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'We turn now to psychology! Recall the notation and terminology of chapter 5. There

we defined a total computable function  σ (e, x, t) that codes the state of the

computation Pe(x) after t steps;  σ(e, x, t) contains information about the contents of

the registers and the number of the next instruction to be obeyed at stage t. It is clear,

then, that complete details of the first t steps of the computation Pe(x) are encoded by

the number

σ*(e, x, t) = ∏i ≤ t pi+1
σ(e, x, i)

.

Let us call the number σ*(e, x, t) the code of the computation Pe(x) to t steps. Clearly

σ* is computable.

Suppose now that we are given a total computable function ψ and a program

P. By the Ψ-analysis of the computation P(x) we mean the code of the computation

P(x) to ψ(x) steps. We call a program P Ψ-introspective at x if P(x) converges and

gives as output its own Ψ-analysis; we call P totally Ψ-introspective if it is Ψ-

introspective at all x.

Theorem

There is a program P that is totally Ψ-introspective.

Proof. Simply apply corollary 1.4 to the computable function f(e, x) = σ*(e, x, ψ(x)),

obtaining a number n such that

φn(x) = f(n, x) = the Ψ-analysis of Pn(x). '

Cutland, N. J. (1980). Computability: An Introduction to Recursive Function Theory.

pp. 204-205. Cambridge, UK: Cambridge University Press.
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0. PREFACE

In writing this thesis, 'Learning and Memory in the Human Brain', I make no claims

of originality. This should be apparent from the list of references. Most, if not all,

ideas, insights, and concepts are already well-known. Perhaps not always in

neuroscience or cognitive neuroscience, but in other important related fields like

biology, psychology, linguistics, cognitive science, computational and computer

science, physics and mathematics. I apologize for any unintended misrepresentation

of concepts and lack of understanding of the ideas of others. I have sometimes chosen

to stay relatively close to the original sources in an attempt to avoid this. Finally,

being but a small stepping stone in the development of insight into human cognition

and the workings of the human brain, I would like to suggest that the contemporary

understanding of the very many complex issues involved in this enterprise is only in

its beginnings. Although tremendous progress have been made due to the collective

efforts in the field, we should not be surprised, but rather expect, that the present day

ideas and insights will be radically transformed over time. I suspect that only the most

general concepts and models will stand the tooth of time and this is primarily due to

their lack of specific empirical content. Other concepts and ideas are also likely to

survive, but for different reasons; they will survive on a terminological level with

radically different content as a consequence of creative reinterpretation. We only need

a brief look at the scientific development in physics, chemistry, and biology over the

last 500 years to understand that cognitive neuroscience has a brave new future.

Therefore, no contemporary model or interpretation of empirical data in cognitive

neuroscience should be taken too seriously, including my own.

'Learning and Memory in the Human Brain' is based on two lines of empirical

quest. The first attempts to investigate learning and memory in normal healthy young

adult brains, while the second investigates the effects of literacy on the adult human

brain. In the second line of experimental investigation, we take the view that the

educational system is an institutionalized cultural process. Given that the educational

system is an important source for structured cultural transmission, the study of

illiterate subjects and their matched literate controls represents one opportunity to

investigate the interaction between neurobiological and cultural factors on the

outcome of cognitive development and learning (Petersson & Reis, 2005, in press;



Reis, Guerreiro, & Petersson, 2003). These two lines of empirical inquest are based on

cognitive-behavioral laboratory experiments in combination with functional

neuroimaging methods.

The thesis encompasses seven chapters, a reference list, and the eight papers

on which the thesis is based. The first five chapters provide background material and

in chapter 6 we discuss the experimental studies that form the basis of the thesis. In

the first chapter, we provide a brief review of the brain, its structure and physiology,

as well as cognition from the point of view of information processing in physical

systems, including an outline of information processing as conceived of within the

classical framework of cognitive science. We show how this perspective can be

understood in terms of information processing in a certain class of dynamical systems

(Church-Turing computable) and we indicate how this view of cognition can be

generalized to general dynamical systems. In the second chapter, we integrate this

dynamical view of cognition with learning and development. Here, cognition and

learning as well as development are viewed as coupled (i.e., interacting) dynamical

systems. Innately dependant constraints is conceptualized in terms of genetically

dependent initial conditions as well as constraints on the form of the system

dynamics, the space of cognitive states, as well as the space of learning/development

parameters. In chapter 3 we describe the methodological background for the

experimental studies that are discussed at some length in chapter 6. In chapter 4, we

review the cognitive neuroscience of human memory systems and chapter 5 provides

a review of experimental work on literate and illiterate subjects, in particular work on

our study population of Olhão in the southern Portugal.

The first experimental study discussed in chapter 6 outlines several approaches

to the study of learning related effects in the human brain with hemodynamically

based functional neuroimaging methods (Petersson, Elfgren, & Ingvar, 1999b). Two

of these approaches are applied in the second and third study, where we take the view

that learning can be viewed as processes by which the brain functionally restructures

its processing pathways or its representations of information. In the context of the

second and third study, several previous lines of research have suggested that repeated

reactivations of the neocortical representations of declarative memories strengthen the

neocortical interconnections so that the neocortical memory network eventually can



support retrieval independently of the medial temporal lobe (MTL). In these studies

(Petersson, Elfgren, & Ingvar, 1997; Petersson, Elfgren, & Ingvar, 1999a) it was

assumed that practice and consequent reactivation of the relevant neocortical regions

would strengthen the network interconnections in such a way that the neocortex could

support memory retrieval less dependent on the interaction with the MTL. An

additional perspective on these studies is provided by the concepts of controlled and

automatic processing, where controlled processing is relatively more dependent on

attentional and working memory processes related to the anterior cingulate and fronto-

parietal networks. The natural prediction then, as retrieval in some sense become

more automatic with practice, is that retrieval should be less dependent on these brain

networks. The experimental results reported are broadly consistent with these

suggestions. These investigations of learning related modulation of functional

retrieval networks were further explored in two different experimental paradigms in

the fourth study (Petersson, Sandblom, Gisselgård, & Ingvar, 2001). This allowed us

to investigate material specific effects on learning related modulation of retrieval as

well as to investigate the effects of performance. In the fifth study (Petersson, Reis,

Castro-Caldas, & Ingvar, 1999) a group of healthy older illiterate women was

investigated on an auditory word-pair association cued-recall paradigm. We report

that effective declarative encoding correlated positively with the level of activation

observed in the MTL as well as the inferior prefrontal region. In study 6, 7, and 8,

illiterate subjects and their matched literate controls were investigated during simple

auditory-verbal language tasks. In study 6, literate (4 years of schooling) and illiterate

participants were compared on immediate verbal repetition of words and pseudowords

(Castro-Caldas, Peterson, Reis, Stone-Elander, & Ingvar, 1998). The experimental

results provided the first indication that learning to read and write during childhood

influences the functional organization of the adult human brain. The follow-up study

(Petersson, Reis, Askelöf, Castro-Caldas, & Ingvar, 2000) suggested that the parallel

interactive processing characteristics of the underlying language-processing network

differ between literate and illiterate subjects during immediate verbal repetition.

Finally, in the 8th study, the activation levels of the right and left inferior parietal

regions were investigated in two independent groups of illiterate subjects and their

matched literate controls (Petersson, Reis, Castro-Caldas, & Ingvar, submitted).



Overall, the results suggested that literate subjects are relatively more left lateralized

compared to illiterate subjects. Based on these results, we suggested that acquiring

reading and writing skills at the appropriate age shapes not only the local morphology

of the corpus callosum (Thompson et al., 2000; Zaidel & Iacoboni, 2003) but also the

degree of functional specialization as well as the pattern of interaction between the

interconnected regions of the inferior parietal cortex.

Karl Magnus Petersson

2004-07-17
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1. GENERAL REFLECTIONS ON COGNITIVE BRAIN FUNCTIONS 

Individual learning

and development

Neurobiological evolution:

Emergence of prior 

structure

Environment

Cultural

transmission

 

[Figure 1.1] An adaptive cognitive system situated between its evolutionary history 

and current environment. Neurobiological systems represent evolved biological systems 

and in order to fully understand the significance of their different features it seems 

reasonable to take not only their individual histories (ontogenesis) into account but also the 

evolution of the whole system (phylogenesis). For example, the capacity of an embodied 

cognitive system to learn and develop provides a necessary basis for the possibility of 

cultural and evolutionary interaction. 

 

 

We begin by reviewing some structural and functional facts about neural systems that are 

relevant from a cognitive neuroscience point of view. We will also briefly outline the 

classical cognitive perspective on psychological explanation; that is, the standard 

framework of Church-Turing computability for information processing systems. In the next 

chapter we will sketch a generalized non-standard computability framework based on a 
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dynamical systems perspective on cognition. This latter framework incorporates the 

classical perspective as a special case and encompasses the class of neural networks as a 

natural model for cognition. We will also try to integrate these perspectives with some 

contemporary ideas on the functional architecture of the human brain, learning and 

adaptation at different characteristic time-scales, and more broadly the interaction, via 

individual learning, between factors determined by neurobiological evolution as well as the 

environment of the human cognitive system, including social and cultural transmission 

(Figure 1.1). This and the following chapter are expanded versions of Petersson (2004), 

Petersson (2004, in press), and Petersson, Grenholm, and Forkstam (in preparation). 

Information processing systems

Environment

Motor OutputSensory Input 

i = f(u) T: Ω x Σ → Ω
Information Processing

λ = g(s)

 

[Figure 1.2] Information processing systems. Cognition is equated with internal 

information processing. Here the cognitive system is portrayed as interfacing with the 

external environment. However, it should be noted that the processing (sub-)system equally 

well can be viewed as interfacing with other sub-systems; i.e., the processing system is an 

internal sub-component that receives input from and transmit output to other sub-systems. 

In the figure, the space of internal states, s, is represented by Ω (i.e., s ∈ Ω). The processing 
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of information is governed by dynamical principles, T, which for simplicity here is 

represented as a cognitive transition function T:ΩxΣ → Ω: Given an internal state s ∈ Ω 

and input u, here transformed according to i = f(u) ∈ Σ, T specifies (deterministically or 

indeterministically) a new internal state T(s, i) ∈ Ω and output is generated according to an 

output transformation λ = g(s). 

 

 

 In general we will consider a physical system as an information processing device 

(Figure 1.2; i.e., a computational system in a general sense), when a subclass of its physical 

states (s ∈ Ω; cf. Figure 1.2) can be viewed as representational (or rather, cognitive, in the 

sense of Jackendoff, 2002 pp. 19-23) and transitions (T:ΩxΣ → Ω.; cf. Figure 1.2) between 

these can be conceptualized as a process operating on these cognitive structures (i.e., in 

some sense implementing well-defined operations on the representational structures). More 

generally, information processing, that is, the state transitions, can be conceptualized as 

trajectories in a state space (cf., discussion below). We shall use the terms 'representational' 

and 'cognitive' interchangeably. It is important to note from the outset that when we are 

using 'representational', this is not meant to implicitly entail an idea or conceptualization of 

meaning in terms of a 'referential' or 'representational semantics'. Rather, 'representational' 

or 'cognitive' is referring to the functional role of a physical state with respect to the 

relevant processing machinery, and thus does not have an independent status separate from 

the information processing device as such. In other words, meaning is inherent or created 

by the processing system as a whole, though various degrees of internal isolation in terms 

of natural sub-systems is conceivable. Thus, the 'internal semantics' of the system is at best 

only in complex and indirect ways related to the exterior of the system (via the 

sensorimotor interfaces and the corresponding processing sub-systems) and there may be 

important aspects which only has an internal significance. We also note that since the brain 

can only represent 'numbers' in terms of membrane potentials, inter-spike-intervals, or any 

appropriate set of dynamical variables, it is clear that the human brain does not represent 

cognitive structures in a simple transparent manner. However, it is well-known that the 

class of so-called symbolic processing models can be captured within the Church-Turing 

framework of computability, which is equivalent to the class of partially recursive functions 
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(Cutland, 1980; Davis, Sigal, & Weyuker, 1994; Rogers, 2002). Hence it is possible to 

simulate all finitely specified symbolic models as processes on numbers. Furthermore, it 

has recently becom known that these models can be emulated in dynamical systems, 

including generic first-order recurrent networks (for a reviews see, Siegelmann & Fishman, 

1998; Siegelmann, 1999) and low-dimensional smooth dynamical systems (Moore 1991). 

For example, the analog recurrent network architecture can be viewed as a finite set of 

analog registers (e.g., membrane potentials) that processes information interactively and 

concurrently (cf., section 1.4, 1.6.2, and 2.1.2). 

 

1.1 A BRIEF OVERVIEW OF THE STRUCTURAL AND FUNCTIONAL 

COMPLEXITY OF THE BRAIN 

We will in the following sub-section follow the general ideas as outlined by Koch and 

Laurent in their interesting and thought provoking ''Complexity and the nervous system'' 

(1999). The human brain - a cognitive system - of which presumably relevant aspects can 

be conceptualized in terms of information processing, is one of the more (if not the most) 

complex systems in the known universe. Macroscopically the human brain can be 

characterized as approximately 1.5 kg of grey and white matter; the grey matter is 

formatted into a convoluted surface of gyri and sulci that contains neurons as well as local 

and more long distance neuronal interconnectivity, while the white matter contains long 

distance cortico-cortical regional and cortico-subcortical interconnectivity, sensory input as 

well as motor output fiber tracts and inter-hemispheric tracts (Nieuwenhuys, Voogd, & van 

Huijzen, 1988). Besides the neocortex, grey matter is also localized to the medial temporal 

cortex (including the hippocampus), the basal ganglia, the cerebellar cortex and nuclei, as 

well as various other subcortical nuclei in the mesencephalon and brainstem (Nieuwenhuys 

et al., 1988). Microscopically, the brain is composed of about 1010 – 1012 neuronal 

processing units (i.e., the neurons), each supporting on average 103 – 104 axonal output 

connections and receiving, on average, the same number of dendritic and somatic input 

connections. The connectivity comprises in total some hundreds of trillions of 

interconnections and many thousand kilometers of cabling (Koch & Laurent, 1999; 

Shepherd, 1997). 
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[Figure 1.3] The structural organization of the human brain. Brain connectivity 

resembles a (weakly) hierarchically structured, recurrently connected network composed of 

different functionally specialized brain regions, which consists of several types of 

processing elements (neurons) and synaptic connections (Felleman & Van Essen, 1991; 

Shepherd, 1997). (Adapted from Felleman & van Essen, 1991; courtesy of Frauke 

Hellwig). 

 

 

 The functional complexity of the nervous system arises from the non-linear, non-

stationary, and adaptive characteristics of the neuronal processing units (including synaptic 

parameters that can change across multiple time-scales of behavioral relevance), and the 

spatially non-homogeneous, parallel and interactive patterns of interconnectivity (Figure 

1.3). These characteristics are one reason it is difficult to analyze and understand the 

nervous system as an information processing system (note that the terms 'non-linearity' and 

'non-stationarity' are not well-defined properties but rather reflect the absence of 'linearity' 
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and 'stationarity' – fundamentally, this is also the reason why there is no general method of 

attack for the analysis of this type of systems (cf., McCauley, 1993a, p. 2)). 

 The structural organization of brain connectivity resembles that of a (weakly) 

hierarchically structured, recurrently connected network composed of different functionally 

specialized brain regions, which consists of several types of processing elements and 

synaptic connections (Felleman & Van Essen, 1991; Shepherd, 1997). Interestingly, the 

classification scheme used by Felleman and van Essen (1991) in their survey (Figure 1.3) 

gradually breaks down at the higher processing levels. This is consistent with the 

hypothesis that there is no focus for process control (cf. the CPU of the Von Neumann 

architecture, Tanenbaum, 1990). This point is also illustrated in maps of functional 

connectivity, which are apparently lacking a central processing focus (Stephan et al., 2000). 

Additional data from Goldman-Rakic and colleagues (e.g., 1988) support these suggestions, 

indicating that higher order, domain general structures like for example the prefrontal 

cortex, the cingulate cortex, and the medial temporal lobe depart from the connectivity 

patterns of lower order, domain specific regions. In addition, recent work in cognitive 

neuroscience (see e.g., Gazzaniga, 1999) indicate that organizational principles for 

cognitive brain functions depend on distributed connectivity patterns between functionally 

specialized brain regions as well as functional segregation of interacting processing streams 

(the dominant pattern of interconnectivity being recurrent). Now, the processing properties 

of a given brain region is clearly determined by its extrinsic and intrinsic connectivity 

pattern, its neuronal subtypes, their properties (including e.g. the distribution of receptor 

types and ion channels) as well as the local connectivity. However, given the surprisingly 

uniform basic outline of the neocortical architecture, the functional role of a given brain 

region might to a not yet well-understood degree be determined by its place in the 

neocortical macro-circuitry. Structural and functional evidence supporting this hypothesis 

were recently reviewed by Passingham and colleagues (Passingham, Stephan, & Kötter, 

2002), and they suggest that each cytoarchitectonic area has a unique pattern of input and 

output connectivity and a corresponding pattern of task dependent functional connectivity. 

However, this rather static view is likely to be revised, given the possibility of dynamically 

(i.e., dependent on the processing context) established functional networks, issues to which 

we will return further on in this text (cf., section 1.4.1 and Figure 1.7). 
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 One may ask why the brain is so heavily recurrently interconnected. This 

complexity is unnecessary for a system based on linear, sequential, hierarchical 

feedforward information transfer, but is essential for network processors that support 

interactive recurrent distributed processing. In consequence, it appears that parallel 

interconnected distributed anatomical networks, characterized by recurrent 

interconnectivity and functional integration across cortical networks are essential 

processing characteristics of the brain. For a network to have the capacity to realize a wide 

range of dynamic behaviors, functional feedback supported by recurrent anatomical 

connectivity is necessary. The specifics of the input and output connectivity, as well as the 

local architecture of a given brain region, are as we have already noted important 

determinants of the region's behavioral and cognitive significance; in other words, its 

functional specialization and its range of functional integration options in relation to other 

brain regions. The dynamics of the interfaces between the functionally specialized regions 

characterize, at least partly, the specifics of functional integration in a given processing 

context. Additional determinants of the functional architecture are the mechanisms that 

enable the processing systems to incorporate adaptive changes, allowing the system to learn 

as a functional consequence of information processing. Thus, the system is non-stationary 

and the class of realizable dynamical models consequently becomes richer and can be 

viewed as being parameterized by the adaptable parameters of the network (cf., sub-

sections 1.5 and chapter 2). 

 Since the network circuit hypothesis of McCulloch and Pitts (1943; see also 

Minsky, 1967) and the neuronal assembly hypothesis of Donald O. Hebb (1949), several 

approaches to addressing information processing in neural systems have suggested that 

information is represented as distributed activity in the brain and that information 

processing, subserving complex cognitive functions, emerge from the interactions between 

different functionally specialized regions or neuronal groups. These approaches include the 

perspectives of theoretical modeling (Amit, 1989; Arbib, 2003; Haykin, 1998; Hertz, 

Krogh, & Palmer, 1991; Trappenberg, 2002), cognitive psychology (Horgan & Tienson, 

1996a; Macdonald & Macdonald, 1995; McClelland & Rumelhart, 1986), and cognitive 

neuroscience (Koch & Davis, 1994; Mesulam, 1998), as well as lesion approaches 

(Eichenbaum & Cohen, 2001; Squire, 1992; Zola-Morgan & Squire, 1993) and functional 
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neuroimaging based on electrophysiological (Varela, Lachaux, Rodriguez, & Martinerie, 

2001) and hemodynamic methods (Friston, 1994; Horwitz, 1998; Horwitz, Tagamets, & 

McIntosh, 1999; McIntosh & Gonzalez-Lima, 1994). Fundamentally, all these approaches 

suggest that cognitive functions emerge from the global dynamics of interacting sub-

networks. Moreover, despite the fact that at least some neurons and neural systems appear 

to perform at levels not too far off from what is physically possible, given the input and 

hardware characteristics (Rieke, Warland, van Steveninck, & Bialek, 1996), it appears that 

the basic computational units of the brain (i.e., neuron or its synapses) and their 

interconnections (Koch & Segev, 1998) are relatively slow and, perhaps, imprecise in 

relation to the real-time task demands on processing performance and this seems to be 

related to inherent processing limitations of neurons. 

