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Abstract

The fundamental learning theory behind neural networks remains largely open.
What classes of functions can neural networks actually learn? Why doesn’t the
trained network overfit when it is overparameterized?

In this work, we prove that overparameterized neural networks can learn some
notable concept classes, including two and three-layer networks with fewer pa-
rameters and smooth activations. Moreover, the learning can be simply done by
SGD (stochastic gradient descent) or its variants in polynomial time using poly-
nomially many samples. The sample complexity can also be almost independent
of the number of parameters in the network.

On the technique side, our analysis goes beyond the so-called NTK (neural tan-
gent kernel) linearization of neural networks in prior works. We establish a new
notion of quadratic approximation of the neural network, and connect it to the
SGD theory of escaping saddle points.

1 Introduction

Neural network learning has become a key machine learning approach and has achieved remarkable
success in a wide range of real-world domains, such as computer vision, speech recognition, and
game playing [25, 26, 30, 41]. In contrast to the widely accepted empirical success, much less
theory is known. Despite a recent boost of theoretical studies, many questions remain largely open,
including fundamental ones about the optimization and generalization in learning neural networks.

One key challenge in analyzing neural networks is that the corresponding optimization is non-convex
and is theoretically hard in the general case [40, 55]. This is in sharp contrast to the fact that simple
optimization algorithms like stochastic gradient descent (SGD) and its variants usually produce good
solutions in practice even on both training and test data. Therefore,

what functions can neural networks provably learn?

Another key challenge is that, in practice, neural networks are heavily overparameterized (e.g., [53]):
the number of learnable parameters is much larger than the number of the training samples. It
is observed that overparameterization empirically improves both optimization and generalization,
appearing to contradict traditional learning theory.2 Therefore,

why do overparameterized networks (found by those training algorithms) generalize?

∗Full version and future updates can be found on https://arxiv.org/abs/1811.04918.
2For example, Livni et al. [36] observed that on synthetic data generated from a target network, SGD con-

verges faster when the learned network has more parameters than the target. Perhaps more interestingly, Arora
et al. [6] found that overparameterized networks learned in practice can often be compressed to simpler ones
with much fewer parameters, without hurting their ability to generalize; however, directly learning such simpler
networks runs into worse results due to the optimization difficulty. We also have experiments in Figure 1(a).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://arxiv.org/abs/1811.04918


1.1 What Can Neural Networks Provably Learn?

Most existing works analyzing the learnability of neural networks [9, 12, 13, 20, 21, 28, 33, 34, 42,
43, 47, 49, 50, 56] make unrealistic assumptions about the data distribution (such as being random
Gaussian), and/or make strong assumptions about the network (such as using linear activations).
Li and Liang [32] show that two-layer ReLU networks can learn classification tasks when the data
come from mixtures of arbitrary but well-separated distributions.

A theorem without distributional assumptions on data is often more desirable. Indeed, how to obtain
a result that does not depend on the data distribution, but only on the concept class itself, lies in the
center of PAC-learning which is one of the foundations of machine learning theory [48]. Also,
studying non-linear activations is critical because otherwise one can only learn linear functions,
which can also be easily learned via linear models without neural networks.

Brutzkus et al. [14] prove that two-layer networks with ReLU activations can learn linearly-separable
data (and thus the class of linear functions) using just SGD. This is an (improper) PAC-learning
type of result because it makes no assumption on the data distribution. Andoni et al. [5] proves that
two-layer networks can learn polynomial functions of degree r over d-dimensional inputs in sample
complexity O(dr). Their learner networks use exponential activation functions, where in practice the
rectified linear unit (ReLU) activation has been the dominant choice across vastly different domains.

On a separate note, if one treats all but the last layer of neural networks as generating a random
feature map, then training only the last layer is a convex task, so one can learn the class of linear
functions in this implicit feature space [15, 16]. This result implies low-degree polynomials and
compositional kernels can be learned by neural networks in polynomial time. Empirically, training
last layer greatly weakens the power of neural networks (see Figure 1).

Our Result. We prove that an important concept class that contains three-layer (resp. two-layer)
neural networks equipped with smooth activations can be efficiently learned by three-layer (resp.
two-layer) ReLU neural networks via SGD or its variants.

