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Abstract— We present a novel method for segmenting demon-
strations, recognizing repeated skills, and generalizing complex
tasks from unstructured demonstrations. This method combines
many of the advantages of recent automatic segmentation meth-
ods for learning from demonstration into a single principled,
integrated framework. Specifically, we use the Beta Process
Autoregressive Hidden Markov Model and Dynamic Movement
Primitives to learn and generalize a multi-step task on the PR2
mobile manipulator and to demonstrate the potential of our
framework to learn a large library of skills over time.

I. INTRODUCTION

A simple system that allows end-users to intuitively pro-

gram robots is a key step in getting robots out of the

laboratory and into the real world. Although in many cases

it is possible for an expert to successfully program a robot

to perform complex tasks, such programming requires a

great deal of knowledge, is time-consuming, and is often

task-specific. In response to this, much recent work has

focused on robot learning from demonstration (LfD) [1],

where non-expert users can teach a robot how to perform a

task by example. Such demonstrations eliminate the need for

knowledge of the robotic system, and in many cases require

only a fraction of the time that it would take an expert to

design a controller by hand.

Ideally, an LfD system can learn to perform and generalize

complex tasks given a minimal number of demonstrations

without requiring knowledge about the robot. Much LfD

research has focused on the case in which the robot learns a

monolithic policy from a demonstration of a simple task with

a well-defined beginning and end. This approach often fails

for complex tasks that are difficult to model with a single

policy. Thus, structured demonstrations are often provided

for a sequence of subtasks, or skills, that are easier to learn

and generalize than the task as a whole, and which may be

reusable in other tasks.

However, a number of problems are associated with

segmenting tasks by hand and providing individual skill

demonstrations. Since the most natural way to demonstrate

a task is by performing it continuously from start to finish,

dividing a task into component skills is not only time-

consuming, but often difficult—an effective segmentation
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can require knowledge of the robot’s kinematic properties,

internal representations, and existing skill competencies.

Since skills may be repeated within and across tasks, defining

skills also requires qualitative judgements about when two

segments can be considered a single skill, or in deciding

the appropriate level of granularity at which to perform

segmentation. Users cannot be expected to manually manage

this collection of skills as it grows over time.

For this reason, recent work has aimed at automating the

segmentation process. Collectively, this body of work has

addressed four key issues that are critical to any system that

aims to learn increasingly complex tasks from unstructured

demonstrations. (By unstructured, we refer to demonstrations

that are unsegmented, possibly incomplete, and may come

from multiple tasks or skills.) First, the robot must be able

to recognize repeated instances of skills and generalize them

to new settings. Second, segmentation should be able to be

performed without the need for a priori knowledge about

the number or structure of skills involved in a task. Third,

the robot should be able to identify a broad, general class

of skills, including object manipulation skills, gestures, and

goal-based actions. Fourth, the representation of skill policies

should be such that they can be improved through practice.

Although many of these issues have already been ad-

dressed individually, no system that we are aware of has

jointly addressed them all in a principled manner. Our

contribution is a framework that addresses all of these issues

by integrating a principled Bayesian nonparametric approach

to segmentation with state-of-the-art LfD techniques as a

first step towards a natural, scalable system that will be

practical for deployment to end users. Segmentation and

recognition are achieved using a Beta-Process Autoregressive

HMM [2], while Dynamic Movement Primitives [3] are used

to address LfD, policy representation, and generalization. We

apply our framework to acquire skills from demonstration in

simulation, and on the PR2 mobile manipulator.

II. BACKGROUND

A. Bayesian Nonparametric Time Series Analysis

Hidden Markov models (HMMs) are generative Bayesian

models that have long been used to make inferences about

time series data. An HMM models a Markov process with

discrete, unobservable hidden states, or modes1, which gen-

erate observations through mode-specific emission distri-

butions. A transition function describes the probability of

1We refer to hidden states as modes, as to not confuse them with the RL
concept of states.



each mode at time t + 1 given the mode at time t, but

observations are limited to being conditionally independent

given the generating modes. Given a set of observations,

the forward-backward and Viterbi algorithms can be used

to efficiently infer parameters for the model and determine

the most likely sequence of modes that generated the data.

