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Abstract 

We propose a new continuous time framework to study asset prices under learning 
and ambiguity aversion. In a partial information Lucas economy with time additive 
power utility, a discount for ambiguity arises if and only if the elasticity of 
intertemporal substitution (EIS) is above one. Then, ambiguity increases equity premia 
and volatilities, and lowers interest rates. Very low EIS estimates are consistent with 
EIS parameters above one, because of a downward bias in Euler-equations-based least 
squares regressions. In our setting, ambiguity does not resolve asymptotically and, for 
high EIS, it is consistent with the equity premium, the low interest rate, and the excess 
volatility puzzles. 
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This paper studies the equilibrium asset pricing implications of learning when the distinc-

tion between risk and ambiguity (Knightian uncertainty) aversion matters. Ambiguity refers

to situations where investors do not rely on a single probability law to describe the relevant

random variables. Ambiguity aversion means that investors dislike ambiguity about the prob-

ability law of asset returns. In a continuous time economy, we study the joint impact of

learning and ambiguity aversion on asset prices and learning dynamics. More specifically, we

tackle the problem of asset pricing under learning and ambiguity aversion in a continuous time

Lucas (1978) exchange economy, where economic agents have partial information about the

ambiguous dynamics of some aggregate endowment process. We develop a new continuous

time setting of learning under ambiguity aversion that allows us to study the conditional and

unconditional implications for equilibrium asset prices.

It is an open issue, whether ambiguity aversion gives a plausible explanation for many

salient features of asset prices when learning is accounted for. For instance, can the equity

premium puzzle be still addressed in a model of ambiguity aversion as new data are observed

and more data-driven knowledge about some unobservable variable becomes available? The

answer to this question depends on the ability of investors to learn completely the underlying

probability laws under a misspecified belief. Rational models of Bayesian learning1 cannot

address such issues, because they are based on a single-prior/single-likelihood correct speci-

fication assumption about the beliefs that define the learning dynamics. Therefore, to study

asset prices under learning and ambiguity aversion we have to consider settings where a possi-

ble misspecification of beliefs and the corresponding learning dynamics is explicitly addressed.

Our approach to learning under ambiguity aversion can be interpreted as a continuous-time

extension of the axiomatic setting in Knox (2004). In our model, agents learn only some global

ambiguous characteristics of the underlying endowment process, as parameterized by a finite

set of relevant ambiguous states of the economy. Moreover, extending Epstein and Schneider

(2002), we account for a set of multiple likelihoods in the description of the local ambiguous

properties of the underlying endowment process, conditional on any relevant state of the econ-
1E.g., Barberis (2000), Brennan (1998), Brennan and Xia (2001), Kandel and Stambaugh (1996), Pástor

(2000), Pástor and Stambaugh (2000), Veronesi (1999, 2000) and Xia (2001), among others.
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omy. Since we allow for multiple likelihoods, ambiguity is not resolved in the long run in our

model, even when the underlying endowment process is not subject to changes in regime.

Using the exchange economy framework, we are able to compute analytically equilibrium

equity premia, equity expected returns and volatilities, interest rates and price dividend ratios.

Since we allow for exogenous signals about the unobservable expected growth rate of the

aggregate endowment, we can also study the relation between asset prices, information noisiness

and ambiguity. However, our main focus will be on studying how learning under ambiguity

aversion affects the functional form of the equilibrium variables and, more specifically, if it

worsens existing asset pricing puzzles. For instance, while there is now plenty of evidence

that settings of ambiguity aversion do help in explaining the equity premium and the low

interest rate puzzles (see the related literature in Section 1), we also know that in a pure

setting of learning the equity premium can be even more than a puzzle (see, e.g., Veronesi

(2000)). Does the combination of learning and ambiguity aversion help in giving a reasonable

explanations for the equity premium puzzle? Similarly, we know that pure settings of learning

can explain excess volatility and volatility clustering of asset returns. At the same time, simple

constant opportunity set models of ambiguity aversion do not affect substantially expected

equity returns and equity volatility; see, e.g., Maenhout (2004) and Sbuelz and Trojani (2002).

Does the combination of learning and ambiguity aversion still generate excess volatility and

volatility clustering?

All above questions can be addressed directly in our model. First, we find that learning

under ambiguity aversion implies an equilibrium discount for ambiguity, if and only if relative

risk aversion is low (below one) or, equivalently, if the elasticity of intertemporal substitution

(EIS) is large (above one). Under low risk aversion, learning and ambiguity aversion increase

conditional equity premia and volatilities. Second, learning and ambiguity aversion imply

lower equilibrium interest rates, irrespective of risk aversion. Thus, with low risk aversion,

we get both a higher equity premium and a lower interest rate. This is a promising feature

of our setting, from the perspective of explaining simultaneously the equity premium and

the risk free rate puzzles without an ad hoc use of preference parameters. Third, in our

model no stable relation between excess returns and conditional variances exists. This feature
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generates estimated relations between excess returns and equity conditional variances with an

indeterminate sign over time. Fourth, we show that estimates of the EIS based on standard

Euler equations for equity returns are strongly downward biased in a setting of learning and

ambiguity aversion. Therefore, under learning and ambiguity aversion EIS above one can

be consistent with observed estimated EIS clearly below one. Moreover, since in our setting

ambiguity does not resolve asymptotically, we can show explicitly that asset pricing relations

under ambiguity aversion but no learning can be interpreted as the limit of an equilibrium

learning process under ambiguity aversion. Finally, in a setting with low risk aversions below

one and moderate ambiguity, we obtain asset pricing predictions consistent with those of the

equity premium, the low interest rate and the excess volatility puzzles.

The paper is organized as follows. The next section reviews the relevant literature on learn-

ing and ambiguity. Section 2 introduces our setting of learning under ambiguity aversion. The

properties of the optimal learning dynamics are studied in Section 3. Section 4 characterizes

and discusses conditional asset pricing relations under our setting of learning and ambiguity

aversion. Section 5 concludes and summarizes.

1. Background

Distinguishing between ambiguity aversion and risk aversion is both economically and be-

haviorally important. As the Ellsberg (1961) paradox illustrates, investors behave inherently

different under ambiguity and risk aversion. Moreover, ambiguity itself is pervasive in financial

markets. Gilboa and Schmeidler (1989) suggest an atemporal axiomatic framework of ambi-

guity aversion where preferences are represented by Max-Min expected utility over a set of

multiple prior distributions. More recently, authors have attempted to incorporate ambiguity

aversion also in an intertemporal context. These approaches have been largely inspired by the

Gilboa and Schmeidler (1989) Max-Min expected utility setting. Epstein and Wang (1994)

study some asset pricing implications of Max-Min expected utility in a discrete-time infinite

horizon economy. A discrete-time axiomatic foundation for that model has been provided later

in Epstein and Schneider (2003), showing that a dynamically consistent conditional version of
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Gilboa and Schmeidler (1989) preferences is represented by means of a recursive Max-Min

expected utility criterion over a set of multiple distributions. Chen and Epstein (2002) extend

that setting to continuous time. A second setting of intertemporal ambiguity aversion based

on an alternative form of Max-Min expected utility preferences is proposed in Hansen, Sargent

and Tallarini (1999, in discrete time) and Anderson, Hansen and Sargent (2003, in continuous

time). Their setting applies robust control theory to economic problems.

Continuous time models of full information economies with ambiguity aversion have been

recently proposed to give plausible explanations for several important characteristics of asset

prices. Examples of such models include, among others, Gagliardini et al. (2004; term structure

of interest rates), Epstein and Miao (2003; home bias), Liu et al. (2004; option pricing with

rare events), Maenhout (2004; equity premium puzzle), Routledge and Zin (2001; liquidity),

Sbuelz and Trojani (2002; equity premium puzzle), Trojani and Vanini (2002, 2004; equity

premium puzzle and stock market participation) and Uppal and Wang (2003; home bias). By

construction, the above models exclude any form of learning. Investors observe completely

the state variables determining their opportunity set, but they are not fully aware of the

probability distribution of the state variables. Consequently, some form of conservative worst

case optimization determines their optimal decision rules.

Only more recently the issue of learning under ambiguity aversion has been addressed by

a few authors. In a production economy subject to exogenous regime shifts, Cagetti at. al.

(2002) apply robust filtering theory to study the impact of learning and ambiguity aversion on

the aggregate capital stock, equity premia and price dividend ratios. Extending the discrete-

time linear-quadratic setting in Hansen, Sargent and Wang (2002) to continuous time, they

analyze an economy with a power utility representative agent and nonlinear state evolution.

Using numerical methods, they show that ambiguity aversion increases precautionary saving

in a way that is similar to the effect of an increased subjective time preference rate, leading to

an increase in the capital stock. Moreover, the equity premium increases substantially due to

ambiguity aversion. Price dividend ratios turn out to be lower. Epstein and Schneider (2002)

highlight in a simple discrete time setting that learning about an unknown parameter under

multiple likelihoods can fail to resolve ambiguity asymptotically, even when the underlying
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state process is not subject to regime shifts. Epstein and Schneider (2004) construct a similar

learning model under ambiguity to study the impact of an ambiguous signal precision on as-

set prices. They show that an ambiguous quality of information, defined in terms of a set of

possible values of the signal precision, can generate skewed asset returns and returns volatility.

Knox (2004) proposes an axiomatic setting of learning about a model parameter under ambi-

guity aversion. He extends previous settings of ambiguity aversion by weakening the axiom of

consequentialism. Consequentialism is the property that counterfactuals are neglected in the

determination of conditional preferences. It is an axiom related to the separability of condi-

tional preferences relatively to a partition of relevant conditioning events in the model. Epstein

and Schneider (2002) assume consequentialist conditional preferences with respect to the parti-

tions generated by the whole history of asset prices. Knox (2004), instead, allows generically for

a less consequentialist behavior, which is consistent with a less structured partition of events.

Separability of preferences is then assumed only with respect to a less structured partition.

Since separability of preferences across a partition of events is inherently related to a restricted

independence axiom (see Theorem 1 of Knox (2004)), assuming a too consequentialist prefer-

ence structure with respect to a richly structured partition may happen to be inappropriate

in a context of ambiguity aversion. Knox (2004) provides some asset pricing examples where

consequentialism with respect to a partition generated by asset returns may be inappropriate

in conjunction with ambiguity aversion; see also Machina (1989) for a general discussion about

the usefulness of consequentialism in the context of non-expected utility models.

We can think of our model as a continuous time extension of the axiomatic setting in Knox

(2004). Our representative agent is able to learn only some global ambiguous characteristics

of asset prices in dependence of a finite set of fuzzy macroeconomic conditions. Therefore, our

representative agent neglects counterfactuals in the determination of conditional preferences

only to the extent that such counterfactuals can be determined based on the given relevant set

of states of the economy.
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2. The Model

We start with a simple continuous time Lucas economy. The drift rate in the diffusion process

for the dividend dynamics is unobservable. Investors learn about the “true” drift through the

observation of dividends and a second distinct signal. In contrast to most other models of

rational learning, we explicitly allow for a distinction between noisy and ambiguous signals.

For a purely noisy signal, the distribution conditional on a given parameter value is known.

In this sense, the meaning of the signal is clear, even if it is noisy. For ambiguous signals,

the distribution conditional on a given parameter value is unknown or at least not uniquely

identified, as in our model. This distinction broadens the notion of information quality. In

many situations, it is plausible that agents are aware of a host of poorly understood or unknown

factors that obscure the interpretation of a given signal. Such obscuring factors can depend

on economic conditions or on some specific aspects of a given state of the economy.

In our model, signals on the state of the economy are ambiguous and can be interpreted

differently, depending on whether agents condition on good or bad economic information. This

feature is modeled by a set of multiple likelihoods on the underlying dividend dynamics. The

size of such sets of multiple likelihoods can depend on the state of the economy. Disentangling

the properties of noisy and ambiguous signals across the possible relevant states of the economy

gives the model builder a more realistic way to specify a learning behavior with multiple beliefs.

