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AbstractÐStandard, exact techniques based on likelihood maximization are available for learning Auto-Regressive Process models of

dynamical processes. The uncertainty of observations obtained from real sensors means that dynamics can be observed only

approximately. Learning can still be achieved via ªEM-KºÐExpectation-Maximization (EM) based on Kalman Filtering. This cannot

handle more complex dynamics, however, involving multiple classes of motion. A problem arises also in the case of dynamical

processes observed visually: background clutter arising for example, in camouflage, produces non-Gaussian observation noise. Even

with a single dynamical class, non-Gaussian observations put the learning problem beyond the scope of EM-K. For those cases, we

show here how ªEM-CºÐbased on the CONDENSATION algorithm which propagates random ªparticle-sets,º can solve the learning

problem. Here, learning in clutter is studied experimentally using visual observations of a hand moving over a desktop. The resulting

learned dynamical model is shown to have considerable predictive value: When used as a prior for estimation of motion, the burden of

computation in visual observation is significantly reduced. Multiclass dynamics are studied via visually observed juggling; plausible

dynamical models have been found to emerge from the learning process, and accurate classification of motion has resulted. In

practice, EM-C learning is computationally burdensome and the paper concludes with some discussion of computational complexity.

Index TermsÐComputer vision, learning dynamics, Auto-Regressive Process, Expectation Maximization.
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1 INTRODUCTION

THE paper amplifies a probabilistic framework, first
proposed in [8], for estimation (perception) and

classification of complex time-varying signals, represented
as temporal streams of states. The complexity of signals
arising in practical interpretation problems may be too great
to allow parameters for an estimation algorithm to be set by
hand. Automated learning of dynamics is of crucial
importance, therefore, as dynamical model parameters are
needed in order to determine the settings of estimation
parameters. The framework is particularly general, in
several respects, as follows:

1. Mixed states: Each state comprises a continuous and
a discrete component. The continuous component
can be thought of as representing the instantaneous
position of some object in a continuum. The discrete
state represents the current class of the motion and
acts as a label, selecting the current member from a
set of dynamical models.

2. Multidimensionality: The continuous component of
a state is generally multidimensional to represent
motion in a higher dimensional continuum, for
example, two-dimensional translation as in Fig. 1.
Other examples include multispectral acoustic or
image signals, or multichannel sensors such as an
electro-encephalograph.

3. Auto-Regressive Process: Each dynamical system is
modeled as an Auto-Regressive Process (ARP) and
allowed to have arbitrary order K (the number of
time-steps of ªmemoryº that it carries).

4. Stochastic observations: The sequence of mixed
states is ªhiddenºÐnot observable directly but only
via observations, which may be multidimensional
and are stochastically related to the continuous
component of the state. This aspect is essential to
represent the inherent variability of response of any
real signal sensing system.

Estimation for processes with Properties 2, 3, and 4 has been
widely discussed both in the control-theory literature as
ªestimationº and ªKalman filteringº e.g., [13], [3] and in
statistics as ªforecastingº e.g., [11]. Learning of models with
Properties 2 and 3 is well-understood [13] and once learned
can be used to drive pattern classification procedures, as in
Linear Predictive Coding (LPC) in speech analysis [35], or in
classification of EEG signals [32]. When Property 4 is added,
the learning problem becomes harder because the training
sets are no longer observed directly, but the problem can be
solved [37], [29], [31], [16] by what we term ªEM-KºÐa
combination of Kalman filtering and Expectation Maximi-
zation (EM) [12].

Discrete states (Property 1) introduce further complex-
ities. Observing discrete states via continuous, stochastic
observations leads to a ªHidden Markov Modelº (HMM).
The problems of classification, estimation, and learning
with HMMs are precisely the three canonical problems of
Rabiner for HMMs [35], whose solutions are well-known. In
particular, the ªBaum-Welchº learning algorithm for
HMMs is an instance of EM (with discrete variables
whereas EM-K used continuous ones) which has been
generalized to ªgraphical-modelsº of quite general topology
[28]. Investigations of visual classification with HMMs have
been reported elsewhere [9]. A little less obvious, HMM
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models arise also under another set of assumptions: Mixed
states (Property 1) with ARP dynamics (Property 2 and 3),
but with direct (noise-free) observation of the continuous
state. The approach has proved to be remarkably successful
in vision experiments [10]. However, it is desirable to
generalize to noisy observations (Property 4) and that is
what we set out to do here.

In the general case (all of Properties 1-4), an exact
algorithm exists but has exponential complexity [1] in T , the
duration of the time-series for estimation, so approximate
algorithms are needed, as in the closely related problem of
data-association tracking [3]. However, random sampling
algorithms for estimation are highly effective in static,
non-Gaussian problems [15], [14], [19], and can be extended
to dynamical estimation. In the dynamic context, they are
known variously as bootstrap filters [18], Monte-Carlo
filters [27], and CONDENSATION [22], [5], [23], and are
used in learning theory and experiments, in the form of the
ªEM-Cº algorithm which is developed here. Since this idea
was first developed [4], it has been proposed that the
learning problem might alternatively be made tractable by a
suitable variational approximation of the likelihood for the
dynamical parameters [33].

2 MULTICLASS DYNAMICS

Continuous dynamical systems can be specified in terms of

a continuous state vector xt 2 RNx . In machine vision, for

example, xt could represent the parameters of a time-

varying shape at time t. Multimodal dynamics are

represented by appending to the continuous state vector

xt, a discrete state component yt to make a ªmixedº state

Xt � xt
yt

� �

; �1�

where yt 2 Y � f1; . . . ; Nyg is the discrete component of the

state, drawn from a finite set of integer labels. Each discrete

state represents a mode of motion, for example ªstroke,º

ªrest,º and ªshadeº for a hand engaged in drawing.