Unfortunately, the number of modes must be specified a

priori or chosen via model selection, which is prone to

overfitting. This severely limits the usefulness of HMM

inference when dealing with unstructured data. However,

recent work in Bayesian nonparametrics offers a principled

way to overcome these limitations.

The Beta Process Autoregressive HMM (BP-AR-HMM)

[2] fixes two major problems with the HMM model. First,

it uses a beta process prior that leverages an infinite feature-

based representation, in which each time series can exhibit a

subset of the total number of discovered modes and switch

between them in a unique manner. Thus, a potentially infinite

library of modes can be constructed in a fully Bayesian way,

in which modes are flexibly shared between time series, and

an appropriate number of modes is inferred directly from

the data, without the need for model selection. Second, the

BP-AR-HMM is autoregressive and can describe temporal

dependencies between continuous observations as a Vector

Autoregressive (VAR) process, a special case of a linear

dynamical system (LDS). The generative model for the BP-

AR-HMM can be summarized as follows [4]:

B|B0 ∼ BP(1, B0)

Xi|B ∼ BeP(B)
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First, a draw B from a Beta Process (BP) provides a set of

global weights for the potentially infinite number of modes.

Then, for each time series, an Xi is drawn from a Bernoulli

Process (BeP) parameterized by B. Each Xi can be used to

construct a binary vector fi indicating which of the global

features, or modes, are present in the ith time series. Thus, B

encourages sharing of features amongst multiple time series,

while the Xi leave room for variability. Next, given the

features that are present in each time series, for all modes

j, the transition probability vector π
(i)
j is drawn from a

Dirichlet distribution with self transition bias κ. A mode

z
(i)
t is then drawn for each time step t from the transition

distribution of the mode at the previous time step. Finally,

given the mode at each time step and the order of the model,

r, the observation is computed as a sum of mode-dependent

linear transformations of the previous r observations, plus

mode-dependent noise.

B. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) [3] provide a

framework in which dynamical systems can be described as a

set of nonlinear differential equations in which a linear point

attractive system or limit cycle oscillator is modulated by a

nonlinear function. Stability and convergence are guaranteed

by introducing an additional canonical system, governed

by linear equations that control a 0 to 1 phase variable

that attenuates the influence of the nonlinear function over

time. DMPs provide simple mechanisms for LfD, RL policy

improvement, and execution, which scale easily in time and

space and can support discrete or oscillatory movements [5].

In this paper, we focus on the use of point attractive systems

for implementing discrete movements with DMPs.

A discrete movement DMP can be described by the

transformation system,

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1)

τ ẋ = v, (2)

and the canonical system,

τ ṡ = −αs, (3)

for spring constant K, damping constant D, position x,

velocity v, goal g, phase s, temporal scaling factor τ , and

constant α [6]. The nonlinear function f can be represented

as a linear combination of basis functions ψi(s), scaled by

the phase variable, s: f(s) =
∑N

i=1 wiψi(s)s. We use the

univariate Fourier basis [7] for our function approximator,

though others have commonly used normalized radial basis

functions [6]. The spring and damping constants can be set

to ensure critical damping, but we still must find appropriate

weights wi for the nonlinear function f .

Given a demonstration trajectory x(t), ẋ(t), ẍ(t) with

duration T , we can use LfD to learn a set of values for these

weights [5]. Rearranging equation 1, integrating equation 3 to

convert time to phase, and substituting in the demonstration

for the appropriate variables, we get:

ftarget(s) =
−K(g − x(s)) +Dẋ(s) + τ ẍ(s)

g − x0
. (4)

Setting the goal to g = x(T ), and choosing τ such that the

DMP reaches 95% convergence at time t = T , we obtain a

simple supervised learning problem to find the weights wi

for the basis functions. We use standard linear regression for

this task. This LfD procedure provides us with weights for

a baseline controller that can be further improved through

practice using RL [5], though we do not do so in this paper.