 In conclusion, the neural system is likely to represent information in terms of neural 

assemblies and population codes (Arbib, 2003; Gerstain, Bedenbaugh, & Aertsen, 1989; 

Gerstner & Kistler, 2002; Trappenberg, 2002), and although some neurons appears to 

integrate inputs regardless of their temporal structure, substantial evidence exists that the 

relative timing of action potentials carries information, allowing for combinatorial 

spatiotemporal codes (cf. e.g., Arbib, 2003; Gerstner & Kistler, 2002; Koch & Davis, 1994; 

Koch & Laurent, 1999). Furthermore, it seems plausible that the brain processes 

information interactively in parallel and that rapid, fault tolerant, and robust processing 

properties emerges from these processing principles (cf. e.g., Amit, 1989; Arbib, 1995; 

Haykin, 1998; Hertz et al., 1991). In this context, it is interesting to note that, given the 

intricate complexity at multiple levels of structure as well as function, Koch and Laurent 

(1999) suggest that continued reductionism is not likely on its own to lead to a fundamental 

understanding of cognitive brain functions from a complex systems perspective. Instead, 

they argue, that the detailed investigation of the nervous system has to be complemented by 

investigations at several different system levels (cf., Amit, 1989, 1998; Arbib, 2003; 

Trappenberg, 2002). At present, higher cognitive functions of the nervous system are 

commonly characterized in terms of large-scale/macroscopic concepts that are relevant at a 

behavioral level. An important objective of cognitive and computational neuroscience is 

therefore to bridge between the properties that characterize neurons, or neuronal 

assemblies, and the processing units and processing principles that are subserved by neural 
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networks and are relevant to cognition. Clearly, the most crucially outstanding issue is 

related to questions about the neural code and how functional descriptions are to be 

translated into this code. 

 

1.2 THE PERCEPTION-COGNITION-ACTION- AND THE ENCODING-

STORAGE-RETRIEVAL CYCLE 

Perception-Cognition-Action Cycle

Environment

Motor OutputSensory Input 

Cognition

 

[Figure 1.4] The perception-cognition-action cycle. The perceptual systems allow the 

human brain to extract relevant patterns of information from, at times, a noisy, changing, 

and unpredictable environment, while the motor output apparatus allows it to temporally 

organize behaviorally relevant actions and act in a goal directed fashion in its environment 

(including e.g. the creation of artifacts, communicating with conspecifics, as well as to 

effect changes in the physical and socio-cultural environment). Here cognition is equated 

with internal information processing. Note the similarity with the conceptualization of an 

information processing system in Figure 1.2. 
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It is of heuristic value to ascribe the brain an overarching function and think of this in terms 

the perception-cognition-action cycle (Rosenbleuth, Wiener, & Bigelow, 1943; Wiener, 

1948); for example, to protect the individual and its kin within a particular ecosystem and 

to increase the likelihood of propagating its genetic information. The individual brain 

interfaces its environment, through sensory input surfaces and motor output machinery, in 

what may be called the perception-cognition-action cycle: sensory input → perceptual 

processing → cognitive processing → temporal organization of motor output → action 

(Figure 1.4). The brain receives perceptual information through several sensory modalities 

and coordinates actions in the form of movements of the skeleto-muscular apparatus, 

glandular responses (regulated by the autonomic nervous system), as well as other soft 

(e.g., the larynx and tongue) appendages. 

 Beyond the previous remarks, brain complexity is also reflected in the structural 

composition of its processing units (neurons), including the composition of the dendritic 

tree and neuronal soma, its synaptic organization and passive as well as active membrane 

properties supported by voltage- and neurotransmitter-gated ion-channels, and its axonal 

arborization. These characteristics provide neurons with adaptable nonlinear dynamical 

properties (Koch, 1999; Shepherd, 1997). Chemical synapses show a number of different 

forms of plasticity with characteristic time-scales that span at least nine orders of 

magnitude, from milliseconds to weeks, providing a necessary substrate for learning and 

memory (Anderson, 2002; Koch, 1999; Koch & Laurent, 1999). 

 Generally, information is received through the input synapses of a neuron and flows 

from the dendritic tree, via the soma, to the axon hillock where an action potential may (or 

may not) be triggered, spreading along the axon and the final terminal arborization, where 

neurotransmitters are (stochastically) released into the synapse from the pre-synaptic 

membrane, which then diffuses across the synapse and activate post-synaptic receptors thus 

generating a post-synaptic potential; and the whole process starts anew in the downstream 

neuron. In all its roles, the nervous system invokes neuronal processing, store information, 

through memory formation and changes in its adaptable properties, generating models or 

representations relevant given its dynamic processing environment. From a cognitive 

neuroscience perspective the perception-cognition-action cycle thus needs to be 
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complemented by the encoding-storage-retrieval cycle (Figure 1.5). The perception-action 

cycle and the encoding-retrieval cycle interact through active processing of information 

subserved by various forms of short-term working memories. In addition, one has to 

imagine that there is not only one encoding-retrieval cycle but several, and likewise, that 

there are several parallel perception-action cycles. This gives rise to the idea of different 

memory systems as well as interacting cognitive modules (Figure 1.6). 

Encoding-Storage-Retrieval Cycle

Information Storage

EncodingRetrieval

Cognition

 

[Figure 1.5] The encoding-retrieval cycle. Learning can be defined as the processes by 

which the brain functionally restructures its processing networks and/or its cognitive 

representations as a function of experience. The stored information (i.e., the memory trace) 

can then be viewed as the resulting changes in the processing system. The processing 

system is thus non-stationary, and from this perspective, learning in a neural network is the 

dynamic consequence of processing and network plasticity. In all its roles, the nervous 

system invokes neuronal processing, store information, through memory formation and 

changes in its adaptable properties, generating models or representations relevant given its 

dynamic processing environment. 
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Information Processing

Environment

Motor OutputSensory Input 

Information Storage

EncodingRetrieval 

Interaction between the perception-action and 

the encoding-retrieval cycle

EncodingRetrieval 

Information Storage

EncodingRetrieval 

 

[Figure 1.6] The interaction between perception and encoding-retrieval cycles. In order 

to incorporate the capacities for memory, learning, and adaptation explicitly, the 

perception-cognition-action cycle needs to be complemented with the encoding-retrieval 

cycle. These cycles interact through the on-going active information processing in for 

example working memory. Here learning and adaptation is conceptualized as a functional 

consequence of information processing. 

 

 

1.3 MODULARITY 

The neural system controls behavior with local and global consequences in terms of 

survival and reproductive success. We can attempt to understand important aspects of 

neural processing within an evolutionary framework considering that the human brain has 

an evolutionary history on the order of 1 billion years (Koch & Laurent, 1999). 
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Evolvability, the property of a genetic system to tolerate mutations and modify the 

genotype without seriously reducing its phenotypic fitness, must have provided, it seems, a 

selective advantage. Koch and Laurent (1999) suggest that the property of evolvability 

favored compartmentalization (or modularity), redundancy, weak and multiple (parallel) 

linkages between regulatory processes as well as component robustness (for a somewhat 

different perspective, see  Fodor, 2000). The idea is that sufficient stability and tolerance 

for evolutionary modification is provided if several (many) of the constituent components 

and their coupling links are not crucial for survival but can serve as a substrate for 

evolutionary tinkering (i.e., search in fitness space). It therefore seems reasonable to 

assume that such indirect evolutionary pressures should lead to neural systems replete with 

specialized circuits, parallel pathways, and redundant mechanisms (Koch & Laurent, 1999). 

The effects of neurobiological evolution can thus be conceptualized as a mechanism for the 

incorporation of prior structure into the processing infrastructure and we will return to this 

important issue later on in chapter 2. 

 Rarely do cognitive models of brain functions detail explicit models for the 

processing infrastructure or the underlying neurophysiological events or processes that 

support them (see e.g., Charniak & McDermott, 1985; Fodor, 1983; Newell, 1990; Posner, 

1989; Stillings et al., 1995). In contrast, (artificial) neural network approaches make 

assumptions regarding interactive parallel processing elements and base their ideas on 

models of various degrees of neurobiological plausibility (see e.g., Amit, 1989; Arbib, 

2003; Churchland & Sejnowski, 1992; McClelland & Rumelhart, 1986; Trappenberg, 

2002). Independent of whether cognition is best conceptualized in terms of the classical 

cognitive rule-based symbolic processing paradigm (Fodor & Pylyshyn, 1990) or in terms 

of parallel sub-symbolic processing at one level of abstraction or another (Shastri, 1995; 

Shastri & Ajjanagadde, 1993; Smolensky, 1988), it is clearly the case that cognitive 

functions are implemented in the network architecture of the brain and depend on the 

processing characteristics of such networks. 

 Before we proceed to briefly outline the classical cognitive paradigm, we note that 

it is important to realize the differences between brains and computers. The logical gates 

from which a computer is constructed are homogeneous and non-adaptive (though this of 

course does not rule out memory). Moreover, the connectivity density of gates is commonly 
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low compared that of the brain (cf. e.g., Savage, 1998; Tanenbaum, 1990, for concrete 

examples). In the central processing unit of any microprocessor, one gate is connected, on 

average, to on the order of 1 - 10 other gates, approximately a factor 1000 - 10000 less than 

inter-neuronal convergence and divergence. More importantly, neural systems wire 

themselves during ontogenetic development and this circuitry is modifiable by learning 

(also throughout adult life). While we often conceptualize brain function in terms of 

information processing, the character of the brain as a dynamical system differ significantly 

from present day computer architectures in the scale of structural and dynamic complexity. 

For example, a computer (e.g., a Von Neumann Machine) can viewed as incorporating a 

general purpose ''homunculus'' in the form of a central processing unit exerting finite state 

control over the process flow (Minsky, 1967; Savage, 1998), and while the processing in a 

computer is highly coordinated and synchronized globally (explicitly through a clock-

frequency or implicitly through different versions of just-in-time processing), these features 

seems absent in neural systems as described above. The apparent absence of global process 

coordination represents an outstanding challenge for cognitive neuroscience to better 

understand. In addition, the classical cognitive science perspective is not easily translated 

into the processing characteristics of neural systems and some have taken this as evidence 

indicating that there may be a fundamental problem with the classical view (e.g., Charniak, 

1993; Churchland & Sejnowski, 1992; Edelman, 1990; Rumelhart & McClelland, 1986), 

while for example Chomsky (2000b) has described this as a problem for neuroscience 

rather than cognitive science. However, as we will briefly review in chapter 2, recent 

advances in the understanding of non-classical information processing in dynamical 

systems allows us to begin to imagine how we might integrate the classical cognitive 

science framework within a more general dynamical systems framework which also 

includes the recurrent neural networks as a natural class from an analog information 

processing perspective. 

 

1.4 CLASSIC COGNITIVE MODELS 

The framework of classical cognitive science and artificial intelligence (cf. e.g., Charniak 

& McDermott, 1985; Fodor, 1983; Newell, 1990; Posner, 1989; Stillings et al., 1995) 

assumes that information is coded by structured representations (''data structures'') and that 
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cognitive processing is accomplished by the execution of algorithmic operations ('‘rules’') 

on the basic representations (''symbols'') making up the structured representations. This 

processing paradigm, sometimes called rule based symbolic processing (cf. e.g., Horgan & 

Tienson, 1996a; Wilson & Keil, 2001) suggests that cognitive phenomena can be modeled 

within the framework of Church-Turing computability. In other words, this perspective 

effectively takes the view that isomorphic models of cognition can be found within the 

framework of Church-Turing computability (cf. e.g., Cutland, 1980; Davis, Sigal, & 

Weyuker, 1994; Lewis & Papadimitriou, 1981; Rogers, 2002). From this perspective, a 

cognitive system consist of a state space of internal states (represented by Ω in Figure 1.2) 

and computations are instantiated as transitions (represented by T:ΩxΣ → Ω; Figure 1.2) 

between states while optionally receiving input (i = f(u) ∈ Σ; Figure 1.2) and generating 

output (λ = g(s); Figure 1.2) as determined by a cognitive transition function (deterministic 

computation) or transition relation (non-deterministic computation) and thereby generating 

trajectories in state space (Cutland, 1980; Davis et al., 1994; Lewis & Papadimitriou, 1981; 

Savage, 1998). 

 Here, we will formulate computation and the framework of Church-Turing 

computability from a dynamical systems perspective (cf. equation [1]). Consider the 

simpler case of a cognitive transition function. This is no restriction since non-deterministic 

transition relations only add descriptive convenience but no additional computational 

power. So, let Σ be the space of inputs i (i ∈ Σ), Ω the space of internal states s (s ∈ Ω), and 

Λ the space of outputs λ (λ ∈ Λ). The possible cognitive transitions T are then determined 

or governed by a transition function T:ΩxΣ → ΩxΛ (i.e., T:ΩxΣ → Ω extended with 

λ:ΩxΣ → Λ for convenience). In other words, suppose at processing step n, the system 

receives input i(n) when in state s(n), then the system changes state into s(n+1) and outputs 

λ(n+1) according to: 

 

  [s(n+1), λ(n+1)] = T[s(n), i(n)]     [1] 

 

In this way, the processing system traces a trajectory in state space, …, s(n), s(n+1), …, 

while reading the input stream …, i(n), i(n+1), …, and generating the output …, λ(n), 
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λ(n+1), … (cf., Figure 1.2). Equation [1] is a description of a time-discrete dynamical 

system. Within the framework of Church-Turing computability, it is assumed that Σ, Ω, and 

Λ are all finite. In this context, Equation [1] describes a forced (i.e., driven by the input …, 

i(n), i(n+1), …) time-discrete dynamical system, which generates trajectories or orbits (i.e., 

…, s(n), s(n+1), …) in a finite state space, the combined effect of which is a constructed 

sequence of actions …, λ(n), λ(n+1), … . Here, we have not explicitly described the 

memory organization of the computational system (cf., Table 1). In principle, this is crucial 

because the properties of the memory organization in terms of storage capacity (e.g., finite 

or infinite), and accessibility (e.g., stack- or random access) determine in important respects 

the computational power of the processing architecture (for details see e.g., Davis et al., 

1994; Lewis & Papadimitriou, 1981; Savage, 1998). 

 

Architecture Complexity Memory organization 

  States Registers Stack Accessibility 

FSA Finite Finite - - - 

PDA Finite Finite - Unlimited Top of stack 

LBA Finite Finite Unlimited1 - Random access 

URA Finite Finite Unlimited - Random access 

 

Table 1. The Chomsky hierarchy and the memory organization of respective 

architecture. In the table, complexity refers to machine complexity. FSA = finite state 

architecture, PDA = (non-deterministic) push-down architecture, LBA = (non-

deterministic) linearly bounded architecture, URA = unlimited register architecture (which 

is equivalent to the Turing architecture). 1 Linearly bound in the input size with a universal 

constant. 

 

 

It is important to distinguish between the complexity of the computational mechanism of 

the architecture (machine complexity) and the complexity of its memory organization. We 

will briefly focus on just one aspect of the memory organization, its storage capacity; in 

particular, whether this is finite or infinite. This turns out to be crucial for the expressivity 
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of the system, one important aspect of which is the types of recursive structure that can or 

are expressed in the generated output. For all classical architectures, the transition function 

T can be realized in a finite-state architecture. For example, in the case of the universal 

Turing architecture, the transition function T in (1) can be implemented as a finite state 

machine (finite-state control, cf., Savage, 1998). Thus, within the classical framework, 

information processing is subserved by transitions between internal states, while in general 

receiving input, storing intermediate results of the computation in memory, and generating 

output. Thus, with respect to the mechanism subserving transitions between internal states 

there is no fundamental distinction in terms of machine complexity between the different 

computational architectures (Table 1, cf., Savage, 1998). However, as indicated by the 

strict inclusion in the Chomsky hierarchy (Table 1, cf., Davis et al., 1994), there are 

differences in expressivity. These differences are fundamentally related to the interaction 

between the generating mechanism and the available memory organization. The most 

important determinant of structural expressivity is the availability (or absence) of infinite 

storage capacity. Thus, it is the characteristics of the memory organization, which in a 

fundamental sense, allow the architecture to recursively (Cutland, 1980; Rogers, 2002) 

employ its processing capacities inherent in T, to realize functions of high complexity or 

achieve complex levels of expressivity (Petersson, 2004, in press). However, the Chomsky 

hierarchy is only one of the simplest examples of a complexity hierarchy and is of limited 

significance from an implementational view (Petersson, 2004, in press). Instead, much of 

the more recent work in complexity theory (e.g., Papadimitriou, 1994) focuses on more 

fine-grained complexity hierarchies related to realizability requirements and computational 

costs in terms of processing time and memory space requirements for effective general 

solutions to problem classes. 

 Language modeling in theoretical linguistics and psycholinguistics, among other 

cognitive domains (cf. e.g., Charniak & McDermott, 1985; Newell, 1990; Russel & Norvig, 

1995), represents one example in which the classical framework clearly has served us well 

(cf. e.g., Partee, ter Meulen, & Wall, 1990; Sag, Wasow, & Bender, 2003). A fundamental 

hypothesis of generative grammar (Chomsky, 1957) is that it is possible to give an explicit 

recursive definition of natural language (or at least for syntax) and all commonly used 



 26

formal language models can be described within the classical framework (Partee et al., 

1990; Wasow, 1989). 

 

1.4.1 LEVELS OF DESCRIPTION 

Cognitive models of information processing, formulated within the classical framework, 

can profitably be analyzed at (least) three levels of description (Marr, 1982): 1) the 

functional/computational level, which specifies in formal terms which function results from 

the processes of the system, that is, a formal theory for the function computed by the 

system (generally a partial recursive function, cf., Rogers (2002)); 2) the 

procedural/algorithmic level, which, given a formal theory, specifies the representations 

and procedures for processing these representations (i.e., Σ, Ω, Λ, and T:ΩxΣ → ΩxΛ 

above); 3) the implementational/hardware level, which, given an algorithmic description, 

specifies how the representations and procedures are implemented in a physical system. 

 A central idea of classical cognitive science, so-called functionalism, is that the 

fundamental architectural aspects of cognition are independent of any particular 

implementation, but can be captured in terms of an abstract functional organization by 

virtue of which the physical state transitions are systematically (homomorphically) related 

to. The mathematical description briefly outlined above is useful in order to characterize 

this functional organization and constitutes the design of cognition according to the 

classical view. However, an important constraint for models of cognition, which claims to 

model physically realizable systems, is that processing has to be feasible to implement in a 

physical device. This constraint has been elaborated in terms of tractable computability 

(Horgan & Tienson, 1996a, see also the preface of Charniak (1993) for some interesting  

reflections on this issue). Tractable computability requires that it is possible to implement 

an algorithmic description in a physical device (e.g., meeting the constraint of a finite 

memory organization as well as real-time constraints) and that this can be achieved within 

reasonable computational complexity, logical depth and machine complexity (cf., Savage, 

1998). Here reasonable is often taken to mean that the implementation does not consume 

computational resources that scales exponentially in time and space with the problem size. 