Specifically, suppose in aforementioned class the best network (called the target function or target
network) achieves a population risk OPT with respect to some convex loss function. We show that
one can learn up to population risk OPT+ ε, using three-layer (resp. two-layer) ReLU networks of
size greater than a fixed polynomial in the size of the target network, in 1/ε, and in the “complexity”
of the activation function used in the target network. Furthermore, the sample complexity is also
polynomial in these parameters, and only poly-logarithmic in the size of the learner ReLU network.

We stress here that this is agnostic PAC-learning because we allow the target function to have er-
ror (e.g., OPT can be positive for regression), and is improper learning because the concept class
consists of smaller neural networks comparing to the networks being trained.

Our Contributions. We believe our result gives further insights to the fundamental questions about
the learning theory of neural networks.

• To the best of our knowledge, this is the first result showing that using hidden layers of neural
networks one can provably learn the concept class containing two (or even three) layer neural
networks with non-trivial activation functions.3

• Our three-layer result gives the first theoretical proof that learning neural networks, even with
non-convex interactions across layers, can still be plausible. In contrast, in the two-layer case
the optimization landscape with overparameterization is almost convex [17, 32]; and in previ-
ous studies on the multi-layer case, researchers have weakened the network by applying the so-
called NTK (neural tangent kernel) linearization to remove all non-convex interactions [4, 27].

• To some extent we explain the reason why overparameterization improves testing accuracy:
with larger overparameterization, one can hope to learn better target functions with possibly
larger size, more complex activations, smaller risk OPT, and to a smaller error ε.

• We establish new tools to tackle the learning process of neural networks in general, which can
be useful for studying other network architectures and learning tasks. (E.g., the new tools here

3In contrast, Daniely [15] focuses on training essentially only the last layer (and the hidden-layer movement
is negligible). After this paper has appeared online, Arora et al. [8] showed that neural networks can provably
learn two-layer networks with a slightly weaker class of smooth activation functions. Namely, the activation
functions that are either linear functions or even functions.
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have allowed researchers to study also the learning of recurrent neural networks [2].)

Other Related Works. We acknowledge a different line of research using kernels as improper
learners to learn the concept class of neural networks [22, 23, 36, 54]. This is very different from us
because we use “neural networks” as learners. In other words, we study the question of “what can
neural networks learn” but they study “what alternative methods can replace neural networks.”

There is also a line of work studying the relationship between neural networks and NTKs (neural
tangent kernels) [3, 4, 7, 27, 31, 51]. These works study neural networks by considering their
“linearized approximations.” There is a known performance gap between the power of real neural
networks and the power of their linearized approximations. For instance, ResNet achieves 96%
test error on the CIFAR-10 data set but NTK (even with infinite width) achieves 77% [7]. We also
illustrate this in Figure 1.

1.2 Why Do Overparameterized Networks Generalize?

Our result above assumes that the learner network is sufficiently overparameterized. So, why does it
generalize to the population risk and give small test error? More importantly, why does it generalize
with a number of samples that is (almost) independent of the number of parameters?

This question cannot be studied under the traditional VC-dimension learning theory since the VC
dimension grows with the number of parameters. Several works [6, 11, 24, 39] explain generaliza-
tion by studying some other “complexity” of the learned networks. Most related to the discussion
here is [11] where the authors prove a generalization bound in the norms (of weight matrices) of
each layer, as opposed to the number of parameters. There are two main concerns with those results.

• Learnability = Trainability + Generalization. It is not clear from those results how a network
with both low “complexity” and small training loss can be found by the training method.
Therefore, they do not directly imply PAC-learnability for non-trivial concept classes (at least
for those concept classes studied by this paper).

• Their norms are “sparsity induced norms”: for the norm not to scale with the number of hidden
neurons m, essentially, it requires the number of neurons with non-zero weights not to scale
with m. This more or less reduces the problem to the non-overparameterized case.

At a high level, our generalization is made possible with the following sequence of conceptual steps.

• Good networks with small risks are plentiful: thanks to overparameterization, with high prob-
ability over random initialization, there exists a good network in the close neighborhood of
any point on the SGD training trajectory. (This corresponds to Section 6.2 and 6.3.)

• The optimization in overparameterized neural networks has benign properties: essentially
along the training trajectory, there is no second-order critical points for learning three-layer
networks, and no first-order critical points for two-layer. (This corresponds to Section 6.4.)