For example, recessions are less well studied and understood than expansionary economic

phases, because recessions are typically relatively rare events with nonhomogeneous properties

over time. This pattern can be easily incorporated in our model by means of a higher degree of

ambiguity, i.e., by a broader set of multiple likelihoods conditional on bad economic conditions.

Our objective is to characterize conditional and unconditional equilibrium asset returns

under different assumptions on the quality of a signal. We measure quality in terms of its

noisiness and ambiguity. To this end, we develop an equilibrium model of learning under

ambiguity aversion consisting of the following key ingredients:

1. A parametric reference model dynamics for the underlying dividend process and the un-

observable dividend drift. The reference model is explicitly treated as an approximation

8



of the reality, rather than as an exact description of it. Therefore, economic agents pos-

sess some motivated specification doubts. Specification doubts arise, e.g., when agents

are aware that, based on an empirical specification analysis, they choose the reference

model from a set of statistically close models. In our setting where agents have to learn

the unobservable drift of the dividend dynamics, we believe that taking into account

such specification doubts is an important modeling device. We introduce the reference

model in Section 2.1.

2. A set of multiple likelihoods on the dynamics of the unobservable dividend drift. We use

these multiple likelihoods to compute a set of multiple ahead beliefs about the unknown

dividend drift dynamics. This set of multiple ahead beliefs represents the investor’s am-

biguity on the dynamic structure of the unobservable expected dividend growth rate.

The set of multiple likelihoods can also be interpreted as a description of a class of al-

ternative specifications to the reference model, which are statistically close and therefore

difficult to distinguish from it. We introduce the set of multiple likelihoods in Sections

2.2 and 2.3.

3. An intertemporal Max-Min expected utility optimization problem.2 The Max-Min prob-

lem models the agents’ optimal behavior given their attitudes to risk and ambiguity and

under the relevant set of multiple ahead beliefs. We formulate the optimization problem

in Section 2.4.

Given the three key ingredients above, a set of standard market clearing conditions on good

and financial markets closes the model and allows to determine equilibrium asset prices under

learning and ambiguity aversion.

2.1. The Reference Model Dynamics

We consider a simple Lucas (1978) economy populated by CRRA investors with utility function

u (C, t) = e−δt C
1−γ

1− γ
,

2See also Gilboa and Schmeidler (1989), Chen and Epstein (2002), Epstein and Schneider (2003) and Knox
(2004).
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where γ < 1. The representative investor has a parametric reference model that describes in

an approximate way the dynamics of dividends D

dD

D
= Et

(
dD

D

)
+ σDdBD , (1)

where σD > 0 and Et

(
dD
D

)
is the unobservable drift of dividends at time t. Investors further

observe a noisy unbiased signal e on Et (dD/D) with dynamics

de = Et

(
dD

D

)
+ σedBe , (2)

where σe > 0. The standard Brownian motions BD and Be are independent.

The parametric reference model to describe the dividend drift dynamics is a rough approx-

imation of the reality. It implies a simple geometric Brownian motion dynamics for dividends

with a constant drift that can take one of a finite number of candidate values.

Assumption 1 The reference model dividend drift specification is given by

1
dt

Et (dD/D) = θ , (3)

for all t ≥ 0, where θ ∈ Θ := {θ1, θ2, ..., θn} and θ1 < θ2 < ... < θn. The representative

investor has some prior beliefs (π̂1, .., π̂n) at time t = 0 on the validity of the candidate drift

values θ1, ..., θn.

In a single-likelihood Bayesian framework, Assumption 1 is a correct specification assumption

on the prevailing dividend dynamics. It implies a parametric single-likelihood model for the

dividend dynamics, where the specific value of the parameter θ is unknown. The only relevant

statistical uncertainty about the dynamics in equation (1) is parametric. Therefore, in a

single-likelihood Bayesian setting, a standard filtering process leads to asymptotic learning of

the unknown constant dividend drift θ in the class Θ of candidate drift values. Then, the

equilibrium asset returns dynamics can be determined and the pricing impact of learning can

be studied analytically.
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In the next sections, we weaken Assumption 1 to account for specification doubts about the

unobservable dividend drift dynamics in equations (1) and (3). In contrast to Veronesi (1999,

2000) and Cagetti et al. (2002), we explicitly avoid switching regimes in Assumption 1. Our

setting can be extended to include also changes in regime. However, to compare the findings

obtained in our setting of ambiguity aversion to those under Bayesian learning when complete

asymptotic learning is possible, we confine ourselves to Assumption 1. Reference models with

changes in regimes are left as a topic for future research.

2.2. Multiple Likelihoods

In reality, a correct specification hypothesis of the type given in Assumption 1 is very restric-

tive. It assumes that even when dividend drifts are unobservable the investor can identify a

parametric model that is able to describe exactly, in a probabilistic sense, the relevant divi-

dend drift dynamics. More realistically, we propose a model of learning where economic agents

have some specification doubts about the given parametric reference model. Such a viewpoint

is motivated by considering that any empirical specification analysis provides a statistically

preferred model only after having implicitly rejected several alternative specifications that are

statistically close to it. Even if such alternative specifications to the reference model are statis-

tically close, it is well possible that they can quantitatively and qualitatively affect the optimal

portfolio policies derived under the reference model’s assumptions.3 To avoid the negative

effects of a misspecification on the optimal policies derived from the reference model, it is de-

sirable to work with consumption/investment optimal policies that account explicitly for the

possibility of model misspecifications. This approach should ensure some degree of robustness

of the optimal policies against misspecifications of the reference model dynamics.

We address explicitly specification doubts by modelling agents’ beliefs, conditional on any

possible reference model drift θ, by means of a set of multiple likelihoods. Multiplicity of

likelihoods reflects agents ambiguity on the reference model specification. To define these sets,
3The importance of this issue has been early recognized, e.g., by Huber (1981) in his influential introduction

to the theory of robust statistics and has been further developed, e.g., in econometrics to motivate several
robust procedures for time series models. See Krishnakumar and Ronchetti (1997), Sakata and White (1999),
Ronchetti and Trojani (2001), Mancini et al. (2003), Gagliardini et al. (2004) and Ortelli and Trojani (2004)
for some recent work in the field.
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we restrict ourselves to absolutely continuous misspecifications of the geometric Brownian

motion processes in equations (1) and (3). By Girsanov’s theorem, the likelihoods implied by

absolutely continuous probability measures can be equivalently described by a corresponding

set of drift changes in the model dynamics in equations (1) and (3).

Let h (θ) σD be an adapted process describing the dividend drift change implied by such a

likelihood function. We assume that h (θ) ∈ Ξ (θ), where Ξ (θ) is a suitable set of standardized

change of drift processes that will be defined more precisely later on (see Assumption 3 below).

Under such a likelihood, the prevailing dividend dynamics are

dD

D
= E

h(θ)
t

(
dD

D

)
+ σDdBD , (4)

with signal dynamics

de = E
h(θ)
t

(
dD

D

)
+ σedBe . (5)

In our model, ambiguity on D’s dynamic arises as soon as for some θ ∈ Θ the set Ξ (θ) contains

a drift distortion process h (θ) different from the zero process. In this case, several possible

functional forms of the drift in equation (4) are considered, together with the reference model

dynamics in equations (1) and (3). The set of possible drifts implied by the multiple likelihoods

in Ξ (θ) represents, in a more realistic way, the relevant beliefs of an agent who does not trust

completely the reference model dynamics.

2.3. A Specific Set of Multiple Likelihoods

Compared with the single likelihood specification in a Bayesian context, an agent with multiple

likelihood beliefs can assume a weaker form of correct specification. In a natural way, the

agent can assume that, in the relevant set of multiple likelihoods, at least one likelihood

fits the unknown dividend drift dynamics. Therefore, we replace Assumption 1 by a weaker

assumption.
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Assumption 2 The ”true” dividend drift specification is given by

1
dt

E
h(θ)
t

(
dD

D

)
= θ + h (θ, t) σD , (6)

for all t ≥ 0, some θ ∈ Θ and some h (θ) ∈ Ξ (θ). The representative investor has some beliefs

(π̂1, .., π̂n) at time t = 0 on the a priori plausibility of the different sets Ξ (θ1) , ..,Ξ (θn) of

candidate drift processes.

Under Assumption 2, the representative agent recognizes that a whole class Ξ (θ) of stan-

dardized drift changes is statistically hardly distinguishable from a zero drift change, i.e.,

from the reference model dynamics with drift θ given in Assumption 1. We note that a pure

Bayesian assumption arises as soon as Ξ (θ) = {0} for all θ ∈ Θ. Then, agents would be

concerned only with the pure noisyness of a signal about the parameter value θ. Therefore, the

distinction between ambiguity and noisyness is absent in a pure Bayesian setting. However,

when Ξ (θ) 6= {0}, Assumption 2 implies a whole set of likelihoods that represent absolutely

continuous misspecifications of the distributions under the reference model.

The size of the set Ξ (θ) describes the degree of ambiguity associated with any possible

reference model dividend drift θ. The broader the set Ξ (θ), the more ambiguous are the

signals about a specific dividend drift θ + h (θ) σD ∈ Ξ (θ). Such ambiguity reflects the fact

that there are aspects of the unobservable dividend drift dynamics which agents think are

hardly possible, or even impossible, to ever know. For example, the representative agent is

aware of the problem that identifying the exact functional form for a possible mean reversion in

the dividend drift dynamics is empirically a virtually infeasible task.4 Accordingly, the agent

tries to understand only a limited number of features on the dividend dynamics.

In our setting, we represent this limitation by a learning model about the relevant neigh-

borhood Ξ (θ), rather than by a learning process on the specific form of h (θ). Therefore, the

learning problem under multiple beliefs becomes one of learning the approximate features of

the underlying dividend dynamics across a class of model neighborhoods Ξ (θ), θ ∈ Θ. Hence,
4Shepard and Harvey (1990) show than in finite samples, it is very difficult to distinguish between a purely

iid process and one which incorporates a small persistent component.
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the representative agent has ambiguity about some local dynamic properties of equity returns,

conditional on some ambiguous local macroeconomic conditions, and tries to infer some more

global characteristics of asset returns in dependence of such ambiguous macroeconomic states.

We could also easily model ambiguity about the set of initial priors (π̂1, .., π̂n) by introducing a

corresponding set of multiple initial priors. However, the main implications from our analysis

would not change, because the choice of the initial prior only affects the initial condition in the

relevant dynamics of Π. Finally, since the size of the set Ξ (θ) can depend on the specific value

of θ, our setting allows also for degrees of ambiguity that depend on economic conditions. This

feature takes into account heterogenous degrees of ambiguity aversion about the processes for

the relevant state variable.

We next specify the set Ξ (θ) of multiple likelihoods relevant for our setting. From a general

perspective, Ξ (θ) should satisfy the following requirement:

• The set Ξ (θ) contains all likelihood specifications that are statistically close (in some

appropriate statistical measure of model discrepancy) to the one implied by the reference

model dynamics.

This requirement makes more precise the general principle that Ξ (θ) should contain only

models for which agents have some well motivated specification doubt, relatively to the given

reference model dynamics. The relevant reference model misspecifications are constrained to

be small and are thus hardly statistically detectable. Moreover, the set Ξ (θ) contains any

misspecification which is statistically close to the reference model. Therefore, this property

defines a whole neighborhood of slight but otherwise arbitrary misspecifications of the reference

model distributions. This is the starting point to develop optimal consumption/investment

policies that are robust to any possible small misspecification of the given state dynamics. A

set of multiple likelihoods satisfying the above requirement is given below.