In other words, only algorithmic descriptions of polynomial complexity (Hopcroft, 

Motwani, & Ullman, 2000; Papadimitriou, 1994) are feasible. However, for efficient 
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solutions in real systems, a general polynomial complexity constraint might not be 

sufficiently tight, but might require a low-order polynomial constraint, at least in time (e.g., 

given the sluggishness of neurons compared to silicon-hardware; while, constraints in 

memory space might be somewhat more lax, taking the view that each neuron corresponds 

to a memory register). In practice this means that the implementation must meet real-time 

and space constraints of the task the system is set to handle and these are determined by on-

line processing time and other limitations of the physical device. It is of interest to note that 

it has been suggested that some aspects of cognition may be non-tractable, from the 

perspective of classical computational theory (e.g., Horgan & Tienson, 1996b; for an 

alternative viewpoint from physics in general, see McCauley, 1993b). The demands in 

terms of computational complexity, it is argued, seems to be to great in terms of time- 

and/or memory-space complexity to be tractably implementable, and perhaps even 

computably unsolvable (Fodor, 2000). There also appears to be problems of tractable 

computability in unconstrained models of natural language; for example, aspects of 

language performance related syntactic parsing and comprehension display complexity 

characteristics which might be problematic from a tractability point of view, unless the 

models are further constrained (Barton, Berwick, & Ristad, 1987; Wasow, 1989). 

 Classical cognitive science is also associated with the idea of modularity, that is, the 

cognitive architecture is conceived as being divided into well-defined sub-components, 

which interact communicatively. Classical cognitive modularity is closely associated with, 

but not necessarily dependent on, the idea of (in relevant respects) genetically determined 

and informational encapsulated structures. In other words, these modules are viewed as 

input-output devices, which are isolated from lateral or top-down influences between 

modules and are feeding a central domain-general processing module. This is essentially 

the classical high-level feed-forward perspective on cognition outlined by Jerry Fodor 

(1983) in the ‘Modularity of Mind’. In this way, cognition is commonly divided into 

functional domains, including for example, sensory-perceptual, different types of short-

term working- and long-term memory, language, emotion, attention, planning, problem 

solving, and the temporal organization of behavior. Furthermore, these domains are 

commonly elaborated and divided into further sub-domains and cognitive 

components/processes. Some evidence for cognitive modularity has come from 
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neuropsychology. Neuropsychological lesion data have been interpreted as supporting a 

modular view of brain function, not only in functional terms, but also in structural-

anatomical terms. In particular, data indicating double dissociations have been interpreted 

as support for the usefulness of this framework. In addition, data on developmental 

disorders have also been interpreted as support for the view that cognitive modules are to 

some extent innately/genetically specified. However, recent studies have indicated that it 

might be possible to understand these findings in a different way (e.g., Elman et al., 1996; 

Paterson, Brown, Gsödl, Johnson, & Karmiloff-Smith, 1999; Plaut, 1995; Young, Hilgetag, 

& Scannell, 2000). Furthermore, there is at present no accepted canonical way of 

deconstructing cognition into domains except perhaps at a very coarse level. 

 Why, then, is the classical perspective of modularity difficult to integrate with a 

neurophysiological perspective on brain function? From the preceding discussion it should 

be clear that the short answer is: we know far too little about cognition and its 

implementation in the brain in conjunction with a lack of understanding of the coding or 

representational as well as the processing principles of the nervous system (cf. e.g., Arbib, 

2003; Gerstner & Kistler, 2002). 

 To recapture, the organization of the brain resembles a hierarchically structured, 

recurrently connected network, in which brain regions and neural assemblies interact in 

parallel and in an integrative fashion. Functional neuroimaging data are entirely consistent 

with this latter perspective (e.g., Ingvar & Petersson, 2000) and adds a complication to 

simple ideas of how functional properties are mapped onto anatomical structures. It is 

therefore unlikely that the structure-function mapping is direct and transparent and this of 

course has important consequences on the interpretability of data generated from functional 

neuroimaging as well as behavioral experiments (see chapters 3-5). In particular, a given 

brain region may serve different functions depending on the functional context in which it 

operates at any given moment of processing. More specifically, a given brain region may 

dynamically participate in several functional networks and it is the functional network 

which, at least partly, determines the functional role of the region. Furthermore, since 

information is believed to be represented as distributed activity and information processing 

is thought to emerge from the interactions between different specialized regions, these 

processing characteristics suggest that the structure-function relationship is complex 
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(Figure 1.7). However, from a neuroscience perspective on cognition it is natural to think 

about cognitive function in terms of interactive, parallel distributed, processing principles, 

and the great challenge is to understand how cognitive function can arise from network 

architectures such as the brain. 

 

 

[Figure 1.7] Cognitive-functional and anatomical-structural modularity. The left part 

of the figure represents the psycholinguistic model of language processing by Levelt 

(1989). Generally, there is no accepted canonical way of deconstructing cognition into 

domains except perhaps at a very coarse level at present. To some extent this also holds for 

anatomical-structural segmentation of the brain. The organization of the brain resembles a 

hierarchically structured, recurrently connected network, in which brain regions and neural 

assemblies interact in parallel and in an integrative fashion. A given brain region may 

dynamically participate in several functional networks and it is the functional network 

which, at least partly, determines the functional role of the region. Furthermore, since 

information is believed to be represented as distributed activity and information processing 
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is thought to emerge from the interactions between different specialized regions, these 

processing characteristics suggest that the structure-function relationship is complex. 

Adapted from (Gazzaniga, Ivry, & Mangun, 1998). permissions@wwnorton.com 

 

 

1.5 A DEVELOPMENTAL PERSPECTIVE ON COGNITION - THE CLASSICAL 

VIEW 

For simplicity, let us assume some version of cognitive modularity, and let us focus on 

some particular module C, which is fundamental in the sense that all normal individuals 

develop cognitive capacities related to C. As a preliminary assumption, it is then reasonable 

to view aspects of the module C as a species-wide adaptation. At any point in time t one 

can imagine C being in a given state mC(t) [Note that here state refers to the model 

instantiated by C rather than an internal state in state space. This state (or model) is more 

akin to a point in the space of adaptive parameters, cf. below]. If we suppose that C 

incorporates an innately specified prior structure, we can capture this by the notion of a 

structured initial state of C, mC(t0). If the system has adaptive characteristics we can 

conceptualize the development of the system as a trajectory in its accessible model space M 

= {m| m can be instantiated by C} driven by the interaction with the environment and in 

conjunction with innately specified developmental processes. Thus, as C develops, it traces 

out a trajectory in M determined by its adaptive (or developmental) dynamics L, and the 

input i(t) it receives, according to: 

 

  mC(t+∆t) = L(mC(t), i(t), ∆t, t)     [2] 

 

where the explicit dependence on time, t, in L captures the idea of an innately specified 

developmental process (maturation) as well as the possible dependence on the previous 

developmental history. If C and L are such that it (approximately) converges on a final 

model mC[F], this will characterize the end-state of the developmental process reached after 

time ∆tF, that is, mC(t0+ ∆tF) ≈ mC[F]. 

 Within the classical cognitive framework of equation [1], mC determines the 

transition function T in the following sense: T can be viewed as a function of mC, that is, T 
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is parameterized by mC according to T = T[mC]. In other words, we take the view that the 

accessible model space M can be viewed as a functional form T[⋅] that represent a 

parameterized model space M (i.e., we have T:MxΩxΣ → ΩxΛ instead of T:ΩxΣ → ΩxΛ, 

which from a developmental perspective is a static model). Equation [1] should thus be 

modified according to: 

 

  [s(n+1), λ(n+1)] = T[mC][s(n), i(n)]     [1’] 

 

where mC = mC(n) is updated according to the adaptive dynamics: 

 

  mC(n+1) = L(mC(n), i(n), n)      [2’] 

 

We thus see that development (as well as learning) of a cognitive system can be 

conceptualized in terms of a forced system of coupled (i.e., interacting) equations. This is 

in essential respects similar to Chomsky’s well-known hypothesis concerning language 

acquisition (e.g., Chomsky, 1980; Chomsky, 1986) where the module C is taken to be the 

faculty of language, L the language acquisition device, and the model space M the set of 

natural languages, which determine the universal grammar. Different aspects of the 

universal grammar, including constraints and principles (Chomsky, 2000b), are captured by 

M, L, and the initial state mC(t0). Language acquisition and prior knowledge of language 

can arguably be viewed as a species-wide adaptation. Chomsky and others have argued 

extensively that the inherent properties of M, L, and mC(t0) are determined by innately 

specified (genetic) factors, genetically determined morphogenetic processes, in interaction 

with the physiochemical processes of cells. One might attempt to translate the theory of 

principles and parameters (Chomsky & Lasnik, 1995) into the present framework where the 

principles and constraints are related to aspects of M, L, and mC(t0), and the parameters are 

related to the adaptive aspects of mC(t). From this point of view, natural language 

acquisition is the result of an interaction between two sources of information: 1) innate 

prior structure, which is likely to be both of a language specific nature as well as of a more 

general non-language specific type (e.g., this would include both characteristics of the 

initial state as well as the characteristics of an innately specified learning mechanisms); 2) 
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the environment, both the linguistic and the extra-linguistic, which can be viewed as an 

interactive boundary condition for the developing system. The type of learning that 

characterizes language acquisition seems to be implicit in nature and the knowledge 

acquired is to a large extent unconscious (Chomsky, 1986). One may thus suggest that a 

relevant learning paradigm for language acquisition, from the point of view of learning 

theory (Arbib, 2003; Haykin, 1998; Jain, Osherson, Royer, & Sharma, 1999; Vapnik, 

1998), can essentially be captured by a mixture of innately constrained unsupervised/self-

organizing (e.g., Arbib, 1995; Haykin, 1998) and perhaps modern reinforcement learning 

(e.g., Sutton & Barto, 1998). In conclusion, it thus appears that language development, as 

an example of cognitive development in general, is the result of the interaction between 

genetically determined factors and processes as well as the environment. However, it 

should be emphasized that the outline captured in equation [2] is not necessarily related to 

the classical cognitive framework per se (i.e., equations [1’] and [2’]) but can be viewed as 

a more general recipe that can be applied also to non-classical frameworks, a perspective to 

which we will return to in chapter 2. 

 

1.6 COGNITIVE NEUROSCIENCE 

Fundamental objectives of cognitive neuroscience are to understand how different 

cognitive brain functions are implemented in the neural processing infrastructure and to 

understand the detailed relationship between the structure of the brain, cognitive function, 

and behavior. In order to achieve these objectives, it is necessary to adequately characterize 

brain structure at the relevant levels of description, to formulate a general framework for 

conceptualizing cognitive brain function, and to measure relevant neurophysiological 

events and processes as well as adequately characterize behavior. 

 

1.6.1 WEAK REDUCTIONISM 

Emergent complex high-level phenomena necessarily presuppose interaction between 

systems constituents. The attempt to understand complex systems in terms of their systems-

level organization has recently received new interest in biology (cf., Csete & Doyle, 2002; 

Kitano, 2002). These approaches to systems biology have adopted the perspectives of 

control theory (Isidori, 1995; Sontag, 1998; Wiener, 1948) and attempts to understand 
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complex systems in terms of interacting modules or components and their interface 

properties from a reversed engineering perspective (Csete & Doyle, 2002). High-level 

phenomena like cognition supposedly represent emergent system properties that depend on 

low-level phenomena in some more or less systematic fashion. The complexity of the brain 

is realistically described in terms of non-linear, non-stationary, and adaptable processing 

elements interconnected in a highly parallel distributed and non-homogeneous network 

topology. This led Koch & Laurent (1999) to suggest that a fundamental understanding of 

the brain can probably not be achieved by continued reductionism and atomization, at least 

not at the present stage. One may question whether it is possible, or even meaningful, to 

attempt a complete reduction of one level of description to another, given the dependence 

on abstraction (in a technical sense) when going from a lower-level to a higher-level of 

description. When we attempt to bridge the gap between cognition and neurophysiology in 

a substantial sense, it may be the case that we can only hope for what Chomsky has termed 

''unification through accommodation'' (2000b). Chomsky (2000b) provides a number of 

examples of what he has in mind. For example, the explanation of planetary motion in 

terms of contact mechanics was demonstrated by Newton to be unsolvable but was 

overcome by introducing immaterial forces (i.e., gravitation); the problem of reducing 

electromagnetism to mechanics was resolved by accepting fields as real physical entities, 

while the problem of reducing chemistry to physics was only overcome by introducing 

''even weirder hypotheses about the nature of the physical world'' (i.e., quantum physics). 

Thus, he argues, in each of these cases ''unification was achieved and the problem resolved 

not by reduction, but by quite different forms of accommodations'' (Chomsky, 2000a). 

Another example, of what will be called a weakly reductive explanation, is represented by 

statistical physics (e.g., Huang, 2001; Mackey, 1992; Mandl, 1988; Reif, 1965). Statistical 

physics exemplifies one of the most well-understood methods to analyze the macroscopic 

properties of high-dimensional systems composed of weakly interacting microscopic 

constituents. Moreover, methods from statistical physics have been applied to models of 

brain functions, in particular learning and memory, as well as to information processing 

more generally (e.g., Amit, 1989; Arbib, 2003; Engel & Van den Broeck, 2001; Hertz et al., 

1991; Leff & Rex, 1990; Nishimori, 2001). Now, take for example the extremely simple 

case of an ideal gas, an ensemble of weakly interacting particles. This system is described 
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by on the order of 1023 degrees of freedom (dimensions) at the microscopic level. However, 

the macroscopic behavior can to a good approximation be described by 3 degrees of 

freedom determined by the simple equation pV = nkT. Thus, a nominal extremely high-

dimensional system effectively reduces its macroscopic behavior to a low-dimensional 

system. Thus we may hope, although this is altogether unclear at present, that in a similar 

fashion it will become feasible to relate the microscopic description of the processing 

infrastructure of the brain to a macroscopic cognitive-behavioral description. However, it 

should be kept in mind that low-dimensionality as such does not imply simple system 

behavior. On the contrary, low-dimensional non-linear systems can display behavior of any 

imaginable level of complexity, including deterministic systems (Beck & Schlögl, 1993; 

Lasota & Mackey, 1994a; McCauley, 1993a; Moore, 1991a, 1991b; Ott, 2002). 

 In order to capture cognition, it seems clear that linear interactions are not 

sufficient. Instead, non-linear types of interaction have to be at play for interesting 

phenomena to emerge. The interaction between neurons is characteristically weak; the 

influence of a single neuron on another is relative small, typically on the order of 1% of the 

firing threshold. This implies that cortical neurons rely on convergent and cooperative 

afferent input, some of which may be part of the 'spontaneous' background activity, to 

activate a single neuron. Thus, it is clear that the functional significance of a single neurons 

behavior to a large extent is determined by its processing context. Furthermore, synaptic 

transmission appears to be stochastic in nature. For example, the probability of synaptic 

release given an action potential (AP), P[release AP], can be as low as P[release AP] ∼ 

0.1 (Koch, 1999). In addition, P[release AP] is non-stationary and adaptable - it depends 

on the stimulus history. In addition, the postsynaptic outcome in terms of the postsynaptic 

potential can also be variable (Koch, 1999).  

 Returning to the issue of bridging the gap between a microscopic (e.g., 

neurophysiology) and a macroscopic (e.g., cognition/behavior) description in a substantial 

sense, one has to remember that the principles and units of analysis for macroscopic 

phenomena are not necessarily the same as those for describing and analyzing the 

microscopic phenomena. This difference is roughly captured by intuition that there is a 

difference between our understanding of how various graphical user interfaces work and 

the principles for organizing the circuit logic of a computer and how the computer's 
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instruction set come to have a functional role in the logical circuitry (Savage, 1998; 

Tanenbaum, 1990). There is always an irreducible element inherent in the description of 

high-level phenomena (explicitly or implicitly), which has to do with how the microscopic 

variables are composed or aggregated to explain macroscopic phenomena. For example, a 

macro (e.g., in some assembler language, cf. e.g., Cutland, 1980; Davis et al., 1994) is 

implemented as a compositional structure. The macro is composed from the instruction set, 

and is in one sense dependent on the particular instruction set used. However, the macro is 

not determined by the instruction set, since a complete description of the macro requires a 

specification of the compositional structure. Moreover, the functional description of the 

macro is in important respects independent of the chosen instruction set, since it does not 

matter which instruction set and logical circuitry is chosen to implement the functional 

description. This corresponds to the idea of functionalism in classical cognitive science, 

which suggests that the fundamental architectural aspects of cognition are independent of 

any particular implementation. This also happens to be the fundamental reason why 

recursive function theory (Rogers, 2002), which does not refer to or depend on any 

particular implementation, precisely corresponds to any particular universal computational 

implementation (i.e., the Church-Turing thesis), including for example, the Turing 

architecture (Lewis & Papadimitriou, 1981), the unlimited register architecture (Cutland, 

1980), semi-Thue production systems (Davis et al., 1994), and Post systems (Minsky, 

1967). This has been succinctly stated as: 'Hardware and software are logically equivalent' 

(Tanenbaum, 1990, p. 11). 

 It is important to realize that a simple statement of system dependence on 

microscopic variables is insufficient for a reductive explanation. More importantly, the 

emergent macroscopic form is in essential ways dependent on the functional form of the 

interaction between microscopic constituents, and in the case of stochastic systems, also on 

statistical properties of ensembles of interacting constituents (e.g., averaging properties like 

ergodicity, mixing etc., see e.g., Billingsley, 1995; Lasota & Mackey, 1994a). It should be 

realized that these forms or properties of the interaction, in a narrow sense, represents an 

irreducible system property. By this we mean that the form of interaction between 

microscopic constituents is not explainable in terms of the constituents themselves in 

isolation. Instead, there is necessarily an added element in the specification of the system in 
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terms of the form of the interaction between constituent components as well as boundary 

conditions not determined by the system as such. This emphasizes the importance of 

understanding the interactive and integrative principles governing the processing system as 

well as the context in which the processing takes place. 

 Finally, and from a systems perspective, it should be noted that the microscopic 

details of the constituents may turn out to be less important for high-level explanations than 

the details of the interactions between constituents, opening up for the possibility to study 

reduced models in a meaningful manner (Amit, 1989, 1998; Gerstner & Kistler, 2002; 

Trappenberg, 2002). Concepts like structural stability and canonical models (Devaney, 

1989; Hoppensteadt & Izhikevich, 1997) might also be of importance as a foundation for 

the study of reduced models. 

 

1.6.2 A GENERAL FRAMEWORK FOR CONCEPTUALIZING COGNITIVE 

FUNCTION – INFORMATION PROCESSING IN DYNAMICAL SYSTEMS 

In order to capture the essentials of the classical cognitive perspective and outline a broader 

framework, which we suggest might be more amenable for understanding cognition form a 

neurobiological perspective, we will first generalize Marr’s three levels of analysis: the 

computational, the algorithmic, and the implementation level (Marr, 1982). We will follow 

Horgan and Tienson (1996a) quite closely and within this generalized framework, the three 

levels of analysis correspond to: 1) the cognitive level - a formal (mathematical) theory of 

structured representational states and the cognitive transition system, which specifies in 

formal terms which transition function results from information processing of the system; 

2) the dynamical system level - given a formal cognitive theory, a state space is specified 

and processing is formulated in terms of dynamical systems; 3) the implementational level - 

given a dynamical system, this level specifies the physical hardware implementation of the 

dynamical system; for example, how the dynamical system is realized in the neural 

networks of the brain. Here we end by noting that a dynamical system instantiated in a 

neural network is determined by its local dynamics (i.e., local processing in computational 

units) and its network topology, and thus the temporal transition/evolution of global states 

of the network will in general be extremely complex, with the entire structure of the 

network affecting it. 
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 As previously emphasized, a system can be understood as processing information, if 

the system in some well-defined sense can be said to represent information or functional 

properties by a set of internal states in its state space and that the system processes 

information or performs computations (in a general sense, i.e., not necessarily computable 

in the sense of Church-Turing) on these representations by its internal dynamics, being 

driven (i.e., forced) by input or spontaneous internal activity, and optionally generates 

output. Again, we emphasize that to 'represent information’' here does not presume a 

referential theory of representation or semantics (cf., section 1 and Jackendoff, 2002). 