• In the learned networks, information is also evenly distributed among neurons, by utilizing
either implicit or explicit regularization. This structure allows a new generalization bound that
is (almost) independent of the number of neurons. (This corresponds to Section 6.5 and 6.6,
and we also empirically verify it in Section 7.1.)

Since practical neural networks are typically overparameterized, we genuinely hope that our results
can provide theoretical insights to networks used in various applications.

1.3 Roadmap

In the main body of this paper, we introduce notations in Section 2, present our main results and
contributions for two and three-layer networks in Section 3 and 4, and conclude in Section 5.

For readers interested in our novel techniques, we present in Section 6 an 8-paged proof sketch of our
three-layer result. For readers more interested in the practical relevance, we give more experiments
in Section 7. In the appendix, we begin with mathematical preliminaries in Appendix A. Our full
three-layer proof is in Appendix C. Our two-layer proof is much easier and in Appendix B.
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Figure 1: Performance comparison. 3layer/2layer stands for training (hidden weights) in three and
two-layer neural networks. (last) stands for conjugate kernel [15], meaning training only the
output layer. (NTK) stands for neural tangent kernel [27] with finite width. We also implemented
other direct kernels such as [54] but they perform much worse.

Setup. We consider ℓ2 regression task on synthetic data where feature vectors x ∈ R
4

are generated as normalized random Gaussian, and label is generated by target function
F ∗(x) = (sin(3x1) + sin(3x2) + sin(3x3) − 2)2 · cos(7x4). We use N training samples,
and SGD with mini-batch size 50 and best tune learning rates and weight decay parameters. See
Appendix 7 for our experiment setup, how we choose such target function, and more experiments.

2 Notations

σ(·) denotes the ReLU function σ(x) = max{x, 0}. Given f : R → R and a vector x ∈ R
m, f(x)

denotes f(x) = (f(x1), . . . , f(xm)). For a vector w, ‖w‖p denote its p-th norm, and when clear

from the context, abbreviate ‖w‖ = ‖w‖2. For a matrix W ∈ R
m×d, use Wi or sometimes wi to

denote the i-th row of W . The row ℓp norm is ‖W‖2,p :=
(∑

i∈[m] ‖Wi‖p2
)1/p

, the spectral norm is

‖W‖2, and the Frobenius norm is ‖W‖F = ‖W‖2,2. We say f : Rd → R is L-Lipschitz continuous
if |f(x)− f(y)| ≤ L‖x− y‖2; is L-Lipschitz smooth if ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

Function complexity. The following notion measures the complexity of any smooth activation
function φ(z). Suppose φ(z) =

∑∞
i=0 ciz

i. Given a non-negative R, the complexity

Cε(φ,R) :=
∑∞

i=0

(
(C∗R)i +

(√log(1/ε)√
i

C∗R
)i)|ci|, Cs(φ,R) := C∗ ∑∞

i=0(i+ 1)1.75Ri|ci|

where C∗ is a sufficiently large constant (e.g., 104). Intuitively, Cs measures the sample complexity:
how many samples are required to learn φ correctly; while Cε bounds the network size: how much
over-parameterization is needed for the algorithm to efficiently learn φ up to ε error. It is always
true that Cs(φ,R) ≤ Cε(φ,R) ≤ Cs(φ,O(R))× poly(1/ε).4 While for sin z, exp(z) or low degree
polynomials, Cs(φ,O(R)) and Cε(φ,R) only differ by o(1/ε).

Example 2.1. If φ(z) = ec·z − 1, φ(z) = sin(c · z), φ(z) = cos(c · z) for constant c or φ(z) is
low degree polynomial, then Cε(φ, 1) = o(1/ε) and Cs(φ, 1) = O(1). If φ(z) = sigmoid(z) or
tanh(z), we can truncate their Taylor series at degree Θ(log 1

ε ) to get ε approximation. One can
verify this gives Cε(φ, 1) ≤ poly(1/ε) and Cs(φ, 1) ≤ O(1).

3 Result for Two-Layer Networks

We consider learning some unknown distribution D of data points z = (x, y) ∈ R
d × Y , where x

is the input point and y is the label. Without loss of generality, assume ‖x‖2 = 1 and xd = 1
2 .5

Consider a loss function L : Rk × R → Y such that for every y ∈ Y , the function L(·, y) is non-
negative, convex, 1-Lipschitz continuous and 1-Lipschitz smooth and L(0, y) ∈ [0, 1]. This includes
both the cross-entropy loss and the ℓ2-regression loss (for bounded Y).

