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Abstract

Traditional aspect graphs are topology-based and are
impractical for articulated objects. In this work we learn a
small number of aspects, or prototypical views, from video
data. Groundtruth segmentations in video sequences are
utilized for both training and testing aspect models that op-
erate on static images.

We represent aspects of an articulated object as collec-
tions of line segments. In learning aspects, where object
centers are known, a linear matching based on line loca-
tion and orientation is used to measure similarity between
views. We use K-medoid to find cluster centers. When using
line aspects in recognition, matching is based on pairwise
cues of relative location, relative orientation as well adja-
cency and parallelism. Matching with pairwise cues leads
to a quadratic optimization that we solve with a spectral ap-
proximation. We show that our line aspect matching is ca-
pable of locating people in a variety of poses. Line aspect
matching performs significantly better than an alternative
approach using Hausdorff distance, showing merits of the
line representation.

1. Introduction

How to represent shape of an object so as to facilitate
reliable recognition is a perpetual question in vision. Psy-
chophysical evidences [24] show that, rather than 3D struc-
tures as introspection would suggest, human vision system
uses view-specific representations. Such discoveries have
motivated the use of 2D view-based models in computer
vision, a classical example being the aspect graph of Koen-
derink and van Doorn [18].

The concept of aspect graphs builds on the insight that
the infinitely many possible 2D views of a 3D object may be
organized into a small number of groups, or aspects. Views
in the same aspect are similar to each other and may be eas-
ily matched. The similarity “measure” in the classical as-
pect graph is the topology of the 2D view. Computing and
enumerating aspects exactly is usually very hard. For ar-
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Figure 1. 2D Shape of an articulated object varies greatly be-
cause of pose change. We utilize video sequences of people with
groundtruth segmentation to learn a small set of view-based mod-
els, or aspects, and apply them to detecting people in static images.

ticulated objects, as the figure skating examples in Figure 1
illustrate, variations in pose would generate an aspect graph
too large to be practical.

Koenderink’s insight, nevertheless, still holds for articu-
lated objects. The huge number of possible views are not
independent; they are closely related to one another and
form groups or clusters. Comparing to a nearest neighbor
matching strategy that keeps a large number of exemplars
in memory, a small number of aspects or view-based tem-
plates would show a better understanding of the problem,
and be more efficient in practice as well. In this work, we
utilize video with groundtruth segmentation to learn a small
number of aspects for articulated objects, and to learn how
to match them to images.

2D template matching has been in fact a popular
paradigm in computer vision. For articulated object de-
tection and localization, Gavrila and Philomin [15] used a
large number of stored exemplars and the Chamfer distance
metric. Huttenlocher et al [17] used the more robust Haus-
dorff metric for matching, and Felzenszwalb [10] showed
that learning templates under the Hausdorff distance may
be viewed as learning half-space models. Toyama and
Blake [28] learned templates for people in a tracking set-
ting. Using the Chamfer or Hausdorff metric is common
in these approaches, and generally a large number of exem-
plars are required to cover pose variations.

The novelty of our approach lies in the representation of
aspects or 2D templates as collections of line segments. A
line representation has many advantages over a point rep-
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boundary map computed with the Probability-of-Boundary operator [
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Figure 2. A line representation of images. (a) Attneave’s Cat (1954), illustrating the observation that shape may be well approximated by
piecewise straight lines [1]. Following this observation, we construct a line representation of images from bottom-up: (b) an image, (c) a

]. We construct a line approximation (d) by tracing contours in (c)

and recursively splitting them until each piece is approximately straight [26].

resentation: it is compact and perceptually meaningful; it
allows one to define and use mid-level cues such as adja-
cency or parallelism; and it naturally corresponds to parts
in articulated objects, which commonly appear as pairs of
parallel line segments.

To explore the merits and potentials of a line representa-
tion, in this work we restrict ourselves to line-based geomet-
ric cues. We show how a line representation enables us to
learn a small number of aspects for articulated objects, and
how line aspect matching may be solved efficiently, leading
to promising experimental results.

2. Line Aspects

The use of line representations may be traced to the the-
ory of Attneave [1] . Figure 2 (a) shows Attneave’s famous
sleeping cat figure. Attneave made an important observa-
tion, in 1954, that the shape of an object may be well ap-
proximated by line segments, if one places landmarks at ex-
trema of curvature and connects the landmarks by straight
lines. His cat does look vividly like a cat and we have no
trouble recognizing it. This theory of line approximation
has been supported by psychophysical experiments.