Furthermore, it should be noted that, a priori, the concept of ''processing'' here entails little 

more than a description of the evolution of the dynamical system along trajectories in state 

space (cf. e.g., Haykin, 1998; Lasota & Mackey, 1994b; Ott, 1993). Intervening states 

along the state space trajectories, between representational states, do not necessarily have to 

be meaningful from an external point of view or in terms of cognitive processing, other 

than in terms of 'mediating states' enforced by the particular dynamics or implementation. 

These mediating states may thus have a purely implementational or system internal 

'semantics'. The perspective taken here thus conceptualizes processing of information as 

implemented by the dynamics of a dynamical system. 

 This framework generalizes that of classical cognitive science, which represents a 

subset of dynamical systems (as already noted; cf., equation [1]). In attempting to relate 

cognitive function to the brain within the suggested framework, one has to characterize: 1) 

what information is represented and the coding principles by which this information is 

encoded; that is, a specification of the structure of representations; 2) the representational 

dynamics; that is, the processing principles of the system. For example, the nervous system 

can be considered as a physical dynamical system with causal and stochastic interactions 

that generate trajectories in an appropriate state space (e.g., representing membrane 

potential of each neuron along a particular dimension in a high-dimensional state space; 

i.e., viewing each neuron as an analog register). In other words, the temporal evolution of a 

brain system, determined by the neuronal dynamics, can be seen to correspond to 

trajectories in a state space, representing transitions between physical states. Within this 

framework, this is all that is meant by the idea of instantiating information processing in a 

physical system. It is interesting to note that this perspective has recently been revived, 
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under the umbrella of non-standard or analog computation, in theoretical computer science 

(for recent reviews see e.g., Siegelmann, 1999; Siegelmann & Fishman, 1998; Siegelmann 

& Sontag, 1994). 

 Here we want to emphasize that the recurrent architecture of the brain seems to be a 

prerequisite for functional integration and serves as a basis for the dynamical systems 

perspective. The flip side of functional integration is naturally functional specialization. 

Functional specialization, as presently understood, may depend on the functional 

processing context, that is, the functional network in which a given region is engaged 

during processing: a given brain region can subserve several functional roles depending on 

the network it is dynamically ‘plugged into’. This suggests a weaker form functional 

modularity, or dynamic functional modularity, and this point of view entails the possibility 

of interacting dynamical sub-systems (e.g., sub-networks). Dynamic functional modularity, 

as well as the concept of networks of networks (functional specialization/integration), 

predicts that the brain should support an inhomogeneous dynamics, that is, the local 

characteristics of the dynamics in state space is not translational invariant. This seems 

necessary, if a structured parallel and interactive processing perspective shall be 

meaningful. Finally, the question regarding the most appropriate way to resolve the 

information processing system of the brain along structural-anatomical and cognitive-

functional dimensions remains open. 
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2. INTERACTION OF ADAPTABLE SYSTEMS AT DIFFERENT TIME-SCALES 

As neurobiological systems are evolved biological systems, in order to fully understand 

their different features it seems necessary to take not only their individual histories 

(ontogenesis) into account but also the evolution of the whole system (phylogenesis), which 

thus provide a functional context for the different features at any given point in time. 

Moreover, it is important to realize that evolved structures may or may not be, in some 

sense, close to optimal 'solutions' because it can be assumed that evolution generates 'good 

enough' rather than optimal 'solutions'. 

 Neural systems are examples of naturally evolved information processing systems 

which have evolved under tight energy, space, and real-time processing constraints. These 

constraints include the available energy flows and the available space (anatomical) for the 

neural system as an integral part of the organism; the processing time and space (memory) 

available to perform computation in order to appropriately solve a task on a behaviorally 

relevant time-scale (e.g., input signals need to be recognized and response patterns 

organized and executed on the relevant time-scale). With respect to perception, the 

characteristic time-scale of computation must match that of the external world. The same 

holds for output control, the characteristic time-scale of motor output must match the time 

it takes to organize a coordinated response that is behaviorally relevant. Moreover, when 

the outputs from different processing components need to be integrated, then the time-

scales of the various processors involved must also match. There are also constraints set in 

terms of energy turnover, the physical and biochemical infrastructure, as well as spatial 

constraints. It seems safe to assume that these types of general constraints must have had an 

important influence on the brain from an implementational point of view. It is unknown to 

what extent it has had any influence on the functional organization at the 

cognitive/computational level but this seems likely at the dynamical system/algorithmic 

level. However, there are good reasons to believe that the nervous system is not fully 

specified at a phylogenetic (i.e., genetic) level – the existence of learning and adaptation 

speaks clearly on this issue – but it would also seem too restrictive, ineffective, or too 

costly to pre-specify every detail of the functional organization of the brain at a 

phylogenetic level. Instead, ontogenetic development and learning represent viable 

complements. 
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 During brain development, from the fertilized egg to the adult brain, the normal 

individual acquires an amazing range of cognitive skills; this includes for example sensori-

percepto-motor skills, natural language and communicative skills, procedural skills, as well 

as general/semantic and episodic knowledge, and so forth. Furthermore, the capacity for 

learning and development provide a necessary basis for the possibility of cultural and 

evolutionary interaction (cf., Figure 1.1). Although, it seems clear that evolved prior 

structure can in principle influence culture in a general sense through various cognitive 

constraints, it is unclear to what extent the reverse is the case, though still in principle 

possible (e.g., it has been suggested that the emergence of the dairy farming culture 

selected for adult lactose tolerance (Feldman & Cavalli-Sforza, 1989)). It should also be 

kept in mind that these processes, phylogenetic evolution, ontogenetic development, and 

individual learning, operate on different time-scales relevant for changes at the individual-, 

cultural- and species level. 

 In what ways do cognitive and neural processes interact during development, and 

what are the consequences of this interaction for theories of learning? Quartz and 

Sejnowski (1997) attempted to sketch a neural framework for addressing these issues. 

Development, learning, and cognitive skill acquisition implies that the neural infrastructure 

changes its processing characteristics as a result of these processes. Given the co-

localization of memory (i.e., here in the general sense of adaptive changes) and processing 

in the brain, this entails a system with properties that are time-dependent ('non-stationary') 

and the effected changes in the processing characteristics are driven by and result from the 

outcome of an interaction between neurobiological maturation and experiential learning 

processes. Quartz and Sejnowski (1997) suggested that two themes emerged in their review 

of structural measures of representational complexity: (1) development comes with a 

progressive increase in the structural complexity, which underlies representational 

complexity, and (2) this increase in the structural complexity depends on interaction with a 

structured environment as a guide to the development. They also suggested that this 

favored a neo-Piagetian view, which they called neural constructivism, implicating that 

there is an active constructive interaction between the developing system and the 

environment in which it is embedded. Post-natal human cerebral development is a 

progressive process, which last at least until early adulthood. This suggests the possibility 
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of a complex interaction between environmentally derived information and prior genetic 

structure, which takes place during ontogenetic development, in constructing mental 

representations and processing networks (Thompson et al., 2001; Thompson et al., 2000). 

This form of environmentally guided neural circuit building is a form of learning, called 

constructive learning by Quartz and Sejnowski (1997). Quartz and Sejnowski (1997) 

suggest that the central problem confronting a cognitive system is to find an appropriate 

class of representations for specific problem domains and that this problem is resolved by 

constructive development/learning principles, which creates sufficiently efficient 

representations under the influence of the environment, in interaction with general 

constraints imposed by the neural architecture. This perspective emphasizes the interaction, 

via individual learning, between evolutionary determined neurobiological constraints and 

experiential factors, including cultural transmission. Recently, Li (2003) reviewed the re-

emerging co-constructive conceptions of development and outlined a framework for 

cognitive and behavioral development across the life span. Li (2003) suggested that new 

insights might be gained from an integrated perspectives on cultural and experiential 

influences with behavioral genetics and cognitive neuroscience. 

 In this chapter, we will take human language as an illustration of the issues involved 

(cf., Hauser, Chomsky, & Fitch, 2002; Nowak, Komarova, & Niyogi, 2002). Human 

language is a major vehicle for cultural transmission. It has been suggested that natural 

language arises from three distinct but interacting adaptive systems: individual learning, 

cultural transmission, and biological evolution (Christiansen & Kirby, 2003). As will be 

outlined below, these systems can be viewed as adaptive as well as interacting. The 

adaptive character of evolution as well as individual learning ('adaptation of the 

individual’s knowledge') is undisputed but this is less clear for cultural development. 

Moreover, Christiansen and Kirby (2003) argue that the knowledge of particular languages 

persists over time by being repeatedly used to generate language output and this output 

represents input to the language acquisition device of the individual learner. It is likely that 

aspects of natural languages have adapted to the constraints set by the language acquisition 

device. Constraints on language transmission are thus set by prior structures determined by 

the outcome of biological evolution. However, Christiansen and Kirby (2003) suggest that 

if there are features of language that must be acquired by all learners, and there are 
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constraints or selection pressures on the reliable and rapid acquisition of those features, 

then an individual who is born with such acquisition properties will have an advantage, 

exemplifying the so-called Baldwin effect of genetic assimilation, whereby acquired 

features can become innate. These suggestions are entirely consistent with Chomsky’s 

perspective that the universal competence grammar is determined by the language 

acquisition device and the initial state of the individual (cf., discussion in section 1.5). 

Christiansen and Kirby (2003) suggest further that in order to understand the human 

language capacity and its evolution it is necessary to understand the workings of the human 

brain; the structure and use of language; how cultural change affect language and how 

language distinguishes itself from communication systems; the evolution of hominids; how 

language acquisition takes place during ontogenetic development; and how learning, 

culture and evolution interact. So, after Chomsky (1965; 1986) suggested that prior innate 

constraints are necessary in order to simplify the acquisition task to such a degree that 

language acquisition becomes possible for the learner, and thus in effect transferring the 

problem of learnability (Gold, 1967; Nowak et al., 2002; Pinker, 1991) to a problem of the 

evolutionary origins of language, we seem to made a full circle. However, the 

(un)learnability problem might not be as severe as is commonly thought (for brief reviews, 

see e.g., Petersson, 2004, in press; Petersson, Forkstam, & Ingvar, 2004). The 

(un)learnability paradox is often associated with a well-known result in formal learning 

theory (Gold, 1967; see also Jain et al., 1999), which states that no super-finite class of 

languages is in general learnable from positive examples alone without additional 

constraints on the learning paradigm. It has also been suggested that this is the case when 

statistical learning mechanisms (cf. e.g., Cherkassky & Mulier, 1998; Duda, Hart, & Stork, 

2001; Vapnik, 1998) are employed (Nowak et al., 2002). However, already Gold (1967) 

noted that under suitable circumstances this (un)learnability paradox might be avoided. 

Recent results in formal learning theory confirm Gold’s (1967) suggestion that, if the class 

of possible languages is restricted, then it is possible to learn infinite languages in infinite 

classes of formal languages from positive examples (Shinohara, 1994; Shinohara & 

Arimura, 2000). It should be noted that these prior constraints on the class of possible (or 

accessible) languages are of a general type and not ‘language specific’ per se (e.g., 

restrictions on the maximal number of rules employed by the languages in the class). As 
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noted by Scholz and Pullum (2002), there exists classes of formal languages rich enough to 

encompass the ‘string-sets’ of human languages and at the same time being identifiable 

from a finite sequence of positive examples. Furthermore, the acquisition task becomes 

potentially more tractable if there are additional structure in the input or if only ‘probable 

approximate’ identification is required (cf. e.g., Anthony & Bartlett (1999) for an outline of 

the probably approximately correct learning paradigm). One possibility is to generate 

expectations based on an internal model for prediction (Petersson, 2004, in press). Within 

an unsupervised learning framework, the internal model can be acquired through a learning 

process which is driven by the difference between input and internally generated 

predictions (i.e., self-organized based on general constraints). A simple example of this is 

the simple recurrent network (SRN) architecture (e.g., Elman, 1990). Recent results suggest 

that this may be a viable approach for network models of finite recursion (Christiansen & 

Chater, 2001). 

 

2.1 THE NEUROBIOLOGY OF CHANGE – LEARNING AND ADAPTATION AT 

DIFFERENT CHARACTERISTIC TIME-SCALES 

Evolutionary/phylogenetic processes are driven by genetic adaptation in terms of random 

variation and subsequent selection based on the phenotypic expression of the genotype. 

This process can be viewed as a mechanism for incorporating prior knowledge in terms of 

genetically determined specifications and constraints relevant to the developing brain – 

evolutionary learning at the phylogenetic level. In this view, the genotype can loosely be 

likened to a compressed file, an evolutionary memory, which in some sense is 

uncompressed, transformed, and compiled piecewise into executables that are executed 

during development. 

 In order to effectively solve real world learning problems it is typically necessary to 

incorporate relevant prior structure (i.e., prior knowledge) in the functional architecture. 

This is a general and well-accepted insight from work in formal learning theory (e.g., Jain 

et al., 1999) as well as in statistical learning theory (e.g., Cherkassky & Mulier, 1998; 

Geman, Bienenstock, & Doursat, 1992; Haykin, 1998; Vapnik, 1998). The extent to which 

prior information is invoked in an explanatory scheme has the effect of shifting the 

explanatory burden from ontogenetic development and learning to phylogenetic adaptation, 
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which of course requires its own explanation. On the other hand, prior innate structure can 

significantly reduce the complexity of the acquisition problem by constraining the available 

model space M (for a given cognitive component, cf., section 1.5), thus alleviating the 

extent of the search problem that the child is confronted with in order to converge on an 

appropriate final model mC[F]. Chomsky’s hypothesis of the existence of a universal 

competence grammar, determined by the language acquisition device and the initial state of 

the individual's language faculty (Chomsky, 1965, 1986) is an example of this (cf., section 

1.5). 

 It was recently suggested that individual ontogeny is hierarchically organized within 

an open developmental system and that developmental phenomena need to be investigated 

by jointly considering interactions between endogenous and exogenous processes at various 

levels (Li, 2003). Developmental processes, operating on an ontogenetic time-scale, are 

commonly viewed as processes that depend on the interaction between genetic and 

environmental/experiential factors (Bota, Dong, & Swanson, 2003; Davidson et al., 2002; 

Elman et al., 1996; Johnson, 1997; Karmiloff-Smith, 1993, 1994). For example, it has been 

argued on empirical as well as theoretical grounds that prior genetic structure and its effects 

in terms of brain organizations impart reflect a socio-cultural influence on evolution (for a 

recent review see Li, 2003). For example, the suggestion that the biological evolution of 

brain encephalization was, in part, driven by the increase of social group size and the 

emergence of language as a more efficient means for handling complex social interactions 

(cf. e.g., Dunbar, 1998, 2003). On the other hand, brain encephalization might have been a 

factor in allowing for larger social group sizes in the first place. This precedence ambiguity 

provides an example of the fact that the relation between cognition and evolution might 

profitably be conceptualized in terms of co-evolution. 

 Recent advances in systems biology indicate that heritable developmental programs 

are regulated by sophisticated multi-component mechanisms with environmental interfaces 

(e.g., maternal molecules of regulatory significance: Figure 2.1). It is conceivable that there 

also exist purely genetically specified/driven maturational processes (cf., Davidson et al., 

2002). However, the idea of purely experientially dependent developmental processes is 

probably not well-conceptualized, since all adaptive neural mechanisms have to be 

instantiated in genetically specified neural processes and hardware at a sufficiently level of 
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detail – in simplistic terms, the system does not learn the acquisition mechanism, but uses 

the acquisition mechanism to learn and develop. Rather, as a first order approximation, the 

relevant question appears to be to what extent the outcome of the developmental process is 

genetically constrained. However, this is a far too coarse way of posing the question, 

because what we want to understand is how the genetically specified information and 

experience enters into the developmental process. A stated objective for systems 

neuroscience, is to investigate the relationship between gene networks and brain networks 

as well as their role in the emergence of cognition and behavior (cf., Bota et al., 2003). It is 

not unlikely that genetic and experiential factors interact through out most of the life time 

of a neural system, although the degree of plasticity of the system appears to decrease over 

time. For example, it is conceivable that the over-expression of neurons and synapses as 

well as neuronal cell death and synaptic pruning (Hutterlocher, 1990), are related to 

activity-dependent competitive and selectionist principles driven in part by experience 

(Quartz & Sejnowski, 1997). With respect to the nervous system, one may suggest that 

there is a genetically guided basic outline of the brain architecture, which represents the 

development of an effective infrastructure for information processing, development, and 

learning – the unfolding of prior structure implicitly represented and regulated by the 

relevant parts of the genotype. 

 In order to see how we can conceive of learning and memory, which properties are 

needed for an information processing system to be able to learn and adapt in a non-

stationary environment, we will start by outline a theoretical perspective on learning and 

memory as fundamental brain functions. Learning, here in the general sense of adaptation, 

can be defined as the processes by which the brain functionally restructures its processing 

networks and/or its representations of information as a function of experience. The stored 

information (i.e., the memory trace) can then be viewed as the resulting changes of the 

processing system. From this perspective, learning in a neural network is the dynamic 

consequence of information processing and network plasticity. Furthermore, 

fundamentally, it appears that processing and memory are co-localized at a microscopic 

level. Thus a neural processing system with the capacity to learn requires that aspects of its 

organization is capable to change in the light of experience, that is, some aspects of the 

neural infrastructure are adaptable. For simplicity, let us call these aspects adaptable 
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learning parameters. Thus, when the system interacts with its environment, the system 

undergoes some type of change as a result of information processing and these changes are 

captured by the adaptable parameters. 

 

 

[Figure 2.1] Regulatory gene network. Recent advances in systems biology indicate that 

heritable developmental programs are regulated by sophisticated multi-component 

mechanisms. Emergent complex high-level phenomena necessarily presuppose interaction 

between systems constituents. Developmental processes, operating on an ontogenetic time-

scale, depend on the interaction between genetic and environmental/experiential factors. 

Recent attempts to understand complex biological systems at a systems-level in terms of 

interacting components and their interface properties have adopted perspectives from 

control theory and reversed engineering (cf., Csete & Doyle, 2002; Kitano, 2002). The 

figure is an example of a regulatory gene network for endomesoderm specification (cf., 

Davidson et al., 2002). With permission (esandler@aaas.org). 
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 Since different acquisition or learning problems are not equivalent in the sense of 

task requirements, it seems likely that different acquisition problems are supported by 

different adaptation/learning processes (Figure 1.6). Thus it has been suggested on both 

theoretical and empirical grounds that the brain is equipped with multiple memory systems 

(e.g., Eichenbaum & Cohen, 2001; Schacter & Tulving, 1994; Squire, Knowlton, & Musen, 

1993; Stadler & Frensch, 1998). Furthermore, it has been suggested that learning related 

changes are prevalent in most (if not all) brain systems (Eichenbaum & Cohen, 2001). 

These memory systems serve different purposes and store different types of information 

with different spatio-temporal characteristics. 

 Memory can be decomposed into several processing stages, including on-line 

encoding, memory formation and storage, consolidation, re-organization and maintenance, 

as well as retrieval. Memory failure can be attributed to any of these stages, including 

encoding and memory formation failure, storage and maintenance failure as well as 

retrieval failure (i.e., failure to reactivate stored information based on the retrieval cues 

present). As an aside, we might ask what could possibly be the relevance of forgetting. 

Here we make a distinction between memory failure and forgetting. It may be the case that 

some aspects of forgetting are necessary side consequences of being able to create an 

effective 'knowledge base' of experience and general information. Forgetting processes thus 

might allow the system to restructure its 'knowledge base' in such a way that only relevant 

aspects of the information are kept, increasing the efficiency of the system in terms of 

content and retrievability. There is a creative element in this type of forgetting processes, in 

the sense that they support the emergence of generalized representation – akin to a 

semantization of episodic memory. Examples of neurophysiological mechanisms 

hypothesized to support learning and long-term memory are long-term potentiation and 

long-term depression (e.g., Bear & Kirkwood, 1993; Bliss & Collingridge, 1993). Other 

examples of short-term adaptable mechanisms are post-spike adaptation, habituation, and 

short-term potentiation (cf., Johnston & Wu, 1995; Koch, 1999). As noted in chapter 1, 

human learning and adaptive brain processes operate at many characteristic time-scales, 

spanning some seven or nine orders of magnitude. Newell (1990) has conceptualized this in 

terms of bands of cognition and there are serious attempts underway in applied cognitive 
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science to make use of large parts of this spectrum of time-scales in cognitive modeling 

(Anderson, 2002). Here we conclude that different storage systems operate at different 

time-scales and show different forgetting characteristics. 