4Recall
(√log(1/ε)

√
i

C∗)i ≤ eO(log(1/ε)) = 1
poly(ε)

for every i ≥ 1.
5 1
2

can always be padded to the last coordinate, and ‖x‖2 = 1 can always be ensured from ‖x‖2 ≤ 1 by

padding
√

1− ‖x‖22. This assumption is for simplifying the presentation.
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Concept class and target function F ∗(x). Consider target functions F ∗ : Rd → R
k of

F ∗ = (f∗
1 , . . . , f

∗
k ) and f∗

r (x) =

p∑

i=1

a∗r,iφi(〈w∗
1,i, x〉)〈w∗

2,i, x〉 (3.1)

where each φi : R → R is infinite-order smooth and the weights w∗
1,i ∈ R

d, w∗
2,i ∈ R

d and a∗r,i ∈ R.

We assume for simplicity ‖w∗
1,i‖2 = ‖w∗

2,i‖2 = 1 and |a∗r,i| ≤ 1.6 We denote by

Cε(φ,R) := maxj∈[p]{Cε(φj , R)} and Cs(φ,R) := maxj∈[p]{Cs(φj , R)}
the complexity of F ∗ and assume they are bounded.

In the agnostic PAC-learning language, our concept class consists of all functions F ∗ in the form
of (3.1) with complexity bounded by threshold C and parameter p bounded by threshold p0. Let
OPT = E[L(F ∗(x), y)] be the population risk achieved by the best target function in this concept
class. Then, our goal is to learn this concept class with population risk OPT + ε using sample and
time complexity polynomial in C, p0 and 1/ε. In the remainder of this paper, to simplify notations,
we do not explicitly define this concept class parameterized by C and p. Instead, we equivalently
state our theorem with respect to any (unknown) target function F ∗ with specific parameters C and
p satisfying OPT = E[L(F ∗(x), y)]. We assume OPT ∈ [0, 1] for simplicity.

Remark. Standard two-layer networks f∗
r (x) =

∑p
i=1 a

∗
r,iφ(〈w∗

1,i, x〉) are special cases of (3.1) (by

setting w∗
2,i = (0, . . . , 0, 1) and φi = φ). Our formulation (3.1) additionally captures combinations

of correlations between non-linear and linear measurements of different directions of x.

Learner network F (x;W ). Using a data set Z = {z1, . . . , zN} of N i.i.d. samples from D, we

train a network F = (f1, · · · , fk) : Rd → R
k with

fr(x) :=

m∑

i=1

ar,iσ(〈wi, x〉+ bi) = a⊤r σ(Wx+ b) (3.2)

where σ is the ReLU activation, W = (w1, . . . , wm) ∈ R
m×d is the hidden weight matrix, b ∈ R

m

is the bias vector, and ar ∈ R
m is the output weight vector. To simplify analysis, we only update W

and keep b and ar at initialization values. For such reason, we write the learner network as fr(x;W )

and F (x;W ). We sometimes use b(0) = b and a
(0)
r = ar to emphasize they are randomly initialized.

Our goal is to learn a weight matrix W with population risk E
[
L(F (x;W ), y)

]
≤ OPT+ ε.

Learning Process. Let W (0) denote the initial value of the hidden weight matrix, and let W (0)+Wt

denote the value at time t. (Note that Wt is the matrix of increments.) The weights are initialized
with Gaussians and then W is updated by the vanilla SGD. More precisely,

• entries of W (0) and b(0) are i.i.d. random Gaussians from N (0, 1/m),

• entries of each a
(0)
r are i.i.d. random Gaussians from N (0, ε2a) for some fixed εa ∈ (0, 1].7

At time t, SGD samples z = (x, y) ∼ Z and updates Wt+1 = Wt − η∇L(F (x;W (0) +Wt), y).

3.1 Main Theorem

For notation simplicity, with high probability (or w.h.p.) means with probability 1− e−c log2 m for a

sufficiently large constant c, and Õ hides factors of polylog(m).