III. LEARNING FROM UNSTRUCTURED

DEMONSTRATIONS

We now introduce a framework which integrates four

major capabilities critical for the robust learning of complex

tasks from unstructured demonstrations. First, the robot must

be able to recognize repeated instances of skills and general-

ize them to new settings. Given a set of demonstrations for a

task, we use the BP-AR-HMM to parse the demonstrations

into segments that can be explained by a set of latent skills,

represented as VAR processes. The BP-AR-HMM enables

these skills to be shared across demonstrations and tasks by

employing a feature-based representation in which each skill



Fig. 1. Overview of the framework used in the experiments, as described in section IV

corresponds to a feature that may or may not be present

in a particular trajectory. Furthermore, this representation

allows each trajectory to transition between skills in a unique

manner, so that skills can be identified flexibly in a variety

of situations, while still retaining globally shared properties.

Segmentation of trajectories into VAR models allows

for tractable inference over the time-series dependencies of

observations and provides a parameterization of each skill so

that repeat instances can be recognized. This representation

models how state changes over time, based on previous

state values, potentially allowing instances of the same

underlying skill to be recognized, even when performed with

respect to different coordinate frames. The BP-AR-HMM

also models skill-dependent noise characteristics to improve

the identification of repeated skills. By recognizing repeated

skills, a skill library can be incrementally constructed over

time to assist in segmenting new demonstrations. Addition-

ally, skill controllers that have been previously learned and

improved through practice can be reused on new tasks.

Thus, recognition of repeated skills can reduce the amount

of demonstration data required to successfully segment and

learn complex tasks. Similarly, if we have multiple examples

of a skill, we can discover invariants that allow us to

generalize the skill to new situations robustly. In this paper,

we use this data to identify the coordinate frames that each

skill takes place in, as described in detail in the next section.

Second, segmentation must be able to be performed with-

out the need for a priori knowledge about the number or

structure of skills involved in a task. The BP-AR-HMM

places a beta process prior over the matrix of trajectory-

feature assignments, so that a potentially infinite number

of skills can be represented; the actual finite number of

represented skills is decided upon in a principled, fully

Bayesian way. Skill durations are modeled indirectly through

a learned self-transition bias, preventing skills from being

over-segmented into many small components unnecessarily.

The BP-AR-HMM also provides reliable inference, having

only a few free parameters that are robust to a wide range

of initial settings and hyperparameters that conform to the

data as inference progresses. Thus, little tuning should be

necessary for varying tasks for a given robotic platform.

Third, our system must be able to identify a broad, general

class of skills. Since our segmentation method is based upon

state changes, rather than absolute state values, we are able

to identify a wide array of movement types ranging from

object manipulation skills to gestures and goal-based actions.

Furthermore, by identifying the relevant coordinate frame of

repeated skills, we can discover specific objects and goals in

the world that skills are associated with.

Fourth, the representation of skill policies should be such

that they can be easily generalized and improved through

practice. To accomplish this, we represent skill controllers

in the DMP framework. The spring-damper mechanics of

a DMP allow for easy generalization, since the start and

goal set-points can be moved, while still guaranteeing con-

vergence and maintaining the “spirit” of the demonstration

through the output of the nonlinear function.