Assumption 3 For any θ ∈ Θ we define Ξ (θ) by:

Ξ (θ) :=
{

h (θ) :
1
2
h2 (θ, t) ≤ η (θ) for all t ≥ 0

}
, (7)

14



where η (θ1) , .., η (θn) ≥ 0. Moreover,

(i) sup
h(θi)∈Ξ(θi)

h (θi) < sup
h(θj)∈Ξ(θj)

h (θj) , (ii) inf
h(θi)∈Ξ(θi)

h (θi) < inf
h(θj)∈Ξ(θj)

h (θj) , (8)

for any i < j.

Under Assumption 3 the discrepancy between the reference model distributions under a

drift θ and those under any model implied by a drift distortion process h (θ) ∈ Ξ (θ) can

be constrained to be statistically small. Anderson, Hansen and Sargent (2003) show that the

relative entropy between the reference model probability law and the one under any alternative

candidate specifications can be constrained to be small. Relative entropy is a statistical measure

of model discrepancy that can be used to bound model detection error probabilities to imply

a relatively high probability of an error in model choice. In this sense, a moderate bound

η (θ) implies for any likelihood in the set Ξ (θ) a small statistical discrepancy relative to a

reference model dynamics with drift θ. Moreover, since definition (7) does not make any specific

assumption on a parametric structure for h (θ), the neighborhood Ξ (θ) is nonparametric and

contains all likelihood models that are compatible with the bound defined by (7).

Finally, condition (8) is a monotonicity condition for the correspondence θ 7−→ Ξ (θ). It

restricts the admissible set of multiple likelihoods to imply best and worst case dividend drifts

of any admissible model neighborhood Ξ (θ) to be ranked in the same way as the reference

model drifts. Condition (8) is a partial identifiability condition on the set Ξ (θ) of multiple

likelihoods, because it does not exclude the case where an admissible dividend drift process

is an element at the same time of two different candidate model neighborhoods. A stronger

identifiability condition on a multiple likelihoods learning model would require that the classes

of drift processes for D implied by two different neighborhoods Ξ (θi) and Ξ (θj), i 6= j, are

disjoint.

Assumption 4 The sets of Ξ (θ1) , ..,Ξ (θn) of candidate drift processes are such that

θi + σDh (θi) 6= θj + σDh (θj) (9)
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for any h (θi) ∈ Ξ (θi) and h (θj) ∈ Ξ (θj) such that i 6= j.

Assumption 4 means that economic agents have ambiguity only about candidate drifts

within neighborhoods, but not between neighborhoods. In other words, different macroeco-

nomic conditions can be mapped into disjoint sets of likely drift dynamics. In contrast to

that, condition (8) incorporates situations where the same drift process can be realistically

generated under different macroeconomic conditions. Such a situation arises, e.g., when the

degree of ambiguity η (θ) in the economy is high relatively to the distance between reference

model drifts θ.

2.4. Ambiguity Aversion and Intertemporal Max-Min Expected Utility

Let F (t) denote the information available to investors at time t. This contains all possible

realizations of dividends and signals. Investors learn about the dividend dynamics (4) by

considering explicitly the ambiguity represented by the sets of multiple likelihoods Ξ (θ) in

Assumption 3, given the prior probabilities (π̂1, .., π̂n) at time 0. This learning mechanism will

require the computation of “likelihood by likelihood” Bayesian ahead beliefs for E
h(θ)
t

(
dD
D

)
as

functions of any likelihood model h (θ) ∈ Ξ (θ) and given the filtration {F (t)}; see also Epstein

and Schneider (2002) and Miao (2001).

Let P be the price of a risky asset in the economy, r be the instantaneous interest rate

and η (θ) be the function that describes the amount of ambiguity relevant to investors in

dependence of a reference model drift θ. The investor determines optimal consumption and

investment plans C (t) and w (t). She solves the continuous time intertemporal Max-Min

expected utility optimization problem

(P ) : max
C,w

inf
h(θ)

E

[∫ ∞

0
u (C, s) ds

∣∣∣∣F (0)
]

, (10)
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subject to the dividend and wealth dynamics

dD = (θ + h (θ) σD) Ddt + σDDdBD

dW = W

[
w

(
dP + Ddt

P

)
+ (1− w) rdt

]
− Cdt ,

where for any θ ∈ Θ the standardized drift distortion is such that h (θ) ∈ Ξ (θ) and Assumption

3 holds.

An equilibrium in our economy is a vector of processes (C (t) , w (t) , P (t) , r (t) , h (θ, t))

such that the optimization problem (P ) is solved and markets clear, i.e., w (t) = 1 and C (t) =

D (t).

3. Multiple Filtering Dynamics under Ambiguity

Learning under ambiguity consists in constructing a set of standard Bayesian ahead beliefs

for E
h(θ)
t

(
dD
D

)
in dependence of any likelihood h (θ) ∈ Ξ (θ). Given such multiple beliefs, the

solution of problem (P) in equation (10) can be found by solving an equivalent full information

problem, where the dividend drift dynamics are defined in terms of the filtration {F (t)}
generated by dividends and signals. In this section, we study the dynamic properties of such

Bayesian ahead beliefs under different hypotheses on the relation between the underlying true

dividend drift dynamics and any corresponding Bayesian prediction for E
h(θ)
t

(
dD
D

)
, where

h (θ) ∈ Ξ (θ).

3.1. Bayesian Learning ”Likelihood by Likelihood”

For a given admissible likelihood model h (θ) ∈ Ξ (θ) let πi (t) be investors belief that the drift

rate is θi + h (θi) σD, conditionally on past dividend and signal realizations:

πi (t) = Pr
(

1
dt

E
h(θ)
t

(
dD

D

)
= θi + h (θi) σD

∣∣∣∣F (t)
)

.
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The distribution Π (t) := (π1 (t) , .., πn (t)) summarizes investors beliefs at time t, under a given

likelihood h (θ) ∈ Ξ (θ). Given such beliefs, investors can compute the expected dividend drift

at time t:
1
dt

Eh(θ)

(
dD

D

∣∣∣∣F (t)
)

=
n∑

i=1

(θi + h (θi) σD) πi (t) = mθ,h , (11)

where

mθ,h = mθ + mh(θ) , mθ =
n∑

i=1

θiπi (t) , mh(θ) =
n∑

i=1

h (θi) πi (t) σD . (12)

The filtering equations implied by a given likelihood h (θ) are given next.

Lemma 1 Suppose that at time zero investors beliefs are represented by the prior probabilities

π̂1, .., π̂n. Under a likelihood h (θ) ∈ Ξ (θ) it follows:

1. The dynamics of the optimal filtering probabilities vector π1, .., πn is given by

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
; i = 1, .., n , (13)

where

dB̃h
D = kD

(
dD

D
−mθ,hdt

)
, dB̃h

e = ke (de−mθ,hdt) ,

kD = 1/σD, ke = 1/σe. In this equation
(
B̃h

D, B̃h
e

)
is a standard Brownian motion in

R2, under the likelihood h (θ) ∈ Ξ (θ) and with respect to the filtration {F (t)}.

2. If πi (0) > 0, for every finite t it follows

Pr (πi (t) > 0) = 1

for any probability Pr equivalent to the one under the reference model.

The dynamics (13) describe the optimal filtering probabilities of an investor using an ad-

missible likelihood model h (θ) ∈ Ξ (θ) for prediction purposes. Under such a likelihood, the

filtered error process
(
B̃h

D, B̃h
e

)
is a Brownian motion with respect to {F (t)}. dB̃h

D and dB̃h
e

are the normalized innovations of dividend and signal realizations under the likelihood h (θ).
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They enter in (13) normalized by the corresponding precision parameters kD, ke. Therefore,

signal innovations have a higher impact than dividend innovations in agents posterior distribu-

tions when they are more precise, i.e., when ke > kd. This intuition is the same as in Veronesi

(2000). The loading factor of kDdB̃h
D + kedB̃h

e in (13) depends on the likelihood h (θ) used to

build a prediction belief out of the set Ξ (θ) of admissible likelihoods. Therefore, the choice of

the likelihood affects the subjective variability of the posterior probabilities Π over time. In

the special case where the likelihood h (θ) ∈ Ξ (θ) is such that h (θ1) = ... = h (θn), i.e., when

perceived reference model misspecifications are θ−independent, this effect disappears.

3.2. Bayesian Learning and Model Misspecification

To gain more intuition about the implications of the above results, we express (13) in terms of

the original Brownian motions BD and Be. This exercise yields the description of the process

dπi from the perspective of an outside observer knowing exactly the underlying dynamics of

dividends, i.e., knowing the true reference model dividend drift θ and the true local distortion,

hDσD, that define the underlying dividend drift process. We can then gauge how, in a standard

Bayesian learning process, a likelihood misspecification affects the dispersion and the dynamics

of the perceived beliefs.

Corollary 1 Let h (θ) ∈ Ξ (θ) be an admissible likelihood. If the true dividend dynamics are

given by a drift distortion process hD then

dπi = πi (θi + h (θi) σD −mθ,h) [k (θ + hDσD −mθ,h) dt + kDdBD + kedBe] , (14)

where k = k2
D+k2

e . In particular, if the likelihood model h (θ) is correctly specified in a standard

Bayesian sense, i.e., if θ + hDσD = θl + h (θl) σD for some θl ∈ Θ, then

dπi = πi (θi + h (θi)σD −mθ,h) [k (θ + h (θ) σD −mθ,h) dt + kDdBD + kedBe] . (15)

Expressions (14), (15) give the dynamics of the posterior probability πi under different

assumptions on the correct specification of the likelihood h (θ). Equation (15) gives the learning
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dynamics for the case where the likelihood model h (θ) is correctly specified. If θl defines the

”true” dividend drift θl + h (θl) σD, then the drift of πl in the dynamics (15) is always positive

and it is quadratically increasing in the distance between the true drift θ + h (θ) σD and the

posterior expectation mθ,h. This features tends to increase the posterior probability πl over

time and to narrow the distance between the true drift and the posterior expectation mθ,h. As

this happens, the variance of dπl/πl shrinks so that eventually the probability πl will converge

to 1 and agents will fully learn the dynamic structure of the dividend drift process θl+h (θl) σD.

This argument gives the next corollary.

Corollary 2 If the likelihood model h (θ) is correctly specified, i.e., if θ+hDσD = θl+h (θl) σD

for some θl ∈ Θ, then πl →
t→∞ 1, almost surely.

Under a correctly specified likelihood model h (θ) ∈ Ξ (θ) agents will thus learn asymptot-

ically the correct process θl + h (θl) σD for the underlying dividend drift. Intuitively, the same

cannot be expected generally for a Bayesian learning process based on a misspecified likelihood

h (θ). To highlight the basic point we can study the learning dynamics for the simplified setting

with only two possible reference model dividend drift values. Equation (14) gives the relevant

learning dynamics for the case where the likelihood is misspecified.

Example 1 Consider the following simplified model structure:

Θ = {θ1, θ2} , h (θ1) = h (θ2) = 0 .

Let θ1 + hDσD be the true underlying dividend drift process. Then, equation (1) implies the

learning dynamics:

dπ1 = π1 (θ1 −mθ,h) [k (θ1 + hDσD −mh,θ) dt + kDdBD + kedBe]

= π1 (1− π1) (θ1 − θ2) [k (θ1 + hDσD −mh,θ) dt + kDdBD + kedBe] . (16)
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From Example 1, we see immediately that if

θ1 + hDσD < mθ,h (θ1 + hDσD > mθ,h) ,

then π1 → 1 (π1 → 0) almost surely as T →∞. Under these conditions investors will therefore

”learn” asymptotically a constant dividend drift process θ1 (θ2) even if the true one θ1 +hDσD

is possibly time varying in a nontrivial and unpredictable way. In particular, this remark

implies that we will always have π1 → 1 (π1 → 0) as T → ∞ for all settings where the true

drift θ1 + hDσD is uniformly lower than θ1 (higher than θ2). In the more general case where

θ1 + hDσD is between θ1 and θ2 both outcomes are possible (i.e., either π1 → 1 or π1 → 0).