Experiments [4] have already established the resounding

advantages for tracking of using mixed state dynamics as

opposed to single state.
Corresponding to each state yt � i there is a dynamical

model, taken to be a Markov model of order Ki that

specifies pi�xtjxtÿ1; . . .xtÿKi
�. It is a Gaussian Auto-Regres-

sive Process (ARP) defined by
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Fig. 1. Learning the dynamics of juggling. The motion of one of three juggled balls is tracked visually (circular outlines) to supply data for

dynamical learning, in Section 9.



xt �
X

K

k�1
Akxtÿk � d�Bwt �2�

in which each wt is a vector of Nx independent random

N�0; 1� variables and wt, wt0 are independent for t 6� t0. The
dynamical parameters of the model are

. ªdeterministicº parameters A1; A2; . . . ; AK and d

. ªstochasticº parameters B, which are constant
multiplicative weights of the stochastic process wt,
and determine the ªcouplingº of wt into the vector
valued process xt.

For convenience of notation, let

A � A1 A2 � � � AK� �:
Each state y 2 Y has a set �y � fAy; By;dyg of dynamical
parameters and we denote the set of models by
� � f�y; y 2 Yg. The goal is to learn � from example

trajectories. Note that the stochastic component Bywt is a
first-class part of a dynamical model, representing the

degree and the shape of uncertainty in motion, allowing the
representation of an entire distribution of possible motions
for each state y.

In addition, and independently, state transitions are

governed by

P �yt � y0jytÿ1 � y� �My;y0 ;

the transition matrix for a first-order Markov chain. More
generally, transition probabilities can be made sensitive to
the context xtÿ1 in state space, so that

P �yt � y0jytÿ1 � y;xtÿ1� �My;y0�xtÿ1�:
For example, this could be used to express an enhanced
probability of transition into the ªrestingº state when the
hand is moving slowly. The learning algorithm presented
below assumes context insensitivity and thereby shirks the
problem of trying to find a suitable (learnable) parametric
form for the dependence of My;y0�x� on x. The joint model
can be summarized, invoking both independence of the
discrete transitions and the Markov properties for contin-
uous and discrete components, as follows:

p�XtjX0:tÿ1;�� � pyt�xtjxtÿ1; . . .xtÿK�Mytÿ1;yt ; �3�
where

X t0:t1 � �Xt0 ; . . . ;Xt1�
denotes a sequence of states, and py is the density for an
ARP (2) with fA;B;dg � �y. Note that initial conditions for
x and y must also be specified, either as fixed values or as
prior distributions, and this is discussed later.

3 MAXIMUM LIKELIHOOD LEARNING

Maximum Likelihood Estimation (MLE) for a directly
observable dynamical system is related to the well-known
Yule-Walker formula [13], [17], [29], [7] for parameter
estimation in ARPs, but the formula has to be generalized to
include: learning of the offset d [36], nonasymptotic
learning, i.e., from short training sets and dealing with
multiple classes of motion.

3.1 Basic MLE

Consider the case of a single motion class, of order K, with
dynamical parameters � � fA;B;dg. Given a training
sequence x�1 . . .x

�
T , with T > K, learned deterministic

dynamical parameters � can be obtained from the MLE:

A �R � �R0; d � 1

T 0
�R0 ÿAR�; C � 1

T 0
�R0;0 ÿA �R>0

ÿ �

;

�4�
where C � BB> and

�R �

�R1;1
�R1;2 � � � �R1;K

�R2;1
�R2;2 � � � �R2;K

..

. ..
. . .

. ..
.

�RK;1
�RK;2 � � � �RK;K

0

B

B

B

B

@

1

C

C

C

C

A

;

�R0 � �R0;1
�R0;2 � � � �R0;K

ÿ �

; R �

R1

R2

..

.

RK

0

B

B

B

B

@

1

C

C

C

C

A

:

and the first-order moments Ri and autocorrelations �Ri;j are
given by

Ri �
X

T

t�K�1
x�tÿi;

Ri;j �
X

T

t�K�1
x�tÿi x�tÿj

� �>
; �Ri;j � Ri;j ÿ

1

T 0
RiR

>
j ;

and T 0 � T ÿK.

3.1.1 Notes on the MLE

1. The MLE formula (4) is asymptotically (as T !1)
consistent with the well-known Yule-Walker formu-
la [13], [29] for estimating deterministic parameters
A. The Yule-Walker formula approximates true MLE
by approximating the second-order moments as

Ri;j � R0;jÿi;

which corresponds to assumption of temporal
stationarity that may be valid for the parent
distribution, but is unlikely to be valid for a finite
sample. For example, true MLE can correctly learn
an oscillatory process from, say, 1 1

2
cycles of a

sinewave, whereas Yule-Walker fails to recover the
correct dynamical parameters. We have found in
practice that errors introduced by the Yule-Walker
approximation can be quite significant.

2. Some standard texts [11] recommend learning the
process mean simply by setting it to the sample
mean of the training set. Strictly, this is incorrect, in
that it is not the MLE for x. Again, this is particularly
apparent when the training set is oscillatory and of a
duration that is not an integer multiple of the period
of oscillation. It is approximately correct for a
sufficiently long training-set, but there is no reason
in practice why, for sufficiently ªcoherentº oscilla-
tions, a dynamical model should not be learned from
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relatively few cycles of oscillation. After all, statis-
tical reliability of learned parameters depends not on
the total number of cycles in the training set, but on
the number of ªcoherence lengthsº [6].

3.2 Learning Several Classes at Once

Now, the training sequence is X�1 . . .X
�
T , each state

having the mixed form X�t � �x�t ; y�t �, and the problem
is to learn simultaneously the dynamical models
Ay; By;dy corresponding to each discrete state y 2 Y.
The MLE of each model for a given class y is computed
as in (4) but from autocorrelation matrices �Ry, �R

y
0,

�Ry
0;0,

Ry, and Ry
0 that are restricted to times t for which yt � y.