IV. METHODOLOGY

A. Demonstrations

For the first two experiments in this paper, we use a

simulated Willow Garage PR2 mobile manipulator and the

ROS framework; the final experiment uses a real PR2. We

used hand-coded controllers to provide task demonstrations

to the simulated robot. The robot is placed in a fixed position

in front of a table, as shown in Figure 2. At the beginning of

each demonstration, the robot looks downward and captures

a stereo image of the table. It then removes the flat table top

and obtains a point cloud for each of the objects on the table,

recording their positions and dimensions. On the real robot,

object positions are determined by a visual fiducial placed on

each object of interest. Once the demonstration begins, data

are collected by recording the 7 joint angles in the left arm

and the gripper state (a scalar indicating its degree of closed-

ness). Offline, the joint angles are converted to a series of 3D

Cartesian positions and 4D quaternion orientations, which

are subsampled down to 10 Hz and smoothed, along with

the gripper positions.

B. Segmentation

We build on a BP-AR-HMM implementation made avail-

able by Emily Fox2 to segment sets of demonstration trajec-

tories. We preprocess the demonstrations so that the variance

of the first differences of each dimension of the data is

1, as in Fox et al. [4], and adjust it to be mean zero.

We choose an autoregressive order of 1 and use identical

2http://stat.wharton.upenn.edu/˜ebfox/software



Fig. 2. 5 task demonstration configurations (top) and 5 novel test configurations (bottom).

parameters as those used by Fox on a human exercise motion

capture dataset [4], with one exception—in the simulated

experiments, we adjust the matrix-normal inverse-Wishart

prior on the dynamic parameters, since the simulated data has

significantly different statistical properties from that in Fox et

al. [4]. To segment the demonstrations, we run the combined

Metropolis-Hastings and Gibbs sampler 10 times for 1000

iterations each, producing 10 segmentations. Qualitatively,

the segmentations across runs were very consistent, but to

ensure good results, the segmentation from the 10 runs with

the highest log likelihood of the feature settings is selected.

C. Coordinate Frame Detection

After the demonstrations are segmented, each segment is

examined to infer the coordinate frame that it is occurring in.

Even though segments assigned to the same skill correspond

to similar movements, they may be happening in different

frames of reference. For example, a repeated reaching motion

may be classified as being generated by the same skill, but

be reaching toward several different objects. In order to

robustly replay tasks in novel configurations, it is desirable to

determine which coordinate frame each segment is associated

with, so that DMP goals can be generalized correctly.

We define a coordinate frame centered on each known

object, along with one centered at the torso of the robot.

Other frames could be used as well if desired, such as a

frame relative to the gripper, or a world frame. Then, the

final point of each segment is plotted separately in each of

the coordinate frames, and clusters are found in each frame

by identifying points within a Euclidean distance threshold

of each other. The reasoning is that clusters of points indicate

that multiple segments have similar endpoints in a particular

coordinate frame, suggesting that the skill often occurs in

that frame of reference.

After the points are clustered in each frame, all the single-

ton clusters are discarded. If any remaining segment endpoint

belongs only to a cluster in a single coordinate frame, then

the evidence is unambiguous, and that segment is assigned

to that coordinate frame. Otherwise, if a segment endpoint

belongs to clusters in multiple frames, it is simply assigned

to the frame corresponding to the largest cluster. It should be

emphasized that the any coordinate frame inference method

could be used in place of ours, and that there are many other

skill invariants that could be exploited. The purpose of this

method is primarily to demonstrate the utility of being able

to segment and recognize repeated skills.

D. Task Replay

To perform a task in a novel configuration, we first

determine the poses and identities of objects in the scene,

using either stereo data (simulated experiment) or visual

fiducials (real robot). The position of each object is then

examined to find the demonstration that begins with the

objects in a configuration that is closest to the current one

in a Euclidean sense. We only consider demonstrations that

have an identified coordinate frame for every segment, so

that the task will generalize properly. A DMP is then created

and trained using the LfD algorithm from section II-B for

each segment in the demonstration. However, rather than

using the final point of a segment as the goal of a DMP,

each goal is adjusted based on the coordinate frame that the

segment takes place in. If the segment is associated with

the torso frame, it requires no adjustment. Otherwise, if

it is associated with an object frame, the goal is adjusted

by the difference between the object’s current position and

its position in the demonstration. Finally, the DMPs are

executed in the sequence specified by the demonstration. A

plan is generated by each of the DMPs until the predicted

state is within a small threshold of the goal. Each plan is

a Cartesian trajectory (plus a synchronized gripper state)

that is converted into smooth joint commands using inverse

kinematics and spline interpolation. A graphical overview of

our method is shown in Figure 1.