Figure 1 illustrates this point.

Insert Figure 1 about here

We plot two different trajectories of π1 under a dividend drift process such that

θ1 + hD (t) σD =





(θ1 + θ2) /2 + a t ∈ [k, k + 1) ,

(θ1 + θ2) /2− a t ∈ [k + 1, k + 2)
, (17)

where k ∈ N is even. The process (17) describes a simple deterministic and piecewise constant

dividend drift misspecification. More complex (possibly nonparametric) misspecifications can

be also considered. However, the main message of Figure 1 would not change.

Figure 1 shows that under a dividend drift process (17) a Bayesian investor could converge

to infer asymptotically both θ1 and θ2 as the dividend drift process that generated asset prices,

even if the true drift process is always strictly between θ1 and θ2. In Panel (A), we plot two

possible posterior probabilities trajectories when no shift arises (a = 0). In Panel (B), we

add two alternative trajectories implied by a = 0.015, when a yearly deterministic shift in the

underlying parameters is present. The only attainable stationary points in the dynamics (16)

are the points π1 = 1 and π1 = 0. Any value π1 ∈ (0, 1) such that

θ1 + hDσD = mh,θ
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makes the drift, but not the diffusion, equal to zero in the dynamics (16). Consequently, π1 will

never stabilize asymptotically in regions such that mh,θ ≈ θ1 +hDσD. An asymptotic behavior

such that mh,θ ≈ θ1 + hDσD would be ideally more natural, if the goal is to approximate

adequately θ1 +hDσD by means of mh,θ, even under a misspecified likelihood. However, under

the given misspecified likelihood it will never arise. Richer, but qualitatively similar, patterns

emerge when the set of possible states of the economy is enlarged.

Figure 2 presents the prevailing posterior probabilities dynamics in a setting where divi-

dends indeed follow a geometric Brownian motion and the given learning model is misspecified

in a very simplified way.

Insert Figure 2 about here

In that case, we observe convergence of different posterior probabilities to 1 (Panel (A) and

(C)) and, in some cases, a dynamics that does not converge over the given time horizon (Panel

(B)).

The above discussion highlights in a simple setting that under a possibly slightly misspec-

ified likelihood a Bayesian investor will not be able to evaluate exactly the utility of a con-

sumption/investment strategy, because she will never identify exactly the underlying dividend

drift process, even asymptotically. Even if the amount of misspecification is moderate, it is

then highly possible that it affects significantly the realized utility of optimal policies under the

reference model’s assumptions. We therefore work with a setting of learning where investors ex-

plicitly exhibit some well founded specification doubts about the given reference model. These

misspecification doubts are described by means of our sets Ξ (θ) of indistinguishable multiple

likelihoods for the dividend drift dynamics. Such sets of multiple likelihoods depict investor’s

ambiguity about all finite dimensional distributions of dividends.

3.3. Learning under Ambiguity

Under a likelihood misspecification a standard Bayesian learning process does not generally

lead to learn the correct dividend drift dynamics. Moreover, candidate drift distortions h (θ) ∈
Ξ (θ) are hardly statistically distinguishable from the reference model drift dynamics using

22



observations on D and e. Which learning behavior should agents adopt in this case? Since

agents are not particularly comfortable with a specific element of Ξ (θ), they base their beliefs

on the whole set of likelihoods Ξ (θ). By Corollary 1 this approach generates a whole class P
of indistinguishable dynamic dividend drift prediction processes given by

P = {mθ,h : h (θ) ∈ Ξ (θ)} ,

where the dynamics of any of the corresponding posterior probabilities π1, .., πn under the

likelihood h (θ) is given by

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
, i = 1, .., n ,

with the Brownian motions B̃h
D, B̃h

e , with respect to the filtration {F (t)} and under the like-

lihood h (θ). The set P of dynamic dividend drift predictions represents investor’s ambiguity

on the true dividend drift process, conditional on the available information generated by div-

idends and signals. As expected, the larger the size of the set of likelihoods Ξ (θ) (i.e., the

ambiguity about the dividend dynamics) the larger the size of the set P of dynamic dividend

drift prediction processes.

Using the set P of dynamic dividend drift predictions, the continuous time optimization

problem (10) can be written as a full information problem where the relevant dynamics are

defined in terms of the filtration {F (t)}. The relevant problem reads

(P ) : max
C,w

inf
h(θ)

E

[∫ ∞

0
u (C, s) ds

∣∣∣∣F (0)
]

(18)

subject to the dividend and wealth dynamics

dD = mθ,hDdt + σDDdB̃h
D , (19)

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
, (20)

dW = W

[
w

(
dP + Ddt

P

)
+ (1− w) rdt

]
− Cdt (21)
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where for any θ ∈ Θ the standardized drift distortion is such that h (θ) ∈ Ξ (θ) and under

Assumption 3. In contrast to a standard (single-likelihood) Bayesian setting of learning, in

(18) investors are requested to select optimally both the forecast procedure for the unknown

dividend drift and the associated consumption/investment policies.

3.4. Intertemporal Max-Min Expected Utility and Asset Prices

In equilibrium, the optimization problem (18) of our representative agent reads:

(P ) : J (Π, D) = inf
h(θ)

E

[∫ ∞

0
e−δtD1−γ

t dt

∣∣∣∣F (0)
]

, (22)

subject to the dynamics

dD = mθ,hDdt + σDDdB̃h
D , (23)

dπi = πi (θi + h (θi) σD −mθ,h)
(
kDdB̃h

D + kedB̃h
e

)
, (24)

where for any θ ∈ Θ the standardized drift distortion is such that h (θ) ∈ Ξ (θ) and under

Assumption 3. The solution of this problem is presented in the next proposition.

Proposition 1 Let θ̂i := δ + (γ − 1) θi + γ (1− γ) σ2
D
2 and assume that

θ̂i + (1− γ)
√

2η (θi)σD > 0 , i = 1, .., n . (25)

Then, we have:

1. The normalized misspecification h∗ (θ) solving problem (22) is given by

h∗ (θi) = −
√

2η (θi) , i = 1, .., n . (26)

2. The value function J to problem (22) is given by

J (Π, D) = D1−γ
n∑

i=1

πiCi , (27)
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where

Ci =
1

θ̂i + (1− γ)
√

2η (θi)σD

, i = 1, .., n . (28)

3. The equilibrium price function P (Π, D) for the risky asset is given by:

P (Π, D) = D

n∑

i=1

πiCi (29)

4. The equilibrium interest rate r is:

r = δ + γmθ,h∗ − 1
2
γ (γ + 1)σ2

D , (30)

where

mθ,h∗ = mθ + mh∗(θ) , mh∗(θ) =
n∑

i=1

h∗ (θi) πiσD . (31)

In Proposition 1, each constant of the form (28) represents investors expectation of discounted

lifetime dividends, conditional on a constant dividend drift process θi−
√

2η (θi)σD and normal-

ized to make it independent of the current level of dividends. The drift process θi−
√

2η (θi)σD,

is the worst case drift misspecification θi+h∗ (θi) σD selected from the neighborhood Ξ (θi). The

discounting factor is the intertemporal marginal substitution rate of aggregate consumption,

given by:
uc (D (t) , t)
uc (D (s) , s)

= e−δ(t−s)

(
D (t)
D (s)

)−γ

. (32)

More specifically, we thus have:

Ci = Eh∗(θi)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

]
=

1
D (s)

Eh∗(θi)

[∫ ∞

s

uc (D (t) , t)
uc (D (s) , s)

D (t) dt

]
,

(33)

where Eh∗(θi) [·] denotes expectations under a geometric Brownian motion process for D with

drift θi −
√

2η (θi)σD. A high Ci implies that investors are willing to pay a high price for the

ambiguous state Ξ (θi). Since the state is not observable, they weight each Ci by the posterior

probability πi to get the price (29) of the risky asset under learning and ambiguity aversion.

We remark that Ci is a function of both investors’ ambiguity aversion, via the parameter η (θi),
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and investor’s relative risk aversion γ. To make this dependence more explicit, it is easy to see

that (33) can be equivalently written as:

Ci =
1

D (s)
E

[∫ ∞

s
e−(1−γ)

√
2η(θi)σD(t−s) uc (D (t) , t)

uc (D (s) , s)
D (t) dt|θ = θi

]

=
1

D (s)
E

[∫ ∞

s
e
−
h
δ+(1−γ)

√
2η(θi)σD

i
(t−s)

(
D (t)
D (s)

)1−γ

dt|θ = θi

]
, (34)

where E [·|θ = θi] denotes reference model expectations conditional on a constant drift θ = θi.

Therefore, the impact of ambiguity aversion on the price of the ambiguous state Ξ (θi) is

equivalent to the one implied by a corrected time preference rate

δ −→ δ + (1− γ)
√

2η (θi)σD (35)

under the reference model dynamics. The adjustment (35) depends on the amount of ambiguity

of the ambiguous state Ξ (θi), relative risk aversion γ and dividend growth volatility σD. Cagetti

et al. (2002) observe that ambiguity aversion decreases the aggregate capital stock in way that

is similar to the effect of an increased subjective discount rate. The adjustment (35) suggests

that their finding can be rationalized analytically in our setting. However, notice that in our

general case of an heterogeneous degree of ambiguity η (θ) the final effect of ambiguity on

equity prices cannot be mapped into an adjustment of one single time preference rate. The

above remarks imply directly the next result.

Corollary 3 The following statements hold:

1. The price of any ambiguous state Ξ (θ) is a decreasing function in the degree of ambiguity

η (θ) if and only if γ < 1. In such a case Ci is a convex function of η (θi) which is

uniformly more convex for smaller risk aversion γ.

2. The price of any ambiguous state Ξ (θ) is an increasing function in the degree of ambiguity

η (θ) if and only if γ > 1,

3. The price of any ambiguous state Ξ (θ) is independent of the degree of ambiguity η (θ)

for γ = 1.
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From Corollary 3, the marginal relative price of ambiguity is negative if and only if relative

risk aversion γ is less than 1. In the opposite case, if γ > 1, one obtains the somewhat

counterintuitive implication5 that the price of an ambiguous state is higher than the one of an

unambiguous one. This is illustrated in Figure 3 where we plot Ci as a function of η (θi) for

different risk aversion levels γ = {0.1, 0.5, 1, 3, 5}.

Insert Figure 3 about here

As stated, for γ < 1 function Ci is a decreasing convex function of η (θi). The convexity of such

function is higher for lower risk aversion parameters. For γ > 1 function Ci is an increasing

function of η (θi) with can be both locally convex and locally concave over some different zones

of the parameter space (see, e.g., the plot for γ = 3).

To understand this finding, recall that in the determination of Ci the representative investor

discounts future dividends trough their marginal utility (32). Therefore, in equilibrium a

higher dividend growth rate implies a higher expected future consumption growth and a higher

discount rate. Since the effect on the discount rate dominates for γ > 1, a lower expected

dividend growth (due to a conservative concern for ambiguity) implies a lower discount rate and

a higher price for ambiguous states. In other words, investors with high relative risk aversion

increase their hedging demand for equity when they expect low consumption growth. Under

ambiguity aversion, such highly risk averse investors tend to understate actual consumption

growth and increase further their hedging demand for risky assets. Since the supply of the

risky asset is fixed and the riskless bond is in zero net supply, such an excess demand increases

the price of the risky asset relative to dividends. Therefore, in the presence of intertemporal

hedging against bad consumption news, the equilibrium impact of ambiguity aversion can be

different from the one expected under a simple constant opportunity set setting as, e.g., in

Maenhout (2004) or Trojani and Vanini (2004).

