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Learning and communication play important roles in coordinating activities.  Game

theory and experiments have made a significant contribution to our understanding and

appreciation for the issues surrounding learning and communication in coordination.

However, the results of past experimental studies provide conflicting results about the

performance of learning models. Moreover, the interaction between learning and

communication has not been systematically investigated. Our long run objective is to

overcome the conflicting results and to provide a better understanding of the interaction.

To this end, we econometrically investigate a sender-receiver game environment where

communication is necessary for coordination and learning is essential for

communication. (JEL C72, C91, C92)
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LEARNING AND COMMUNICATION

IN SENDER-RECEIVER GAMES: AN ECONOMETRIC INVESTIGATION

1. INTRODUCTION

Learning plays an important role in coordinating activities be it a market or an

organization.  Communication goes hand in hand with learning when addressing problems

of coordination.  Game theory has made a significant contribution to our understanding

and appreciation for the issues surrounding learning and communication in coordinating

activities, e.g., Paul Milgrom and John Roberts (1992).  Experiments have picked up this

theme with an extensive and growing literature that investigates learning in strategic

settings.  However, as detailed in the related literature section of our paper, the results of

these studies provide conflicting results about the performance of the chosen learning

models. Moreover, the interaction between learning and communication has not been

systematically investigated. Our long-run objective is to overcome the previous conflicting

experimental results on learning and to investigate the interaction of learning and

communication in coordinating activities. We chose our sender-receiver environment

because communication is necessary for coordination and learning is essential for

communication when messages are a priori meaningless.

We address these two problems by focusing on data from sender-receiver games in

which documented learning takes place (Andreas Blume, Douglas V. DeJong, Yong-
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Gwan Kim and Geoffrey B. Sprinkle, 1998).  Sender-receiver games play a prominent role

in theory and applied work in accounting, economics, finance and political science. 1

Communication is essential in this game because it is the only way to link the receiver’s

action to the private information of the sender. The players are members of a population

of players, senders and receivers. The population environment mitigates repeated game

effects and, therefore, is particularly suitable for evaluating myopic learning rules. The

players learn only about actions, not strategies of other players, either privately or at the

population level; this separates this paper from bulk of the empirical work on learning in

strategic form games. When population information is available, it is only about sender

play. In this environment, learning is essential for players to coordinate because messages

are costless and a priori meaningless.

We compare two learning rules, the stimulus-response (SR) model of Alvin Roth and

Ido Irev (1995) and a simple belief-based learning (BBL) model in the spirit of fictitious

play (Julia Robinson, 1951) or one of its stochastic variants (Drew Fudenberg and David

M. Kreps, 1993).  SR learning can be and has been applied in a wide variety of settings. It

requires only minimal cognitive abilities on the part of players. This feature of the model is

appealing for those who want to show that high-rationality predictions can be derived

from a low-rationality model. A closely related feature is that SR learning requires only

minimal information. All that players need to know are the payoffs from their own past

actions; they need not know that they are playing a game, they need not know their

opponents’ payoff or their past play. These two characteristics make the SR model a

natural benchmark for our investigation.
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 On the other hand, it seems quite likely that individuals would try to exercise more

cognitive ability and hence try to use other available information.  In BBL models, players

use more information than their own historical payoffs. This information may include their

own opponents’ play, the play of all possible opponents and the play of all players. Models

of this kind embody a higher level of rationality; e.g. fictitious play can be interpreted as

optimizing behavior given beliefs that are derived from Bayesian updating.

Our sender-receiver game environment is challenging for the learning models because

in formulating the SR model for this extensive form setting we have to decide whether the

players are updating actions or strategies. We choose actions on the grounds that this is

cognitively simpler than strategies. For BBL it is challenging because senders do not have

direct information on receiver behavior at the population level. For all treatments, we ask

whether the SR model or the BBL model better describes learning. The initial step in our

analysis was to fit the SR and BBL models to the data produced by the various treatments.

The most striking fact of our analysis is that for common interest games both models fit

the data reasonably well as measured by McFadden’s  (1974) psuedo-R2.

We let the BBL model take a form that is analogous to the SR model. In both

cases choice probabilities depend on unobserved propensities. The models differ in how

the propensities are updated. In the SR model the propensity for taking an action is solely

dependent on a player’s own past payoffs from that action, whereas in the BBL model the

propensity depends on the expected payoff. Our focus attention for both the SR and BBL

model is the data generated by senders. We chose senders because they have the same

number of strategies in all the games considered. This makes the econometric analysis and

the comparisons much more transparent.
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Our empirical findings for sender data can be summarized as follows. In the setting of

common interest games when information on history is available, both the SR and BBL

models tend to fit the data reasonably well as measured by the coefficient of

determination. In the absence of history information, however, SR fits the data

substantially better than BBL. We find this reassuring since it is compatible with the view

that players use history information in forming their expectations, provided it is available.

For divergent interest games, the results are sensitive to the equilibrium selected. Both SR

and BBL fit the data reasonably well in the case of separating equilibria, but neither

performs well for pooling equilibria. The fit of BBL in the case of pooling equilibria is

especially poor.

The SR and BBL models are non-nested in the sense that the SR model is not a special

case of the BBL model and vice versa. Nevertheless, the two models can be artificially

nested with the consequence that they can be compared using standard testing procedures.

This fact has been exploited by Colin Camerer and Teck-Hua Ho (1999), who recognized

that SR and BBL models are nested in a general class of models which use propensities to

determine choice probabilities. In the context of artificial nesting, the results clearly show

that the problem of distinguishing between SR and BBL models is particularly acute in the

case of common interest games with history. On the other hand, the test results accept SR

and reject BBL in the games with no history and in all but one of the divergent interest

games. The results from artificial nesting are consistent with the story suggested by the

coefficient of determination.

A point often overlooked in empirical work is that information about learning can only

come from observations where learning occurs.  Once behavior has converged,
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observations have no further information about learning.  Including such observations will

make the SR and BBL models appear to fit better, while at the same time reducing the

contrast between the models, making it difficult to distinguish the models empirically.  We

call this effect convergence bias.  A preliminary examination suggested that our non-

nested results were affected to some degree by convergence bias.  Accordingly, we

eliminated observations where it appeared that learning has ceased and reanalyzed the

remaining data.  The results of this reexamination were not markedly different from our

original finding.  In general, however, the convergence effect can strongly influence the

test results based on artificial nesting because this kind of nesting tends to induce

collinearity between the explanatory variables.