V. EXPERIMENTS

A. Experiment 1: Pick and Place (Simulated)

The first experiment demonstrates the ability of our frame-

work to learn and generalize a complex task by segmenting

multiple task demonstrations, identifying repeated skills,

and discovering appropriate segment reference frames. Each

instance of the task begins with two blocks on the table—a

smaller red block and a larger green block. The robot always

starts in a “home” configuration, with its arms at its sides

so that its field of view is unobstructed. We provide 5 task

demonstrations for 5 different configurations of the blocks,



Fig. 3. Top: BP-AR-HMM segmentations of the 5 demonstration trajectories for the pick and place task. Time (in tenths of a second) is shown on the
x-axis. Skill labels at each time step are indicated by unique colors. Bottom: Segmentation points overlaid on the demonstrated 8D movement data.

(a) Starting pose (b) Reaches toward red
block (red block frame)

(c) Picks up red block
(red block frame)

(d) Returns to home
position (torso frame)

(e) Places red block
on green block

(green block frame)

(f) Returns to home
position (torso frame)

Fig. 4. Successful task replay on a novel test configuration for the pick and place task, demonstrating generalization. From left to right: the starting pose
and the final point of each executed DMP. Automatically detected coordinate frames used for each segment are listed in parentheses.

as shown in the first row of Figure 2 (configurations 1 and 5

are identical, but the demonstration is performed at a higher

speed in the latter configuration). In each demonstration,

the robot first picks up the red block, returns to the home

position, places the red block on the green block, and returns

to the home position once more.3

Figure 3 shows the results of segmentation. The top row

shows one colored bar per skill, while the bottom row

displays the skill divisions overlaid on a plot of each of the

8 dimensions of the demonstration data. The BP-AR-HMM

consistently recognizes repeated skills across demonstrations,

even though they occur at differing speeds and with differ-

ent goals. The segmentations are highly similar, with the

exception of the second demonstration, which identifies one

additional skill that the others do not have. It is worth noting

that despite the extra skill being inserted in the segmentation,

the rest of the segmentation is essentially the same as the

others. This is a direct benefit of the BP-AR-HMM allowing

each trajectory to have its own switching dynamics, while

sharing global features.

Next, we examine task generalization to 5 novel test

configurations, shown in the bottom row of Figure 2, to

determine whether our segmentation produced semantically

meaningful results. Our method was able to successfully

identify a coordinate frame for every segment except the

extra segment in demonstration two (which is impossible

3Due to the planning delay in the hand written controllers there are some
pauses between segments which we remove to avoid giving the segmentation
algorithm an unfair advantage.

to infer, since there is only one example of it). Using this

information, the robot performed task replay as described in

section IV-D. In all 5 novel configurations, the robot was

able to successfully generalize and place the red block on

the green block.4

Figure 4 shows the starting state of the robot and the

resulting state after each DMP is executed in a novel test

configuration. Here, it becomes clear that the results of

both the segmentation and coordinate frame detection are

semantically intelligible. The first skill is a reaching skill to

right above the red block. The second skill moves down,

grasps the red block, and moves back upward. The third

skill goes back to the home position. The fourth skill reaches

toward the green block, moves downward, releases the red

block and moves back upward. Finally, the fifth skill goes

back to the home position. Notice that the second and

fourth segments are identified by the BP-AR-HMM as being

the same skill, despite having different relevant coordinate

frames. However, in both skills, the arm moves down toward

an object, changes the gripper pose, and moves back upward;

the reach from the home position toward the green block gets

rolled into this skill, rather than getting its own, seemingly

because it is a smoother, more integrated motion than the

reach and grasp associated with the red block.