 A closely related notion, and an independent rational for the existence of multiple 

memory systems, is related to the serial learning problem, also called the stability-plasticity 

dilemma (Grossberg, 1988; Haykin, 1998). The dilemma relates to the problem of up-

dating the knowledge base in the light of novel information to be stored and integrated with 

previously acquired information. 

Information Processing

NCX/MTL

Information Storage

MTL

EncodingRetrieval 

EncodingRetrieval 

Information Storage

NCX

Memory consolidation as re-organization

 

[Figure 2.2] Memory consolidation as re-organization. David Marr (1971) was first to 

suggest that the medial temporal lobe (MTL), which is characterized by rapid and extensive 

plasticity, creates pointers of incoming information from the neocortex (NCX) for rapid 

storage in the hippocampus. These pointers are then thought to participate in the 

reorganization, integration, and consolidation of neocortical representations. In line with 

this suggestion, Squire and colleagues (2004) suggest that the neocortex interacts with the 

medial temporal lobe in order to establish (formation), store and maintain, as well as 
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retrieve long-term information. It is suggested that this form of memory, declarative 

memory, ultimately becomes independent of the medial temporal lobe through the process 

of consolidation. This hypothesis, then, represents one example of the idea of a processing 

system with multiple interacting memory systems operating at several different 

characteristic time-scales. 

 

 

Here there is a trade-off between stability and plasticity: stability is necessary to ensure 

robust process reliability but its very nature precludes any possibility for adaptation or 

learning from experience; on the other hand, plasticity is necessary for the acquisition of 

new information as well as flexible adaptation to a changing environment; however, this 

also introduces instability that might cause reliability problems; in other words, the 

processing system becomes non-robust. For example, too much plasticity might allow that 

important previously acquired information gets overwritten or lost due to excessive changes 

imposed by the newly acquired information, so-called catastrophic interference. One 

suggested solution to the serial learning problem is to first store information in a memory 

structure suitable for rapid acquisition, and subsequently consolidate this in an integrated 

fashion in a different storage system, thus reducing the risk of catastrophic interference 

while familiar or less relevant information is allowed to be forgotten (e.g., McClelland, 

McNaughton, & O'Reilly, 1995; Petersson et al., 1999a; Robins, 1995, 1996a, 1996b). 

More generally, the serial learning problem can be effectively handled by a processing 

system with multiple interacting memory systems operating at several different 

characteristic time-scales (Figure 2.2). Given that the stability-plasticity trade-off is 

appropriately handled, it is clear that information processing systems with adaptive 

properties and learning capacities can act with greater flexibility in a non-stationary 

environment and adapt to present and near future conditions within a time frame that is 

relevant to the individual. Development and the acquisition of cognitive skills depend on 

prior knowledge (in the sense of Chomsky, 1986) as well as fine tuning of the appropriate 

network architecture. It remains a challenge to disentangle development from learning, and 

perhaps it is more fruitful to view these as two interacting processes determining the 

developmental trajectory as well as the outcome of development. 
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 In neural network models, the processing of active representations and 

learning/adaptive processes are commonly modeled as two (several) sets of dynamical 

variables. Typically, one set with rapid (millisecond time-scale) and the other with slower 

dynamics (depending on the characteristic time-scale of the learning process modeled). 

These sets of dynamical variables represent, on the one hand, the active on-going 

processing of information (representational dynamics), and on the other, the learning 

dynamics. For example, in a simple network model, learning and adaptation can be 

modeled as synaptic dynamics, but more complex models are of course possible. Formally, 

the relation between the representational dynamics and the learning dynamics is captured 

by the notion of coupled (interactive) dynamical systems (cf., section 1.5 and Figure 1.6). 

Ultimately, it may perhaps become necessary to formulate such a description in terms of for 

example coupled systems of stochastic differential/difference equations, corresponding to 

representational and learning dynamics at several different time-scales (cf., section 2.1.2. 

Note that more general formulations in terms semi-groups/semi-dynamical systems are also 

possible, see e.g., Lasota & Mackey, 1994b). Simulations of biologically plausible network 

models with adaptive characteristics represent initial attempts in this direction (Amit, 1998; 

Arbib, 2003; Gerstner & Kistler, 2002; Trappenberg, 2002). 

 In contrast to simple information storage, it is also possible to view learning and 

adaptation, as a process of generalization or a process of sequential estimation in a 

stochastic environment (cf. e.g., Anthony & Bartlett, 1999; Arbib, 2003; Cherkassky & 

Mulier, 1998; Haykin, 1998; Hertz et al., 1991; Vapnik, 1998). Here, generalization can be 

viewed as an instance of the model selection problem (i.e., the problem of learning to 

generalize from a limited (finite) amount of noisy data), a fundamentally complex and 

difficult problem. We argue, as have many others, that unconstrained model space 

generalization is not possible. As noted in the introduction of this chapter, statistical and 

formal learning theory show that it is important to incorporate relevant prior knowledge in 

the functional architecture of the learning system in order to ensure an effective acquisition 

capacity. An equivalent way of stating this is that the accessible model space (cf., section 

1.5) has to be constrained in order for appropriate generalization to occur. It is of course 

important that the functional architecture reflects appropriate prior information in order for 

the learning system to be efficient (Geman et al., 1992). This is closely related to the so-
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called bias-variance dilemma (Geman et al., 1992; Haykin, 1998). In appendix A2.1 we 

provide a general formulation, give a detailed mathematical treatment, and suggest some 

relevant interpretations for cognitive neuroscience setting of this important result. 

 In the context of neural networks, prior information can be incorporated in different 

ways, including specifics related to structural aspects of the network (e.g., network 

topology and parameters related to the computational units), the structure of the learning 

mechanisms, and the structure of the initial condition of the system. This has the 

consequence of imposing constraints on the accessible model space. In the case of simple 

network models, this translates into constraints on the accessible manifold in the space of 

learning parameters (e.g., the space of synaptic parameters). 

 

2.2 LEARNING PARADIGMS – DIFFERENT WAYS OF INTERACTING WITH 

THE ENVIRONMENT 

Different memory systems may require different learning modes and in this sub-section we 

will briefly outline the most common conceptualizations of various learning paradigms; in 

other words, different ways of interacting with the environment. Learning by instruction, 

often called supervised learning, presupposes a rich source of external feedback - a teacher. 

An example of supervised learning is the error-based learning paradigm in which detailed 

directional information is provided and utilized (e.g., various gradient descent approaches 

like error back-propagation) by the learning system to improve performance (Arbib, 2003; 

Haykin, 1998). A weaker form of environmental interaction, which also is dependent on 

external feedback, is reinforcement learning. Reinforcement learning is a kind of trial-and-

error based learning. The reinforcement paradigm thus implies that the system learns, 

through trial-and-error interaction with the environment, to gradually select appropriate 

actions by being provided external feedback in the form of reward signals. This can be 

conceptualized as a marked random search through the available model space and 

introduces an important trade-off. This trade-off has been called the exploration-

exploitation dilemma: how should the learning system allocate its temporal resources, 

given a finite life-time; with respect to exploration: how much time should the system 

spend attempting improve its model of the environment with the objective of optimizing 

exploitation opportunities (i.e., performance); with respect to exploitation: how much time 
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should be devoted to utilizing what has already been acquired in order to achieve the 

primary objectives of the learning system in the first place (cf., Haykin, 1998; Sutton & 

Barto, 1998). Thus, reinforcement learning represents a type of guided learning where 

positive and/or negative feedback is provided based on the outcome of an action. However 

no detailed directional information is provided, as is the case in the supervised learning 

paradigm, in the sense that the learning system is not instructed how to change its internal 

workings but only an evaluation of whether a certain choice of action was in some sense 

appropriate or not (cf., Sutton & Barto, 1998). In contrast, the correct response to a given 

stimulus is provided by the teacher in the simplest versions of the supervised learning 

paradigm. Finally, learning and adaptation can take place without any external feedback, 

so-called unsupervised or self-organized learning (Arbib, 2003; Haykin, 1998). This 

basically implies that the outcome of the acquisition process is determined by the 

interaction between the input experienced and the prior structure as well as properties of the 

learning system. For example, a self-organized learning process may structure a neural 

network to represent the type of environmental structure it encounters and the adaptive 

process is sensitive to (e.g., correlation structures in the environment, if the system is 

sensitive and can adapt with respect to this type of structure, cf., Rieke et al., 1996). 

Another example of self-organized learning is based on internal monitoring, that is, 

monitoring of system performance based on internal measures of error, or more generally, 

on internal measures of consistency. These internal measures can be used to improve 

internal representations or processing pathways. For example, one part of the nervous 

system may monitor another part and provide adequate teaching feedback. It is important to 

realize that primary monitoring mechanisms and internal measures of consistency 

presupposes prior information (i.e., the system comes with these properties in place when 

embarking on the acquisition task; they are not acquired but a priori given), while 

secondary monitoring mechanisms can be acquired as for example in predictive model 

based processing. In predictive model based processing, the learning system constructs 

(estimates) an internal model of relevant aspects of the input. This acquired forward model 

can subsequently be used to generate model dependent predictions or expectations. These 

predictions can be compared with the actual outcome and entails the possibility of an 

unsupervised learning framework in which internally generated error information (= 
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difference[input, prediction]; i.e., the input represents the 'outcome') drives the learning 

process (cf. e.g., Duda et al., 2001; Haykin, 1998). Simple examples of this are predictive 

adaptive time series models and various predictive learning schemes for recurrent neural 

networks. 

 

2.3 INTERACTIVE STOCHASTIC DYNAMICS – LEARNING AND 

ADAPTATION IN INFORMATION PROCESSING SYSTEMS 

The simple dynamical systems framework outlined in section 1.6.2 of chapter 1, which 

generalized the classical framework described in section 1.4, can easily be adapted to 

incorporate the idea of learning and development, thus generalizing the classical view 

summarized in section 1.5. In this section we will provide a very general conceptualization 

of cognitive systems with capacity to learn and develop. In appendix A2.2 we provide an 

illustration of this framework by analyzing and in detail work through a simple concrete 

example a continuous-time analog dynamical system: the Bayesian confidence propagation 

network (Sandberg, Lansner, Petersson, & Ekeberg, 2002). As noted in chapter 1, several 

non-standard models of information processing have recently been outlined (for recent 

reviews see e.g., Siegelmann, 1999; Siegelmann & Fishman, 1998). For example, one way 

to generalize the Church-Turing framework of computability is to employ analog instead of 

discrete representations (Siegelmann, 1999). Another is to use parameterized models in 

combination with adaptive dynamics. As an aside, note that the universal Turing machine U 

can be viewed as parameterized by the 'program number' p in a von Neumann type 

architecture and thus incorporating all realizable Turing machines R (cf., Davis et al., 

1994). More specifically, suppose the Turing machine R corresponds to the program 

number p, then the outcome of R computing on the input i is given by, R(i) = U(p,i). 

 Building on results which show that it is possible to embed Turing machines in 

discrete-time analog dynamical systems on 2-dimensional compact manifolds (Moore, 

1991a, 1991b), Siegelmann and Sontag (1994) have shown that it is possible to implement 

Turing machines in discrete-time recurrent networks with rational synaptic weights. This 

generalizes the ground breaking work of McCulloch and Pitts (1943; see also, Minsky, 

1967), who showed that the class of networks of thresholding units is equivalent to the 

class of finite-state machines. Now, it is well known that Turing machines can be 
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implemented as a finite-state machine coupled to two stack memories. Siegelmann and 

Sontag (1994) took advantage of the fact that stack memories as well as Turing tapes, as 

indicated by for example Moore (1991a; 1991b), can be simulated in rational arithmetic 

with piecewise affine transformations. Thus it was possible to show that discrete-time 

recurrent networks have computational processing power that depends on, among other 

things, the type of numbers utilized as synaptic weights: it turns out to be the case that 

natural-, rational-, and real numbers corresponds precisely to networks that are 

computationally equivalent to the finite-state, Turing, and super-Turing models of 

processing. Moreover, a large class of discrete-time dynamical systems do not have greater 

processing capacities than the discrete-time analog recurrent network architecture 

(Siegelmann, 1999). However, the dependence on infinite precision processing implies that 

these capacities generally are sensitive to system noise. Importantly, there appears to be 

several brain internal noise sources (e.g., Gerstner & Kistler, 2002; Koch, 1999; Rieke et 

al., 1996). Now, it seems clear that any reasonable analog model of a brain system will 

have a state-space in the form of a compact manifold (i.e., closed and bounded, cf., Dudley, 

2002). Here the mathematical property of compactness represents the natural generalization 

of finiteness in the classical framework (cf., section 1.5). Moreover, finite precision 

computations or realistic noise levels would have the effect of coarse graining the state-

space, thus effectively discretizing the state-space into a finite number of 'voxels' of 

roughly equivalent states. This follows from the compactness property. It thus appears that 

even if we model a brain system as an analog dynamical system, this would behave 

(approximately) as a finite state analogue (Petersson, 2004, in press). Under the additional 

assumption of finitely available processing time, the same conclusions follow in the case of 

continuous-time evolution of state variables if finite temporal precision is assumed. Similar 

results hold under the assumption of finitely available processing time, and the same 

reasoning applies, even if one introduces continuous temporal evolution of state variables 

and finite temporal precision or realistic temporal noise is assumed. 

 Returning to the conceptualization of cognitive learning systems, which generally 

can be framed as the interaction between a state space dynamics and a learning dynamics 

(cf., section 1.5). Here an information processing system C with adaptive properties is 

specified as an ordered triplet, C = <functional architecture, representational dynamics, 
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learning dynamics>; the functional architecture is a specification of the structural 

organization of the systems; for example, an architectural outline related to weak functional 

modularity subserving integrative interactive processing and incorporating different sorts of 

constraints representing prior structure (cf., the discussion above, section 1.5, and appendix 

A2.1). The representational dynamics includes a specification of a state space, Ω, of state 

variables, s, carrying/representing information (s ∈ Ω; e.g., membrane potentials), and 

dynamical principles, T (i.e., T:ΩxMxΣ → Ω), governing the active processing information 

in state space; the active representational dynamics is commonly conceived of as taking 

place on a rapid (short) characteristic time-scale. 

 Similarly, the learning dynamics includes a specification of learning (adaptive) 

variables/parameters, m (e.g., synaptic parameters), for information storage (memory 

formation) and dynamical principles, L (i.e., a 'learning algorithm'; e.g., co-occurrence or 

covariance based Hebbian learning) governing the temporal evolution of the learning 

variables in the model space M (m ∈ M). The temporal evolution of the adaptive 

parameters depends on the active processing of information and the learning dynamics is 

commonly conceived of as taking place on a slower (longer) characteristic time-scale than 

that of the representational dynamics. In order to be more explicit, this can for example be 

formulated within the framework of stochastic differential/difference equation (e.g., 

Øksendal, 2000), here with additive noise ξ(t) and η(t): 

 

  ds = T(s,m,i)dt + dξ(t)       [3] 

 

  dm = L(s,m)dt + dη(t)       [4] 

 

where i is the input representation the system receives (i.e., i = f(u)) and the output λ is a 

function of s (i.e., λ = g(s)), see Figure 2.3. As in the classic cognitive framework (cf., 

equation [1], section 1.4, and equations [1'] and [2'] of section 1.5), these equations 

determines trajectories in state space s = s(t); the temporal evolution of s as the system 

receives input i = f(u(t)) and generates output trajectories λ = g(s(t)). In addition, the system 

traces a trajectory m = m(t) in the model space; in the present case, the space of learning 

parameters. Thus information processing and learning can be formulated as a system of 
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coupled equation as illustrated by [3] and [4], and it is clear that learning represents a 

dynamical consequence of information processing and system plasticity (Petersson et al., 

1997). This outline can easily be elaborated to include classes of adaptive parameters 

operating at different characteristic time-scales (Figure 2.4) as well as parameters 

describing developmental processes. In short, developmental systems can also be modeled 

as a coupled dynamical system representing processing as well as learning and 

development. It is also clear that this view represents a generalization of the classical view 

on learning and development (cf., section 1.5). 

 General dynamical system theory (level 2 in the sense of section 1.6.2) is in some 

sense (obviously) too rich as a framework for formulating explicit models of cognitive 

brain function. For example, it turns out that for any given state space one can find a 

universal dynamical system whose traces (a kind of non-linear projection) will generate any 

possible trajectory in the state space (for the continuous case cf. e.g., Lasota & Mackey, 

1994a). Thus, what is needed is a specification of cognitively relevant constraints and 

processing principles (level 1 constraints in the sense of section 1.6.2) as well as constraints 

and processing principles relevant for the neurobiological networks subserving information 

processing in the brain (level 3 constraints in the sense of section 1.6.2). 
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Information Processing

Environment

OutputInput 

Information Storage

EncodingRetrieval 

ds = T(s,m,i)dt + dξ(t)

dm = L(s,m)dt + dη(t)

Learning in information processing systems –

interactive stochastic dynamical systems

ds = T(s,m,i)dt + dξ(t) [3]

dm = L(s,m)dt + dη(t) [4]

i = f(u) λ = g(s)

 

[Figure 2.3] Learning and adaptation in information processing systems. A cognitive 

processing system C with adaptive properties is specified as an ordered triplet, C = 

<functional architecture, representational dynamics, learning dynamics>. The 

representational dynamics corresponds to equation [3], while the learning dynamics 

corresponds to equation [4]. These equations represent a system of coupled stochastic 

differential/difference equation, which allows information processing to interact with the 

learning dynamics. For example, equation [3] and [4] can be related to the interaction 

between the perception-cognition-action and encoding-storage-retrieval cycle (Figure 1.6), 

where [3] is related to the active processing of information in short-term working memory 

and [4] is related to the encoding-retrieval cycle. 

 

 

Any real progress on this front would represent a significant generalization of Chomsky's 

concept of knowledge and competence (Chomsky, 1965, 1986, 2000b). An important set of 

constraint comes from the requirements of tractable processing, that is, our models of 
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cognition has to be physically implementable in brain tissue and perform within given 

limits of real-time processing and short-term and long-term memory capacities, assuming 

we in important respects are dealing with a finite system. 

 

Information Processing

NCX/MTL

Information Storage

MTL

EncodingRetrieval 

EncodingRetrieval 

Information Storage

NCX

Interacting adaptive systems

ds =  T(s, m1, m2,i)dt + dξ(t)

dm1 =  L(s, m1, m2,i)dt + dη1(t)

dm2 =  L(s, m1, m2,i)dt + dη2(t) 

ds = T(s,m1,m2,i)dt + dξ(t)

dm1= L1(s,m1,m2,i)dt + dη1(t)

dm2= L2(s,m1,m2,i)dt + dη2(t)

 

[Figure 2.4] Interacting adaptive systems. The functional architecture of the brain is 

specified by its structural organization, here exemplified by the neocortex (NCX) and the 

medial temporal lobe (MTL). The representational dynamics subserves active on-line 

information processing. Two different learning systems are represented by two different 

sets of adaptive variables, m1 and m2, for information storage (memory formation). For 

example, the two systems could represent short-term memory and long-term memory. 

Alternatively, in line with ideas related to memory consolidation as re-organization (Figure 

2.2) the neocortex interacts with the medial temporal lobe in order to establish and retrieve 

declarative information. It has been suggested that this form of memory ultimately becomes 

independent of the medial temporal lobe through the process of consolidation (Squire, 

1992). These examples represent two examples of the idea of a processing system with 
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multiple interacting memory systems, which operate at different characteristic time-scales 

(Petersson, 2004). 