As has been noted, the results clearly show that the problem of distinguishing between

SR and BBL models is particularly acute in the case of common interest games with

history. The last section of the paper outlines an agenda for how we can learn more about

learning and communication through experiments.

2. GAMES AND EXPERIMENTAL DESIGN

Our data are generated from repeated play of sender-receiver games among randomly

matched players. Players are drawn from two populations, senders and receivers, and

rematched after each round of play.  The games played in each period are between an

informed sender and an uninformed receiver.  The sender is privately informed about his

type, θ1 or θ2, and types are equally likely.  The sender sends a message, * or #, to the

receiver, who responds with an action, a1, a2 or a3.  Payoffs depend on the sender's private
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information, his type, and the receiver's action, and not on the sender’s message. The

payoffs used in the different treatments are given in Table 1 below, with the first entry in

each cell denoting the sender’s payoff and the second entry the receiver’s payoff. For

example, in Game 2, if the sender's type is θ1 and the receiver takes action a2, the payoffs

to the sender and receiver are 700,700, respectively.

A strategy for the sender maps types into messages; for the receiver, a strategy maps

messages to actions.  A strategy pair is a Nash equilibrium if the strategies are mutual best

replies.  The equilibrium is called separating if each sender type is identified through his

message.  In a pooling equilibrium, the equilibrium action does not depend on the sender's

type; such an equilibrium exists for all sender-receiver games. In Game 2, an example of a

separating equilibrium is one where the sender sends * if he is θ1 and # otherwise and the

receiver takes action a2 after message * and a1 otherwise.  An example of a pooling

equilibrium is one in which the sender, regardless of type, sends * and the receiver always

takes action a3.

A replication of a game is played with a cohort of twelve players, six senders and six

receivers. Players are randomly designated as either a sender or receiver at the start of the

replication and keep their designation throughout.  In each period of a game, senders and

receivers are paired using a random matching procedure.  Sender types are independently

and identically drawn in each period for each sender.

In each period, players then play a two-stage game.  Prior to the first stage, senders

are informed about their respective types.  In the first stage, senders send a message to the

receiver they are paired with.  In the second stage, receivers take an action after receiving
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a message from the sender they are paired with.  Each sender and receiver pair then learns

the sender type, message sent, action taken and payoff received

To ensure that messages have no a priori meaning, each player is endowed with his

own representation of the message space, i.e. both the form that messages take and the

order in which they are represented on the screen is individualized.  The message space M

= {*, # } is observed by all players and for each player either appears in the order #,* or *,

#.  Unique to each player, these messages are then mapped into an underlying,

unobservable message space, M = {A,B}.  The mappings are designed such that they

destroy all conceivable focal points that players might use for a priori coordination, Blume

et al. (1998).  The representation and ordering are stable over the replication.  Thus, the

experimental design focuses on the cohort's ability to develop a language as a function of

the game being played and the population history provided.

Note that in this setting we learn the players’ action choices, not their strategies. Also,

the players themselves receive information about actions, not strategies. They do not

observe which message (action) would have been sent (taken) by a sender (receiver) had

the sender's type (message received) been different. This is important for how we

formulate our learning rules; e.g. the hypothetical updating (see Camerer and Ho (1997))

of unused actions that occurs in BBL does not and cannot rely on knowing opponents’

strategies but instead uses information about the population distribution of play.

We consider five experimental treatments, each with three replications. Each

replication is divided into two sessions, Session I, which is common to all treatments and

Session II, which varies across treatments. We concentrate on Session II data. The

treatments examined here differ in terms of the players’ incentives and the information that
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is available after each period of play. For one treatment, the only information available to a

player is the history of play in her own past matches.  Two questions are examined for

these cases. The first is whether learning takes place.  If learning does take place, the

second question is whether learning is captured by the SR model. In all the other

treatments, there is information available to the players in addition to the history of play in

their own past matches. For both senders and receivers, this information is the history of

play of the population of senders. Three questions are examined for these treatments. The

first again is whether learning takes place. If learning does take place, the second question

is whether learning is different from that in the previous treatment, and the third is whether

the BBL model better describes learning than the SR model.

 The data from the experiments in Blume et al. (1998) consists of three replications for

each game. Replications for Game 1 and 2 were played for 20 periods and Game 3 and 4

for 40 periods. There were two different treatments conducted with Game 1, one with and

one without population history.  The treatments are summarized in Table 2. 2

 In this paper we focus on the analysis of sender behavior. The attraction of

concentrating on sender behavior is that senders have the same number of strategies in all

of our treatments. A potential drawback of this focus is that since senders do not receive

information about the history of receiver play at the population level, they cannot form

beliefs based on that information. Instead they have to make inferences from what they

learn about sender population.

3. ESTIMATION OF SR MODEL
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In this section we report the results of estimation for the SR model of behavior

using sender data. The SR and BBL models both use propensities to determine choice

probabilities. In our extensive form game setting, we have to make a choice of whether we

want to think of players as updating propensities of actions or of strategies. Both choices

constrain the way in which the updating at one information set affects the updating at

other information sets. If actions are updated, then there are no links across the

information sets. If strategies are updated, then choice probabilities change continually at

every information set. We chose updating of actions, which amounts to treating each

player-information set pair as a separate player. We use the index i to refer to such a pair

(ι, θ), where ι denotes one of the six senders, θ a type realization for that sender, and the

pair i is called a player.