The advantages of a line representation have motivated
many line-based approaches in computer vision. At a time
when line drawings were the primary subjects of study, line
representations were popular and successful, especially in
recognizing and aligning 3D polyhedral objects (e.g. [20]).
The work of Bergevin and Levine [5] showed an example
of how people build generic shape models based on line
representations. Line representations have been used in
other problems such as recovering scene geometry of man-
made structures (e.g. [9]) or the camera geometry between
views (e.g. [2, 27]). Smooth curves, instead of straight lines,
were also studied as an underlying representation of shape
(e.g. [21D).

Matching line representations for object recognition is
inherently challenging. A line segment itself is non-
distinctive; if we allow rotational invariance a line may be
matched to any other line. The distinctiveness of a line rep-
resentation lies in the inter-relationships between the seg-
ments. This easily leads to a graph matching problem,

known to be hard in general. Line matching was typi-
cally solved in a greedy fashion [14] but it did not work
well in cluttered scenes. Huet and Hancock [16] approxi-
mated all-pair relations with local N-nearest neighbor de-
scriptions. Beveridge and Riseman [0] explored the use
of local search. Fleuret and Geman [13] used a coarse-to-
fine matching strategy. The recent contour segment network
model of Ferrari et al [12] matched rigid objects by search-
ing over paths through contours.

The computational challenges of dealing with pairwise
relations have pushed most modern shape matching ap-
proaches away from a line representation. Many have
adopted a point set representation and could get around the
quadratic matching problem by building rich local descrip-
tors, such as the Shape context descriptor [3], to make point
features distinctive by themselves. Due to the lack of geo-
metric structure in these point set representations, however,
for articulated objects often a large number of templates are
needed. Part-based models (e.g. [11]) are another popular
approach for articulated objects; they are not view-based
and generally require high-level knowledge of the parts and
a model relating them.

Meanwhile, progress has been made in graph match-
ing and integer quadratic problems (IQP). Berg et al [4]
employed a linear approximation to the IQP problem and
showed that using pairwise constraints improved general
shape matching. Ren et al [25] adopted the linear approxi-
mation strategy in solving human body pose estimation us-
ing all-pair relationships. Leordeanu and Hebert [19] and
Cour et al [7] developed efficient spectral approximations
to the graph matching problem.

Following Attneave’s observation, we build a line rep-
resentation of an image from bottom-up. We apply the
Probability-of-Boundary operator [22] to compute a soft
boundary map that summarizes brightness, color and tex-
ture contrasts. Then we trace the contours in the image
and recursively partition the contours at high-curvature lo-
cations until each piece is approximately straight [26]. Fig-
ure 2 (b)-(d) shows an example of this construction.

We use video sequences with groundtruth segmentation
for learning aspects. With object centers aligned in the
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Figure 3. Learning line aspects using groundtruth segmentation. (a) Examples of the training data, views of a figure skater, masked by a
groundtruth segmentation. A linear matching measures the similarity between views, each represented as a collection of line segments. (b)
A K-medoid algorithm is applied to obtain a set of 10 cluster centers, or aspects.

training data, we use a linear program based on location
and orientation to solve assignments or correspondences be-
tween sets of line segments. Correspondences provide sim-
ilarity scores, and the K-medoid algorithm is used to find a
small number of prototypical poses, or aspects.

Matching line aspects to novel images is more challeng-
ing as object center is unknown, and the image may contain
a fair amount of clutter. We rely on relative or pairwise
geometric cues, including relative location, relative orienta-
tion, and consistencies in adjacency and parallelism. Rela-
tive cues lead to a quadratic program, which we solve using
a spectral approximation followed by a greedy discretiza-
tion. We make use of temporal ordering in video to learning
feature weights in an iterative procedure.

We again use video with groundtruth segmentation to
evaluate the performance of line aspect matching. We com-
pare to two other approaches, an alternative aspect learn-
ing approach using the Hausdorff metric [17, 10], and the
Histogram-of-Oriented-Gradients (HOG) pedestrian detec-
tor of Dalal and Triggs [8]. We show that line aspect match-
ing performs the best, successfully finding and localizing
people under pose variation and clutter, despite being re-
stricted to simple geometric cues.

3. Learning Line Aspects

Assume we have a collection of images for an articulated
object together with groundtruth segmentation. Each image
I is represented as a set of line segments. Using the seg-
mentation mask, we extract a view V(*)_ as a set of line
segments {15’“)}, clean from background clutter. The seg-
mentation also provides the center of the object. Hence we
can align the views {V(*)} such that their centers coincide.