There is some recent work in the literature on the question of which are typical risk aversion

parameters of agents that are confronted with an ambiguous environment. Suggestive in this

context is the evidence collected by the experimental work of Wakker and Deneffe (1996;
5Relatively, e.g., to the basic intuition provided by the standard (static) Ellsberg (1961) paradox.
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e.g., the graphs on p. 1143), who estimate a virtually linear utility function with a utilities

elicitation procedure that is robust to the presence of ambiguity. In the same experiments,

the utility functions estimated by procedures that are not robust to the presence of ambiguity

were clearly concave. These findings suggest that the high risk aversions estimated in some

experimental research can be also due to some pronounced deviations from expected utility.

In our setting, such deviation from expected utility arises from Max-Min expected utility

preferences reflecting ambiguity aversion. Therefore, excess returns will incorporate both risk

aversion and ambiguity aversion in equilibrium. For γ > 1, the equilibrium impact of ambiguity

is dominated by the effect on the equilibrium stochastic discount factor. As we show below, this

implies that settings of learning and ambiguity aversion with high risk aversions will deliver low

(negative) equity premia and low volatilities, together with high and highly variable interest

rates. That is, imposing high risk aversions worsens the well known asset pricing puzzles when

learning under ambiguity aversion is considered. Therefore, we focus in the sequel on settings

with moderate risk aversions.

Assumption 5 The representative agent in the model has a relative risk aversion parameter

γ < 1.

Since we adopted a setting with power utility of consumption, Assumption 5 is equivalent

to assuming an elasticity of intertemporal substitution (EIS) 1/γ > 1. Therefore, we focus

in Assumption 5 on EIS larger than one. Such interpretation is perfectly consistent with the

idea that excess returns are going to reflect mainly some premium for ambiguity, rather than

a premium for risk. Hansen and Singleton (1982) and Attanasio and Weber (1989) estimated

the EIS to be well above one. Hall (1988) considered aggregation effects and estimated an

EIS well below one using aggregate consumption data. Similar low estimates using aggregate

consumption variables are obtained in Campbell (1999). Recent empirical work focusing on

the consumption of households participating in the stock or the bond market has suggested

that such investors have much larger EIS than individuals which do not hold stocks or bonds.

For instance, Vissing-Jorgensen (2002) estimates an EIS well above one for individuals holding

portfolios of stocks and bonds in Euler equations for treasury bills. Attanasio and Vissing-

Jorgensen (2003) also estimate large EIS for stockholders when using Euler equations for
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treasury bills and after-tax returns. Attanasio et al. (2002) find with UK data EIS larger than

one for Euler equations including treasury bills and equity returns in an econometric model

where ownership probabilities are also estimated. Finally, Aı̈t-Sahalia et al. (2004) estimate

EIS above one using Euler equations for treasury bills where consumption is measured by

consumption of luxury goods. Typically, in such empirical studies the EIS estimated for US

data in Euler equations including equity returns are lower. However, as noted for instance

by Vissing-Jorgensen (2002, p. 840), Attanasio and Vissing-Jorgensen (2003, p. 387) and

Aı̈t-Sahalia et al. (2004, p. 22) such a finding is mainly due to the low predictive power of the

instruments for equity returns, which leads to poor finite sample properties of the estimators.

The results in the above literature are based on models that do not explicitly account for

fluctuating economic uncertainty. Recently, Bansal and Yaron (2004) argued in a setting with

Epstein and Zin (1989) preferences and fluctuating uncertainty that a model with EIS above one

can explain better key asset markets phenomena than a model with EIS below one. Moreover,

they showed that neglecting fluctuating economic uncertainty leads to a severe downward bias

in estimates of the EIS using standard Euler equations. In our setting fluctuating economic

uncertainty arises endogenously, via the learning process of our representative agent. Therefore,

downward biases in EIS estimates similar to those noted in Bansal and Yaron (2004) will arise.

We note that, in our setting of learning under ambiguity, the downward biases in the EIS

estimates are particularly large for Euler equations using equity returns; see Section 4.4 below.

3.4.1. Price Dividend Ratios

Under Assumption 5 we have from Proposition 1 a few nice and simple implications for the

behavior of the price dividend ratio P/D in the model. They are summarized by the next

result.

Corollary 4 Under Assumption 5 we have the following:

a) The price dividend ratio P/D is a decreasing convex function of the amount of ambiguity

(η (θ1) , .., η (θn)) in the economy. Moreover, P/D is a uniformly more convex function

for lower risk aversion γ.
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b) The price dividend ratio P/D is an increasing convex function of the reference model

expected growth rates (θ1, .., θn) in the economy.

c) A mean preserving spread Π̂ of Π implies

P̂ /D > P/D ,

that is, the price dividend ratio P/D is increasing in the amount of uncertainty of the

economy.

Finding a) in Corollary 4 is a direct implication of (29) and (34). The convexity statement

follows from the convexity of the price function Ci in (28) as a function of the ambiguity

parameter η (θi). Findings b) and c) follow from the fact that under Assumption 5 the constants

Ci in (29) are increasing convex functions of the reference model expected growth rate of the

economy. Under Assumption 5, the impact of a higher ambiguity on price dividend ratios

(Finding a)) has a different sign than the one of a higher uncertainty in the economy (Finding

b)). This is a distinct prediction of ambiguity aversion. Moreover, price dividend ratios are

increasing in the economy’s expected growth rate (Finding b)), a well documented empirical

fact.

Insert Figure 4 about here

In Figure 4, we plot in Panels (A) through (C) for different values of γ the price dividend ratio

as a function of the amount of ambiguity in the economy. For simplicity of exposition, we

assume in all graphs a homogenous degree of ambiguity η (θ) = η across the different states

θ1, .., θn. Panels (D) and (E) display the different distributions Π used to compute the price

dividend functions in Panels (A) through (C). Panel (F) presents a mean preserving spread of

the prior distribution plotted in Panel (D), while Panel (E) presents a mean preserving spread

of the prior distribution plotted in Panel (F). For any level of risk aversion γ, we see that

when going from Panel (A) to Panel (C) the price dividend ratio function is shifted upward,

according to the mean preserving spreads in Panel (F) and Panel (E). The shift is larger for

moderate risk aversions because of the higher convexity of the functions Ci as functions of

θi. Moreover, for any given prior distribution and level γ of risk aversion we see in Panel (A)
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through (C) that P/D is a convex decreasing function of the amount of ambiguity η (θ) in the

economy. The convexity of such function is higher for lower risk aversion parameters.

3.4.2. Equilibrium Interest Rate

In Proposition 1, the equilibrium interest rate is given by equation (30). The effect of learning

and ambiguity aversion on equilibrium interest rates is always negative, since r is a decreasing

convex function of (η (θ1) , .., η (θn)). The equilibrium interest rate rNA in the absence of

ambiguity is obtained by setting η (θ) = 0 for all θ ∈ Θ in (30),

rNA = δ + γmθ − 1
2
γ (γ + 1)σ2

D .

Hence,

r − rNA = γmh∗(θ)σD < 0 ⇐⇒ there exists θ ∈ Θ such that η (θ) > 0 .

Figure 5 illustrates the prevailing equilibrium interest rate under learning and ambiguity aver-

sion as a function of the size of ambiguity in the economy.

Insert Figure 5 about here

The decreasing convex pattern of interest rates as a function of the ambiguity size is more

pronounced for higher risk aversions. As expected, higher risk aversions increase equilibrium

interest rates via a lower EIS. The ambiguity parameter, instead, has a sizable reduction effect

on interest rates.

The case with no uncertainty about the true model neighborhood arises under a degenerate

distribution Π, implying mθ + mh∗(θ) = θl −
√

2η (θl)σD for some θl ∈ Θ and

r = δ + γ
(
θl −

√
2η (θl)σD

)
− 1

2
γ (γ + 1)σ2

D . (36)
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The interest rate (36) is the equilibrium interest rate of an economy with ambiguity but no

learning. Hence, even in the case of an asymptotic learning about Ξ (θl), the asset pricing

impact of ambiguity on interest rates does not disappear. Asymptotically the representative

agent still has ambiguity about which is the precise drift θl + h (θl) σD ∈ Ξ (θl) that generated

the dividend dynamics, even if she learned that the relevant model neighborhood is Ξ (θl).

Therefore, a premium for this residual ambiguity persists asymptotically.

For the case where the asymptotic distribution of Π is nondegenerate, the contribution

mh∗(θ) of ambiguity aversion to the level of interest rates is a weighted sum of the contributions

of ambiguity aversion under the single model neighborhoods Ξ (θ1),.., Ξ (θn) and is time varying.

The weights are given by the posterior probabilities Π. Settings of ambiguity aversion but no

learning have been studied in Sbuelz and Trojani (2002) under an exogenous time varying

degree of ambiguity. The key difference between such settings of ambiguity aversion and our

setting lies in the fact that the state variables dynamics driving the time varying ambiguity in

our economy is endogenously determined, because it depends itself on the degree of ambiguity

η (θ) in the economy.

3.4.3. Endogenous Learning Dynamics

The normalized worst case drift distortion (26) in Proposition 1 determines the description of

the endogenous relevant Π−dynamics under ambiguity aversion. We focus on a description

under the reference model dynamics from the perspective of an outside observer knowing:

a) that the dividend dynamics indeed satisfies the reference model in (1) and (2).

b) the specific value of the parameter θ.

Despite the fact that the true dynamics are those under the reference model misspecification

doubts coupled with ambiguity aversion force investors to follow a different learning dynamics

than the optimal Bayesian one under the reference model’s likelihood. This is highlighted by

the next Corollary.
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Corollary 5 Under the reference model in (1) and (2), the filtered probabilities dynamics of

a representative agent solving the equilibrium optimization problem (22) are:

dπi = πi

(
θi −

√
2η (θi)σD −mθ,h∗

)
[k (θ −mθ,h∗) dt + kDdBD + kedBe] (37)

Equation (37) gives us a way to study the learning dynamics realized under ambiguity

aversion. We observe that ambiguity aversion can imply a tendency to overstate the probability

of good states, relatively to the probabilities implied by a learning dynamics of a Bayesian

investor. To highlight this point, we consider for simplicity the case of a constant ambiguity

aversion η (θ1) = ... = η (θn) = η. This gives the dynamics

dπi = πi (θi −mθ)
[
k

(
θ −mθ +

√
2ησD

)
dt + kDdBD + kedBe

]
. (38)

For η = 0, the dynamics (38) are those of a standard (single likelihood) Bayesian learner.

Under ambiguity aversion, the drift

kπi (θi −mθ)
(
θ −mθ +

√
2ησD

)
dt

is larger for above average reference model drifts θ (θ −mθ > 0) and lower for below average

reference model drifts θ (θ −mθ < 0). Therefore, investors subject to ambiguity aversion will

tend to “learn” more rapidly a large reference model drift than a low reference model drift.

Unconditionally, this will imply learning dynamics where the a posteriori expected reference

model drift mθ under ambiguity aversion will be higher than the one of a Bayesian investors,

i.e., the learning dynamics under ambiguity aversion will imply an optimistic tendency to

overstate the a posteriori reference model drifts relatively to a standard Bayesian prediction.

Such a tendency will be more apparent for large precision parameters k.

Figure 6 illustrates the above features for a setting with three possible neighborhoods Ξ (θ1),

Ξ (θ2), Ξ (θ3). We plot the posterior probabilities π1 implied by Corollary 5 for the ”bad” state

Ξ (θ1) in Panel (A) and those for the good state Ξ (θ3) (the probabilities π3) in Panel (B).

Insert Figure 6 about here

33



In Panel (A), the uniformly higher probabilities π1 arise in the absence of ambiguity (the

straight line corresponding to η = 0) while for the largest ambiguity aversion parameter η =

0.05 the uniformly lowest posterior probabilities arise. Hence, the ambiguity averse investor

systematically understates the probability of the ”bad” state θ1. Similar features, but with

opposite direction, arise for the probabilities π3 of the ”good” state θ3 in Panel (B).