By SR we mean that individual play is affected only by rewards obtained from own

past play.  Specifically, following Alvin E. Roth and Ido Erev (1995) define the

propensity, Qim(t), of player i to send message m at time t as:

im 0 im 1 imQ (t) = Q (t-1) X (t-1)ϕ ϕ+                      
(1)

where  Xim(t-1) is the reward player i receives from sending message m at time t-1. Time

here measures the number of occurrences of a specific type for a fixed sender and ϕ0

measures the lag effect (i.e. the importance of forgetting). Note that t is not real time. We

refer to the parameter of Qim(t-1) as the forgetting parmeter and the parameter of Xim(t-1)

as the reward parameter. Given this specification of propensities, the probability that

player i sends message m is a logit function3
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im
im

im
m

exp(Q (t))P (t)=Pr(Player i sends message m at time t)= .
exp(Q (t))′

′
∑ (2)

To complete the specification of the SR model we require an initial condition for

the propensities- the values of Qim(1).  In the spirit of Roth and Erev (1995) we set Qi1(1)

= Qi2(1) = 350, which is on the scale of rewards received by participants in the

experiments.

The senders, who can be of two types, can send message “1” or “2”. Let y =

I{message = “2”},  where I{A} is the indicator function that takes the value 1 if event A

occurs and 0 otherwise. The log likelihood function for the sender data is

N T

0 1 i i2 i i2
i = 1 t = 2

ln L( , ) [y (t)ln(P (t))+(1-y (t))ln(1-P (t))]ϕ ϕ = ∑ ∑        (3)

where Pi2 (t) is the probability of sending message “2”.

To show explicity how the likelihood function (3) depends on the parameters ϕ0,

ϕ1, it is convenient to rewrite the propensity (2) as a partial sum:

t-1
t-1-jt

im 0 im 1 0 im
j 1

Q (t) Q (1) X ( j)ϕ ϕ ϕ
=

= + ∑ . (4)

Using (4), the probability i2P (t) 1/[1 exp( Q(t)]= + ∆  where

0 0

t-1 t-1
t t-1-j t-1-j
0 i1 i2 1 i1 i2 1 i1 i2

j=1 j=1

Q(t) (Q (1) Q (1)) (X (j)-X (j)) (X (j)-X (j))ϕ ϕ ϕ ϕ ϕ∆ = − + =∑ ∑ (5)

since i1 i2Q (1)-Q (1) = 0 .

From  (5), we see that the identification of the parameters ϕ0 and ϕ1 depends on

the speed of learning. Consider the behavior of the difference in the rewards, Xi1(t) –

Xi2(t), t = 1, 2,… . If the players converge to equilibrium in the first round, then the
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difference in the rewards does not change over time: Xi1(t) – Xi2(t) = c for t = 1, 2,… . The

consequence is that ϕ0 and ϕ1 are not identified. Of course, if the reward parameter is

zero, ϕ1  = 0, then ϕ0 is not identified.

More generally, the speed of learning determines the amount of the available

sample information that is relevant for estimating the parameters. Suppose Xi1(t) – Xi2(t) =

c for t > T* then increasing T beyond T*, T >T*,  will not increase the precision of the

estimator. Rapid learning means that T* is small, and hence there is, relatively speaking,

little information available to estimate the parameters. On the other hand, increasing T

beyond T* will appear to improve the fit of the model to the data. We refer to this effect

as convergence bias. Convergence bias is discussed in more detail in section 8.

           The likelihood function was maximized separately for each of the 15 replications

using observations from period 2 onwards. The results of doing so are shown in Table 3.

Columns 2 and 3 of the table contain the maximum likelihood (ML) estimates of ϕ0 and  ϕ1

and columns 4 and 5 contain the log likelihood value at the optimum, and McFadden's

(1974) psuedo-R2 statistic. The psuedo-R2 statistic is defined as 1- ln(L U)/ln(L R) where

LU is the maximized value of the likelihood and LR is the value of the likelihood function

when ϕ1= 0 and ϕ1 = 0, LR = L(0, 0). From (2) the value of  the lnL(0,0) = -NTln(2)   =

-(6×20)ln(2) = -83.17. This is because ϕ1= 0 and ϕ1 = 0 imply that Qim(t) = 0 for all t, and

hence that the probability of message “2”  is Pi2(t) = 0.5.

The feature that stands out in Table 3 is the fit of the SR model. When the

parameters are chosen optimally, the SR model fits the experimental data well for the

common interest games with history, judging by the psuedo-R2 values reported in column

5. In general, the SR model tends to fit Game 1 with history better than Game 1 without
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history. A puzzle is why history should matter for SR. The SR model performs well for the

divergent interest games when there is convergence to a separating equilibrium, which

occurs in G3R1 and G3R2. For G4R3 the relatively good performance is explained by the

fact that one sender type, θ2, is almost fully identified even though the pooling equilibrium

occurs. It should be noted that the ML estimates maximize the log likelihood, not the

psuedo-R2.

Figure 1 shows the probability of sending message 2 for each agent type by period

for the 15 replications. The smooth line marked with triangles shows the predicted fraction

of type 1 agents playing message “2” each period while the smooth line marked with

circles shows the model's predicted fraction of type 2 agents playing message “2”.  The

fraction of type 1 agents actually playing message “2” is shown by the upper jagged line

while the fraction of type 2 agents actually playing message 2 is shown by the lower

jagged line. Thus, in the game shown in the top left-hand graph in the figure - G1R1 -

50% of type 1 agents play message “2” in round 1, as do 50% of type 2 agents.  By period

7, 100% of type 1 agents play message 2, and 100% of type two agents play message 1.

A similar pattern appears in replications 2 of Game 1 and in all three replications of Game

2. The players converge to equilibrium less rapidly in replication 3 of Game 1 and in the

divergent interest games. A complete discussion of the empirical patterns in these

experiments is given in Blume et al. (1998).  Figure 1 demonstrates that in many

experiments SR fits the data of BDKS reasonably well.

4. ESTIMATION OF THE BBL MODEL

An alternative literature (e.g., John B. Van Huyck, Raymond C. Battalio, and

Fredrick W. Rankin (1996), Yin-Wong Cheung and Daniel Friedman (1997)) argues that
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variants of fictitious play–BBL− are better characterizations of play in experiments.  BBL

is expected to dominate SR because BBL uses more information, namely in our setting the

experiences of other participants.

 In the BBL model we define the propensity, Qij(t), of player i to play action j at

time t as:

im 0 im 1 imQ (t) ß Q (t 1) ß X (t 1)= − + −       (6)

where Xim (t-1) is the expected reward of player i from taking action j based on data

available at time t-1. The expected reward is calculated using the past frequencies of play.