 

 

 On the final note, the existence of universal dynamical systems, which can emulate 

any state space dynamics, suggests another possibility. In general, these universal systems 

are infinite dimensional. Now, Vapnik’s support vector machine approach takes advantage 

of the fact mapping data non-linearly into a high-dimensional space typically has the 

consequence of making the data linearly separable and thus easier to learn (Vapnik, 1998). 

If the neural infrastructure can support dynamics of very high-dimensionality this might 

provide a clue to why human brains are able to learn and acquire such a rich spectrum of 

cognitive skills using what appears to be a surprisingly stereotypic network architecture at a 

microscopic level. 
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APPENDIX 

A2.1 NOISE, ESTIMATION, AND APPROXIMATION ERRORS – SUGGESTED 

IMPLICATION FOR ADAPTABLE COGNITIVE SYSTEMS 

For a comprehensive background to the mathematical concepts, tools, and their properties 

that will be used in this appendix, consult for example the work of Billingsley (1995) or 

Dudley (2002). The objective of this appendix is to derive the bias-variance trade-off for a 

very broad class of adaptable systems in a more general setting than is commonly done. We 

also suggest how this can be translated into the context of cognitive neuroscience, 

indicating the importance of prior structure in order to ensure effective learnability for an 

adaptable cognitive system faced with a complex acquisition tasks entailing generalization 

based on model selection. Here the prior structure is inherent to the adaptive system’s 

accessible model space. From a neurobiological perspective, prior knowledge and 

information can be associated with the idea of an innately determined prior knowledge. 

 In order to get started, we first derive the generalized regression model. So, let (Ω, 

F, P) be a probability space and Y:Ω → RN ∈ L1(Ω, F, P) an integrable real random vector. 

Let X:Ω → χ  ∈ M(Ω, F, χ, A) be a measurable random variable on some general 

measurable space (χ , A). We will be using the conditional expectation operator E[Y|G], 

meaning the conditional expectation of Y with respect to the σ-algebra G ⊆ F (i.e., the 

Radon-Nikodym derivative of  ν(A) = ∫AY(ω)dP(ω) = ∫AYdP, ∀ A  ∈ G, with respect to the 

probability measure P: G → [0,1]). In all cases, we will condition on the σ-algebra σ(X) 

generated by a random variable X, and we indicate this by E[Y|X], which exist since Y ∈ 

L1(Ω, F, P). In fact, E[Y|X] is a function of X (i.e., ∃ measurable β:χ → RN such that 

E[Y|X] = β(X)). 

 Define  ε according to  ε = Y – E[Y|X]. It follows from the linearity and tower 

properties of the conditional expectation operator that E[ε|X] = E[Y – E[Y|X]|X] = E[Y|X] 

- E[E[Y|X]|X] = E[Y|X] - E[Y|X] = 0, and in particular E[ε] = E[E[ε|X]] = 0. Let 〈⋅,⋅〉:RN x 

RN → R denote the inner-product on RN, then for any measurable g: χ → RN such that 〈ε, 

g(X)〉 ∈ L1(Ω, Ŧ, P) we also have, by linearity and the tower property: 

 E[〈ε, g(X)〉|X] = 〈g(X), E[ε|X]〉 = 0 and E[〈ε, g(X)〉] = E[E[〈ε, g(X)〉|X]] = 0.    [1] 
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According to above, E[Y|X] = β(X) and thus we have arrived at the general regression 

model Y = E[Y|X] +  (Y – E[Y|X]) = β(X) +  ε, where E[ε|X] = 0. Conversely, let us 

assume a regression model for Y in relation to X, that is, Y = f(X) +  ε, where E[ε|X] = 0, 

then it follows that E[Y|X] = E[f(X)+ε|X] = f(X) + E[ε|X] = f(X); thus f(X) = E[Y|X]. 

Hence, given Y and X, the regression model for Y given X is uniquely determined by 

E[Y|X]. In the case Y ∈ L2(Ω, F, P), turns out to be the orthogonal projection of Y on to the 

function space {Z ∈ L2(Ω, F, P) | ∃ measurable φ:χ → RN such that Z = φ(X)}. 

 Having derived and characterized the generalized regression model, we move on to 

derive the bias-variance trade-off. Suppose we have a model space defined by the function 

space F:χxW → RN, where W is the space of adaptive parameters w ∈ W such that ∀ w ∈ 

W, F(⋅, w):χ → RN ∈ M(χ, A) is measurable. Now, any learning process, which attempts to 

solve the generalization problem based on model selection, can be viewed as searching for 

or attempting to estimate a model f: χ → RN in the accessible model space Μ  = {F(⋅, w): χ 

→ RN | w ∈ W }. Suppose this estimation procedure is based on a finite measurable 

acquisition sample T = {T1:Ω → T1, … , Tn:Ω → Tn }, where (Tk, Sk), k = 1,…,n, are yet 

other measurable spaces. For example, Tk = (Xk, Yk) in the case of a supervised, or Tk = Xk 

in the case of a self-organized (unsupervised) learning paradigm. Now, the learning process 

L (whatever its details) can be viewed as a measurable mapping from T1x … xTn to W, 

which induces a mapping W:Ω → W, where the stochastic properties derives from the 

sample {T1, … ,Tn} and possibly other random sources, for example an additive noise 

source η:Ω → W as in W = L(T1, … ,Tn) + η, and addition is defined on W as is the case if 

for example W = RM. W induces a probability distribution µW = PW-1 on the measurable 

space (W, V ), that is, ∀ A ∈ V : µW(A) = P(W-1(A)), where W-1(A) = {ω ∈ Ω | W(ω) ∈ 

A}. Assume in addition that (X, ε) is independent of W and that all relevant random 

variables/vectors belongs to L2(Ω, F, P). Let f(X) = E[Y|X] and consider the squared L2-

norm of Y – F(X, W); that is, the averaged squared error of F(X, W) as a model for Y, 

E[||Y – F(X, W)||2]: 

 E[||Y – F(X, W)||2] = E[||Y – f(X) + f(X) – F(X, W)||2] =  

   = E[||Y – f(X)||2 + ||f(X) – F(X, W)||2 + 2〈Y – f(X), f(X) – F(X, W)〉] =  

   = E[||Y – f(X)||2] + E[||f(X) – F(X, W)||2]+ 2E[〈Y – f(X), f(X) – F(X, W)〉] =  
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   = // where the last term = 0, see below // = E[||ε||2] + E[||f(X) – F(X, W)||2].     [2] 

To show that E[〈Y – f(X), f(X) – F(X, W)〉] = 0, let g(X,W) = f(X) – F(X, W), and 

remember that ε = Y – f(X), then: 

 E[〈Y – f(X), f(X) – F(X, W)〉] = E[〈ε, g(X,W)〉] = ∫Ω 〈ε, g(X, W)〉dP = 

   = ∫Rx…xRxχxW 〈e, g(x, w)〉dP(ε,X,W)-1 = // (X, ε) and W are independent // = 

   = ∫Rx…xRxχxW 〈e, g(x, w)〉dP(ε,X)-1dPW-1 = //Fubini’s theorem// =  

   = ∫W {∫Rx…xRxχ〈e, g(x, w)〉dP(ε,X)-1}dPW-1 = ∫W  E[〈ε, g(X, w)〉]dPW-1 =  

   = // according to [1], E[〈ε, g(X, w)〉] = 0, ∀ w ∈ W // = 0. 

Thus, E[||Y – F(X, W)||2] = E[||ε||2] + E[||f(X) – F(X, W)||2]. Furthermore, 

 E[||f(X) – F(X, W)||2] = ∫Ω||f(X) – F(X, W)||2dP = ∫χxW ||f(x) – F(x, w)||2dP(X,W)-1 =  

   = // X and W independent, Fubini’s theorem // =  

   =  ∫χ {∫W  ||f(x) – F(x, w)||2dPW-1}dPX-1 =  

   = // µX = PX-1, µW = PW-1 , and define E[F(x, W)] =  ∫W F(x, w))dµW // =  

   =  ∫χ {∫W  ||f(x) – E[F(x, W)] + E[F(x, W)] – F(x, w)||2dµW}dµX =  

   =  ∫χ {∫W  ||f(x) – E[F(x, W)]||2dµW}dµX +  ∫χ {∫W  ||E[F(x, W)] – F(x, w)||2dµW}dµX  

   + 2 ∫χ {∫W  〈f(x) – E[F(x, W)], E[F(x, W)] – F(x, w)〉dµW}dµX =   

   = // µW is a probability distribution on W  // = 

   = ∫χ ||f(x) – E[F(x, W)]||2dµX +  ∫χ {∫W  ||E[F(x, W)] – F(x, w)||2dµW}dµX  

   + 2 ∫χ {∫W  〈f(x) – E[F(x, W)], E[F(x, W)] – F(x, w)〉dµW}dµX.  [3] 

Now, define the bias and variance terms B(x) and V(x) according to: 

 B(x) = f(x) - E[F(x, W)], 

 V(x) = E[||F(x, W)] – E[F(x, W)]||2] = ∫W  ||F(x, w) - E[F(x, W)]||2dµW. 

Then B(x) can be interpreted as the local approximation error (i.e., the approximation error 

at x) in F(⋅, w) averaged over the model space Μ of f(x) . V(x) is the estimation error or 

variance induced by the acquisition sample and the learning process. It follows from [3] 

that, 

 E[||f(X) – F(X, W)||2] =  ∫χ ||B(x)||2dµX +  ∫χ V(x)dµX + 

   + 2∫χ {∫W  〈f(x) – E[F(x, W)], E[F(x, W)] – F(x, w)〉dµW}dµX. 

The last term reduces to 0 according to: 

  ∫χ {∫W  〈f(x) – E[F(x, W)], E[F(x, W)] – F(x, w)〉dµW}dµX =  
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   =  ∫χ 〈f(x) – E[F(x, W)], E[F(x, W)] - ∫W  F(x, w)dµW〉dµX =  

   =  ∫χ〈f(x) – E[F(x, W)], E[F(x, W)] - E[F(x, W)]〉dµX = 0. 

Thus, E[||f(X) – F(X, W)||2] is given by: 

 E[||f(X) – F(X, W)||2] = ∫χ ||B(x)||2dµX + ∫χ V(x)dµX = E[||B(X)||2] + E[V(X)] 

and it follows from [2] and [3] that, 

 E[||Y – F(X, W)||2] = E[||ε||2] + E[||f(X) – F(X, W)||2] =  

   = E[||ε||2] + E[||B(X)||2] + E[V(X)]. 

Hence, there are three contributions to the L2-norm of Y – F(X, W): 

1/ The regression variance or noise E[||ε||2] = ∫Ω||ε(ω)||2dP(ω), inherent in  

 the regression model  

 Y = f(X) +  ε, that is, inherent environmental noise. 

2/ The average approximation error or bias E[||B(X)||2] = ∫Ω||B(X(ω))||2dP(ω) =  

   = ∫χ ||f(x) – E[F(x, W)]||2dµX = ∫χ ||f(x) –  ∫W F(x, w))dµW||2dµX, due to an  

 inherently biased model space Μ  = {F(⋅, w) | w ∈ W }. 

3/ The average estimation error or variance E[V(X)] = ∫ΩV(X(ω))dP(ω) =  

   =  ∫χ {∫W  ||F(x, w) - E[F(x, W)]||2dµW}dµX =  

   = ∫χ {∫W  ||F(x, w) - ∫W  F(x, w))dµW||2dµW}dµX,  

 which is induced by the acquisition sample and the learning process. 

We conclude that there are three fundamental sources contributing to the lack of efficiency 

of an adaptive system in acquiring a proper generalization capacity: environmental noise, 

model space bias, and learning (estimation related) error (Figure A1). To achieve high 

acquisition efficiency it is necessary that the contribution from each of these sources is 

small. In order to reduce the model space bias term E[||B(X)||2], it is necessary to increase 

the expressive capacity of the model space, that is, to increase the set of accessible models 

Μ  = {F(⋅, w) | w ∈ W }. One way to achieve this is to increase the dimensionality of M, 

which implies that the number of adaptable parameters has to be increased. Given a fixed 

acquisition set T = {T1:Ω → T1, … , Tn:Ω → Tn }, this typically implies that the variance 

term E[V(X)] increases (cf. e.g., Haykin, 1998; Vapnik, 1998). A possible way to 

circumvent this is to increase the size of the acquisition set T and the time complexity of 

the learning problem in order to keep the overall error E[||f(X) – F(X, W)||2] under control. 
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Environment
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transmission

Environmental noise:

E[||ε||2] = ∫Ω||ε(ω)||2dP(ω)

Learning error: E[V(X)] = ∫χ{∫W||F(x, w) –  ∫WF(x, w))dµW||2 dµW}dµX

Model space bias: E[||B(X)||2] = ∫χ||f(x) –  ∫WF(x, w))dµW||2dµX

 

[Figure A1] The Bias-variance trade-off. The overall performance of a learning system 

depends on three factors: (1) the inherent noise ε in the environment transmitted through 

the input data to the learning system; (2) the inherent bias B of the accessible model space 

(i.e., the average approximation error inherent to the learning system); and (3) the variance 

V induced by the acquisition sample and randomness inherent to the learning process as 

such (i.e., the average estimation error). In general, one might suggest that the proper prior 

model space bias is determined, at least partly, by innately specified factors, while the 

learning error is dependent on individual learning and development as well as innate factors 

specifying the acquisition mechanism. 

 

 

Thus, generally increased acquisition efficiency by reducing the model space bias comes at 

the price of increased acquisition complexity. However, an alternative strategy to reduce 

the overall error is to incorporate relevant prior structure in the acquisition mechanism itself 

or into the structure of the accessible model space Μ, a so-called bias-reducing strategy. 
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The latter option ensures that there exist accessible models F(⋅, w):χ → RN in Μ from the 

start that are guaranteed to approximate the acquisition problem f:χ → RN well and that 

these models are accessible to the learning process, given the properties that can be 

expected of a 'typical' acquisition set T. 

 In general, a 'proper' bias of the accessible model space has to be 'designed' 

specifically for each learning problem. From a neurobiological perspective, prior 

knowledge can be interpreted as an innately determined structure. Thus, for time and space 

restricted learning problems (e.g., a limited finite acquisition set T), the bias-variance trade-

off strongly indicates the necessity of innately determined structure in order for a learning 

system, operating under complexity constraints, to acquire real complex skills or 

knowledge (cf., Gold, 1967; Jain et al., 1999; Nowak et al., 2002; Vapnik, 1998). Whether 

this prior structure is domain specific or not is in principle a different issue. However, given 

the specificity requirements of built in prior knowledge or bias for specific acquisition 

tasks, it will come as no surprise if parts of the prior knowledge turns out to be domain 

specific. This would seem to be the simplest 'solution' from an evolutionary perspective. 

The most prominent example of this line of thought is reflected in Chomsky's (1986) 

suggestion for the natural language domain that not only is prior innate constraints 

necessary but these prior constraints represents a linguistically specific competence in the 

form of a specifically structured initial state of the faculty of language and a specific 

language acquisition device. In summary, in order to succeed effectively on complex 

learning tasks, it seems necessary for a learning system to incorporate prior 

structure/knowledge in its accessible model space and in its learning mechanism. Given the 

complexity of many acquisition tasks confronting the human brain, we conclude that this is 

also the case for the brain (for further discussion of these issues see Petersson, 2004, in 

press; Petersson et al., 2004 and the references therein). 

 

A2.2 THE BAYESIAN CONFIDENCE PROPAGATION NETWORK 

In this appendix we will outline and work through a concrete example of the interactive 

dynamical systems framework for adaptive systems outlined in chapter 2. To recapitulate, 

information processing systems with adaptive properties were specified as ordered triplets, 
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C = 〈functional architecture, representational dynamics, learning dynamics〉 and we arrived 

at equations [3] and [4], here re-stated for convenience: 

 ds = T(s, m, i)dt + dξ(t)       [1] 

 dm = L(s, m)dt + dη(t)       [2] 

where i = f(u) is the input and the output λ is a function of s (i.e., λ = g(s)). This framework 

can be viewed as a formalization of the interaction between the perception-action and the 

encoding-retrieval cycles (Figure 1.6 and 2.4). Here we will illustrate how the abstract 

formulation in [1] and [2] can be mapped on to a simple concrete example, the so-called 

Bayesian confidence propagation (BCP) network (Sandberg et al., 2002). The BCP network 

is an example of a continuous-time analog recurrent network. 

 In general, it is essential for a capacity limited real world learning system to give 

priority to the retention of relevant information that is appropriate to its operational 

objectives. In a non-stationary environment, the time of acquisition is one indicator of 

relevance. Thus a real-time on-line learning system with capacity limits needs to gradually 

forget old information in order to avoid catastrophic interference. This can be achieved by 

allowing new information to overwrite old. Memory systems with this property are called 

palimpsest memories. If the environment is non-stationary, it is generally important to give 

priority to more recently acquired information (note that this may take place at several 

different time-scales). 

 Auto-associative artificial neural networks (ANNs), for example McCulloch-Pitts 

associative memories and Hopfield networks, have been proposed as models for biological 

associative memory (cf., Arbib, 2003; Hopfield, 1982; McCulloch & Pitts, 1943; Minsky, 

1967; Trappenberg, 2002). These represent one way of formalizing Donald Hebb's original 

ideas of synaptic plasticity and emerging cell assemblies (Hebb, 1949). Simulations have 

indicated that networks of cortical pyramidal and basket cells can operate as attractor 

networks (e.g., Fransen & Lansner, 1998). However, the standard correlation based 

learning rule for attractor ANN suffer from catastrophic interference, that is, all memories 

are lost as the system reaches a critical memory limit and becomes overloaded. Nadal et al. 

(1986) proposed the marginalist-learning paradigm as a way to handle the situation. The 

basic idea is to control the acquisition intensity and tune it to the level of crosstalk-noise 

(i.e., the correlation between memories). This has the consequence that the most recently 
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acquired information is more stable compared to older information; new patterns are stored 

on top of older, which gradually become overwritten and finally inaccessible. Another 

learning procedure with smooth forgetting characteristics is learning within bounds 

(Hopfield, 1982). This reduces the storage capacity compared to the standard Hopfield 

Hebbian-type learning rule in order to achieve long term memory stability. 

 A learning rule for attractor networks derived from Bayes' theorem (cf. e.g., 

Billingsley, 1995; Duda et al., 2001) was developed by Lansner and Ekeberg (1989), which 

represents a Hebbian-type learning process that reinforces connections between 

simultaneously active units and weakens or makes connections inhibitory between anti-

correlated units. This learning process is based on a probabilistic view of learning and 

retrieval, with input and output unit activities representing confidence of feature detection 

and posterior probabilities of outcomes, respectively. The synaptic strengths are based on 

the probabilities of the units firing together, estimated by counting occurrences in the 

acquisition data. This procedure yields symmetric learning weights and thus allows for 

fixed-point attractor dynamics. It also generates a balance between excitation and 

inhibition, avoiding the need for external means of threshold regulation. We have described 

a modification of the Bayesian learning rule in order to achieve a real-time on-line learning 

system with palimpsest memory properties (for mathematical details, properties, and 

simulation results cf., Sandberg, Lansner, & Petersson, 2001; Sandberg, Lansner, 

Petersson, & Ekeberg, 2000; Sandberg et al., 2002). This incremental learning process is 

based on moving averages and the forgetting rate is controlled by a time constant. The BCP 

neural network with the incremental version of the Bayesian learning rule shows palimpsest 

memory properties and avoids catastrophic forgetting. It has a capacity dependent on the 

learning time constant and exhibits decreasing convergence speed for increasingly older 

information. 