To learn a small set of aspects from these views, we need
to first define a similarity metric. We compute a correspon-
dence or assignment between pairs of views. Because the

views are aligned, this is not a hard problem and straight-
forward to do: corresponding lines should be close both in
spatial location and orientation.

One issue with a line-based representation is that
bottom-up line construction is never perfect. A smooth con-
tour could be a single segment in one view but split into
two or more segments in another. Therefore a one-to-one
correspondence is not sufficient. We need to accommodate
“fractional” assignments between lines.

Let {lgl)} and {152)} be two sets of line segments to be
matched, and let x;; be the mass or number of pixels as-

signed from each line lgl) to l§2). Let bgl) be the length or
mass of lines in view 1, and b§2) the length of lines in view

. : (1) _ (2)
2; they are normalized sgc.h as Zi. b’ =>;b". We use
two features: d;;, the minimum distance between two line
segments l;l) and 15»2), and 0;;, the orientation difference
between them. We solve a linear assignment problem:

min L(z) = Zwij (wadij + web;) (M

2¥)
S. t. inj = b§1)72x2—j = b§-2)7 Tij 2 0
7 %

The minimum cost L* is the distance (dissimilarity) be-
tween the two views .

Once we have computed distances L* between all pairs
of views, we run the K-medoid algorithm to find cluster
centers. Figure 3 shows the 10 aspects we obtain through
a clustering of 375 views from a figure skating video. We
will use these 10 aspects in our matching experiments.

' wq and wy are set by hand; in our experiments we find that the match-
ing and clustering processes are fairly robust w.r.t. these weights.



4. Matching Line Aspects

In the last section we have found a small set of aspects
T* = {IF}, or prototypical templates, through linear as-
signments and K-medoid clustering. We now discuss how
we apply these aspects and match them to novel images.

4.1. Pairwise Geometric Cues

It is much more challenging to match an aspect T' = {I;}
to an image I = {l}, both represented as collections of
line. We do not know the object center, and the image could
contain a fair amount of background clutter. Consider a sin-
gle assignment [; — l;: without knowing the object center,
it becomes meaningless to measure the absolute distance
between I; € T and l;- cl.

On the other hand, it is useful to measure the relative dis-
tance between two pairs of assignments. If two lines in the
aspect are close to each other, their corresponding lines in
the image should also be close. Relative orientation conveys
information in a similar way.

For a pair of assignments [; — [{ and Iy — 1}, we use a
set of simple geometric cues:

1. fa,m, relative location (minimum): consider the pair [y
and [ in T, and let p1; € I3 and P12 € [y be the pair
of points that minimizes the distance between [; and
lo in T. Similarly, let p5; and pao be the two points
that minimize the distance between [} and I} in I. We

define fq ., = |(P11 — Pi2) — (Po1 — Pa2)|;

2. fa., relative location (center): let ¢11, 12 be the cen-
ters of /1 and lo, and ¢, Cao the centers of ] and I5.
We define fd,c = |(Cl1 - C12) - (C21 - 022)|§

3. fae, relative location (angle): fq¢ is defined as the
angle between the two displacement vectors (11 —¢12)
and (821 — 522);

4. fo, relative orientation: all four line segments have an
orientation. Let 61 € {0, 7/2} be the difference in ori-
entation between {; and [5, and 6, the difference be-
tween [{ and [}, we let fy = |01 — 02;

5. fa,adjacency: adjacency is a case of relative location
that merits special attention. Let d; = |p11 — P12| and
do = |p21 — Phaz|, we use two thresholds 7; < 7y, to
detect violations when one pair of lines are adjacent
and the other pair are not: f4 = (dy < 7)(d2 >
7h) + (d1 > 1) (de < 7);

6. fp, parallelism: similarly, as a special case of relative
orientation, we define a parallelism cue fp = (67 <
§)(02 > &) + (01 > &) (02 < &) with a pair of
thresholds & < &;,.

Note that we restrict ourselves to pairwise cues only in the
matching model. These cues are purely based on the ge-
ometry of two pairs of corresponding line segments; each
of them incurs a cost if it detects a discrepancy in the pair
of correspondences. We combine these cues linearly into a
single pairwise cost C"

C(lin, 15 lia, Ug) = Zakfk(lih Uiilio, ) (2)
This pairwise cost leads to a quadratic matching problem.