For the senders, η θt m− 1( | )  is the frequency of type θ given message m in period t-1, and

for receivers, ρt a m− 1( | )  is the frequency of action a given message m in period t-1.

The choice probabilities again are logit as in (2) with (6) replacing (1) as the definition of

Qij, and in the likelihood function (3). The models are similar in that both use propensities

to determine choice probabilities.

In our setting, the senders do not observe the history of receiver play and hence

calculate the expected frequency of action a given message m, )|(ˆ 1 mat −ρ , from data on

past sender play. Thus, the sender formula for the expected reward is

 1
(?,?),m ˆX (t-1) ( , ) ( | )t

a

u a a mθ ρ −= ∑                   (7)

where
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Table 4 contains the estimates for each of the 15 replications. Columns 2 and 3 of
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the table contain the ML estimates of β0 and β1, and columns 4 and 5 contain the log

likelihood value at the optimum, and the psuedo-R2 statistic evaluated at the ML

estimates.

Two features stand out in the table. First, in the case of the common interest

games, the BBL model performs as expected in the sense that it tends to fit better when

history information is available. The comparison of psuedo-R2’s is suggestive: BBL fits

about as well as SR, sometimes better and sometimes worse, in common interest games

with population history information while SR wins without that information. SR tends to

fit better than BBL in divergent interest games. The fit of this model is illustrated in Figure

2, which shows the relation of predicted response and actual response by period. In Figure

2 what stands out is the poor performance of BBL in Game 1 without history and in Game

4.

Second, β0, the forgetting coefficient in the BBL model, is negative in two

replications of Game 1 without history, G1NHR1 and G1NHR2, and in two replications

of Game 4, G4R1 and G4R2. In every one of these four cases, the fit of the BBL model is

very poor, which suggests that the BBL model is not the correct model.

For these four cases, we also note that the null hypothesis that coefficient of the

expected reward is equal to zero, β1 = 0, is overwhelmingly accepted by the conventional

likelihood ratio test. In the conventional test, the asymptotic critical value is based on the

chi-square distribution with one degree of freedom. For each of the four likelihood ratio

tests, the P-value based on the chi-square (1) distribution is at least 0.30. Note that the

null hypothesis β1 = 0 is also accepted by the conventional likelihood ratio test for G3R3

as well as G4R3.
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The test for β1 = 0 ( i.e., there is no learning)  is interesting  because when β1 = 0 is

true, the forgetting parameter β0 is not identified. Thus, it not so surprising that a negative

estimate of β0 occurs. Although the above test results for β1 = 0 appear to support the

conclusion that no learning is taking place, these test results must be treated with utmost

caution. Even if the BBL model is correct, which is very doubtful, the conventional test

may produce misleading results due to the fact that nuisance parameter β0 is not identified

when the null β1 = 0 is true.

As in the case of the SR model, the lack of identification is due to the fact that

Qi1(t) = Qi2(t)  for all t when β1 = 0, which implies that Pi2(t) = 0.5 for all t. Hansen

(1996), Andrews (1997), Stinchcombe and White (1998) and others have investigated the

general case of hypothesis testing when the nuisance parameter is not identified under the

null. Their results show that the relevant asymptotic distribution theory is nonstandard: the

asymptotic distribution of the test statistic, instead of being chi-square, may depend on the

value of the nuisance parameter.

5. POOLING

In above analysis, we have treated each replication of a particular game as

independent, and obtained separate estimates of the parameters from each.  Since the

underlying learning rule is assumed to be the same in each replication it may make sense to

pool the observations across each replication, and potentially across the different games.

If such aggregation were warranted it would admit more precise inference.  Whether one

can pool the replications of a particular experimental game involving learning is of

independent interest.  One obvious circumstance where pooling would be inappropriate is

one where the participants followed different learning rules.  In this case combining the
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replications of a game will pool learning processes that are fundamentally different, i.e.,

have different values of ϕ βi ior, , i = 0,1.

Alternatively, even where the learning process is the same, the evolution of play

may be quite different because of the incentives that the participants face.  For example, in

the games that we study, Games 1 and 2 have an equilibrium that both senders and

receivers strictly prefer. Note that in Game 2 there is also a pooling equilibrium where

action a3 is taken regardless of the message sent. In Games 3 and 4 by way of contrast the

interests of the senders and receivers are not perfectly aligned, with receivers preferring

the separating over the pooled equilibrium relatively more in Game 3 than Game 4.  The

possibility of different equilibrium selection in these games leads to the possibility that the

outcomes are situation specific and that the data from the experiments cannot be simply

pooled.

To examine whether the replication data can be pooled we fit the SR model to the

three replications of each experimental game.  Then the standard chi-squared test based on

minus 2 times the difference of the log likelihoods is used to compare the constrained and

unconstrained values of the likelihood function.  There are three replications for each

game so there are 2 × 3 = 6 parameters estimated in the unconstrained case and 2 in the

constrained case, resulting in chi-square tests with 4 degrees of freedom.  The results are

displayed in Table 5.  In both Games 1 and 2 with history the data suggest that a common

learning rule is followed.  Indeed, the marginal significance level of the test statistics is at

least 35% across the tests, suggesting that it is not even a close call.  In contrast, the data

for Games 3 and 4 are not compatible with a common learning model. In each case the

chi-square test rejects the hypothesis of a learning rule with common parameter values
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and, again, the rejection is not a close call. Of course, other combinations could be tested

for pooling. The message delivered by the above results is that even pooling across the

replications of the same experimental game is not always possible, and hence the focus of

the subsequent statistical analysis is on individual replications.

6. SHAPE OF LIKELIHOOD FUNCTIONS

The likelihood functions for the SR and BBL models are not globally concave. As

a consequence, standard maximization routines are not guaranteed to locate a global

optimum.  In fact, we frequently found that quasi-Newton methods alone would get stuck

at local optima, or wander aimlessly in flat sections of the function.  Figure 3 shows the

typical shape of the likelihood function for SR models in games of common interest, in this

case G1R3, while Figure 4 shows the shape of the likelihood function for the BBL  model

in the case of G1R3.

Note that although the likelihood functions are shaped quite differently, both

exhibit large flat spots and multiple local optima.  The SR likelihood function also

characteristically has a long ridge, as the contour plots in Figure 3 illustrate.