 In the context of BCP networks, the functional architecture represents a 

specification of the types of neurons, making up the network, as well as their processing 

properties. The network consists of N neurons i ∈ {1, … , N}. A neuron i first transforms 

the input with an affine transformation according to: 

 ui = Σjωijsj + βi  

where input sj is weighted according to the synaptic parameters ωij, and βi represent the 



 68

bias. The transfer function of the neuron i, is given by a truncated exponential: ϕ(ui) = 

exp[ui], when ui ≤ 0,and = 1, when ui > 0. Thus, 

 sj = ϕ(ui) = ϕ(Σjωijsj + βi). 

The structural organization of the network is determined by its connectivity matrix [cij]NxN, 

which is also reflected in the weight matrix [ωij]NxN. The connectivity matrix, where cij = 1, 

if there is a connection from neuron j to neuron i, and = 0, otherwise, determines which 

computational nodes interact. In other words, the connectivity matrix determines the 

possible patterns of computational interaction or information flow in the network. In the 

present case, no self-interaction is allowed so cii = 0. 

 The representational dynamics includes a specification of the neuronal state 

variables (s, or alternatively, the 'membrane potentials' u) and dynamical principles 

governing information processing, T. The state space of the BCP network is N-dimensional 

and the dynamical variables of the state-space dynamics si = si(t) represent the mean firing 

rate over some appropriate time-scale. The N-dimensional representational dynamics T can 

be broken down into its component form T = [T1, … , Ti, … , TN] and is given by: 

 Ti = Ti(s, ω, β) = ϕ(βi + Σjωijsj) − si. 

The learning parameters ω and β are functions of an underlying set of adaptive parameters 

a and b, respectively. The components of ω = ω(a, b) and β = β(b) are given by: ωij(aij, bi, 

bj) = log[aij/bibj], and βi(bi) = log[bi]; in other words, T = T(s, a, b) = T(s, ω(a, b), β(b)). 

Note how (a, b), or alternatively (ω, β), corresponds to m in equations [1] and [2]. 

Similarly, the learning dynamics includes a specification of learning (adaptive) 

variables/parameters, m, which here corresponds to ω = ω(a, b) and β = β(b), where a and b 

are the adaptive parameters, as well as dynamical principles determining the learning 

process, L. The temporal evolution of the adaptive parameters depends on the active 

processing of information carried by s. The learning dynamics L = L(s, a, b) of the BCP 

network operates in a N2-dimensional space of learning parameters (i.e., model space); and 

broken down into component form L = [L1, L12, … , Li , … , Lij  , … , LNN-1], L is given by: 

 Li = Li(s, a, b) = [(1 − λ0)si + λ0] − bi  

and  

 Lij = Lij(s, a, b) = [(1 − (λ0)
2)si + (λ0)

2] − aij  
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where 0 < λ0 << 1 is a small positive constant which is necessary to introduce for technical 

reasons in order to avoid divergence problems of the logarithm in the neighborhood of 0. A 

processing interpretation of this constant is possible, in which λ0 represent the averaged 

background of low-level network activity, in the absence of any input to the network 

(Sandberg et al., 2002). Thus the learning dynamics represent a form of learning within 

lower bounds. For a detailed outline of these ideas, the heuristic mathematical derivations 

of the BCP network and its learning process, see Sandberg et al. (2002). 

 In the final analysis of the BCP network, this yields a deterministic interactive 

dynamical system in which the representational and the adaptive dynamical variables 

interact according to:  

 τC⋅ds/dt = T(s, ω(a, b), β(b)) 

 τL⋅d[a, b]/dt = L(s, a, b) 

where the τC is the 'membrane constant' of the processing units while τL determines the 

relevant time-scale for learning and forgetting. We define the learning rate as αL = 1/τL and 

set αC = 1/τC. If we also include additive noise ξ(t) and η(t), generalizing somewhat the 

framework outlined in Sandberg et al. (2002), we end up with a stochastic dynamical 

system of the form: 

 τC⋅ds/dt = T(s, ω(a, b), β(b)) + σ(t, ε)dξ(t, ε)      [3] 

 τL⋅d[a, b]/dt = L(s, a, b) + υ(t, ε)dη(t, ε)     [4] 

where ξ:RxE → RN (i.e., ξ = ξ(t, ε), t ∈ R, ε ∈ E) is a normalized N-dimensional Ito 

process with zero mean and unit variance-covariance matrix (i.e., E[ξ(t)] = 0 and Var[ξi(t)] 

= 1), and a stochastic variance σ = σ(t, ε), on a probability space (E, F, P). Similarly, η:Rx 

E → (RN)2 is a normalized N2-dimensional Ito process, while υ = υ(t, ε) is a stochastic 

variance. In general we will leave the argument ε ∈ E implicit in the following. Note that 

the form of [3] and [4] corresponds exactly to that of [1] and [2]. In detail, [3] and [4] thus 

takes the following form, for i, j ∈ {1, … , N}, i ≠ j: 

 dsi/dt = αC⋅Ti(s, ω, β) = αC[ϕ(βi + Σjωijsj) − si] + αCσi(t)dξi/dt   [5] 

 daij/dt = αL⋅Lij(s, a, b) = αL{[(1 − (λ0)
2)sisj + (λ0)

2] − aij} + αLυij(t)dηij/dt [6] 

 dbi/dt = αL⋅Li(s, a, b) = αL{[(1 − λ0)si + λ0] − bi} + αLυi(t)dηi/dt.  [7] 

If we temporarily departure from the on-line continuous perspective on learning and instead 
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take a batch perspective (i.e., keeping ω and β fixed in [5] while adapting a and b in [6] and 

[7] for a given time interval and subsequently updating ω and β at the end of this interval), 

it turns out that it is possible to explicitly integrate the system described by [6] and [7]. In 

order to do this we note that both systems of equations [6] and [7] have the form: 

 dF = α{(1 − c)⋅s(t)+ c] − F(t)}dt + σ(t)dξ(t). 

Now, let θ(t) = (1 − c)⋅s(t)+ c, then dF/dt = αθ(t) − αF(t) + σ(t)dξ(t). Here, we can 

generalize the situation slightly and allow a time-varying α = α(t). Thus, we have the 

general situation: 

 dF = α(t)θ(t) − α(t)F(t)dt + σ(t)dξ.       [8] 

In order to integrate [8] we introducing an integrating factor G(t) = exp[g(t)], where 

function g = g(t) is defined according to: g(t) = ∫[0, t] α(ρ)dρ ⇒ dg/dt = α(t). Now, 

multiplying F(t) with the integrating factor G(t) and then taking the temporal derivative we 

arrive at: 

 d[GF] = (dG/dt)F(t)dt + G(t)dF =       [9] 

   = // dG/dt = d{exp[g(t)]}/dt = exp[g(t)]⋅dg/dt = α(t)exp[g(t)]⋅= α(t)G(t) // = 

   = α(t)G(t)F(t)dt + G(t)dF = α(t)G(t)F(t) + G(t)[α(t)θ(t) − α(t)F(t)]dt + σ(t)dξ =  

   = α(t)θ(t)G(t) + σ(t)dξ/dt.        [10] 

Thus, by integrating [9] and [10], we arrive at: 

 G(t)F(t) = C+∫[0, t] (d[GF]/dρ)dρ+∫[0, t] σ(ρ)dξ(ρ) = C+∫[0, t] α(ρ)θ(ρ)G(ρ)dρ  

   + ∫[0, t] σ(ρ)dξ(ρ), and G(t) = exp[g(t)] implies that: 

 F(t) = C⋅exp[-g(t)] + exp[-g(t)]⋅{∫[0, t] α(ρ)θ(ρ)exp[g(ρ)]dρ + ∫[0, t] σ(ρ)dξ(ρ)} =  

   = C⋅exp[-g(t)] + ∫[0, t] α(ρ)θ(ρ)exp[g(ρ) - g(t)]dρ + ∫[0, t] exp[-g(t)]σ(ρ)dξ(ρ). 

Now, if we assume that ξ = ξ(t, ε) is a normalized Brownian motion and that the variance is 

non-random, that is, σ(t, ε) = σ(t), then the noise term can be integrated by parts according 

to: 

 ∫[0, t] exp[-g(t)]σ(ρ)dξ(ρ) = exp[-g(t)]⋅{σ(t)ξ(t, ε) − ∫[0, t] ξ(ρ, ε)dσ(ρ)},  

(for details see e.g. Øksendal (2000), theorem 4.1.5). 

Furthermore, identifying C = F(0) and defining an integration kernel χ(t, ρ) according to 

χ(t, ρ) = α(ρ)exp[g(ρ) − g(t)], if -∝ < ρ ≤ t, and = 0, if ρ > t, we arrive at an explicit 

expression for F(t): 
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 F(t, ε) = F(0)⋅exp[-g(t)] + ∫[0, t] α(ρ)θ(ρ)exp[g(ρ) − g(t)]dρ  

   + exp[-g(t)]⋅∫[0, t] σ(ρ)dξ(ρ, ε) = F(0)exp[-g(t)] + ∫R θ(ρ)χ(t, ρ)dρ  

   + exp[-g(t)]⋅{σ(t)ξ(t, ε) − ∫[0, t] ξ(ρ, ε)dσ(ρ)}    [11] 

The expression for F(t, ε) in [11] includes a deterministic part D(t) = F(0)exp[-g(t)] + ∫R 

θ(ρ)χ(t, ρ)dρ as well as a stochastic (non-deterministic) part S(t, ε) = exp[-g((t))]{σ(t)ξ(t, 

ε) − ∫[0, t] ξ(ρ, ε)dσ(ρ)}. In short, within the batch-learning framework, F(t, ε)= D(t) + S(t, 

ε), and this expression can be used to arrive at explicit expressions for aij and bi in the 

simple case of a constant α(t) = αL: g(t) = ∫[0, t] α(ρ)dρ = ∫[0, t] αLdρ = αL⋅t, and thus 

exp[g(ρ) − g(t)] = exp[αL(ρ − t)] = exp[-αL(t − ρ)]. It follows that χ(t, ρ) = α(ρ)exp[g(ρ) − 

g(t)] = αLexp[-αL(t − ρ)] becomes a time-invariant convolution kernel. In other words, χ(t, 

ρ) acts like a linear time-invariant filter of exponential decay. Now, given the network 

activity generated by the input from the environment, θij(t) = [(1 − (λ0)
2)sisj + (λ0)

2] and 

θi(t) = αL[(1 − λ0)si + λ0], respectively: 

 aij(t) = aij(0) + αL⋅∫[0, t] [(1 − (λ0)
2)si(ρ)sj(ρ)+ (λ0)

2]exp[-αL(t − ρ)]dρ  

   + αLexp[-αL⋅t]⋅{σij(t)ηij(t, ε) − ∫[0, t] ηij(ρ, ε)dσij(ρ), and 

 bi(t) = bi(0) + αL⋅∫[0, t] [(1 − λ0)si(ρ) + (λ0)
2]exp[-αL(t − ρ)]dρ  

   + αLexp[-αL⋅t]){σi(t)ηi(t, ε) − ∫[0, t] ηi(ρ, ε)dσi(ρ). 

Sandberg et al. (2002) also introduce a modular architecture within the BCP network 

framework in terms of so-called hyper-columns. This amounts to clustering the neurons in 

hyper-columns and imposing a weak prior structure in terms of a disjoint representation of 

abstract features and normalization of activity within hyper-columns according to: Sik = 

ϕ(uik)/Σj ϕ(ujk); and this enters into equation [5]. 

 Summing up, we have seen how the BCP network framework can be viewed as a 

particular example of the general framework specified by the equations [1] and [2]. The 

BCP network memory shows the palimpsest memory property and the time for the memory 

decay scales roughly as the learning time constant τL. The memory capacity increases 

linearly with τL up to a limit where it becomes equal to the standard counter BCP network. 

This means that the introduction of palimpsest properties has not reduced the maximal 

capacity as such. By setting the size of the network and the learning time constant the 

memory capacity can be regulated from a fast learning short-term working memory to a 
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slowly learning long-term memory (cf., Sandberg et al., 2001; Sandberg et al., 2000, 2002). 

Biological associative synaptic plasticity is generally assumed to be Hebbian-type in 

nature. This is also the case for the Bayesian-Hebbian-type BCP learning process outlined 

above. It exhibits a graded behavior with multiple synapse activations as well as a more 

step-wise behavior for single-synapse activation similar to experimental observations in 

LTP (Petersen, Malenka, Nicoll, & Hopfield, 1998). The BCP learning process displays 

both LTP- and LTD-like phenomena (cf. e.g., Artola & Singer, 1993; Bear & Kirkwood, 

1993). Wahlgren and Lansner (2001) have shown that the Bayesian–Hebbian learning 

process, with some modifications, can provide a phenomenological model for synaptic 

long-term plasticity. Sandberg et al. (2001) indicate that when the learning rate is 

modulated by a relevance signal, the BCP network exhibit selective enhancement of the 

retrieval probability of the relevant information. This represent an example of a time-

varying learning rate αL = αL(t). Having a time-varying learning rate, that changes over 

time with the relevance of the information being processed, opens up for the possibility to 

control learning rate by various relevance or 'print-now' signals. This can be used to make 

the memory selective. 

 An alternative perspective on time-varying learning rates can also be taken. This 

can be related to our previous discussion emphasizing that different learning tasks are not 

equivalent and that the brain is equipped with multiple memory systems, storing different 

types of information of different spatio-temporal characteristics. As previously suggested, 

one the possible benefit of forgetting is that forgetting processes allows the system to 

restructure, integrate, and re-organize its knowledge base in such a way that only the 

relevant aspects of the information are preserved, thus increasing the efficiency of the 

system it terms of information content and retrievability (Figure 2.2 and 2.4). Hence, it is 

likely that the different storage systems operate on different time-scales and show different 

forgetting characteristics. In the BCP network, selecting a learning time constant sets a 

scale of temporal detail that the network is most sensitive to. The learning system will 

average out the events that occur at faster time-scales and adapt to slower changes. A 

rapidly adapting network would learn and remember actively represented information 

(short-term working memory), while a more slowly forgetting network might learn from 

single presentations, via working memory representations (episodic memory), and at an 
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even slower learning and forgetting rates, a memory system would average individual 

presentation events into a prototypic semantic memory. The BCP network equiped with 

several sets of adaptive parameters, operating at different characteristic time scales, can 

thus instantiate several forms of memory systems in the same network (cf., Figure 1.6 and 

2.4). 
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3. METHODOLOGICAL BACKGROUND 

To probe the mysteries of the human brain, cognitive neuroscience combine the 

experimental strategies of cognitive and experimental psychology with techniques that 

allows for detailed investigations of the brain activity that supports cognition. Functional 

neuroimaging methods provide experimental access to the living human brain and have 

developed rapidly during the last two decades. Hemodynamically based functional 

neuroimaging methods, such as positron emission tomography (PET) and functional 

magnetic resonance imaging (FMRI), are extensively used to investigate how neuronal 

processing correlates with changes in behavior or cognitive processing (Frackowiak, 

Friston, Frith, Dolan, & Mazziotta, 1997; Raichle, 1994; Toga, Mazziotta, & Frackowiak, 

2000). A framework of well described theories and empirically validated methods are 

available (Frackowiak et al., 2004). The functional neuroimaging methods used differ in 

assumptions as well as the approximations employed. These need to be kept in mind for 

optimal use; of central importance is how well the empirical data fulfill these assumptions 

and approximations as well as the robustness of the methods used in analyzing the data. 

This notion emphasizes the importance of empirical validation, investigation of robustness, 

and the explicit characterization of the inherent limitations of a given method. nevertheless, 

the standard functional neuroimaging methods provide a useful means to investigate how 

networks of brain regions interact due to the whole brain coverage and the fact that primary 

data from different brain regions can be sampled on an approximately equal basis, at least 

with PET and to a lesser extent with FMRI (due to susceptibility artifacts and signal drop-

out etc.). In addition, when the underlying assumptions and limitations are taken into 

account, the various standard approaches used generally serve their purposes well 

(Petersson, Nichols, Poline, & Holmes, 1999a, 1999b). 

 This chapter is largely base on the review by Petersson et al. (1999a; 1999b) in 

which the limitations of various functional neuroimaging methods were discussed. it is 

clear that these limitations are important to take into account when analyzing and 

interpreting functional neuroimaging data (Petersson, 1998). It should also be noted that the 

methods of the field are still developing rapidly (cf. e.g., Frackowiak et al., 2004; Friston, 

Glaser et al., 2002; Friston, Harrison, & Penny, 2003; Friston & Penny, 2003; Friston, 



 75

Penny et al., 2002; Genovese, Lazar, & Nichols, 2002; Ledberg, Fransson, Larsson, & 

Petersson, 2001). 

 

3.1 THE COUPLING BETWEEN NEURAL ACTIVITY AND REGIONAL 

CEREBRAL BLOOD FLOW BLOOD 

The neurophysiological basis of functional neuroimaging is the relatively tight and roughly 

linear coupling between the regional cerebral blood flow, the metabolic activity, and the 

neural activity as measured with electrophysiology (Gusnard & Raichle, 2001; Logothetis, 

Pauls, Augath, Trinath, & Oeltermann, 2001; Rees, Friston, & Koch, 2000; Scannell & 

Young, 1999; Siesjö, 1978). At rest the human brain consumes approximately 20% of the 

oxygen and metabolic supply needed by the body, although the brain accounts for only 

approximately 2% of the body mass. The oxygen is used in the oxidative metabolism of 

glucose to supply the brain with energy in the long-term (Raichle, 1998). Brief increases in 

neural activity of a given brain region implies that the energy and oxygen requirements in 

the given region increases and is accompanied by an increase in blood flow as well as 

glucose consumption that exceed the increase in oxygen consumption (Fox, Raichle, 

Mintun, & C., 1996). This means that the relationship between oxygen consumption and 

blood flow is not proportional. In a region of transient activity, the increase in glucose is 

partly broken down anaerobically by glycolysis despite of overcompensation in blood flow 

supply. As a result there is a lowered extraction fraction of oxygen that results in increased 

oxygen content in the blood nearby (Raichle, 2001). The robust empirical relationship 

between changes in brain activity and blood flow has been known for over a century 

(Raichle, 2001). The work of Logothetis and colleagues (Logothetis et al., 2001; 

Logothetis, Guggenberger, Pelea, & Pauls, 1999) indicates that a spatially restricted 

increase in the FMRI signal directly reflects an increase in neural activity. They recorded in 

parallel and correlated action potentials as well as local field potentials with the BOLD 

signal. Both these measures correlated with the observed BOLD signal, the local field 

potentials somewhat better than the action potentials. Local field potentials arise from the 

input as well as integrative processes within neurons. These findings are consistent with 

autoradiographic measurements of glucose consumption by different brain regions in rats 
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(Raichle, 2001). In his commentary, Raichle (2001) notes that the signal-to-noise ratios for 

neural signals recorded directly from the brain are much greater than the accompanying 

FMRI signal. This implies, for example, the absence of an FMRI signal does not 

necessarily imply that no information processing is going on in a particular brain region. 

 The energy turn-over in the brain is necessary as to maintain the ionic 

concentrations and membrane potentials at the appropriate levels. The dominant use of 

energy stems from maintenance of these membrane potentials. Neuronal signaling evokes 

ionic fluxes across membranes that need to be restored and most such fluxes are supported 

directly or indirectly by the Na/K-ATPase and other ionic pumps (Siesjö, 1978). Raichle 

(2001) suggests that the glutamate cycle act as a local driver for metabolism based on the 

abundance of glutamate as a transmittor. Thus the generation of ATP will be supplied 

anaerobically and lactate will be produced upon increases in neuronal work. This means 

that PET measures of regional cerebral blood flow will indicate proportionally higher 

increases in signal than the actual local increase in oxygen consumption. In FMRI, the 

sensitivity of the measured signal is based on the related increase in oxygenated blood 

locally. As noted, the BOLD signal correlates well with local field potentials and to a large 

extent these are generated in the postsynaptic dendritic component where large ionic fluxes 

that need restoration are generated from the neuronal input. There remains an unresolved 

question regarding the relationship between the type of brain activity and the signals 

measured with FMRI and PET. Are they related to excitation, inhibition, or both? The 

signal is a composite net-activity and it is difficult to imagine any regional activity that is 

not a mixture both excitatory and inhibitory components. However, given that inhibitory 

signals give rise to hyperpolarization and less ionic leakage post-synaptically, that the 

recorded signal might be more closely related to local excitatory activity (Shinohara, 

Dollinger, Brown, Rapoport, & Sokoloff, 1979). 