4.2. Quadratic Matching

To find the best match under the pairwise cues intro-
duced above is a quadratic optimization problem. Sup-
pose we want to find a match between an aspect T' =
{l1,--+,l,} and an image I = {l{,---,I.,}. Due to the
asymmetry of the matching, i.e. every line in T" should have
a match if possible but most lines in I will not, we set up
the assignment variables {x;; } slightly differently from that
in Section 3: we now define x;; as the fraction of the line
l; € T that is assigned to l;» € I in the matching. We also
introduce an outlier dummy node [y, which may be used to
collect clutter lines in 1. Any pair of assignments involving
lp has a constant cost c.

Let x = {z,;} be the assignment vector of length (n +
1)m, and let W a matrix of size (n + 1)m-by-(n + 1)m
whose entries are

W (i1, j1, 2, j2) = max (—C(i1, j1, 42, j2) + co,0)

where c is the outlier cost. Let {b;} and {b} be the length
of line segments in 7" and I respectively. The best match x*
solves the following quadratic problem:

max Q(x) = x! Wx

m ' n+1 , (3)
S.t.Z.’L‘ij =1; Z bi(Eij = bj7 Tij >0
i—1 i=1

This is not an integer program, as we allow fractional as-
signments. However it is still hard to solve exactly, given
all the constraints. A typical problem size has m ~ 30 and
n ~ 150 in our experiments. We use the spectral approx-
imation techniques recently developed for graph matching
and quadratic assignment problems [19, 7]. In the spec-
tral approximation, constraints are ignored, and we find the
leading eigenvector x* of W, corresponding to the largest
eigenvalue \* 2. We select the aspect that maximizes Q(x*)
normalized by n.

We construct a fractional matching {x;;} from x* by a
greedy procedure: first we set a constant threshold on x*.
Then we sort all the plausible matchings above threshold,

2 As pointed out in [19], the Perron-Frobenius theorem guarantees that
x* has non-negative entries.
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Figure 4. We train model parameters iteratively. Shown here in (a) and (b) are empirical distributions of one feature, f4 ., the difference in
relative center location for a pair of matched line segments. Empirical distributions for both positive and negative cases follow a gamma
distribution; the log likelihood ratio is approximately linear (c). This motivates combining features linearly.

and go through them in the order of decreasing x* value. We
maintain the amount of mass not yet assigned in both sets
of lines; when considering a plausible matching (3, j), we
assign from ; to I; the maximum possible mass (i.e. mini-
mum of the mass remaining unassigned in the two lines).

From the matching {z;;}, we can estimate the object
center. Assume the line aspect T is centered at the origin.
Let ¢; be the center of line [; in T, and c;- the center of line l;-
in the image I. Object center in the image can be estimated
as a weighted average:

O* = Zx”(c; — Ci) /Z.’E”
] i

4.3. Learning Matching Parameters

We learning the parameters {cy } in the linear cue com-
bination by making use of the fact that we have a video se-
quence for training, not just a random collection of images.
Temporal coherence in video implies that objects are likely
to have similar poses in frames that are close in time.

This observation leads to an iterative discriminative
learning strategy. Each frame I(*) is represented as a set
of lines, and the groundtruth segmentation gives us a (seg-
mented) view V(¥). Given a tentative set of weights {ay},
we match V) to images I*+% for |d| < dp, and use
these matchings as positive examples. We collect feature
values f for all pairs of lines that are matched in these ex-
amples. Similarly we match V() to images I*T4) with
|d| > d1 > dp, and collect feature values from these nega-
tive examples.

We treat the features { fi } as independent, and learn each
weight o, independently from the positive and negative ex-
amples. Each ay, is estimated with a 1-D logistic regression.
Figure 4 shows an example of the empirical distributions.
We find that this procedure converges quickly, after a few
iterations, under our experimental setting.

5. Experiments

We utilize two figure skating sequences for our exper-
iments, one Michelle Kwan sequence of 750 frames, and
one Tara Lipinski sequence of 1410 frames. The images
are of resolution 240-by-360. Groundtruth segmentations
are available for both sequences, obtained through tracking.
We use half of the Michelle Kwan sequence (375 frames)
for learning the aspects and training the parameters. 10 as-
pects are obtained, as shown in Figure 3.

The pairwise line matching approach is then tested on
the second half of the Kwan sequence as well as the Lipin-
ski sequence, independently on each frame. We match ev-
ery aspect to the images and pick the best using the match
score (Q(x). We estimate object centers from groundtruth
segmentations, and use these centers for evaluation.