They are composed from blocks:

�Ry
i;j �

X

T

t�K�1
�y y

�
t

ÿ �

x�tÿix
�
tÿj
> ÿ 1

Ty
Ry
iR

y
j
>
;

where

Ry
i �

X

T

t�K�1
�y y

�
t

ÿ �

x�tÿi; Ty �
X

T

t�K�1
�y y

�
t

ÿ �

and � is an indicator function:

�y�v� � 1 if v � y
0 otherwise:

�

The �Ry
i;j are then autocorrelation measures restricted to the

class y. The normalizing constant T 0, in (4), is replaced by
Ty for each class y in turn. If required, discrete states can
be given models of differing order Ky and the auto-
correlation matrices �Ry etc., constructed of the appropriate
size for each y.

3.3 Learning the Transition Matrix

Finally, on the assumption that discrete state transitions are
context insensitive so that

P �yt � y0jytÿ1 � y;xtÿ1� � P �yt � y0jytÿ1 � y� �My;y0 ; �5�
the MLE for the transition matrix M is constructed from
relative frequencies as:

My;y0 �
Ty;y0

P

y02Y Ty;y0
; �6�

where

Ty;y0 �
X

T

t�2
�y y

�
tÿ1

ÿ �

�y0 y
�
t

ÿ �

:

4 STOCHASTIC OBSERVATIONS

For applications, it may be important that observations zt are
modeled as stochastic with intrinsic error reflecting the
limitations of real sensors; this is certainly the case for image
and speech signals. Observations are assumed to be condi-
tioned purely on the continuous part x of the mixed state,
independent of y, and this maintains a healthy separation
between the modeling of dynamics and modeling of
observations. Observations are also assumed to be condition-
ally independent, both mutually and with respect to the

dynamical process. This is expressed probabilistically as
follows:

p�Z1:tÿ1;xtjX 0:tÿ1� � p�xtjX 0:tÿ1�
Y

tÿ1

i�1
p�zijxi�; �7�

where Zt0:t1 � fzt0 ; . . . ; zt1g denotes a sequence of successive
observations. Note that integrating over xt implies the
mutual conditional independence of observations:

p�Z1:tjX1:t� �
Y

t

i�1
p�zijxi�: �8�

The observation process is therefore defined by specifying
the conditional density p�ztjxt� at each time t, and often,
in experiments, it is taken to be a time-independent
function p�zjx�.

For image data, in the special case that background
clutter is sufficiently sparse, the observation density can be
approximated by singly peaked density such as a Gaussian:

p�ztjxt� / expÿkkzt ÿ h�xt�k2; �9�
where k . . . k is a suitable norm measuring the difference
between an observation zt and the prediction h�xt� based on
the hypothesis xt. More generally, the observation density
will have multiple peaks, reflecting the possible contamina-
tion of the data with additional elements generated by
spurious events or features. In computer vision applica-
tions, for example, this occurs when background clutter is
present. A one-dimensional illustration of the problem is
given in Fig. 2, in which multiple features give rise to a
multimodal observation density function p�zjx� and details
are given in [22], [30]. This is similar, but not identical to
observation models based on mixtures, as used in HMMs
for speech [35]. The difference is that instead of the fixed
pattern of mixtures that would be associated with a single
discrete state in an HMM, here the placement of density
kernels is variable, and is ªreadº as part of the observation
z. This reflects the idea that the observation contains a
number of features, only one of which can be valid. The
problem of deciding which is the valid feature has been
termed a ªdata-associationº problem [3]. Here, the associa-
tion is not determined unambiguously; instead, all possible
associations are held open and weighted in the density
function p�zjx�.

In practical vision problems (see later), the observation
density function for these experiments is taken to be a
product of multimodal densities [6] like the density in Fig. 2.
Each density arises from a ªmeasurement lineº emanating
from the outline of a hypothesised hand, as in Fig. 3.

5 LEARNING WITH STOCHASTIC OBSERVATIONS

The learning problem is a problem of Maximum Like-
lihood estimation with missing variablesÐall of the state
variables X�t are missing because they are only observed
indirectly, via a stochastic process. The training sequence,
therefore, is a sequence of observations Z1:T � �z1; . . . ; zT �.
This arises in the well-known problem of learning a
Hidden Markov Model (HMM) as done in speech
analysis [21], [35], which is a special case of the mixed-
state learning problem dealt with here. With HMMs, the
problem is solved by the Baum-Welch algorithm, a form
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of Expectation-Maximization (EM) algorithm [12]. What is
required here is an EM algorithm for the general problem
of learning multimodal dynamics.

The EMalgorithm is iterative: Given the training sequence
dataZ1:T , it produces a series of estimates�i which converge
to an MLE for �. Each iteration, calculating �i from �iÿ1,
consists of an alternate application of an expectation and a
maximization step which, for the dynamical learning
problem, it can be shown, are as follows:

1. Expectation. Expected values of moments and
autocorrelations

E�Ry
ijZ1:T ;�iÿ1�; E�Ry

i;jjZ1:T ;�iÿ1�;
E�T yijZ1:T ;�iÿ1�; E�T yi;jjZ1:T ;�iÿ1�;

�10�

conditioned on training data and the latest para-

meter estimate �iÿ1, need to be computed.

2. Maximization. Setting Ry
i; R

y
i;j; T

y
i; T

y
i;j to their

expected values in (10), �i is computed as the
solution of � in the MLE (4) for each y, and in (6).

(Note: The correctness of this approach depends on the
Ry

i; R
y
i;j; T

y
i; T

y
i;j being sufficient statistics for � and

appearing linearly in the log-likelihood L���Ðdetails can
be found in [37], [31], [16].)

A remaining question is, how to compute the expecta-
tions of the required moments and autocorrelations. In the
special case Y � f1g of single-class dynamics and assuming
a Gaussian observation density, exact methods are available
for computing expected moments, using Kalman and
smoothing filters [13], either by an extension of the usual
forward and backward filters [37], [16], or by using an
ªaugmented stateº and the standard forward/backward
filters [31]. For multiclass dynamics and/or non-Gaussian
observations, exact computation is not feasible, but good
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Fig. 2. One-dimensional observation model. A probabilistic observation model allowing for clutter and the possibility of missing the target

altogether is specified here as a conditional density p�zjx�. It is well-known to be a mixture of Gaussians, each of standard deviations � and centered

on an image feature [6, chapter 12]. See [31], [16] for the inference of � from training-data.