To obtain the MLE’s we initially used a grid search on the parameter space,

evaluating the function 2,500 times. This grid search always included the point (0,0) so

that the no-learning model was always considered.  The maximum maximorum of these

points was used to pick the starting values for the first derivative method.  We used

BFGS(   ) with golden section search to obtain an optimum.  Graphical inspection of the

likelihood surface was used to assess whether a global optimum had been reached.
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7. COMPARING SR AND BBL MODELS

The results in Tables 3 and 4 show that SR and BBL tend to fit about equally well

for the common interest games with history on the basis of the psuedo-R2 values, and that

BBL fits better in the common interest games with history than without history. Further,

SR tends to fit better for the divergent interest games. While this is suggestive, it is

difficult to make probabilistic comparisons between the SR and BBL models because the

models are non-nested.  By a non-nested model we mean that the model being tested, the

null hypothesis, is not a special case of the alternative model to which it is compared. In

our setting, the two models can be artificially nested, however, with the consequence that

they can be compared using standard testing procedures. This fact has been exploited by

Colin Camerer and Teck-Hua Ho (1999), who recognized that SR and BBL models are

nested in a general class of models which use propensities to determine choice

probabilities

In this section, the approach of Camerer and Ho (1999) is adapted to our

experimental data.  The updating equation is modified to include both own and expected

payoffs:

ij 0 ij 1 ij 2 ijQ (t) Q (t-1) X (t-1) X (t-1)γ γ γ= + + (8)

where  ijX (t-1)  is the expected payoff from making choice j at time t-1 and Xij(t-1) is the

actual payoff from making choice j at time t-1. We refer to the model with the updating

equation (8) as the hybrid model since it is a combination of the SR and BBL models.4

The likelihood function for the sender data was maximized separately for each of

the 15 replications using observations from period 2 onwards. The results of maximization
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are shown in Table 6.  Columns 2, 3 and 4 of the table contain the estimates of γ0, γ1 and

γ2  and columns 5 and 6 contains the log likelihood value at its optimum and the value of

psuedo-R2. The fit of the hybrid model is usually better than the fit of either the SR or

BBL model. Note that the ML estimation algorithm failed to converge for G2R2 and

G2R3 due a singular Hessian.

In Table 7, columns 2 and 3 report the Wald t statistics for testing the hypotheses

H0: γ1 = 0 and H0: γ2 = 0. Each null hypothesis is evaluated using a symmetric test at the

nominal 5% level and hence by the Bonferroni inequality the probability of simultaneously

rejecting both hypotheses is approximately 0.10.  The results of this pair of tests are

summarized in columns 4, 5, 6 and 7. Rejection of H0: γ1 = 0 is interpreted as acceptance

of BBL and rejection of H0: γ2 = 0 as acceptance of SR.

From an inspection of these columns, we see that in 10 out of the 13 replications

SR is accepted and BBL is rejected.  This is consistent with ranking of the models based

on the psuedo-R2’s reported in Table 3 and 4. As is intuitively plausible, this result occurs

mainly in Game 1 without history and the Games 3 and 4, the divergent interest games.

Both SR and BBL are rejected in 2 out of 13 replications (H0: γ1 = 0 is accepted and H0:

γ2 = 0 is accepted); this occurs in Games 1 and 3, G1R2 and G3R1.   In Game 1 with

history the results are mixed. BBL was accepted and SR rejected (H0: γ1 = 0 is rejected

and H0: γ2 = 0 is accepted) in G1R1 while the reverse is true in G1R3. Both are rejected in

G1R2. The conclusions drawn from this testing exercise are similar to those produced by

comparing the psuedo-R2’s in Tables 3 and 4.

The tests were also conducted at the nominal 2.5% level, that is, using a critical

value of 2.27. In this case, the probability of simultaneously rejecting both hypotheses is
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approximately 0.05 using the Bonferroni inequality. The decrease in the nominal

probability of making a Type I error only affected the test results for G3R3. Instead of

only BBL being rejected, both BBL and SR are now simultaneously rejected.

There are two potential problems with artificial nesting using the hybrid model.

The first is that if H0: γ1 = 0 and H0: γ2 = 0 is true, then γ0 is not identified. The argument

is similar to that previously discussed in connection with the BBL model. In this situation,

the usual asymptotic distribution theory does not apply: the asymptotic distributions of the

t statistics for testing H0: γ1 = 0 and H0: γ2 = 0 are not, in general, standard normal when

the nulls are true. Hence, the finding that the null hypotheses H0: γ1 = 0 and H0: γ2 = 0 are

simultaneously accepted in two cases when the absolute critical value is 2.00 and in three

cases when the absolute critical value is 2.27 must be treated with caution.

Second, the explanatory variables may be highly collinear. Our results appear to be

influenced by multicollinearity between the expected reward ijX (t-1) and the actual reward

Xij(t-1). The source of the multicollinearity is due to learning. If play converges to a pure

strategy equilbrium, then the actual and expected reward variables take on identical values.

Thus, after convergence to equilbrium there is exact collinearity between the two

information variables. Multicollinearity tends to be more of a problem in the common

interest games; in particular, the rapid convergence to equilibrium appears to explain the

singular Hessian in G2R2 and G2R3. The degree of multicollinearity depends on the

number of observations included in the data after convergence has been achieved. This

matter is discussed in more detail in the following section.

8. CONVERGENCE BIAS
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It is common practice to include all observations from a particular experiment in

any statistical estimation or testing exercise based on that experiment.  Yet information

about learning can only come from observations where learning occurs.  As noted earlier,

once behavior has converged, observations have no further information about learning.

Including such observations will make the model appear to “fit” better, while at the same

time reducing the contrast between models, making it difficult to distinguish the models

empirically.  The data shown in Figures 1 and 2 indicate that convergence typically occurs

within 5 to 7 periods, while observations are included in the estimation for the entire

sequence, in these data up to 20 periods.