Given the commonality of pick and place tasks in robotics,

4The green block in novel configuration 4 was partially out of the robot’s
visual range, causing part of it to be cut off. Thus, it placed the red block
too close to the edge of the green block, causing it to tumble off. However,
given the available information, it acted correctly.



success in this domain may seem trivial. However, it is

important to keep in mind that the robot is given only

demonstrations in joint space and absolutely no other a priori

knowledge about the nature of the task. It does not know that

it is being shown a pick and place task (or doing grasping at

all). It is unaware of the number of subtasks that comprise

the task and whether the subtasks will be object-related,

gestural, or have other sorts of objectives. Beginning with

only motion data and a simple assumption about the types

of coordinate frames that are relevant to inspect, the robot

is able to automatically segment and generalize a task with

multiple parts, each having its own relevant coordinate frame.

B. Experiment 2: Using a Skill Library (Simulated)

The first experiment demonstrated that our method can

learn and generalize a complex task when given a sufficient

number of demonstrations. However, this type of learning

will not scale up to more complex tasks easily unless the

robot can incrementally build a library of skills over time that

allows it to quickly recognize previously seen skill / coordi-

nate frame combinations and reuse complex skill controllers

that have been improved through practice. To demonstrate

our system’s capability to recognize skills in this manner, we

simulate a previously existing library of skills by providing

the robot with a pre-segmented demonstration of the previous

experiment. We then give it a single demonstration of the task

to see if it can segment it using the “library” of skills.

The BP-AR-HMM correctly recognized each of the skills

in the task as being a skill from the pre-existing library.

Thus, assuming the robot already had learned about these

skills from previous experiences, it would allow a user

to provide only a single demonstration of this task and

have the robot correctly segment and generalize the task

to new configurations. This serves as a proof-of-concept

that our proposed framework has the right basic properties

to serve as a building block for future models that will

scale up LfD to more complex tasks than have previously

been possible. It also emphasizes that our method can learn

tasks from unstructured demonstrations, as the majority of

demonstrations were not even of the task in question, but of

a sub-component, unbeknownst to the robot.

C. Experiment 3: The Whiteboard Survey (Physical PR2)

Finally, we demonstrate that our method is scalable to a

real robot system, using a physical PR2. Figure 5(a) shows

one configuration of a task in which the PR2 must fill out

a survey on a whiteboard by picking up a red marker and

drawing an ’X’ in the checkbox corresponding to “robot”

while ignoring the checkboxes for “male” and “female”.

Each checkbox has its own unique fiducial placed one inch

to the left of it, while the container that holds the marker

has a fiducial directly on its front. The positions of the

checkboxes and the marker container on the whiteboard,

as well as the position of the whiteboard itself, change

between task configurations. Two kinesthetic demonstrations

in each of three task configurations were provided, along

with one additional demonstration in which the marker is

picked up and then lifted above the robot’s head. An example

demonstration is shown in Figure 5(b).

Figure 6 shows that the BP-AR-HMM generally parses

the demonstrations into three main segments, correspond-

ing to reaching for the marker, grasping and lifting the

marker, and drawing an ’X’ in the checkbox. However, the

reaching and drawing segments are considered to be the

same skill. This appears to happen because both motions

are statistically similar, not in terms of absolute position,

but in the way that the positions evolve over time as a

VAR system. Our coordinate frame detection successfully

disambiguates these skills and splits them into two separate

skill/coordinate frame combinations. Demonstrations 1, 2,

and 5 contain a small additional skill near the beginning

that corresponds to a significant twitch in the shoulder

joint before any other movement starts, which appears to

correspond to the teacher’s first contact with the arm, prior

to the demonstration. Finally, although the last demonstration

is of a different task, the reaching and grasping/lifting skills

are still successfully recognized, while the final motion of

lifting the marker over the robot’s head is given a unique

skill of its own. Despite having only a single example of

the over-head skill, the BP-AR-HMM robustly identified it

as being unique in 50 out of 50 trial segmentations, while

also recognizing other skills from the main task. After the

learning phase, the robot was able to successfully replay the

task in three novel configurations, an example of which is

shown in Figure 7.