Fig. 3. Visual Observations. On each of several measurement lines emanating from the hand contour, the sequence of edge features generates a

non-Gaussian observation density of the form seen in Fig. 2.



approximations can be achieved based on propagation of

ªparticle sets,º as explained in Section 6.

6 PARTICLE SMOOTHING FILTER

A ªparticle-setº f�s1; �1�; . . . ; �sn; �N�g is defined as a

sample fsig with associated weights f�ig. Such a set is said

to represent approximately a particular (multivariate)

distribution if choosing an i with probability proportional

to �i and then setting x � si generates a random variable x

drawn (approximately) from the distribution.
The smoothing filter described here constructs particle

sets which represent distributions1 p�X tÿK:tjZ1:T � for

t � K; . . . ; T , and from which the autocorrelations Ri;j

needed for learning can be estimated.

6.1 Forward Filter

The CONDENSATION algorithm [22] is a form of sample-

based forward filter that can be extended to mixed states

[25], to construct samples from p�X tÿK:tjZ1:t�, as a first step

on the way to sampling from p�X tÿK:tjZ1:T �. The CON-

DENSATION forward algorithm is given in Fig. 4.

6.1.1 Notes on the Algorithm

1. The particle set is taken to be of fixed size N in each

time-step t. Size N is chosen as large as possible, for

the most accurate results, to fit within a given

computational resource. In perception problems, the

requirement may be for processing to keep pace with

the cycle time of a sensor generating observations.
2. If the orders Ky of models are allowed to differ,

then take K � maxyK
y in the CONDENSATION

algorithm.
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Fig. 4. The CONDENSATION algorithm for forward propagation.

1. In full, the distribution is p�X tÿK:tjZ1:T ;��, but the � may be omitted
for simplicity.



3. Particle-sets in the algorithm incorporate a history

�x�n�tjt ; . . . ;x
�n�
tÿKjt�, which in fact includes one ele-

ment x
�n�
tÿKjt extra to what is strictly needed for

prediction. The extra element implements the

ªaugmented stateº that is needed to estimate all

the autocorrelations Ri;j needed for learning.
4. The algorithm needs to be initialized. This requires

that the �X�n�ÿkj0; k � 0; . . . ; K ÿ 1� be drawn from a

suitable (joint) prior for the multimodal process.
5. The prior for initialization may be hard to come by in

practice. A straightforward alternative is available

for any dynamical process which is stable and

irreducible. This is to initialize the variables above

in any reasonable manner, for instance,

y
�n�
0 � 1; and x

�n�
ÿkj0 � 0; k � 0; . . . ; K ÿ 1;

and run the algorithm for many iterations, without

observations and setting �
�n�
t � 1=N . After a suffi-

ciently long time, t0, a statistical steady state, should

be reached and can be used, thenceforth, as an initial

state for subsequent runs of the algorithm.
6. The forward algorithm has computational complex-

ity O�NT �, provided the sampling in Step 1 is done

appropriately, for example, ªdeterministic sam-

plingº [27]Ðsee [24, Section 4.4] for details.

7 FORWARD-BACKWARD SAMPLING

The backward pass for single-class dynamics, described in

[26], extends to multiple classes as in Fig 5. It produces a

supplementary set of ªsmoothingº weights  
�n�
t with the

property that choosing

X
�n�
tÿKjt; . . . ;X

�n�
tjt

� �

for some n, with probability  
�n�
t , generates (in the limit

N !1) random variates from the joint distribution

p �XtÿK ; . . . ;Xt�jZ1:T� �
for sections of state-sequences conditioned on the entire

training set. This allows expectations of autocorrelations

and frequencies to be approximated as:

E�Ry
i;j� �

X

N

n�1

X

T

t�K�1
�y y

�n�
tjt

� �

 
�n�
t x

�n�
tÿijt x

�n�
tÿjjt

� �>
�11�
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Fig. 5. The CONDENSATION backward algorithm.



E�Ry
i � �

X

N

n�1

X

T

t�K�1
�y y

�n�
tjt

� �

 
�n�
t x

�n�
tÿijt �12�

E�Ty� �
X

N

n�1

X

T

t�1
�y y

�n�
tjt

� �

 
�n�
t �13�

E�Ty;y0 � �
X

N

n�1

X

T

t�2
�y y

�n�
�tÿ1�jt

� �

�y0 y
�n�
tjt

� �

 
�n�
t : �14�

7.1 Notes on the Smoothing Algorithm

1. Backward weights. The algorithm works by apply-
ing standard Bayesian forward-backward fusion

p�X tÿK:tjZ1:T � / p�X tÿK:tjZ1:tÿ1�p�Zt:T jX tÿK:t�
in Step 3. The p�X tÿK:tjZ1:tÿ1� term is conveyed by

sampling from the forward weights �
�n�
t , as in the

forward algorithm. The backward weights �
�n�
t carry

the other term, as it can be shown straightforwardly

that

�
�n�
t � p�Zt:T jX tÿK:t�;

the approximation being unbiased in the limit

N !1.
2. Computational complexity. The computational com-

plexity of the algorithm is O�N2T � because of the
sums computed in Step 2.

3. Successive averaging. One way of reducing com-
plexity is by successive averaging, as follows:
Suppose Nmin is the smallest value of N with which
a particular motion can be successfully ªtracked.º
The smoothing algorithm can be run Q times with
Nmin particles, where N � QNmin. Then, from the qth
run, expectations are estimated as Eq�Ry

i;j� and a
grand estimate

E�Ry
i;j� �

1

Q

X

Q

q�1
Eq�Ry

i;j�

is formed. The grand estimate can probably be
expected to be of similar quality to the original since
it is still based on a total of N particles per time-step.
Computational cost is O�Q�Nmin�2T �which is O�NT �
given that Nmin is a constant. However, the complex-
ity reduction is only felt when N > Nmin and, in
practice, Nmin may be large.