 To illustrate the possible bias that this might cause we calculated the psuedo-R2

and average log likelihood (the maximized log likelihood divided by number of

observations used) by progressively removing observations from the later periods, that is,

by removing observations that include convergence.  Figure 5 illustrates this bias for the

replication G1R1 for BBL and SR. Under the hypothesis of no convergence bias we

would expect the psuedo-R2 and the average log likelihood to be invariant to the number

of periods included. Hence, under the hypothesis, the curves in panels (a) and (b) in Figure

5 would have zero slope.  In fact, all four curves have positive slope, which is

characteristic of convergence bias. However, the difference between the curves in each

panel is approximately constant in these data, which suggests that convergence bias makes

both models appear to fit the data better, but does not otherwise bias the comparison of

SR and BBL.
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To measure the amount of bias requires taking a position on when convergence

has occurred, a classification that is better made on individual data. We define the

convergence operator Tp(yit) by

T y if y y yp it it it it p( ) ...= = = =− −1 1 (9)

                      = 0 else

In other words a player's (pure) strategy is said to have converged if the same action is

taken p times in a row.5   To eliminate convergence bias one simply excludes observations

where Tp = 1.  We used this procedure with p = 3 and p = 4 to assess the extent of this

bias.  We found that at least for these data, the extent of the bias was small.

9. RELATED LITERATURE

There is an extensive and growing literature in experimental economics on

learning. For example, see Richard T. Boylan and Mahmoud A. El-Gamal  (1993),

Camerer and Ho (1999), Cheung and Friedman (1997), David J. Cooper and Nick

Feltovich (1996), James C. Cox, Jason Shachat and Mark Walker (1995), Vincent P.

Crawford (1995), Roth and Erev (1995). 6  The literature generally focuses on two broad

classes of learning models, stimulus-response and belief based play.  A wide variety of

games are considered with various designs, e.g., whether or not players are provided with

the history of the game.  The performances of the learning models are evaluated using

simulation and various statistical techniques. Unfortunately, the findings are mixed at best.

This could be due to statistical issues, Drew Fudenberg and David K. Levine's (1998)



23

conjecture that with convergence to Nash in the "short term," the models maybe

indistinguishable, or a combination of the two.

Roth and Erev (1995) focus on the stimulus-response model.  Their concern is

high (super rationality) versus low (stimulus-response) game theory and intermediate (e.g.,

Fudenberg and Levine’s “short term”) versus asymptotic results. Their model is a simple

individual reinforcement dynamic in which propensities to play a strategy are updated

based upon success of past play.  Using simulation, they compare the simulated results to

their experimental results.  The simulated outcomes are similar to observed behavior and,

more importantly, vary similarly across the different games considered. They interpret this

as robustness of the intermediate run outcomes to the chosen learning rule.  Comparisons

have also been made between the stimulus-response model of Roth and Erev or similar

reinforcement dynamics (e.g., Robert R. Bush and Frederick Mosteller (1955) and John G.

Cross (1983)) and other learning models.  Using logit, simulation or other statistical

techniques, the general conclusions of these papers are that stimulus-response works well

and that additional information when part of the design makes a difference; see Dilip

Mookherjee and Barry Sopher (1994, 1997), Ido Erev and Amnon Rapoport (1998) and

Ido Erev and Alvin E. Roth  (1997).

Using a variety of games and an information condition (with and without game

history) in an extended probit, Cheung and Friedman’s (1997) find that the belief based

model has more support than stimulus-response learning and information matters. Boylan

and El-Gamal (1993) find that fictitious play is the overwhelming choice when compared

with Cournot learning in their evaluation. Using the standard logit model, Van Huyck et

al. (1997) focus on symmetric coordination games and evaluate the performance of the
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replicator dynamic, fictitious and exponential fictitious play. Exponential fictitious play

does best. Models of reinforcement learning can be used to justify the replicator dynamic

(e.g., Tilman Boergers and Rajiv Sarin (1997)).

Richard D. McKelvey and Thomas R. Palfrey’s (1995) model of quantal response

equilibria in normal form games deserves attention here.  The quantal response model is

Nash with error.  Using the logit model, they find that the quantal response model wins

when compared to Nash without error and random choice.  Important for us is their

conclusion that errors are an important component in explaining experimental results.

This has been implicitly assumed in the previous studies when logits and probits are used

and explicitly assumed in the Erev and Roth (1997) study with simulations.

The lack of general findings in these and other papers has prompted Camerer and

Ho (1999) to essentially give up on the horse race and develop a general model, which has

as special cases the principal learning models in the literature. The key that ties the SR

models to the BBL models is the reinforcement used.  In the SR model, only actions that

were taken are updated based on the actual payoffs, and in the BBL model every action is

updated based on its hypothetical payoff, that is, the payoff it would receive had the action

been taken. When actual and hypothetical payoffs are the same so are the models.  Using

maximum likelihood estimation under the constraints of logit, Camerer and Ho evaluate

the possible contribution of the general model across a variety of games.  As one would

hope, the general model explains more of the variation.

Reinhard Selten (1997) is the true agnostic.  He claims there is not enough data to

form any conclusions, either theoretical or statistical. The best we can do is very general
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qualitative models (e.g., learning direction theory) in which there are tendencies that are

distinct from random behavior but nothing more.  This view brings us full circle to

Fudenberg and Levine’s conjecture about whether you can distinguish among the models

if equilibrium play is observed in the “short term” or alternatively, the statistical issues

make such comparisons moot. The resolution of this debate is ultimately an empirical one.

It is an important debate to address because of its implications for understanding the roles

of learning and communication in coordinating activities.

10. SUMMARY AND FUTURE AGENDA

In this paper, we focused on the two principal learning models used in the

literature, SR and BBL, using a sender-receiver game.  In the experiment, an extensive

form game is played repeatedly among players who are randomly matched before each

round of play. This population-game environment is particularly appropriate for a

comparison of myopic learning rules, if we believe that it lessens the role of repeated game

strategies. Sender-receiver games with costless and a priori meaningless messages have

the advantage that no matter how we specify the incentives, coordination requires

communication and communication requires learning.

 One consequence of studying learning in extensive form games is that since

players in the experiment observe only each others’ actions, not strategies, the principal

difference between the two learning models is in the roles they assign to own experience

versus population experience. Another consequence is that there are different natural

specifications even for a learning model as simple as SR; we chose the cognitively least
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demanding one, in which experience at one information set does not transfer to other

information sets. Our results show that both the SR and BBL models fit the data

reasonably well in common interest games with history. On the other hand, the test results

accept SR and reject BBL in the games with no history and in all but one of the divergent

interest games.