4. Conditional Asset Returns

Given the worst case dividend drift θi−
√

2η (θi)σD conditional on the ambiguous state Ξ (θi),

we obtain the equilibrium equity excess return R dynamics under learning and ambiguity

aversion, defined by

dR =
dP + Ddt

P
− rdt . (39)

We summarize our findings in the next proposition.

Proposition 2 Under the reference model dynamics, the equilibrium excess return process R

under ambiguity aversion has dynamics

dR = µRdt + σDdB̃D + Vθ,h∗
(
kDdB̃D + kedB̃e

)
, (40)

where

µR = γ
(
σ2

D + Vθ,h∗
)−mh∗(θ) (1 + kVθ,h∗) ,

Vθ,h∗ =
n∑

i=1

πiCi

(
θi −

√
2η (θi)σD

)
∑n

i=1 πiCi
−mθ,h∗ , (41)

and with the Brownian motions increments

dB̃D = kD

(
dD

D
−mθdt

)
, dB̃e = ke (de−mθdt) ,

with respect to the filtration {Ft}.
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We can now analyze in more detail how learning under ambiguity aversion affects the

conditional structure of asset returns.

4.1. Investors’ Uncertainty on Ambiguous Model Neighborhoods

The reference model excess return process (40) is characterized by the quantities Vθ,h∗ and

mh∗(θ). The quantity mh∗(θ) = mθ,h∗ −mθ is a conservative correction to the reference model’s

a posteriori expectations mθ. Such quantity accounts for the possibility of misspecification

doubts when computing a posteriori expectations for the growth rate of the economy and is

always negative. The quantity Vθ,h∗ reflects the difference between the worst case expected

growth rate of the economy, mθ,h∗ , and its value adjusted counterpart. More precisely, define

a value adjusted distribution Π = (π1, .., πn) by

πi =
πiCi∑n

j=1 πjCj
,

and let

mθ,h∗ := mθ + mh∗(θ) := E
(

θ −
√

2η (θ)σD

∣∣∣Ft

)
=

n∑

j=1

πj

(
θj −

√
2η (θj)σD

)
,

be the worst case expected growth rate of the economy under the value adjusted distribution

Π. It then follows

Vθ,h∗ = mθ,h∗ −mθ,h∗ ,

showing that Vθ,h∗ gives the distance between the value adjusted worst case expected growth

rate and the worst case expected growth rate of the economy. Hence, Vθ,h∗ is a summary of

the investor’s uncertainty about the future worst case growth rate of the economy, as well as

of the ambiguity intrinsic in their own valuation of the asset. For example, if no uncertainty

about the true model neighborhood is present (i.e., if Π is degenerate at Ξ (θl), say) or if all

worst case states θ −
√

2η (θ)σD are valued identically, then

Vθ,h∗ = 0 .
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Notice, however, that under Assumption 5 different worst case states have to be valued differ-

ently. Therefore, under Assumption 5 we can have Vθ,h∗ = 0 if and only if Π is degenerate,

i.e., if and only if no uncertainty about the ambiguous model neighborhoods Ξ (θ1) , ..,Ξ (θn)

is present. In fact, Vθ,h∗ will be larger either when agents have more diffuse beliefs about

Ξ (θ1) , ..,Ξ (θn) or when they value the asset very differently across the different states. These

differences in valuation depend on the heterogeneity on the worst case growth rate θ−
√

2η (θ)σD

across such states. In fact, under Assumption 3 we can characterize the sign of Vθ,h∗ as follows.

Lemma 2 Under Assumption 3 we have:

1. (i) Vθ,h∗ > 0 and mθ −mθ > 0 if and only if γ < 1. (ii) Vθ,h∗ < 0 and mθ −mθ < 0 if

and only if γ > 1. (iii) Vθ,h∗ = 0 and mθ −mθ = 0 if and only if γ = 1.

2. Let Π̃ be a mean reserving spread of Π. Then, under Assumption 5:

Ṽθ,h∗ > Vθ,h∗

where ”v” denotes quantities under Π̃.

3. Vθ,h∗ is decreasing in γ.

Given Assumption 5, part 1 of Lemma 2 says that the value adjusted distribution gives

more weight to high worst case model growth states θ−
√

2η (θ)σD. This is a direct implication

of the fact that the weights Ci are increasing convex functions of θi and θi−
√

2η (θi)σD. The

opposite holds for γ > 1.

Part 2 of Lemma 2 shows that an increase in the uncertainty about the worst case growth

rate of the economy increases Vθ,h∗ . This finding is again a consequence of the convexity of

the weights Ci as functions of θi −
√

2η (θi)σD for γ < 1. In such a case, the value adjusted

distribution Π̃ becomes even more skewed to high-value worst case drift states. Part 3 follows

from the less convex behavior of Ci as a function of θi−
√

2η (θi)σD under a higher risk aversion

γ.
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4.2. Equilibrium Equity Premia

From equation (41) the equilibrium equity premium µR perceived by the representative agent

in our economy is given by

µR = γ
(
σ2

D + Vθ,h∗
)−mh∗(θ) (1 + kVθ,h∗) , (42)

and is the sum of two terms. The term

µwc
R = γ

(
σ2

D + Vθ,h∗
)

, (43)

is the equity premium perceived by an investors under the worst case learning dynamics implied

by the worst case likelihood h∗ (θ) in Proposition 1. The term γσ2
D is the equilibrium worst

case equity premium of an economy with ambiguity aversion but no learning (see Maenhout

(2004) and Trojani and Vanini (2002)). The direct contribution of learning and ambiguity

aversion to worst case equity premia µwc
R can be studied by considering equation (43) for a

fixed posterior probability vector Π. More specifically, part 1 of Lemma 2 implies that Vθ,h∗ > 0

under Assumption 5. Hence, in that case the contribution to worst case equity premia µwc
R is

positive. The impact of ambiguity aversion on Vθ,h∗ works through the weights Ci which reflect

the joint price for risk and ambiguity of a model neighborhood Ξ (θi). From part 2 of Lemma

2, a more diffuse posterior distribution on the neighborhoods Ξ (θ) increases worst case equity

premia under Assumption 5. Thus, a low signal precision in the economy can be expected to

imply higher worst case equity premia, and vice versa. In that case, the relation between signal

noisiness and worst case equity premia in our setting of learning under ambiguity aversion is

positive.

When comparing with a setting without ambiguity (η (θ) = 0 for all θ ∈ Θ), it is interesting

to remark that the actual equity premium µR is bounded from above as a function of risk

aversion γ; Veronesi (2000), Proposition 3. Hence, the Mehra and Prescott (1985) equity

premium puzzle becomes even more puzzling under a noisy but unambiguous information,

because the actual premium cannot be matched by a high risk aversion. In our setting of

ambiguity aversion, this feature implies directly that µwc
R will be bounded as a function of risk
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aversion. However, fitting worst case premia µwc
R by means of moderate risk aversions is a less

ambitious task than fitting actual premia µR. Since Vθ,h∗ is continuous and decreasing in γ

(recall Lemma 2, statement 3) also the actual equity premium µR is bounded as a function of

risk aversion. However, for any given risk aversion parameter, actual equity premia µR depend

strongly on the ambiguity index η (θ). Therefore, the ambiguity parameter η (θ) is the one

that can be used to fit µR − µwc
R (and hence µR) to the data. The dependence of µR and µwc

R

on γ is illustrated by Figure 7 for some parameter choices in the model under an homogeneous

degree of ambiguity η (θ) = 0.01.

Insert Figure 7 about here

From Figure 7 we observe in Panel (C) a concave dependence of µR on γ, with a maximum

at γ = 0.5.6 For such a risk aversion level the worst case premium is about 0.2%. The

actual equity premium µR in Panel (D) is, instead, a monotonically decreasing function of risk

aversion. However, in our setting such a pattern is quantitatively well compatible with the

empirical predictions of the equity premium puzzle. E.g., for moderate risk aversions γ between

0.3 and 0.5, the actual premium ranges from about 11% to about 7%. This effect arises despite

the small size of the ambiguity parameters used; see Panel (B) of Figure 7. Panels (B) and

(D) of Figure 8 highlight the effect on equity premia and worst case premia for some examples

of heterogenous degrees of ambiguity in the economy.

Insert Figure 8 about here

In Figure 8, parameters and prior structure Π are equal to those in Figure 7. Panels (A-

1) through (A-3) highlight the different forms of function η (θ) underlying all graphs. For

comparison, we choose these functions in a way that preserves the same weighted entropy

measure 1
2

∑
πih

2 (θi) as in Figure 7. We observe the highest equity premia and worst case

premia for the asymmetric function η (θ) in Panel (A-2) (the lines in Panel (B), (D) marked

with ’∗’). Therefore, those ambiguity structures yield the highest premia precisely in the case

where the ambiguity associated with ”bad” economic states is higher. In fact, the worst case
6This finding is consistent with Proposition 3 in Veronesi (2000).
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premia in Panel (D) implied by the ambiguity function in Panel (A-2) are even larger than the

actual premia of a setting with no ambiguity (the dotted line in Panel (C)).

To understand the findings in Figure 7 and 8 we can study the reference model equity

premium µR relative to the worst case premium µwc
R , as given by

µR − µwc
R = −mh∗(θ) (1 + kVθ,h∗) . (44)

Notice, that such a quantity depends on the risk aversion parameter γ indirectly through Vθ,h∗ .

From Lemma 2, Vθ,h∗ is positive under Assumption 5 and decreasing in γ. The equity premium

component

−mh∗(θ)kVθ,h∗ (45)

characterizes the marginal impact of learning under ambiguity aversion on equity premia.

Therefore, under Assumption 5 the difference µR − µwc
R is positive and decreasing in γ. Since

for moderate risk aversions the excess premium µR − µwc
R is positive, an accurate choice of

η (θ) can help in fitting more satisfactorily the equity premia implied by the observed data

for a given signal precision parameter k. Furthermore, from (45) we also observe that a less

noisy signal (i.e., a higher signal precision parameter k) implies a higher reference model equity

premium, given a posterior probability vector Π and taking Vθ,h∗ constant.

The above observation gives a striking implication of learning under ambiguity aversion. In

our model, a precise (i.e., a non-noisy) signal on an ambiguous model neighborhood can imply

an excess reward for being exposed to such ambiguity. Therefore, noisiness and ambiguity

aversion both influence the broad quality of a signal and its effects on asset prices.7 We note

that this feature makes the sign of the full impact of a higher signal precision on reference

model premia µR indeterminate. Indeed, while a higher signal precision k tends to reduce

Vθ,h∗ (see part 3 of Lemma 2), the precision k also impacts directly (45) in a positive way. The

7In an economy with no ambiguity one has µR = µwc
R . In this case, worst case and reference model equity

premia are identical and the signal precision parameter k does not affect directly conditional equity premia.
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equilibrium excess premium under ambiguity but no learning arises by setting π̂l = 1 for the

true model neighborhood Ξ (θl), to get

µR − µwc
R =

√
2η (θl)σD .

The contribution of ambiguity aversion to the asymptotic equity premium is given by a first

order effect of ambiguity that is proportional to dividend volatilities σD. In particular, such an

equity premium for ambiguity does not disappear asymptotically, even under an asymptotic

learning about Ξ (θl). Such an asymptotic premium rewards the representative agent for the

residual ambiguity about the precise drift, which generated the dividend dynamics out of a

relevant neighborhood Ξ (θl). The equilibrium excess premium under ambiguity and without

learning arises as the limit of a sequence of equity premia in partial information economies

with ambiguity aversion.