8 RESULTS: LEARNING FROM IMAGE SEQUENCES

WITH EM-C

The EM-C algorithm has been applied in two different visual

scenes, both involving clutter. The first involves a hand

moving over a desktop, illustrative of the potential applica-

tion of this sort of technology for user interfaces, for example,

the Xerox ªDigital Deskº concept [38]. The second, a little less

demanding in terms of the density of clutter, has instead the
additional complexity of multiclass dynamics, the classes

corresponding to the different phases of the juggling cycle.

8.1 Single-Class Dynamics: Digital Desk

In the training and test sequences used here (Fig. 6), a hand
moves, without flexing, over the desk surface, and so can be
regarded as a two-dimensional rigid body. This implies that
the state vector xt is four-dimensional, so that x 2 SE , a
ªshape-spaceº of Euclidean Similarities [6]. The space can
be parameterized in terms of x; y translation, rotation and
zoom. Within this four-dimensional space, and since
natural motions of the hand over the desk involve roving
to and fro, it is reasonable to model them as a family of
damped oscillations

�x � F1 _x� F2x�Gw;

where w is a Wiener noise process, and F1; F2; G are matrix

(4� 4) constants. In discrete-time (with sampling interval �),
this has the form [2] of an ARP (2) with orderK � 2. The aim

of EM-C learning is to estimate the 4� 4 matrices A1; A2; B,

and the vector d. In order to perform the EM iterative

procedure, some initial values of the model parameters � �
�A1; A2; B;d�must be fixed. Deterministic parameters are set

for ªconstant velocityº dynamics, so that [6, chapter 9]
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Fig. 6. Training data. Two fields from a 5-second training sequence (sampled at 50 fields per second, so that the sequence consists of 250 fields), in

which the hand oscillates to and fro over a cluttered desk. The white outlines are estimated by EM, as a by-product of training (see text).



A1 � 2I; A2 � ÿI, where I is the (4� 4) identity matrix, and

offset d is set to 0. Stochastic parameter-matrixB is chosen to

be diagonal,

B � diag bx; by; brot; bzoom
ÿ �

so that the four state-space parameters are initially
decoupled, and set to give physically reasonable values
for the drift that can occur, from rest, in one time-step
(� � 1=50s):

bx � 10 pixels; by � 10 pixels; brot � 0:01 rad; bzoom � 1%:

These values allowed the CONDENSATION algorithm to
track successfully, in practice, given a sufficiently large
particle-set size N . Initial conditions for xt must also be set
and this was done by fixing template configurations xt at
times t � 1; 2 to fit the images in those first two time-steps.
The resulting EM-C learning (with particle sets of size
N � 2; 048) converges rapidly, achieving stable parameter
settings after 10 iterations or so, as Fig. 7 shows.

Incorporating the learned model into the CONDENSA-

TION estimation process should enable particles to be
concentrated more efficiently. This allows the hand motion
to be estimated correctly with a smaller number N of
particles in each time step, as Fig. 8 shows. In EM-C training,
N � 2; 048 particles per time-step were used with the
ªconstant velocityº dynamical model above, to give good
approximations to the expected values of the moments,
transition counts, and durations in (11), (12), (13), and (14).
With the learned model, N � 32 suffices for correct tracking
on the training set. Out of 16 independent test sets, motions
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Fig. 7. Convergence of EM-C learning. Convergence of the frequency

of the dominant oscillatory mode. Other parameters converge similarly

rapidly.

Fig. 8. Testing learned dynamics. Three fields from a 5-second test sequence consisting of a motion similar to that in the training sequence above.
The displayed outlines show estimated motion for a rather ªleanº CONDENSATION filter using justN � 64 particles per time-step. Note the failure after
t � 2:00 seconds for the ªconstant velocityº model (as used above for training, but with N � 2; 048). This occurs as the hand-motion reaches the end
of its travel, but constant velocity prediction means that the hand is ªexpectedº to sail on. (a) t � 0:00s, (b) t � 1:00s, (c) t � 2:00s, (d) t � 0:00s,
(e) t � 1:00s, and (f) t � 2:00s.



in 13 cases were estimated correctly with just N � 64
particles. (ªCorrect estimationº implies freedom from
unrecoverable error judged relative to ground truth marked
by eye. This is fairly well-defined given that tracking error
tends to have a binary ªall or nothingº behavior: Either the
error is stable, recovering over time, or it diverges over
time.) Using the unlearned, constant-velocity model, track-
ing failed for N � 64 on all 16 test sets. The failure to track
motion occurs shortly after the motion of the hand reverses
rapidly, a possibility that is anticipated by the learned
model. Practically, filtering with N � 64 particles per time-
step is sufficiently ªleanº to load just 10 percent of the real
time capability of a desktop workstation such as an SGI
Octane. (This is potentially important for ªdigital deskº
applications in which the hand is simply an input device
and the remaining 90 percent of capacity remains available
for the main graphics applications.)

9 RESULTS: MULTICLASS DYNAMICS AND

JUGGLING

The visually tracked motion of a juggler's ball (Fig. 1) is

used here to explore the learning of multiclass dynamics.

Juggling takes place in a plane parallel to the image plane so

that the outline of the ball is described simply by a two-

dimensional state vector x. From a juggler's point of view,

the juggling cycle separates conceptually into four phases:

throw, ballistic, catch, carry, then back to throw. It is an open

question, however, whether these phases have sufficiently

distinct dynamics to be classifiable from visual data. Here,

experiments used both two- and three-class models. With

two classes, learning and classification were entirely

automatic. With three classes, learning was automatic, but

some experimentation with model constraints was needed

to obtain complete classifications.

9.1 Two Classes

The first experiment was to learn a two-state dynamical

model, with the expectation that this might separate the

process into ballistic and nonballistic phases. Each class y 2
f1; 2g is modeled by a particular form of second-order ARP:

xt � 2xtÿ1 ÿ xtÿ2 � dy �Bywt;

in which the parameter dy determines the (constant)
acceleration. This is equivalent to a continuous-time model

�x � a�Gw
with a fixed acceleration parameter a that is proportional to

d, the constant of proportionality depending simply on

camera calibration and the interval � between video frames.