One of our findings, the inability to distinguish between the SR and BBL models in

common interest games with history, illustrates the problems with discriminating among

proposed learning models. The issue raised by this problem and those of other is how to

learn more about learning from experiments. The starting point for our agenda for the

future is based on the fact that learning models in games specify the data generating

process. As a consequence, the models can be simulated. This opens up the possibility of

investigating problems of optimal experimental design in game theory. It is worth stressing

that our treatment of testing with experimental data has been, from a statistical point of

view, entirely conventional.  We have assumed that standard asymptotic theory provides a

reliable guide for inference in models with sample sizes encountered in experimental

economics.

Approximations based on asymptotic theory may be poor for sample sizes typically

used in practice.  In particular, the true probability of making a Type I error may be very

different than the nominal probability. The simulated data can be used to estimate the

probability of making a Type I error for tests based on the conventional asymptotic critical

values.  If asymptotic critical values do not work, then the performance of other

approximations can be investigated, for example, bootstrap-based critical values.

 Moreover, as has been noted, if the nuisance parameter is not identified when the
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null is true, then the usual asymptotic theory is not applicable. This situation arises when

testing that the reward parameter is zero. The simulated data can also be used to

investigate the distribution of the test statistics in this case.

Once the probability of making a Type I error is under control, the powers of the

tests can be examined.  This will tell the sample size needed to be able to discriminate

between the models. Finally, considerations of power lead to an optimal design

framework, a framework that will enable us to design our experiments so as to learn more

about learning.
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Table 1. Payoffs of Games in Experiments

Panel (a)
Actions

Types Game 1 Game 2
a1 a2 a1 a2 a3

θ1 0,0 700,700 0,0 700,700 400,400
θ2 700,700 0,0 700,700 0,0 400,400

Panel (b)
Actions

Types Game 3 Game 4
a1 a2 a3 a1 a2 a3

θ1 0,0 200,700 400,400 0,0 200,500 400,400
θ2 200,700 0,0 400,400 200,500 0,0 400,400
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.

Table 2. Experimental Treatments
Game Session Data Population

History
Number of

Periods
G1 Game 1 Session II Senders 20
G1NH Game 1 Session II No history 20
G2 Game 2 Session II Senders 20
G3 Game 3 Session II Senders 40
G4 Game 4 Session II Senders 40

Note: In the analysis of the experimental data only the first 20 periods are used for G3 and
G4.
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Table 3. Maximum Likelihood Estimates of SR  Model
Model ϕ0 ϕ1 lnL Psuedo-R2

G1R1
(N=108)

0.9456
(0.1538)

0.1.7403
(0.5652)

-47.80 .4253

G1R2
(N=108)

0.9172
(0.0181

1.5872
(0.1708)

-34.40 .5864

G1R3
(N=108)

0.4736
(0.1267)

3.5681
(0.8870)

-46.93 .4358

G1NHR1
(N=108)

0.1851
(0.1190)

5.5810
(1.4533)

-57.30 .3112

G1NHR2
(N=108)

0.8273
(0.1004)

1.4381
(0.4030)

-63.59 .2355

G1NHR3
(N=108)

0.7205
(0.0763)

3.1341
(0.7084)

-45.65 .4511

G2R1
(N=108)

0.5426
(0.1535)

4.7313
(1.4677)

-20.60 .7523

G2R2
(N=108)

0.7280
(0.2150)

0.3.5060
(1.0627)

-19.71 .7631

G2R3
(N=108)

0.5124)
(0.1518)

4.9880
(1.4986)

-20.50 .7536

G3R1
(N=138)

0.9851
(0.3504)

2.8820
(1.0404)

-28.95 .6519

G3R2
(N=138)

0.9491
(0.0947)

1.2066
(3802)

-54.95 .3394

G3R3
(N=138)

0.8281
(0.1750)

1.0235
(0.4477)

-61.03 .2663

G4R1
(N=138)

1.6190
(0.2193)

-0.2497
(0.0408)

-72.38 .1299

G4R2
(N=138)

1.4765
(0.4789)

-.1514
(0.8147)

-72.18 .1322

G4R3
(N=138)

0.6861
(0.1056)

2.7581
(0.7122)

-34.43 .5860

Notes: N = 6 times the number of periods (20) minus 12.
Standard errors in parentheses beneath coefficient estimates.
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Table 4. Maximum Likelihood Estimates of BBL Model
Model β0 β1 lnL Psuedo-R2

G1R1
(N=108)

1.7284
(0.5678)

0.4638
(0.3163)

-36.41 .5622

G1R2
(N=108)

0.8849
(0.1213)

1.8064
(0.5685)

-33.74 .5944

G1R3
(N=108)

1.2281
(0.0976)

0.8545
(0.3665)

-62.39 .2499

G1NHR1
(N=108)

-0.9465
(0.3421)

-0.3521
(0.3924)

-82.64 .0065

G1NHR2
(N=108)

-0.8265
(0.5927)

-0.2220
(0.3790)

-83.04 .0017

G1NHR3
(N=108)

1.0711
(0.1475)

0.3866
(0.2022)

-67.83 .1833

G2R1
(N=108)

0.9873
(0.1532)

1.9969
(0.6476)

-25.84 .6894

G2R2
(N=108)

2.2454
(0.126)

3.7093
(8.951)

-15.81 .8099

G2R3
(N=108)

1.0200
(0.1551)

1.7909
(0.6039)

-30.97 .6277

G3R1
(N=138)

0.9814
(0.2108)

9.8583
(3.4109)

-28.79 .6539

G3R2
(N=138)

1.7229
(0.6331)

0.0666
(0.1855)

-77.79 .0648

G3R3
(N=138)

0.0000
(1.5019)

0.0000
(0.7414)

-83.17 .0000

G4R1
(N=138)

-1.4393
(0.5116)

0.0732
(0.2082)

-82.73 .0053

G4R2
(N=138)

-0.6046
(1.9623)

-0.4218
(1.2747)

-83.17 .0007

G4R3
(N=138)

