer Science Dept. Carnegie Mellon
University, Pittsburgh PA, 1989.

[Qinetal., 1992] YulinQin, Tom M. Mitchell, , and Simon Herbert. Using EBG to simulate
human learning from examples and learning by doing. In Proceedings of the Florida Al
Research Symposium, pages 235-239, April 1992.

[Rosenbloom and Aasman, 1990] Paul S. Rosenbloom and Jans Aasman. Knowledge level
and inductive uses of chunking (ebl). In Proceedings of the Eighth National Conference
on Artificial Intelligence, pages 821-827, Boston, 1990. AAAI, MIT Press.

[Rosenbloom and Laird, 1986] Paul S. Rosenbloom and John E. Laird.  Mapping
explanation-based generalization onto soar. Technical Report 1111, Stanford University,
Dept. of Computer Science, Stanford, CA, 1986.

[Rosenbloom et al., 1987] Paul S. Rosenbloom, John Laird, and Allen Newell. Knowledge
level learning in soar. Technical Report AIP-8 (Artificia Intelligence and Psychology
Project), Carnegie Mellon University, Pittsburgh, PA 15213, 1987.

[Rosenbloom, 1983] Paul Rosenbloom. The Chunking of Goal Hierarchies: A model of
Practice and Stimmuls-Response compatibility. PhD thesis, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA, 1983. Technical Report CMU-CS-83-148.

[Rumelhart et al., 1986] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
Learning internal representations by error propagation. In D. E. Rumelhart and J. L.
McClelland, editors, Parallel Distributed Processing. Vol. | + II. MIT Press, 1986.

24



[Shavlik and Towell, 1989] Jude W. Shavlik and G.G. Towell. An approach to combining
explanation-based and neural learning algorithms. Connection Science, 1(3):231-253,
1989.

[Simard et al., 1992] Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tan-
gent prop — aformalism for specifying selected invariances in an adaptive network. In
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information
Processing Systems 4, pages 895-903, San Mateo, CA, 1992. Morgan Kaufmann.

[Sutton, 1988] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3, 1988.

[Tambeet al., 1992] Milind Tambe, Robert Doorenbos, and Allen Newell. The match cost
of adding a new rule : a clash of views. Technical Report CMU-CS-92-158, Carnegie
Mellon University, Pittsburgh, PA 15213, 1992.

[Tesauro, 1992] Gerald J. Tesauro. Practical issues in tempora difference learning. In
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural Information
Processing Systems 4, pages 259-266, San Mateo, CA, 1992. Morgan Kaufmann.

[Thrun and Mitchell, 1993] Sebastian B. Thrun and Tom M. Mitchell. Integrating inductive
neural network learning and explanation-based learning. In Proceedings of 1JCAI-93,
Chamberry, France, July 1993. JCAL, Inc.

[Towell and Shavlik, 1989] Geoffrey G. Towell and Jude W. Shavlik. = Combining
explanation-based learning and neural networks: an agorithm and empirical results.
Technical Report 859, University of Wisconsin-Madison, Computer Science, 1989.

[Watkins, 1989] ChrisJ. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's
College, Cambridge, England, 1989.

[Winston et al., 1983] PH.Winston, T.O. Binford, B. Katz, and M. Lowry. Learning physical
descriptions from functional definitions, examples, and precedents. In Proceedings of the
National Conference on Artificial Intelligence, pages 433—439, Washington D.C., 1983.
Morgan Kaufmann.

25