Visual observations are, as for the hand-tracking experiment,

earlier. The duration T of the training sequence is 5:3 seconds

(264 video fields), covering four juggling half-cycles. In each

iteration of the EM learning algorithm, the E-step used a

particle smoothing filter with Nmin � 750 particles and

successive averaging over Q � 5 runs. The EM algorithm

was initialized with bland dynamical parameters for each

classÐBrownian motion, unbiased (a � 0), and driven by

isotropic noise (B � bI, where I is the 2� 2 identity matrix)

with a physically reasonable magnitude b �
���

3
p

pixels. The

discrete state transitionmatrixM is initialized symmetrically

(Fig. 9) such that each state has a short initial lifetime of

1=�1ÿ 0:8� � 5 time-steps, or 0:1 seconds. To avoid exces-

sively slow convergence in EM, the value ofB is constrained

to be constant throughout learningÐi.e., it is fixed a priori.

Monitoring convergence of the EM algorithm suggested that

dynamical parameters and transition probabilities had

substantially converged after six iterations, and EM was

continued to the 12th iteration. (When the same experiment

was tried with B, also variable and being learned, the

B-values failed to converge within a practical time (e.g.,

20 hours).)
The resulting learned dynamics are shown in Fig. 9 and

show a clear separation into a ballistic class (acceleration
a � g, due to gravity) and a nonballistic one with strong
upward acceleration. The mean duration of the ballistic
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Fig. 9. Learning two-class dynamics for juggling. The two emergent motion classes turn out to correspond to ballistic and nonballistic motions.

Note that the units of acceleration a are m:sÿ2, so that the acceleration for the ballistic class is close to the value g � ÿ9:8m:sÿ2 due to gravity.

(a) Initial Model. (b) Learned model.



state can be calculated from its probability of reentry, as

1=�1ÿ 0:959� � 24:4 frames, which is close to 0:5 seconds

and the mean duration of the nonballistic state is very

similar. This gives a total mean half-cycle time close to

1 second, reasonably consistent with the actual value for the

training data of 1.25 seconds. The equal distribution of

duration between the ballistic and nonballistic also appears

consistent with the training data, and with the expectations

of the juggler.

9.1.1 Classification

Having obtained the dynamical model, it can be used with

independent test data as a motion classifier. The duration of

the test sequence is also five seconds and a particle

smoothing filter with N � 1; 000 particles is used to

generate the classification. Results in Fig. 10 show

consistent classification into ballistic and nonballistic classes

over two cycles. The figure clearly shows the ballistic phase

occupying the upper part of each trajectory, as expected.
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Fig. 10. Motion classification. Two complete juggling cycles are classified using particle smoothing, with learned class dynamics, into ballistic

(dashed) and nonballistic (solid) motion. One of the classified cycles is shown overlaid on the final image frame of the cycle.



9.2 Three Classes

The next experiment was to learn a three-state dynamical

model, in the expectation that catch and throw, being similar

(each consists of strong upward acceleration) would be

amalgamated into a single class. The three classes would

then be: ballistic, catch/throw, and carry. The duration T of

the training sequence is 1:3 seconds (65 video fields),

corresponding to one juggling half-cycle. In each case,

driving noise was isotropic as before, but now with

amplitude b �
���

5
p

pixels.
Results with two different sets of initial dynamics are

shown in Fig. 11 and Fig. 12. For Fig. 11, the initial

continuous dynamical models were set with nonzero

parameters to break symmetry and nudge the EM local

optimization process towards a physically reasonable mod-

el. Symmetry-breaking was provided by setting the initial

values for acceleration in each of the three states: one

upward, one neutral, and one downward. As before, the

discrete state transition matrix M was initialized

symmetrically with state-lifetimes of 1=�1ÿ 0:8� � 5 time-
steps, or 0:1 seconds. The emergent dynamical model
consists of classes that correspond recognizably to ballistic
motion, catch/throw, and carry, consistent with the sym-
metry-breaking priming from the initial model. The total
half-cycle-timeÐthe sum this time of three state lifetim-
esÐis 0.74s, which is about 40 percent too small. This bias is
a property of the MLE which is unbiased only in the limit
that the training sequence is long. Bias was indeed reduced
by training over four half-cycles instead of one, giving 1.06s
which underestimates the true lifetime by about 15 percent.

The ballistic state has the longest lifetime and this fairly
reflects the characteristics of juggling. The shortest lifetime,
again realistic, belongs to the carry state, and note that its
acceleration is predominantly lateral, consistent with the
ball being shunted sideways, between catching and re-
launch. The constraint that carry motion never follows on
directly from ballistic motion is captured strongly: With
probability 0.01, this transition is only one quarter as likely
as the alternative transition from ballistic to catch/throw. It
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Fig. 11. Learning three-class dynamics of juggling. (a) Initial model and (b) learned model. Given a modest degree of ªprimingº in the initial

settings of dynamical parameters (top), the three emergent motion classes (bottom) turn out to correspond to ballistic motion, catch/throw, and carry.



is also the case that ballistic motion never follows directly
from carry, and this is represented more weakly, being
about half as likely as the alternative transition (carry to
catch/throw).

9.2.1 Initial Conditions and Local Minima

It is natural to wonder whether such clear dynamics for the

three-class case would emerge from unprimed, symmetri-

cal, initial settings, like the ones used above in the two-class

experiment. In a further experiment, therefore, initial values

for accelerations were set to 0, with the same symmetrical,

initial M as before. The results in Fig. 12 show that the

change in initial conditions has produced a marked change

in learned dynamics. This is only to be expected given that

EM is a gradient descent algorithm that finds local, but not

necessarily global, optima of expected log-likelihood. At the

new local optimum, the carry class, the most ephemeral of

the classes in the previous learned model (Fig. 11), appears

to have vanished, or been absorbed into catch/throw to

form a single nonballistic state. Two very similar ballistic

states have emerged each with a � g and that two-state

subsystem can be shown to have a joint lifetime of 0:58s,

which is about right for the duration of the flight of a ball.