1.0663
(0.1647)

0.4338
(0.3367)

-83.04 .0017

Notes: See Table 3.
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                 Table 5. Tests of pooling for SR model

Game χ2(4) Pr(χ2>x)
Game 1a 4.412 0.353
Game 2 0.288 0.991
Game 3 28.487 0.001
Game 4 22.857 0.001
a Game 1 with history
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Table 6. Maximum Likelihood Estimates of Hybrid Model
Model γ0 γ1 γ2 lnL Psuedo-R2

G1R1
(N=108)

0.8130
(0.3266)

1.1212
(0.3810)

1.6447
(1.2291)

36.0458 .5666

G1R2
(N=108)

0.7561
(0.1836)

1.2515
(0.6917)

0.9965
(0.6125)

31.9447 .6159

G1R3
(N=108)

0.3642
(0.1495)

1.1935
(0.7053)

3.8228
(1.0649)

42.3970 .4903

G1NHR1
(N=108)

0.2115
(0.1303)

-0.3655
(0.4755)

5.1816
(1.4836)

51.2332 .3841

G1NHR2
(N=108)

0.7881
(0.1394)

-0.0521
(0.1709)

1.5156
(0.4961)

63.8264 .2327

G1NHR3
(N=108)

0.6872
(0.1147)

0.3774
(0.2841)

2.7282
(0.6555)

44.6377 .4833

G2R1
(N=108)

0.4476
(0.1859)

1.7137
(0.9218)

4.0113
(1.4409)

17.7263 .7869

G2R2a

(N=108)
137.9155 309.4403 1.9873 12.3397 .8516

G2R3a

(N=108)
0.5430 2.1311 4.3204 17.3824 .7910

G3R1
(N=138)

4.6007
(7.2234)

10.2102
(5.7366)

0.6294
(1.1680)

25.6062 .6922

G3R2
(N=108)

0.9001
(0.1243)

-0.7904
(0.8868)

1.2961
(0.3973)

54.4720 .3451

G3R3
(N=108)

0.8643
(0.1771)

0.2473
(0.8698)

0.8550
(0.3894)

61.2352 .2638

G4R1
(N=108)

0.6502
(0.1547)

0.6751
(0.7011)

1.0102
(0.3152)

69.2994 .1669

G4R2
(N=108)

0.5190
(0.1449)

-0.4692
(1.2318)

1.4801
(0.3458)

66.4417 .2012

G4R3
(N=108)

0.6614
(0.1055)

-0.2407
(0.8962)

2.6258
(0.6044)

33.3678 .5988

Notes: See Table 3.
a ML failed to converge; Hessian singular at maximum.
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Table 7. 0.05 Symmetric Wald t Tests of Hybrid Model
Model t statistic

Η 0: γ1 = 0
t statistic
Η 0: γ2 = 0

A Η 0: γ1 = 0
A Η 0: γ2 = 0

R Η 0: γ1 = 0
A Η 0: γ2 = 0

A Η 0: γ1 = 0
R Η 0: γ2 = 0

R Η 0: γ1 = 0
  R Η 0: γ2 = 0

G1R1
(N=108)

2.94 1.34 0 1 0 0

G1R2
(N=108)

1.81 1.63 1 0 0 0

G1R3
(N=108)

1.69 3.59 0 0 1 0

G1NHR1
(N=108)

0.77 3.49 0 0 1 0

G1NHR2
(N=108)

0.30 3.05 0 0 1 0

G1NHR3
(N=108)

1.33 4.16 0 0 1 0

G2R1
(N=108)

1.86 2.78 0 0 1 0

G2R2
(N=108)
G2R3
(N=108)
G3R1
(N=138)

1.78 0.54 1 0 0 0

G3R2
(N=108)

0.89 3.26 0 0 1 0

G3R3
(N=108)

0.28 2.20 0 0 1 0

G4R1
(N=108)

0.96 3.21 0 0 1 0

G4R2
(N=108)

0.38 4.28 0 0 1 0

G4R3
(N=108)

0.27 4.34 0 0 1 0

Total 2 1 10 0
Notes: A denotes acceptance of H0 using a nominal 0.05 symmetric asymptotic test and
and R the rejection of H0 using this test. The critical values are ± 2.0, and the nominal
probability of simultaneously accepting both hypotheses when they are true is
asymptotically at least 0.90 when both hypotheses are true.
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Figure 1. Plots of the actual (jagged line) and the predicted fraction (smooth line) of
players sending message 2 by type (∆ = type 1, 0 = type 2) when the SR model is true
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Figure 2. Plots of the actual (jagged line) and the predicted fraction (smooth line) of
players sending message 2 by type (∆ = type 1, 0 = type 2) when the BBL model is true
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Figure 3. Log likelihood function for SR model using G1R1 data
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Figure  4. Log likelihood function for BBL model using G1R1 data
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Panel (a)      R-square Comparison by Model
     Experiment = Game 1

   Included Rounds
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Panel (b)      Average log Likelihood Comparison by Model
     Experiment = Game 1
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Figure 5. Convergence bias:∆--BBL;0--SR



43



44

ENDNOTES
                                               
1  For example, See David Austin-Smith (1990), Vincent P. Crawford and Joel Sobel

(1982), Joseph Farrell and Robert Gibbons (1990), Frank Gigler (1994) and Jeremy Stein

(1989).
2 All replications had a common session, which preceded the games described above.  In

particular, each cohort participated in 20 periods of a game with payoffs as in Game 1 and

a message space of M = {A, B}.  The common session provides players with experience

about experimental procedures and ensures that players understand the structure of the

game, message space and population history.
3 The specification of the logit function in (2) exploits the fact that all rewards, X, in the

games that we examine are non-negative.  Were this not the case, a transform that keeps

the value of the payoffs non-negative, such as the exponential function, can be used.
4 The coefficients in the hybrid model can be normalized so that the coefficients on the

information variables are δ and (1- δ), respectively, which makes the hybrid model look

similar to the model employed Camerer and Ho (1999).

5 Defining convergence for mixed strategies is conceptually the same as the pure strategy

case; empirically identifying convergence is more difficult.
6  The number of studies is growing at an increasing rate. We have selected representatives

from the set and apologize for any omissions.