4.3. Risky Asset Volatilities and their Relation to Equilibrium Equity Premia

From Proposition 2 the volatility of stock returns is given by

σ2
R = σ2

D + Vθ,h∗ (2 + kVθ,h∗) , (46)

and under Assumption 5 it is higher in the presence of learning under ambiguity aversion than

in the absence of an uncertainty about the ambiguous model neighborhood Ξ (θ). Moreover,

σ2
R is an increasing function of the uncertainty about the true model neighborhood Ξ (θ) since

mean preserving spread increase Vθ,h∗ under Assumption 5.

Panel (C) of Figure 8 highlights the effect on equity volatilities for the heterogenous degrees

of ambiguity studied in Figure 8. As in Veronesi (2000), volatilities are U-shaped functions

of risk aversion, which attain a minimum at γ = 1. However, different structures η (θ) of

ambiguity can imply higher or lower volatilities than in the pure Bayesian learning case. In

particular, we observe that the asymmetric function η (θ) in Panel (A-2) yields the highest

equity volatilities (the lines in Panel (C) marked by ’∗’). Hence, ambiguity structures, for
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which the ambiguity associated with ”bad” economic states is higher, can produce even more

excess volatility than the one implied by a pure setting of learning with no ambiguity.

From (42), (46) the relations between worst case and reference model equity premia and

the conditional variance of returns are

µwc
R = γσ2

R − γVθ,h∗ (1 + kVθ,h∗) (47)

and

µR − µwc
R = −

(
σ2

R − σ2
D

Vθ,h∗
− 1

)
mh∗(θ) , (48)

respectively. In particular, when Π is non-degenerate several patterns for a time varying

relation between µR and σ2
R arise. More precisely, equation (48) implies a true positive but

time varying relation between µR − µwc
R and σ2

R while a true linear relation between µwc
R and

σ2
R is implied by (47). In (47) such a linear relation is biased by the time varying stochastic

term −γVθ,h∗ (1 + kVθ,h∗), which will tend to bias downwards estimates of γ based on a least

squares regression of µwc
R on σ2

R. Moreover, for realistic parameter choices in the model the

actual premium µR will be dominated by the term µR−µwc
R , implying that there is no true and

simple time invariant relation between equity premia and conditional variances in a setting of

learning under ambiguity.

Figure 9 highlights the above observations by plotting the time series of estimated param-

eters in a sequence of rolling regressions of R on σ2
R.

Insert Figure 9 about here

As expected, highly time varying regression estimates arise. Such estimates may even indicate

a switching sign in the estimated relation between µR and σ2
R over different time periods.

4.4. Biases in EIS estimates

Our model uses time additive power utility functions to obtain simple closed form solutions for

the desired equilibria. Such a choice imposes a specific relation between standard risk aversion
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and EIS. Risk aversions less than one in our setting have to be associated with EIS above one.

However, in our model this relation does not imply necessarily large estimated EIS. Indeed,

one by-product of learning in our context is to induce a stochastic volatility in the a posteriori

expected dividend growth in the model. Similarly to the effects noted by Bansal and Yaron

(2004) in a full-information asset pricing setting, stochastic volatility of expected dividend

growth can induce a large downward bias in a least squares regression of consumption growth

on asset returns when using Euler equations including equity returns. Such regressions are

typically used to estimate the EIS in applied empirical work.8

To understand the main reason for a negative bias in the estimation of the EIS, we consider

for brevity a pure setting of learning with no ambiguity aversion, that is η (θ) = 0. From

Proposition 1 and 2 we have:

r = δ + γmθ − 1
2
γ (γ + 1)σ2

D , µR = γ
(
σ2

D + Vθ

)
,

where mθ = E (dD/D| Ft). Hence:

E (dP/P + D/P | Ft) = r + µR = δ + γE (dD/D| Ft)− 1
2
γ (γ + 1)σ2

D + γ
(
σ2

D + Vθ

)
,

and, solving for E (dD/D| Ft):

E (dD/D| Ft) = a + b · E (dP/P + D/P | Ft)− Vθ, (49)

where a = −δ/γ + 1
2 (γ − 1)σ2

D and b = 1/γ. Equation (49) defines a correctly specified

theoretical linear regression equation if and only if the random term Vθ is 0. This in turn can

happen only if no learning is present (Π is degenerate) or γ = 1 (log utility). In all other cases,

the error term

dεt := dD/D − a− b · E (dP/P + D/P | Ft)

will be correlated with the regressor dP/P + D/P in a least squares regression of dD/D on

dP/P +D/P . Under Assumption 5, such correlation induces a downward bias in the estimation
8See, e.g., Hall (1988), Vissing-Jorgensen (2002), and Attanasio and Vissing-Jorgensen (2003), among others.
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of the EIS 1/γ in a least squares regression of aggregate consumption growth dD/D on total

equity returns dP/P +D/P . Since Vθ is decreasing in relative risk aversion, we can expect the

bias to be larger for lower γ values. Figure 10 and 11 illustrate these features.

Insert Figures 10,11 about here

In Figures 10 and 11, we observe a very large bias in the mean least squares estimates of

the EIS 1/γ in a regression of dD/D on dP/P + D/P . As expected, the bias is larger for

lower values of γ. For instance, for γ = 0.5 the mean estimate of 1/γ is between 0.2 and 0.4,

depending on the amount of ambiguity in the economy. This corresponds to a downward bias

in the estimation of the EIS of about 80%. For γ = 0.7 mean EIS estimates range between

about 0.35 and 0.6. Interestingly, such estimated values of the EIS are compatible with those

obtained, e.g., in Vissing-Jorgensen (2002, Table 2A) and Attanasio and Vissing-Jorgensen

(2003, Table 1A) for Euler equations including stock returns.

5. Conclusions and Outlook

We derive asset prices in a simple continuous time partial information Lucas economy with am-

biguity aversion and time additive power utility. In our model, learning and ambiguity aversion

imply an equilibrium discount for ambiguity only for moderate relative risk aversions below

one or, equivalently, elasticities of intertemporal substitution (EIS) above one. Equilibrium

interest rates are lower irrespective of risk aversion. For low risk aversions, we observe higher

conditional equity premia and volatilities relatively to (i) a comparable partial information,

rational expectations, Lucas economy and (ii) a comparable full information Lucas economy

with ambiguity aversion. Ambiguity aversion implies only a partial asymptotic learning about

a neighborhood of a priori statistically indistinguishable beliefs. This result motivates explic-

itly settings of ambiguity aversion but no learning as the limit of equilibria under learning and

ambiguity aversion. In a setting with low relative risk aversions below one and moderate ambi-

guity, we obtain asset pricing predictions consistent with the equity premium, the low interest

rate, and the excess volatility puzzles. We also find that no time invariant relation between
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excess returns and conditional variances exists in equilibrium under learning and ambiguity

aversion. This feature generates estimated relations between excess returns and equity condi-

tional variances with an undetermined sign over time. Moreover, standard EIS estimates based

on Euler equations for equity returns are strongly downward biased in a setting of learning and

ambiguity aversion. Therefore, EIS well above one in the model are consistent with observed

(biased) estimated EIS well below one.

We end with two final comments. First, the time additive power utility function in our

model allows us to obtain simple closed form solutions for the desired equilibria at the cost of

constraining the relation between risk aversion and EIS. The specific relation between standard

risk aversion and EIS in our framework could be weakened by using a setting of learning under

ambiguity aversion with Epstein and Zin (1989)-type preferences. Disentangling risk aversion

and EIS would allow for an additional degree of freedom which could be used, e.g., to generate

higher worst case equity premia in our model. However, such an extension departs from

the axiomatic setting of learning under ambiguity aversion in Knox (2004). Our setting of

learning and ambiguity aversion can be interpreted as a continuous time extension of such

an axiomatic framework and has therefore a clear behavioral interpretation. Moreover, it is

intriguing to note that under ambiguity aversion relative risk aversion parameters too far away

from risk neutrality may even be behaviorally inappropriate. Provocative in this context is

the experimental evidence collected by Wakker and Deneffe (1996) who estimated a virtually

linear utility function when using a utilities elicitation procedure robust to the presence of

ambiguity. In such experiments, utility functions estimated by procedures that are not robust

to the presence of ambiguity were clearly concave. Nevertheless, the basic intuition derived

from our model is likely to hold also under more general preferences that disentangle risk

aversion and EIS. Investors with high relative risk aversions increase their hedging demand

when they expect low consumption growth. This demand counterbalances the negative price

pressure deriving from negative dividend news. Under ambiguity aversion, investors tend to

understate actual consumption growth. Highly risk averse investors therefore increase further

their hedging demand for equity. Since the supply of the risky asset is fixed and the riskless

bond is in zero net supply, the higher demand increases the price of the risky asset relative

to dividends. At the same time, for low EIS lower expected consumption growth because of
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ambiguity aversion induces a large substitution from today’s to tomorrow’s consumption which

smooths out consumption. Such an excess saving demand increases further the price of equity

relative to dividends and lowers the equilibrium interest rate. From a more general perspective,

we can thus interpret the assumption of a high EIS and a low risk aversion in our model just

as a condition ensuring that the elasticity of the total demand for risky assets with respect to

changes in expected consumption growth is positive.

A second simplifying building block of our model of learning and ambiguity aversion is

a geometric Brownian motion reference model dynamics for the underlying dividend process.

This choice allowed us to highlight in a simple framework important issues related to (i) the

non convergence of a Bayesian learning process under a likelihood misspecification and (ii)

the asymptotic persistence of ambiguity under learning and ambiguity aversion. The bias of

standard Bayesian learning procedures under a misspecification of the underlying dividend

dynamics gave us a natural motivation for the conservative Max-Min expected utility learning

approach followed in the paper. Richer learning dynamics could be studied, including for

instance reference models with business cycles and regime changes in the underlying dividend

process. Such extensions are interesting venues for future research on learning under ambiguity

aversion.

6. Appendix

In this Appendix we provide all proofs to the propositions in the paper.

Proof of Lemma 1. The Lemma is a direct consequence of Lemma 1 in Veronesi (2000),

when applied to the likelihood h (θ).

Proof of Corollary 1. The statement of the corollary follows by noting that under a

hD−distorted dynamics it follows

dB̃h
D = dBD + kD (θ + hDσD −mθ,h) dt , dB̃h

e = dBe + ke (θ + hDσD −mθ,h) dt .
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Proof of Proposition 1. We have for any likelihood h (θ) ∈ Ξ (θ),

V h(θ) (Π, D) = Eh(θ)

[∫ ∞

s
e−δ(t−s)D1−γ

t dt

∣∣∣∣F (s)
]

= Eh(θ)

[∫ ∞

s
e−δ(t−s)D (t)1−γ dt

∣∣∣∣π1 (s) = π1, .., πn (s) = πn, D (s) = D

]

= D1−γ
n∑

i=1

πiE
h(θ)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θ̃i

]
,

where θ̃ = θ + h (θ) σD, θ̃i = θi + h (θi) σD. Therefore, for any vector Π:

J (Π, D) = inf
h(θ)

V h(θ) (Π, D)

≥ D1−γ
n∑

i=1

πi inf
h(θi)

Eh(θi)

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θ̃i

]
.

Conditionally on θ̃i, the h (θ)−drift misspecified dynamics are

dD = (θi + h (θi) σD) Ddt + σDDdB̃D .

Therefore, Assumption 3 implies that we can focus on solving the problem

(Pi) :





V i (D) = infh(θi) E
(∫∞

s e−δ(t−s)D (t)1−γ dt
∣∣∣ D (s) = D

)

1
2h (θi)

2 ≤ η (θi)

subject to the dividend dynamics

dD = (θi + h (θi) σD) Ddt + σDDdB̃h
D .

The Hamilton Jacobi Bellman (HJB) equation for this problem reads

0 = inf
h(θi)

{
−δV i + D1−γ + (θi + h (θi) σD) D · V i

D +
1
2
σ2

DD2V i
DD + λ

(
1
2
h (θi)

2 − η (θi)
)}

,

(50)
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where λ ≥ 0 is a Lagrange multiplier for the constraint 1
2h (θi)

2 ≤ η (θi). This implies the

optimality condition

h (θi) = −σDD

λ
V i

D .