However, the lifetime of the nonballistic class is about 1:4s,

which is about twice as long as the actual duration of

nonballistic motion in the training sequence.

9.3 Classification with Six-State Dynamics

Given a learned three-state model as above, it should be

possible to classify motion. In fact, some experimentation

was required before good classification was obtained. For

example, the noise amplitude b in B � bI is not learned, so a
good value must be fixed manually, in advance of learning.

A value b �
���

3
p

pixels was found to give better classification

than b �
���

5
p

pixels, and is used in results shown here.

Symmetry breaking was included in initial conditions as
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Fig. 12. Local minimum in EM learning. (a) Initial model. (b) Learned model. In this experiment, the initial dynamical model has a-parameters set to

zero. The learned dynamics converge to a new solution, the local optimum in EM that is reached from the new initial parameters. The three classes

have merged into just two distinct groups, with the two classes labeled ballistic having very similar parameters.



earlier. The resulting learned three-class model is similar to
the one in Fig. 11, except that now the two ªillegalº
transitions, ballistic ! carry and carry! ballistic, acquire
such low transition probabilities as to be effectively zero.
(This extra information seems to have arisen as a result of
improved tracking accuracy with the new b-value.) The
learned model applies to a left handed half-cycle. A model
for the right handed half-cycle can be obtained simply by
reflecting all dynamical parameters about the image y-axis
(which is parallel to gravitational force). Then, the state-
chains for left and right hands can be broken open and
connected in a figure of eight, as in Fig. 13.

The full cycle model of Fig. 13 was applied, via

CONDENSATION smoothing, to a test sequence of 10 sec-

onds duration, sufficient for four full juggling cycles, the

first 1.2s of which formed the training sequence. The entire

motion of 500 video fields is tracked accurately and the first

cycle of tracked juggling is shown in Fig. 14. The figure

illustrates mean positions from the smoothed distributions

for successive times, together with the most probable class

yt. Note that class labels yt are the most probable pointwise,

that is maximizing over label probabilities at each time t in

isolation. (An alternative would be to display the most

probable sequence fy1; . . . ; yTg of classes, for which a Viterbi

algorithm has been developed recently [34], but only in the

case of Gaussian observation noise.) Pointwise, most

probable class labels are given for the entire test sequence

in Fig. 15. The first six half-cycles are correctly classifiedÐ-

note the apparent periodicity both of full-cycles and (up to

handedness) of half-cycles. At 7.5s, some disturbance in the

data causes the handedness to flip so the final cycle is

labeled right-left, in place of the true left right sequence.

This is a reasonable error in that the differences in the

acceleration vector a for corresponding left/right classes

(Fig. 13) are subtle: The horizontal components of accelera-

tion, which are reversed in exchanging hands, are small

compared with the vertical components. Indeed, the flip of

handedness occurs during ballistic motion which is indis-

tinguishable, in principle, between hands.

10 COMPUTATIONAL COMPLEXITY

A severe limitation on the scope for experimentation with

learning is the very considerable computational load of the

EM learning algorithm. For example, in the first (two-class)

juggling experiment, 12 iterations were used with N � 750

and Q � 5, each iteration taking over an hour on a desktop

workstation (SGI Octane 175MHz). Here, two possible

attacks on the complexity problem are considered. The first

addresses the problem posed by long-lifetimes and the

associated low probabilities for transition out of a given

class. Given a transition probability M12, then during a

class 1 phase, only NM12 particles on average are assigned

to class 2, and if M12 is small, this may be insufficient to

track the transition to class 2, when it occurs. One approach

to this is deliberately to overstimulate low probability

transitions by ªpartial importance samplingº in the forward

filter and preliminary experiments suggest that this is

useful. The other problem is the quadratic complexity of the

particle smoothing algorithm, which can be mitigated by

averaging (described earlier) to reduce complexity from

O�N2T � to O�NT �, but with the limitation that the reduction

in computation may only take effect for very large values of

N . There is another alternative: A forward-backward

algorithm with O�NT � complexity which will save compu-

tational effort, again only if N is large enough.

10.1 Partial Importance Sampling

Given that off-diagonal elements of M need to be small for

long-duration motion classes, only a small fraction of the

N samples in a given time-step are available to change their

discrete state. One general approach to such undersampling

problems is ªimportance samplingº [20], in which areas of

configuration space that are unduly sparsely populated with

particles can be artificially repopulated, and the correspond-

ing likelihood weights �
�n�
t are adjusted to maintain the

correct posterior distribution. This is done using an im-

portance function g�X� which determines the intensity of

repopulation over the configuration space for X.
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Fig. 13. Six-class dynamics for juggling. A three-class model, similar to the one in Fig. 11, is learned for the left hand half-cycle of juggling.

Horizontal reflection of physical parameters generates a model for the right hand. Finally, the left and right hand Markov chains are broken open and

connected together in a figure of eight, to form a model for the full, six-class juggling cycle.



In the dynamical classification problem, it is just the

discrete component y of the state X for which importance

sampling is required. This can be achieved bymodifying two

of the steps of the forward algorithm of Fig. 4 as follows:

Step 1. Choose y
�n�
t � y0 2 Y from some fixed probability

distribution �y0 , for instance, uniform (�y0 � 1=Ny), re-

gardless of the predecessor state y
�m�
tÿ1.

Step 2. Compensate for the bias introduced in Step 1 by

adjusting likelihood weights which then become (before

normalization)

�
�n�
t �

My;y0

�y0
p ztjxt � x

�n�
tjt

� �

;

where y � y�m�tÿ1 and y0 � y�n�t .
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Fig. 14. Juggling: Estimation and classification results. One cycle of tracked motion is displayed with class labels (dashed: ballistic, solid: catch/

throw, dotted: carry). (a) Ballistic (left), (b) catch, carry, throw (left), (c) ballistic (right), and (d) catch, carry, throw (right).