Theorem 1 (two-layer). For every ε ∈
(
0, 1

pkCs(φ,1)

)
, there exists

M0 = poly(Cε(φ, 1), 1/ε) and N0 = poly(Cs(φ, 1), 1/ε)

such that for every m ≥ M0 and every N ≥ Ω̃(N0), choosing εa = ε/Θ̃(1) for the initialization,

choosing learning rate η = Θ̃
(

1
εkm

)
and

T = Θ̃

(
(Cs(φ, 1))

2 · k3p2
ε2

)
,

6For general ‖w∗
1,i‖2 ≤ B, ‖w∗

2,i‖2 ≤ B, |a∗
r,i| ≤ B, the scaling factor B can be absorbed into the

activation function φ′(x) = φ(Bx). Our results then hold by replacing the complexity of φ with φ′.
7We shall choose εa = Θ̃(ε) in the proof due to technical reason. As we shall see in the three-layer case, if

weight decay is used, one can relax this to εa = 1.
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with high probability over the random initialization, SGD after T iteration satisfies

Esgd

[
1
T

∑T−1
t=0 E(x,y)∼DL(F (x;W (0) +Wt), y)

]
≤ OPT+ ε.

Example 3.1. For functions such as φ(z) = ez, sin z, sigmoid(z), tanh(z) or low degree polynomi-
als, using Example 2.1, our theorem indicates that for target networks with such activation functions,
we can learn them using two-layer ReLU networks with

size m =
poly(k, p)

poly(ε)
and sample complexity min{N,T} =

poly(k, p, logm)

ε2

We note sample complexity T is (almost) independent of m, the amount of overparametrization.

3.2 Our Interpretations

Overparameterization improves generalization. By increasing m, Theorem 1 supports more
target functions with possibly larger size, more complex activations, and smaller population risk
OPT. In other words, when m is fixed, among the class of target functions whose complexities
are captured by m, SGD can learn the best function approximator of the data, with the smallest
population risk. This gives intuition how overparameterization improves test error, see Figure 1(a).

Large margin non-linear classifier. Theorem 1 is a nonlinear analogue of the margin theory for
linear classifiers. The target function with a small population risk (and of bounded norm) can be
viewed as a “large margin non-linear classifier.” In this view, Theorem 1 shows that assuming the
existence of such large-margin classifier, SGD finds a good solution with sample complexity mostly
determined by the margin, instead of the dimension of the data.

Inductive bias. Recent works (e.g., [4, 32]) show that when the network is heavily overparame-
terized (that is, m is polynomial in the number of training samples) and no two training samples are
identical, then SGD can find a global optimum with 0 classification error (or find a solution with
ε training loss) in polynomial time. This does not come with generalization, since it can even fit
random labels. Our theorem, combined with [4], confirms the inductive bias of SGD for two-layer
networks: when the labels are random, SGD finds a network that memorizes the training data; when
the labels are (even only approximately) realizable by some target network, then SGD learns and
generalizes. This gives an explanation towards the well-known empirical observations of such in-
ductive bias (e.g., [53]) in the two-layer setting, and is more general than Brutzkus et al. [14] in
which the target network is only linear.

4 Result for Three-Layer Networks

Concept class and target function F ∗(x). This time we consider more powerful target functions
F ∗ = (f∗

1 , · · · , f∗
k ) of the form

f∗
r (x) :=

∑

i∈[p1]

a∗r,iΦi




∑

j∈[p2]

v∗1,i,jφ1,j(〈w∗
1,j , x〉)







∑

j∈[p2]

v∗2,i,jφ2,j(〈w∗
2,j , x〉)


 (4.1)

where each φ1,j , φ2,j ,Φi : R → R is infinite-order smooth, and the weights w∗
1,i, w

∗
2,i ∈ R

d,

v∗1,i, v
∗
2,i ∈ R

p2 and a∗r,i ∈ R satisfy ‖w∗
1,j‖2 = ‖w∗

2,j‖2 = ‖v∗1,i‖2 = ‖v∗2,i‖2 = 1 and |a∗r,i| ≤ 1.
Let

Cε(φ,R) = maxj∈[p2],s∈[1,2]{Cε(φs,j , R)}, Cε(Φ, R) = maxj∈[p1]{Cε(Φj , R)}
Cs(φ,R) = maxj∈[p2],s∈[1,2]{Cs(φs,j , R)}, Cs(Φ, R) = maxj∈[p1]{Cs(Φj , R)}

to denote the complexity of the two layers, and assume they are bounded.