We compare to two alternative approaches: one compari-
son is that we keep the same setup for learning and matching
aspects, but replacing line-based matching with the Haus-
dorff distance metric [17, 10] on 2D pixel templates 3. with
or without using edge orientation. We use a robust rank
value of 80% in Hausdorff matching. Again, 10 aspects are
learned and used for testing.

The second comparison is to a state-of-the-art pedes-
trian detector of Dalal and Triggs [8] , the Histogram-of-
Oriented-Gradients (HOG) detector. We used their pre-
trained parameters, tuned for pedestrian detection, and low-
ered thresholds to force the detector fire on most images .

We evaluate performance by measuring the distance be-
tween estimated object centers and groundtruth. In the last
section we have discussed how to estimate object center
from a line matching. The Hausdorff detector as well as
the Dalal-Triggs pedestrian detector return an object center
directly, center of a bounding box. We count the percent-
age of matches that fall within a distance threshold of the
groundtruth center, with the threshold varying from 5 to 40
pixels. The results are shown in Figure 5.

As we can see from these results, detecting and local-

3Preliminary experiments show that the Hausdorff metric performs
slightly better than the Chamfer metric.
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Figure 5. Quantitative comparison of four approaches tested: our line aspect matching, the HOG pedestrian detector [8], and Hausdorff
aspect matching [17] with and without orientation. Segmentation provides groundtruth object centers. We evaluate performance by
measuring recall, or the percentage of correct localizations, under a varying distance threshold. Line aspect matching performs the best on
both skating sequences, averaging about 10% to 15% improvement over Hausdorff matching, showing the merits of a line representation.

(b) (c)
Figure 6. Examples comparing line aspect matching (column c) to the HOG detector (column a) as well as Hausdorff matching with
orientation (column b). The HOG detector, tuned for pedestrians, have difficulties handling pose variation in this setting. It locates the
skater in a wrong place in the first example, and does not fire in the second example. Hausdorff matching does not localize the skater
well in the first example, and gets distracted to clutter in the second example. In comparison our line aspect matching locates the skater
precisely and recovers most of the object boundaries.

izing the skater in these sequences is not easy, mostly due are best characterized by straight lines that connect at joints.
to large variations in pose. Using edge maps without ori- We show more line aspect matching results in Figure 7.
entation information, naive Hausdorff template matching Our line aspect matching reliably locates the skaters under
fails badly. Hausdorff matching performs much better when large pose variation and background clutter, and recovers
using orientation information and grouping edge elements most of the object boundaries. It performs surprisingly well,
into orientation channels. The HOG detector, tuned to de-

considering the limited amount of information made avail-

tecting pedestrians in common poses, does not perform very able to it. Matching is purely based on geometric cues , no
well on this task. Line aspect matching performs the best on color or gradient information is available.

both test sequences, averaging about 10% to 15% higher in
accuracy over the second best, Hausdorff matching with ori-
entation. Examples for comparison are shown in Figure 6.

The matching is not perfect; some boundaries are miss-
ing, and the pose of the best matched aspect may not cor-
respond well to that of the skater . Experiments show

As other settings are identical comparing to the Haus- that if we do a second-round matching, making use of the
dorff aspects, these results clearly suggest that a line-based rough knowledge of object center, more complete bound-
representation is preferable for articulated objects. A not- aries may be recovered. Localization performance increases
so-surprising observation perhaps, the nature of articulated only marginally, however; hence we choose to keep the
objects is such that they consist of moving parts, and parts story simple and use pairwise (relative) cues only.



Figure 7. Pairwise line aspect matching results on two skating sequences. Matching is purely edge-based and done independently in
each frame, no motion or temporal coherence used. In 5 columns we show the original image, the boundary map computed, the line
approximation of boundaries (input to our matching algorithm), matched lines with the estimated center, and the best matched aspect.



6. Discussion

In this work we have utilized video data with groundtruth
segmentation to learn a small number of view-based mod-
els, or aspects, for detecting people. We represent aspects
as well as images as a collection of line segments, and use
a simple set of pairwise geometric cues for matching. Pair-
wise cues lead to a quadratic problem that is solved with a
spectral approximation. We show that line aspect matching
performs well on skating sequences with large pose varia-
tions. It performs much better than an alternative approach
using Hausdorff metric, suggesting a line-based representa-
tion is preferable for articulated objects.

Relative geometric cues only are used in this work. This
is intentional as we want to understand the merits and po-
tentials of the line representation. The results are fairly en-
couraging, and it would be interesting to explore the combi-
nation of line geometry with other sources of information,
such as color, texture or motion, or to include rich unary
shape descriptors into the pairwise matching framework.
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