VI. RELATED WORK

A variety of approaches have been proposed for LfD, in-

cluding supervised learning [8], [9], [10], [11], reinforcement

learning [12], [13], [14], and behavior based approaches [15].

However, this work has generally been limited to single tasks

with a well-defined beginning and end. In a recent example,

Pastor et al. [16] use DMPs to acquire single motor skills

from structured demonstrations of a complex billiards shot.

In their framework, multiple imperfect demonstrations of a

skill are used to learn an initial DMP controller, which is

then improved using RL.

While many approaches enable the learning of a sin-

gle policy from data, some approaches perform automatic

segmentation of the demonstrations into skills. Jenkins and

Matarić introduced Spatio-Temporal Isomap in order to

find the underlying low-dimensional manifolds within a

set of demonstrated data [17], [18]. This work extends

the dimensionality reduction technique Isomap to include

temporal information and allows the discovery of repeated

motion primitives. However, segmentation is performed with

a heuristic and the motion primitives cannot be improved

through techniques like RL. Dixon and Khosla [19] demon-

strate that generalizable motions can be parameterized as

linear dynamical systems. This algorithm also uses heuristic

segmentation and cannot recognize repeated instances of

skills. Gienger et al. [20] segment skills based on co-

movement between the demonstrator’s hand and objects

in the world and automatically find appropriate task-space



(a) Task example (b) A kinesthetic demonstration

Fig. 5. The whiteboard survey task.

Fig. 6. Top: BP-AR-HMM segmentations of the 7 demonstration trajectories for the whiteboard survey task. Time (in tenths of a second) is shown on
the x-axis. Skill labels at each time step are indicated by unique colors. Bottom: Segmentation points overlaid on the demonstrated 8D movement data.

abstractions for each skill. Their method can generalize skills

by identifying task frames of reference, but cannot describe

skills like gestures or actions in which the relevant object

does not move with the hand.

More recent work has examined using principled statistical

techniques to segment example trajectories into multiple

skills. Grollman and Jenkins [21] introduce the Realtime

Overlapping Gaussian Expert Regression (ROGER) model

to estimate the number of subtasks and their policies in

a way that avoids perceptual aliasing, in which perceptual

information alone is not sufficient to choose the correct next

action. Butterfield et al. [22] extend Hierarchical Dirichlet

Processes Hidden Markov Models (HDP-HMM) to handle

perceptual aliasing and automatically discover an appropriate

number of skills. Although we use a Bayesian mechanism

to parse demonstration trajectories, rather than inferring

policies, we discover repeated dynamical systems which are

considerably simpler to model than policies.

CST [23] uses an online changepoint detection method to

segment example trajectories and then merges the resulting

chains of skills into a skill tree. This approach simultaneously

segments the trajectories and discovers abstractions, but can-

not recognize repeated skills to assist with the segmentation

process. Kulic et al. [24] demonstrate an online method

that can recognize repeated motion primitives to improve

segmentation as additional data is collected, by assume that

data points from the same primitive are generated by the

same underlying distribution. Ciappa and Peters [25] model

repeated skills as being generated by one of a set of possible

hidden trajectories, which is rescaled and noisy. To guide

segmentation, they define an upper bound on the number of

possible skills and explicitly constrain segment lengths.