Our concept class contains measures of correlations between composite non-linear functions and
non-linear functions of the input, there are plenty of functions in this new concept class that may not
necessarily have small-complexity representation in the previous formulation (3.1), and as we shall
see in Figure 1(a), this is the critical advantage of using three-layer networks compared to two-
layer ones or their NTKs. The learnability of this correlation is due to the non-convex interactions
between hidden layers. As a comparison, [15] studies the regime where the changes in hidden layers
are negligible thus can not show how to learn this concept class with a three-layer network.
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Remark 4.1. Standard three-layer networks

f∗
r (x) =

∑
i∈[p1]

a∗r,iΦi

(∑
j∈[p2]

v∗i,jφj(〈w∗
j , x〉)

)

are only special cases of (4.1). Also, even in the special case of Φi(z) = z, the target

f∗
r (x) =

∑
i∈[p1]

a∗r,i

(∑
j∈[p2]

v∗1,i,jφ1(〈w∗
1,j , x〉)

)(∑
j∈[p2]

v∗2,i,jφ2(〈w∗
2,j , x〉)

)

captures combinations of correlations of non-linear measurements in different directions of x.

Learner network F (x;W,V ). Our learners are three-layer networks F = (f1, . . . , fk) with

fr(x) =
∑

i∈[m2]

ar,iσ(ni(x) + b2,i) where each ni(x) =
∑

j∈[m1]

vi,jσ (〈wj , x〉+ b1,j)

The first and second layers have m1 and m2 hidden neurons. Let W ∈ R
m1×d and V ∈ R

m2×m1

represent the weights of the first and second hidden layers respectively, and b1 ∈ R
m1 and b2 ∈ R

m2

represent the corresponding bias vectors, ar ∈ R
m2 represent the output weight vector.

4.1 Learning Process

Again for simplicity, we only update W and V . The weights are randomly initialized as:

• entries of W (0) and b1 = b
(0)
1 are i.i.d. from N (0, 1/m1),

• entries of V (0) and b2 = b
(0)
2 are i.i.d. from N (0, 1/m2),

• entries of each ar = a
(0)
r are i.i.d. from N (0, ε2a) for εa = 1.

As for the optimization algorithm, we use SGD with weight decay and an explicit regularizer.

For some λ ∈ (0, 1], we will use λF (x;W,V ) as the learner network, i.e., linearly scale F down

by λ. This is equivalent to replacing W , V with
√
λW ,

√
λV , since a ReLU network is positive

homogenous. The SGD will start with λ = 1 and slowly decrease it, similar to weight decay.8

We also use an explicit regularizer for some λw, λv > 0 with9

R(
√
λW,

√
λV ) := λv‖

√
λV ‖2F + λw‖

√
λW‖42,4 .

Now, in each round t = 1, 2, . . . , T , we use (noisy) SGD to minimize the following stochastic
objective for some fixed λt−1:

L2(λt−1;W
′, V ′) := L

(
λt−1F

(
x;W (0) +W ρ +ΣW ′, V (0) + V ρ + V ′Σ

))

+R(
√
λt−1W

′,
√
λt−1V

′) (4.2)

Above, the objective is stochastic because (1) z ∼ Z is a random sample from the training set, (2)
W ρ and V ρ are two small perturbation random matrices with entries i.i.d. drawn from N (0, σ2

w)
and N (0, σ2

v) respectively, and (3) Σ ∈ R
m1×m1 is a random diagonal matrix with diagonals i.i.d.

uniformly drawn from {+1,−1}. We note that the use of W ρ and V ρ is standard for Gaussian
smoothing on the objective (and not needed in practice).10 The use of Σ may be reminiscent of the
Dropout technique [46] in practice which randomly masks out neurons, and can also be removed.11

8We illustrate the technical necessity of adding weight decay. During training, it is easy to add new infor-
mation to the current network, but hard to forget “false” information that is already in the network. Such false
information can be accumulated from randomness of SGD, non-convex landscapes, and so on. Thus, by scaling
down the network we can effectively forget false information.