This boosts the population of particles undergoing state-

transition while maintaining the asymptotic unbiasedness

of the particle sets.

This strategy has been tested in preliminary learning

experiments in which dynamical learning was done with

just one iteration of EM and using only the forward pass as

an approximation to the full forward-backward smoothing

algorithm. Allowing some doubt over the extent to which

this approximate learning algorithm is representative of the

performance of full EM learning, the results are promising.

The data was derived from visual observation of physical

exercises, as in Fig. 16, the task being to classify motion into

one of two classes. The quality of learned dynamical models

for the two classes is measured in terms of the classification

error rate on a test set of eight seconds duration, containing

approximately equal durations of each class, and with two

class transitions. As particle set size N increases, error rate

decreases, reaching a terminal value of around 10 percent. It

is clear (Fig. 17) that the value is reached considerably

sooner (N � 400) when partial importance sampling is used

than otherwise (N � 800). This can be taken as encouraging

evidence that partial importance sampling should reduce

computation times in the general EM-C setting.

10.2 Smoothing with Linear Complexity

The backward filter in Fig. 5 traverses the forward ªlatticeº

of particles X
�n�
t , which was generated by the forward filter.

An alternative, based on [27] with some correction and

simplification, is to generate an independent backward
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Fig. 15. Classification of juggling motions. The most probable classification for each time-step is shown here for the six-state model (top) and

superimposed on the estimated ball-height trajectory (bottom). Some transient disturbance at 7.5s has perturbed the class-sequenceÐsee text.

Fig. 16. Physical exercise. Two kinds of motion occur in alternating sequence: ªjumpº (left)Ðjumping up and down without lateral arm or leg
movement and ªhalf starºÐa star jump without arm movement.



lattice X
 �n�

t and fuse the two lattices in a final step. This

alternative backward filter is given in the Appendix.

The algorithm formally has O�NT � complexity compared

with O�N2T � for the earlier algorithm. However, saving in

computational effort may not be realized until N is quite

large (see the Appendix). Furthermore, it remains to be

determined experimentally whether the two smoothing

algorithms are actually equally effective for equal values of

N , and indeed to define a suitable measure of effectiveness.

11 CONCLUSION

A general tool for learning dynamics has been explored: the

EM-C algorithm, a combination of CONDENSATION (parti-

cle-filtering) and Expectation Maximization. It has proved to

be a versatile learning algorithm, capable of handling both

inexact observations in clutter, and multiple motion classes.
Computational complexity of dynamical learning is a

problem both practically and in principle. Learning
dynamics from a few seconds of video has typically
required several hours of processing time. Partial im-
portance sampling is one method that promises to reduce
computation times. Another source of inefficiency is that
the learning algorithm used here is quadratic in N , the
particle set size. An N-linear algorithm is possible for
single class learning and can be modified to apply to the
multiple class case. For sufficiently large values of N , this
should reduce computation times for learning. Also, note
that the learning algorithms are readily amenable to
parallel implementation. One further possible saving of
computational effort might arise if a way could be found
for reusing particles in a given EM-C iteration, in the
subsequent iteration.

Learning dynamics is important, both for perception and
classification of motion. In perception of motion against
clutter, the required sizeN ofparticle set ismarkedly reduced
when learneddynamics are used for prediction. Experiments
with learnedmulticlass motion show that good classification
accuracy can be achieved in simpler cases. Formore complex
systems, scope for experimentation is somewhat limited by

long computation times, but it is clear that the local nature of
EM optimization becomes important. The result is that while
complex dynamical models can be substantially refined by
EM-C, order will not necessarily emerge from entirely bland,
unprimed disorderÐa clear instance of ªMartin's lawº [39,
chapter 11] that learning generally proceeds incrementally.

APPENDIX

SMOOTHING WITH LINEAR COMPLEXITY

The alternative backward filter of Section 10.2 is given in

Fig. 18 for the case of K � 1 order dynamics with a single

motion class, and without state augmentation, so that the

backward lattice is simply x �n�t . Then, sampling from the

particle-sets f�x �n�t ; �
�n�
t �g generates samples from the a

density proportional to the likelihood function p�Zt:T jxt�.
A limitation on this algorithm is that it is valid only if

Z

xtÿ1

p x
�m�
t j xtÿ1

� �

dxtÿ1 � const; �15�

which is satisfied by the linear ARP(1) model and ARP(K)
models generally, but precludes extension to augmented
state filtering as used earlier. However, it is still possible to
estimate all the required autocorrelations E�Ri;jjZ1:T � by
forming particle sets as follows:

1. Draw xtÿ1 from p�xtÿ1jZ1:tÿ1� using the forward
filter.

2. Draw xt from p�Zt:T jxt� using the backward filter.
3. Generate a weight  � p�xtjxtÿ1�.

Particles ��xtÿ1;xt�; � generated in this way form sets from
which samples from the distribution p�xtÿ1;xtjZ1:T � can be
drawn and used to estimate the necessary autocorrelations.

As for the forward propagation algorithm in Fig. 4,
computationally complexity is O�NT �, determined by the
sampling operation in Step 2.1. However, there is an
additional cost in this alternative backward algorithm,
relative to the original, namely the extra evaluations of
observation likelihood required in Step 2.3. In practice,
evaluation of observation likelihood often has high
computational cost. Doubling this cost here means that
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Fig. 17. Classification error for physical exercise data. The plots show that partial importance sampling reduces the size N of the particle set

needed to learn a given quality of dynamical model.



the alternative algorithm, although formally O�NT � com-

pared with O�N2T �, may not actual show reduced

computation time until N is quite large.
The normalization requirement (15), extended to mixed

states, implies that

X

y

My;y0 � 1;

which is not in general true of a Markov chain. Strictly,

therefore, the linear complexity backward filter cannot be

applied to multiclass learning. Fortunately, there is a

straightforward modification that deals with the problem.

It involves partial importance sampling with determinis-

tically sampled discrete variables, but details are omitted

here.
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