VII. DISCUSSION

We presented a novel method for segmenting demonstra-

tions, recognizing repeated skills, and generalizing complex

tasks from unstructured demonstrations. Though previous

research has addressed many of these issues individually,

our method aims to address them all in a single integrated

and principled framework. By using the BP-AR-HMM and

DMPs, we are able to experimentally learn and generalize

a multiple step task on the PR2 mobile manipulator and to

demonstrate the potential of our framework to learn a large

library of skills over time.

Our framework demonstrates several of the critical com-

ponents of an LfD system that can incrementally expand a

robot’s competency and scale to more complex tasks over

time. However, this work is only a first step toward such

a system, and leaves a great number of directions open for

future research. A more nuanced method must be developed

for managing the growing library of skills over time, so

that inference in our model does not become prohibitively

expensive as the size of the library grows. While our model

allows for DMP policy improvement through RL, we did

not address such improvement experimentally in this paper.

Future work may use techniques such as inverse RL [13] to

derive an appropriate reward function for each skill so that

policy improvement can be effectively applied.

There are also many more opportunities to take advantage

of abstractions and invariants in the data; searching for skill

coordinate frames is a very simple example of a much richer



(a) Starting pose (b) Reaches for marker
(marker frame)

(c) Grasps marker and lifts toward
checkbox (robot checkbox frame)

(d) Draws ’X’
(robot checkbox frame)

Fig. 7. Successful task replay on a novel test configuration for the whiteboard survey task, demonstrating generalization. From left to right: the starting
pose and the final point of each executed DMP. Automatically detected coordinate frames used for each segment are listed in parentheses.

class of generalization techniques. It is also desirable to take

a more principled approach to coordinate frame detection by

integrating it directly into the Bayesian segmentation model,

so that reference frames are inferred jointly along with the

skills. Finally, more intelligent methods can be applied to

make better use of the demonstration data that we have

available. In this work, DMPs are constructed from single

segments that came from the task configuration most similar

to the current one that the robot faces. However, there exist

more sophisticated methods involving dynamic time warping

[20] and Bayesian techniques [26] to perform LfD with many

demonstration segments. Using such techniques, it may be

possible to create more robust skill models that can be used

in an ever-increasing number of complex situations, allowing

end-users to program robots with ease.
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vocabularies: Data-driven acquisition of skills from motion,” Inter-

national Journal of Humanoid Robotics, vol. 1, no. 2, pp. 237–288,
Jun 2004.

[19] K. Dixon and P. Khosla, “Trajectory representation using sequenced
linear dynamical systems,” in IEEE International Conference on

Robotics and Automation, vol. 4. IEEE, 2004, pp. 3925–3930.
[20] M. Gienger, M. Muhlig, and J. Steil, “Imitating object movement

skills with robots: A task-level approach exploiting generalization and
invariance,” in International Conference on Intelligent Robots and

Systems. IEEE, 2010, pp. 1262–1269.
[21] D. Grollman and O. Jenkins, “Incremental learning of subtasks from

unsegmented demonstration,” in Proceedings of the 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE,
2010, pp. 261–266.

[22] J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins, “Learning from
demonstration using a multi-valued function regressor for time-series
data,” in Proceedings of the Tenth IEEE-RAS International Conference

on Humanoid Robots, 2010.
[23] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-

ing from demonstration by constructing skill trees,” The International

Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.
[24] D. Kulic, W. Takano, and Y. Nakamura, “Online segmentation and

clustering from continuous observation of whole body motions,” IEEE

Transactions on Robotics, vol. 25, no. 5, pp. 1158–1166, 2009.
[25] S. Chiappa and J. Peters, “Movement extraction by detecting dynamics

switches and repetitions,” Advances in Neural Information Processing

Systems, vol. 23, pp. 388–396, 2010.
[26] A. Coates, P. Abbeel, and A. Ng, “Learning for control from multiple

demonstrations,” in Proceedings of the 25th International Conference

on Machine Learning. ACM, 2008, pp. 144–151.