9This ‖ · ‖2,4 norm on W encourages weights to be more evenly distributed across neurons. It can be

replaced with ‖
√
λt−1Wt−1‖2+α

2,2+α for any constant α > 0 for our theoretical purpose. We choose α = 2 for
simplicity, and observe that in practice, weights are automatically spread out due to data randomness, so this
explicit regularization may not be needed. See Section 7.1 for an experiment.

10Similar to known non-convex literature [19] or smooth analysis, we introduce Gaussian perturbation W ρ

and V ρ for theoretical purpose and it is not needed in practice. Also, we apply noisy SGD which is the vanilla
SGD plus Gaussian perturbation, which again is needed in theory but believed unnecessary for practice [19].

11In the full paper we study two variants of SGD. This present version is the “second variant,” and the first
variant L1(λt−1;W

′, V ′) is the same as (4.2) by removing Σ. Due to technical difficulty, the best sample
complexity we can prove for L1 is a bit higher.
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Algorithm 1 SGD for three-layer networks (second variant (4.2))

Input: Data set Z , initialization W (0), V (0), step size η, number of inner steps Tw, σw, σv, λw, λv .

1: W0 = 0, V0 = 0, λ1 = 1, T = Θ
(
η−1 log log(m1m2)

ε0

)
.

2: for t = 1, 2, . . . , T do
3: Apply noisy SGD with step size η on the stochastic objective L2(λt−1;W,V ) for Tw steps; the starting

point is W = Wt−1, V = Vt−1 and suppose it reaches Wt, Vt. ⋄ see Lemma A.9
4: λt+1 = (1− η)λt. ⋄ weight decay
5: end for
6: Randomly sample Σ̂ with diagonal entries i.i.d. uniform on {1,−1}
7: Randomly sample Θ̃(1/ε20) many noise matrices

{
W ρ,j , V ρ,j

}
. Let

j∗ = argminj

{
Ez∈ZL

(
λTF

(
x;W (0) +W ρ,j + Σ̂WT , V

(0) + V ρ,j + VT Σ̂
))}

8: Output W
(out)
T = W (0) +W ρ,j∗ + Σ̂WT , V

(out)
T = V (0) + V ρ,j∗ + VT Σ̂.

Algorithm 1 presents the details. Specifically, in each round t, Algorithm 1 starts with weight ma-
trices Wt−1, Vt−1 and performs Tw iterations. In each iteration it goes in the negative direction of
the stochastic gradient ∇W ′,V ′L2(λt;W

′, V ′). Let the final matrices be Wt, Vt. At the end of this
round t, Algorithm 1 performs weight decay by setting λt = (1− η)λt−1 for some η > 0.

4.2 Main Theorems

For notation simplicity, with high probability (or w.h.p.) means with probability 1− e−c log2(m1m2)

and Õ hides factors of polylog(m1,m2).

Theorem 2 (three-layer, second variant). Consider Algorithm 1. For every constant γ ∈ (0, 1/4],
every ε0 ∈ (0, 1/100], every ε = ε0

kp1p2

2
Cs(Φ,p2Cs(φ,1))Cs(φ,1)2

, there exists

M = poly
(
Cε(Φ,

√
p2Cε(φ, 1)),

1

ε

)

such that for every m2 = m1 = m ≥ M , and properly set λw, λv, σw, σv in Table 1, as long as

N ≥ Ω̃

((
Cε(Φ,

√
p2Cε(φ, 1)) · Cε(φ, 1) · √p2p1k

2

ε0

)2
)

there is a choice η = 1/poly(m1,m2) and T = poly(m1,m2) such that with probability ≥ 99/100,

E(x,y)∼DL(λTF (x;W
(out)
T , V

(out)
T ), y) ≤ (1 + γ)OPT+ ε0.

4.3 Our Contributions

Our sample complexity N scales polynomially with the complexity of the target network, and is
(almost) independent of m, the amount of overparameterization. This itself can be quite surprising,
because recent results on neural network generalization [6, 11, 24, 39] require N to be polynomial
in m. Furthermore, Theorem 2 shows three-layer networks can efficiently learn a bigger concept
class (4.1) comparing to what we know about two-layer networks (3.1).

From a practical standpoint, one can construct target functions of the form (4.1) that cannot be
(efficiently) approximated by any two-layer target function in (3.1). If data is generated according
to such functions, then it may be necessary to use three-layer networks as learners (see Figure 1).