Slackness then gives
σ2

DD2

λ2

(
V i

D

)2 = 2η (θi) ,

implying

h (θi) = ±
√

2η (θi) .

Inserting back this expression in (50) we get two possible differential equations for V i:

(i) : 0 = −δV i + D1−γ +
(
θi +

√
2η (θi)σD

)
D · V i

D +
1
2
σ2

DD2V i
DD .

(ii) : 0 = −δV i + D1−γ +
(
θi −

√
2η (θi)σD

)
D · V i

D +
1
2
σ2

DD2V i
DD .

However, it is clear that the infimum in (50) can be only characterized by equation (ii). Thus,

the worst case drift solution is characterized by

h∗ (θi) = −
√

2η (θi) .

This proves the first statement. To prove the second statements, we obtain

V i (D) = D1−γE

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
.

Conditionally on θ̃ = θi −
√

2η (θi)σD, the solution of the dividend dynamics gives

(
D (t)
D (s)

)1−γ

= exp
{

(1− γ)
(

θi −
√

2η (θi)σD − σ2
D

2

)
(t− s) + (1− γ) σD (BD (t)−BD (s))

}
,

implying, under the given assumptions,

E

[∫ ∞

s
e−δ(t−s)

(
D (t)
D (s)

)1−γ

dt

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
=

1

θ̂i + (1− γ)
√

2η (θi)σD

,
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where

θ̂i = δ − (1− γ) θi + γ (1− γ)
σ2

D

2
> 0 .

This proves the second statement. To prove the last two statements notice that given the set

of worst case drift misspecifications, we obtain for the price of any risky asset with dividend

process (D (t))t≥0

P (t)
D (t)

=
n∑

i=1

πiE

[∫ ∞

t
e−δ(s−t)

(
D (s)
D (t)

)1−γ

ds

∣∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
, (51)

or equivalently

P (t) ρ (t) =
n∑

i=1

πiE

[∫ ∞

t
ρ (s)D (s) ds

∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]

where ρ (t) = uc (D (t) , t) = e−δtD (t)−γ . Writing this equation in differential form and apply-

ing it to the risky asset paying a ”dividend” D = r we obtain:

rdt = −
n∑

i=1

πiEt

[
dρ

ρ

∣∣∣∣ θ̃ = θi −
√

2η (θi)σD

]
=

(
δ + γ

(
mθ + mh(θ)σD

)− 1
2
γ (γ + 1)σ2

D

)
dt .

Proof of Corollary 5. The Corollary is obtained by setting hD = 0, h (θi) = −
√

2η (θi)

and mh(θ) = −∑n
i=1 πi

√
2η (θi) in Corollary 1.

Proof of Proposition 2. The result follows by applying the proof of Proposition 2 in

Veronesi (2000) to the D−dynamics (23) with the worst case term mh∗(θ) = −∑n
i=1 πi

√
2η (θi)

and by expressing them under the reference model Π−dynamics (13) with the Brownian motion

B̃D and B̃e.

Proof of Lemma 2. 1. By Assumption 3 we have

θi −
√

2η (θi)σD > θj −
√

2η (θj)σD , (52)
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for any i > j. Therefore, for γ < 1 the sequence {Ci}i=1,..n is monotonically strictly increasing

in i (see (28) for the definition of Ci). Hence, for fixed Π the sequence {Ci/
∑n

i=1 πiCi}i=1,..n

is monotonically strictly increasing in i. In particular, this implies

C1/

n∑

i=1

πiCi < 1 < Cn/

n∑

i=1

πiCi .

Since the sequences {θi}i=1,..,n and
{

θ̃i

}
i=1,..,n

, where θ̃i := θi −
√

2η (θi)σD, are increasing in

i this implies

mθ =
n∑

i=1

πi
Ciθi∑n

i=1 πiCi
>

n∑

i=1

πiθi = mθ .

Similarly,

mθ + mh∗(θ) =
n∑

i=1

πi
Ciθ̃i∑n

i=1 πiCi
>

n∑

i=1

πiθ̃i = mθ + mh∗(θ) ,

implying Vθ.h∗ > 0. The proof for γ = 1 and γ > 1 follows in the same way. The proof of 2.

and 3. follows with the same arguments as in the proof of Lemma 2 (b) and (c) in Veronesi

(2000).
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Fig. 1. Posterior probabilities dynamics. The panels display trajectories for the probability π1

given in equation (16) of Example 8. Panel (A) shows two trajectories for π1 with a = 0 in
equation (17). We plot the same trajectories with the same random seed in Panel (B) (dashed
lines) and add the trajectories (solid lines) where we assume a = 0.015. The switching in
equation (17) is deterministic and occurs every year (see the dotted vertical lines in Panel
(B)). The further parameters are Θ = {0.0075, 0.0275}, σD = 0.0375, σe = 0.015.
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Fig. 2. Posterior probabilities dynamics. Panels (A), (B), (C) plot for different random seeds
the dynamics of the implied posterior probabilities when the learning model allows for five
possible dividend drift states and the underlying dividend drift process is geometric Brownian
motion with drift θ2. In Panel (A), we assume that there is no likelihood misspecification, i.e.,
h(θi) = 0. In Panel (B), we introduce a simple (constant) misspecification and set h(θi) =
0.141, i = 1, .., n. In Panel (C), we increase the size of such misspecification to h(θi) =
0.316, i = 1, .., n. It turns out that the learning dynamics in Panels (A), (B), and (C) differ
substantially. In Panel (A), state θ2 will eventually be correctly learned (see the dashed line in
the graph). In Panel (B), the posterior probabilities does not converge after 3600 days. In Panel
(C), state θ3 will be eventually ”learned” (see the solid line in the graph). Model parameters
are Θ = {−0.0125, 0.0025, 0.0175, 0.0325, 0.0475}, σD = 0.0375, σe = 0.015, hD = 0.
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Fig. 3. Function Ci in dependence of the ambiguity and risk aversion parameters ηi(θi) and
γ. We assume δ = 0.025, θi = 0.0175, σD = 0.0375, and calculate Ci for different amounts of
ambiguity, ηi(θi) ∈ [0, 0.1], and different degrees of risk aversion, γ = {0.1, 0.5, 1, 3, 5}.
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Fig. 4. The impact of uncertainty and ambiguity aversion on price dividend ratios. In
Panels (A)-(C) we explore the impact of mean preserving spreads on price dividend ra-
tios. We display the prior distribution corresponding to each of those panels in the Pan-
els (D)-(F). Given such prior distributions, we assume a setting with five possible states
Θ = {−0.0125, 0.0025, 0.0175, 0.0325, 0.0475}. We further set δ = 0.05, σD = 0.0375,
σe = 0.015.
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Fig. 5. The equilibrium interest rate. We plot the equilibrium interest rate as displayed in
Proposition 9 for different homogenous degrees of ambiguity η(θ) and different risk aversions
γ = {0.3, 0.5, 0.7, 0.9}. We assume five states Θ = {−0.0125, 0.0025, 0.0175, 0.0325, 0.0475}
and set δ = 0.025, σD = 0.0375, σe = 0.015 with a constellation of discretized normal priors
Π = {0.0668, 0.2417, 0.3829, 0.2417, 0.0668}.
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Fig. 6. The effect of ambiguity aversion on the prevailing posterior probabilities dynamics.
We assume three possible states and the filtered probabilities dynamics in equation (38) with
parameters set equal to σD = 0.0375, σe = 0.015, Θ = {0.0023, 0.0173, 0.0323}, θ = 0.0173,
and a set of discretized normal priors Π(0) = {0.3085, 0.3829, 0.3085}. Panel (A) plots the
probability dynamics of the ”bad” state θ1 for three different levels of a homogenous ambiguity
parameter η = {0, 0.025, 0.05}. The dynamics under the intermediate level of ambiguity η =
0.025 are represented by the dotted line. In Panel (B), we plot the dynamics of the posterior
probabilities for the ”good” state θ3 for the same levels of ambiguity (these graphs are based
on the same random seed as the one used in Panel (A)).
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Fig. 7. Panel (A) plots the set of probabilities Π relevant for the figure while Panel (B) plots the
different relevant reference model states θ1, .., θn. The true reference model dividend drift state
is marked with a square and has been set equal to the posterior expected value

∑
πiθi. We use

a small amount of homogenous ambiguity η = 0.01. The size of the ambiguous neighborhoods
Ξ(θ1), ..,Ξ(θn) is highlighted by the ellipses centered at θ1, .., θn in Panel (B). Further, we set
δ = 0.05, σD = 0.0375 and σe = 0.015. With these parameters the resulting worst case equity
premium µwc

R and the actual equity premium µR are plotted in Panel (C) and (D) as functions
of γ.
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Fig. 8. Panels (A-1)–(A-3) plot different entropy preserving distributions of ambiguity
around the reference model dividend drift states θ1, .., θ5, i.e., Panels (A-1)–(A-3) are such
that the weighted entropy measure 1

2

∑
πih

2(θi) is equal to 0.01, as in Figure 7. For
Panel (A-1), we set η(θi)i=1,..,5 = {0.0256, 0.0114, 0.0028, 0.0114, 0.0256}, for Panel (A-
2), η(θi)i=1,..,5 = {0.0212, 0.0147, 0.0094, 0.0053, 0.0024} and for Panel (A-3), η(θi)i=1,..,5 =
{0.0024, 0.0053, 0.0094, 0.0147, 0.0212}. The set Π = {0.0668, 0.2417, 0.3829, 0.2417, 0.0668} of
prior distributions and the set Θ = {−0.0125, 0.0025, 0.0175, 0.0325, 0.0475} of reference model
drifts relevant for all graphs are the same as those in Panel (A) of Figure 7. Panels (B), (C),
and (D) plot, the equity premium µR, the volatility σR and the worst case premium µwc

R im-
plied by the different distributions of ambiguity in Panels (A-1)–(A-3). For comparison, we
plot in each graph the corresponding quantities prevailing under an homogenous (equal) am-
biguity parameter η = 0.01 and in the absence of ambiguity (η(θi) = 0, i = 1, .., n). Further
parameters are δ = 0.05, σD = 0.0375 and σe = 0.015.
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Fig. 9. Regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9 we plot the time
variation of the estimated parameter b in (49) for a rolling regression of R on σ2

R. The rolling
regressions are based on sample sizes of 50 observations simulated from a model with three
reference model drift states Θ = {0.0025, 0.0175, 0.0325} and under an homogenous degree
of ambiguity η = 0.01. The true dividend is θ = 0.0175. Further parameters are δ = 0.05,
σD = 0.0375, σe = 0.015.
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Fig. 10. Regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9, we plot the mean
estimated parameter in 1000 regressions of dD/D on dP/P + P/D. The regressions are based
on sample sizes of 365 observations simulated from a model with three reference model drift
states Θ = {0.0025, 0.0175, 0.0325} and under three homogenous degrees of ambiguity η =
0, 0.005, 0.01, 0.015. The true dividend is θ = 0.0175. Further parameters are δ = 0.05,
σD = 0.0375, σe = 0.015. In all panels, the dashed horizontal lines give the correct underlying
value 1/γ of the EIS. The dotted lines give the resulting mean parameter estimates as a function
of η.
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Fig. 11. Regression analysis. For different parameters γ = 0.3, 0.5, 0.7, 0.9, we present the
box plots of the estimated parameters in 1000 regressions of dD/D on dP/P + P/D. The
regressions are based on sample sizes of 365 observations simulated from a model with three
reference model drift states Θ = {0.0025, 0.0175, 0.0325} and under three homogenous degrees
of ambiguity η = 0, 0.005, 0.01, 0.015. The true dividend is θ = 0.0175. Further parameters
are δ = 0.05, σD = 0.0375, σe = 0.015.
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