From a theoretical standpoint, even in the special case of Φ(z) = z, our target function can cap-
ture correlations between non-linear measurements of the data (recall Remark 4.1). This means
Cε(Φ,Cε(φ, 1)

√
p2) ≈ O(

√
p2Cε(φ, 1)), so learning it is essentially in the same complexity as

learning each φs,j . For example, a three-layer network can learn cos(100〈w∗
1 , x〉) · e100〈w

∗

2
,x〉 up to

accuracy ε in complexity poly(1/ε), while it is unclear how to do so using two-layer networks.

Technical Contributions. We highlight some technical contributions in the proof of Theorem 2.

In recent results on the training convergence of neural networks for more than two layers [3, 4], the
optimization process stays in a close neighborhood of the initialization so that, with heavy overpa-
rameterization, the network becomes “linearized” and the interactions across layers are negligible.
In our three-layer case, this means that the matrix W never interacts with V . They then argue that

8



SGD simulates a neural tangent kernel so the learning process is almost convex [27]. In our analysis,
we directly tackle non-convex interactions between W and V , by studying a “quadratic approxima-
tion” of the network. (See Remark 6.1 for a mathematical comparison.) Our new proofs techniques
that could be useful for future theoretical applications.

Also, for the results [3, 4] and our two-layer Theorem 1 to hold, it suffices to analyze a regime where
the “sign pattern” of ReLUs can be replaced with that of the random initialization. (Recall σ(x) =
Ix≥0 · x and we call Ix≥0 the “sign pattern.”) In our three-layer analysis, the optimization process
has moved sufficiently away from initialization, so that the sign pattern change can significantly
affect output. This brings in additional technical challenge because we have to tackle non-convex
interactions between W and V together with changing sign patterns.12

Comparison to Daniely [15]. Daniely [15] studies the learnability of multi-layer networks when
(essentially) only the output layer is trained, which reduces to a convex task. He shows that multi-
layer networks can learn a compositional kernel space, which implies two/three-layer networks can
efficiently learn low-degree polynomials. He did not derive the general sample/time complexity
bounds for more complex functions such as those in our concept classes (3.1) and (4.1), but showed
that they are finite.

In contrast, our learnability result of concept class (4.1) is due to the non-convex interaction between
hidden layers. Since Daniely [15] studies the regime when the changes in hidden layers are negli-
gible, if three layer networks are used, to the best of our knowledge, their theorem cannot lead to
similar sample complexity bounds comparing to Theorem 2 by only training the last layer of a three-
layer network. Empirically, one can also observe that training hidden layers is better than training
the last layer (see Figure 1).

5 Conclusion and Discussion

We show by training the hidden layers of two-layer (resp. three-layer) overparameterized neu-
ral networks, one can efficiently learn some important concept classes including two-layer (resp.
three-layer) networks equipped with smooth activation functions. Our result is in the agnostic PAC-
learning language thus is distribution-free. We believe our work opens up a new direction in both
algorithmic and generalization perspectives of overparameterized neural networks, and pushing for-
ward can possibly lead to more understanding about deep learning.

Our results apply to other more structured neural networks. As a concrete example, consider con-
volutional neural networks (CNN). Suppose the input is a two dimensional matrix x ∈ R

d×s which
can be viewed as d-dimensional vectors in s channels, then a convolutional layer on top of x is
defined as follows. There are d′ fixed subsets {S1, S2, . . . , Sd′} of [d] each of size k′. The output
of the convolution layer is a matrix of size d′ × m, whose (i, j)-th entry is φ(〈wj , xSi

〉), where

xSi
∈ R

k′×s is the submatrix of x with rows indexed by Si; wj ∈ R
k′×s is the weight matrix of the

j-th channel; and φ is the activation function. Overparameterization then means a larger number of
channels m in our learned network comparing to the target. Our analysis can be adapted to show a
similar result for this type of networks.

One can also combine this paper with properties of recurrent neural networks (RNNs) [3] to derive
PAC-learning results for RNNs [2], or use the existential tools of this paper to derive PAC-learning
results for three-layer residual networks (ResNet) [1]. The latter gives a provable separation between
neural networks and kernels in the efficient PAC-learning regime.
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Therefore, if after training we replace the sign pattern with random initialization, the output will be meaningless.
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