 

3.2 PET ACQUISITION PROCEDURES 

The functional neuroimaging data presented in chapter 6 were acquired with PET. In 

functional PET studies, a radioactive isotope (in the present case, [15-O]-butanol (Berridge, 

Cassidy, & Terris, 1990) or [15-O]-H2O (Fox & Mintun, 1989)) with a half-life of 

approximately 2 min is injected into the venous blood stream. Between 10 to 15 bolus 
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injections of 400-500 MBq (10-15 mCi) [15O]-butanol or [15O]-H2O were injected. In the 

basic PET scanner set-up used, the primary PET data acquisition started automatically 

when a predetermined activity threshold was passed upon bolus arrival to the brain. PET 

data was then acquired for the subsequent 40 s. In order for the injected radioactivity to 

return to the background level at least 5 x the half-life of [15-O] was allowed to pass (i.e., 

approximately 10 min between the PET scans). The tracer-molecules follow the blood flow 

and emit positrons that interact with electrons in their vicinity. Each positron-electron pair 

decays into two photons which then trace out a line-of-response in opposite direction. The 

photon radiation intensity along the different lines-of-response, determined by the field-of-

view (i.e., the number and position of the detector rings of the PET scanner) depends on the 

tissue distribution of the tracer-molecules, which in turn is determined by the regional 

cerebral blood flow. The detector logic ensures that an appropriate estimate of the tissue 

distribution is acquired during the primary data acquisition. Various back-projection 

techniques can then be applied to the raw data to recover a 3D estimate of the tracer 

distribution and thereby an estimate of the regional cerebral blood flow. Because of the 

coupling between regional cerebral blood flow and neural activity, we arrive at an estimate 

of the underlying neural activity. In our case, the raw PET data (i.e., the sinograms) were 

reconstructed using the back-projection algorithms supplied by the CTI manufacturer for 

the 3D ECAT EXACT HR PET scanner (Wienhard et al., 1994) with a standard Hanning-

filter setting (Hanning 5s) thus yielding the primary 3D PET data. Attenuation correction 

was routinely performed based on a transmission scan for each participant. Head 

movements were restrained by an individually fitted plastic helmet. 

 

3.3 IMAGE PROCESSING AND STATISTICAL ANALYSIS 

The primary PET data were then subjected to several steps of image- and statistical analysis 

which we will outline in the subsequent sections. Most functional neuroimaging studies are 

analyzed as group studies. Group investigations are conducted primarily because we are 

primarily interested in commonalities over participants, at this stage. In other words, we are 

interested in the effects that generalize at least to the group of subjects investigated. 

Another reason for conducting group investigations is to increase the signal-to-noise ratio 
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and thereby the statistical power of a given experiment. With respect to the particular 

studies outlined in chapter 6, we analyzed the PET data through out with the Karolinska 

Computerized Brain Atlas of Greitz (Greitz, Bohm, Holte, & Eriksson, 1991) as well as the 

SPM software (www.fil.ion.ucl.ac.uk). 

 During the last two decades a body of well described theories and empirically 

validated methods have been developed, providing a framework for investigating functional 

neuroimaging data and making scientific inferences based on statistical analysis. Statistical 

models make explicit as well as implicit assumptions about data. What is of importance in 

this context are not the assumptions or approximations per se but how well these are 

fulfilled by empirical data and the robustness of the methods used, when these assumptions 

or approximations are not fully met (Petersson et al., 1999a, 1999b). 

 

[Figure 3.1] General outline of functional neuroimaging data analysis. The primary 

functional neuroimaging data are commonly pre-processed, that is, realigned, anatomically 

normalised, and spatially and temporally low-pass filtered; a statistical model for the data is 
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created; model parameters are subsequently estimated and a test statistic is chosen in order 

to conduct for statistical inference, taking into account the multiple non-independent 

comparisons. 

 

 

 Most functional neuroimaging methods are based on 3D voxel data, an approach 

pioneered by Fox and colleagues (Fox & Mintun, 1989; Fox, Mintun, Reiman, & Raichle, 

1988) and Friston and colleagues (Friston et al., 1990; Friston, Frith, Liddle, & Frackowiak, 

1991). The primary functional neuroimaging data are commonly pre-processed (e.g., 

realigned, anatomically normalised, and low-pass filtered), a statistical model and a test 

statistic is chosen, and model parameters estimated for statistical inference taking into 

account multiple non-independent comparisons and possible temporal autocorrelation (see 

Figure 3.1). In the following sections we will outline in some detail the different processing 

steps involved in analyzing functional neuroimaging data. 

 

3.3.1 IMAGE PREPROCESSING 

3.3.1.1 REALIGNMENT AND ANATOMICAL NORMALIZATION 

In a functional neuroimaging study it is commonly the case that several measurements, a 

time-series of volumes (or 3d images), are acquired of a given participant in the different 

experimental conditions. For example, in our PET studies, 10 – 15 PET scans were 

acquired for each subject. The participants were asked to lie in a more or less comfortable 

position and as still as possible in the PET scanner during the experiment, in order to 

reduce head movement during the experiment. The head of the participant was fixated to 

the scanner with an individually fitted plastic helmet designed to minimize movement of 

the head in the scanner. Nevertheless, small head movements still occur (on the order of 1 – 

3 mm). In order to compensate for this movement, the reconstructed PET images are 

automatically realigned (cf., Ashburner & Friston, 1997). The brain in each volume of the 

time-series of a given individual will thus occupy the same position in image space. 
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 The brains of different individuals are anatomically different. A necessary 

requirement for group studies in functional neuroimaging is to represent data in a 

standardized anatomical space. This requires a method to transform, or warp, individual 

data into the standardized space, so-called anatomical normalization. Anatomical 

normalization aims to adjust for anatomical differences in order to allow data to be 

averaged across subjects. Anatomical normalization transforms the image time-series of the 

individual participant into a standardized anatomical space and in our studies we have 

commonly used the stereotactic space as defined by the SPM template 

(www.fil.ion.ucl.ac.uk), an approximate Talairach space (Talairach & Tournoux, 1988), 

and sometimes in combination with the Computerized Brain Atlas of Greitz (Greitz et al., 

1991). 

 

3.3.1.2 FUNCTIONAL-ANATOMICAL VARIABILITY AND SPATIAL 

FILTERING 

There have been several attempts to assess the residual functional-anatomical variability 

after realignment and anatomical normalization in more or less low-pass filtered data. 

These attempts have often used the variability in location of the local maximum statistic 

(peak location). Several studies estimate inter-subject standard deviations of the peak 

coordinates to be on the order of 5-10 mm (Fox & Pardo, 1991; Hasnain, Fox, & Woldorff, 

1998; Hunton et al., 1996; Ramsey et al., 1996). When, for example, PET data from 

different laboratories are compared, this variability increases (Poline, Vandenberghe, 

Holmes, Friston, & Frackowiak, 1996; Senda et al., 1998) and this indicates that activation 

foci that are less than 10 mm apart cannot always be reliably distinguished (Grabowski et 

al., 1996). Contrary to some claims in the literature, the intra-individual variability can also 

be significant, even for robust primary motor activations (Hunton et al., 1996). 

 The inter-individual residual variability in functional anatomy generally exhibits 

spatial structure and is dependent on the algorithm used for normalization. Simulation 

studies have indicated that a reduction of registration (realignment) error and a 

minimization of the residual anatomic variability can significantly improve the signal 

detection sensitivity (Worsley, Marrett, Neelin, & Evans, 1996b). In the presence of 
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residual functional-anatomical variability the effect of inter-subject averaging amounts to a 

spatial filtering or smoothing effect. Thus, if the spatial-scale of the filter matches the 

inherent scale of functional-anatomical variability in the population, no (or little) spatial 

information is lost. In general, using a voxel-based approach, it is important to reduce the 

impact of misregistration and inter-individual residual functional-anatomical variability. A 

common strategy is to low-pass filter, or smooth, the data either at reconstruction or with a 

suitably chosen convolution kernel (e.g., an isotropic 3D Gaussian kernel). Spatial filtering, 

which in effect is a local weighted averaging procedure, also increase the local equivalence 

of the voxel data across measurements and individuals and thus the validity of voxel-based 

statistical models. 

 Filtering data spatially may or may not increase the signal to noise ratio. This 

depends on the relation between the size and shape of the signal and the convolution kernel 

used. This relation between the signal size/shape and the characteristics of convolution 

kernel can understood in the light of the matched filter theorem (Rosenfeld & Kak, 1982). 

This theorem states that a signal in a background of white noise is detected with optimal 

sensitivity if a convolution kernel, which matches the size and shape of the signal, is used. 

It should be noted that the situation is slightly more complicated when the noise component 

is coloured (i.e., spatially autocorrelated). This is typically the case with hemodynamic 

functional neuroimaging data. Now, the result of the matched filter theorem serves as a 

good approximation, if the spatial extent of the signal is large compared to the extent of the 

autocorrelation. However if this is not the case, the choice of an optimal filter is more 

complicated. In this case the autocorrelation has to be taken into account when choosing the 

filter. This can be illustrated in the situation of stationary data (i.e., spatial homogeneity, or 

other words, translational invariant second moment characteristics of the probability 

distribution), which implies that the data can be whitened with a filter W. The matched 

filter theorem can then be applied to the whitened data generating a matched filter S. This is 

equivalent to directly apply the convolution of W and S, W∗S, as a filter. We conclude then 

that the matched filter theorem suggests that the detection sensitivity is biased towards 

signals of similar spatial characteristics as the smoothing kernel. 

 In closing this section, which has mainly focused on functional-anatomical 

variability and signal detection in relation to image smoothing, it should be noted that the 
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arguments are general and also apply to signals in the temporal domain. In addition to 

outlining some complications related to these issues, we want to recapitulate that the 

objective of spatial filtering is mainly related to minimizing individual differences in 

residual functional-anatomy. It is also the case that spatial filtering typically increases the 

signal-to-noise ration, since the power of the residual spatial noise is usually dominant in 

the higher spatial frequencies. Moreover, convolving the data with a Gaussian kernel 

conditions the data to conform more closely to a Gaussian random field model (cf., section 

3.3.3.3). One of the mechanisms behind this is the fact that filtering amounts to a weighted 

averaging and it follows heuristically from the central limit theorem of probability theory 

that random variables averaged in this way converge towards a Gaussian in distribution. In 

addition, it has recently been shown that as the projection counts in the PET reconstruction 

process (filtered back-projection) approach infinity the reconstructed images will become 

multivariate Gaussian distributed (Maitra, 1997). In our studies, we have generally filtered 

the data with a 3D isotropic Gaussian kernel of 14 mm full-width-at-half-maximum 

(FWHM). 

 

3.3.2 STATISTICAL MODELING AND ESTIMATION 

3.3.2.1 BASELINE FLUCTUATIONS AND GLOBAL NORMALIZATION 

Functional neuroimaging experiments usually test hypotheses regarding regionally specific 

changes in neuronal activity. In the case of PET, these changes in neuronal activity are 

indirectly reflected in the associated changes in regional cerebral blood flow (rCBF) or 

regional cerebral counts (rCC), and in the case of BOLD FMRI, by changes in regional 

susceptibility. In the following, regional activity rA will represent rCBF, rCC, or regional 

FMRI BOLD signal, depending on the context. 

 For practical and other reasons, the imaging systems are commonly used in a non-

quantitative mode. Therefore the focus is on relative regional changes which are then 

related to a baseline. This can be problematic since for example variability in global factors 

often induces baseline fluctuations. Different measures of global activity have been used to 

account for some of the baseline variability. An example of a simple estimator of global 

activity (gA) that has been used is the intra-cerebral average of regional activity rA. Global 
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activity defined in this way varies between subjects and over time. The variability depends 

on several variables (Frackowiak et al., 1997; McColl, Holmes, & Ford, 1994), for 

example, physiological (e.g., changes in pCO2 levels and circulatory system changes), 

factors relating to the measurement procedures (e.g., differences in injected radioactive 

dose) and the imaging system (e.g., between-run variability in FMRI gain). Global changes 

are therefore difficult to interpret without quantification. 

 When there is a lack of absolute quantification and the experimentally induced 

regional changes are assessed relative to a baseline, changes in this baseline are often 

considered a nuisance effect. Since baseline fluctuations may be large, potentially hiding 

the effects of interest, it is necessary to account for or remove this variability in some 

appropriate manner. The notion of baseline variability as a nuisance effect implicitly 

assumes that the scan-to-scan baseline fluctuations are sufficiently independent of the 

experimental manipulations. In order to properly account for baseline variability there are 

two issues that need to be addressed: First, how to measure or estimate the baseline 

fluctuations, and second, how these measurements are used to explicitly model or remove 

the variability in baseline activity. Measurements of global effects, and consequently 

global normalization, are predicated on the assumption that the variability in global effects 

adequately represent the baseline fluctuations and that the experimentally induced regional 

changes are superimposed on this according to some model. Several approaches to account 

for global changes have been proposed and compared. For example, proportional scaling 

(Fox & Raichle, 1984; Kanno, Hatazawa, Shimosegawa, Ishii, & Fujita, 1996), log-linear 

regression models (Herholz, Kessler, Slansky, Mielke, & Heiss, 1993), histogram/rank 

equalization (Arndt, Cizadlo, O'Leary, Gold, & Andreasen, 1996), Z-score transformation 

of data (McIntosh et al., 1996), or modeled as a nuisance covariate in the general linear 

model (Friston et al., 1990). Both the ANCOVA (Friston, 1995; Friston et al., 1990; 

Ramsay et al., 1993) and the proportional scaling (Kanno et al., 1996) approaches have 

been empirically validated for PET data. In our studies we have consistently used the 

proportional scaling approach to global normalization. 

 The relation between rCBF and gCBF is most likely non-linear. However, over 

sufficiently constrained ranges this relation is well approximated by a linear model. For 

normal subjects and small ranges of gCBF, the incorporation of the gCBF as a covariate in 
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a linear model affords a reasonably good model of the relationship between rCBF and 

gCBF (Frackowiak et al., 1997). The additive ANCOVA model was proposed under the 

assumption that changes in gCBF and the experimentally induced changes in rCBF are 

well approximated as independent variables. However, it has been pointed out that the 

results of this approach may be problematic to interpret if changes in gCBF are correlated 

with the experimentally induced changes in rCBF (Ramsay et al., 1993; see also, Aguirre et 

al., 1998b and Andersson, 1997) or if the gCBF estimation is biased. This is also the case 

for proportional scaling. 

 The variability in gCC is often larger than in gCBF. Even if gCBF is relatively 

constant, subject differences in head fraction and variability in the introduced radioactive 

dose causes variability in gCC. In the case of count data, rCC is proportional to gCC when 

rCBF is constant. Therefore, if it can be expected that the variability in for example head 

fraction or introduced radioactive dose is dominant, proportional scaling is a reasonable 

choice. The empirical comparisons between various approaches, which have so far been 

performed, have yielded little differences between the various approaches to global 

normalization, both for PET data (Arndt et al., 1996; Frackowiak et al., 1997; Holmes, 

1994; McIntosh et al., 1996) and FMRI data (Aguirre, Zarahn, & D'Esposito, 1998b). In 

other words, most functional neuroimaging studies on normal subjects yield similar results 

using either approach and thus robust results are roughly independent of the global 

normalization method chosen. However, when the global signal is significantly 

confounded with the experimental paradigm, it may be preferable in some situations to 

omit global normalization entirely and examine non-normalized changes (Aguirre, Zarahn, 

& D'Esposito, 1998a). An alternative strategy is to use more robust measures of gA; that is, 

attempting to estimate gA independent of the task induced changes in rA, in order to more 

accurately estimate the baseline fluctuations. One possibility is to examining brain regions 

known to be relatively unaffected by the experimental paradigm. An iterative solution to 

the latter suggestion has been proposed that successively eliminates voxels that indicate 

experimental effect from the set used to compute gA (Andersson, 1997). Moreover, the 

problem of estimating baseline fluctuations should be less complicated if closely matched 

activation and reference conditions are investigated. However, with increasing activation 
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differences between conditions, this may become a significant problem, emphasizing the 

need for carefully designed experiments that include active reference conditions. 

 

3.3.2.2 THE CHOICE OF REFERENCE STATE 

One principle that has emerged in cognitive neuroscience and functional neuroimaging is 

that of functional specialization or functional segregation. The idea of functional 

specialization rests on the hypothesis that different brain regions are specialized and 

implement different computations or operations on cognitive representations. This principle 

is reflected in the general linear modeling approach described in the section 3.3.2.3. 

 Functional neuroimaging data are typically analyzed in terms of a specific linear 

model, parameters are estimated, and subsequently various null-hypotheses tested. Under 

the assumption that the activation and reference conditions differ in some relevant specific 

aspect of cognitive processing, the locations of statistically significant differences in signal 

between conditions presumably define brain regions that are related to this difference. This 

approach is crucially dependent on an adequate choice of conditions to compare. Given an 

activation condition, the functional map will in general vary with the choice of reference 

condition. For example, in a simple subtraction, only parts of the underlying functional 

network may be observed, since common components activated to a similar degree will not 

be observed. Furthermore, results obtained with the subtraction approach can only be 

interpreted as relative differences since, at present, a canonical reference state or baseline 

condition seems difficult to define. This introduces a complication in the interpretation of 

functional maps, an ambiguity that is fundamental to the activation approach. In principle, a 

relative increase in rCBF in condition A compared to condition B might in relation to a 

third condition C represent an activation in condition A, a deactivation in condition B or a 

combination of both. The same holds for relative decreases in rCBF. It follows that, the 

formulation and specification of the reference condition is an important and difficult issue 

in functional neuroimaging. In general, the appropriate choice of the reference condition(s) 

is an issue that must be addressed at the design stage of a particular functional 

neuroimaging experiment. However, given an activation condition of interest, it is still an 

open question what is to be considered an appropriate reference condition(s). This depends 

crucially on the objectives of a given experiment, that is, the questions that the 
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experimental data are supposed to address. The central issue here is whether the chosen 

reference condition is well defined, in some suitable sense, to fulfill the objectives of a 

given functional neuroimaging experiment. One possible way forward is to use several 

reference conditions. This strategy allows for multiple perspectives on a given activation 

condition. For example, it is possible to use both closely matched control conditions and 

so-called low-level control conditions. A closely matched control condition differs ideally 

only in a single aspect from the condition of interest and can be used to test for specific 

effects. Instead a low-level control condition, for example rest with eyes closed or visual 

fixation, can be used to detect many, most, or all of the brain areas involved in a given task. 

Thus the simultaneous use of both closely matched and low-level control conditions can 

provide complementary information. 

 A further complication in the interpretation of results from functional neuroimaging 

studies based on the subtraction of functional images is whether a given brain function is 

well approximated as a linear additive decomposition into functional components, or, rather 

under which circumstances or comparisons they may be. In general, as indicated in chapter 

1 and 2, brain functions cannot be expected to be linearly composed of a set of components. 

Rather, one can expect that complex brain functions are the result of non-linear interactions 

between components, that is, the regional brain activity associated with complex behavior 

may not be a sum of postulated constituents. If the regional brain activity associated with 

complex behavior is not the sum of apparent constituents, then the interpretation of results 

from the subtraction approach (in particular the compound hierarchical subtraction 

approach) is difficult and may depend strongly on the choice of experimental component 

tasks. This is particularly problematic if there is no canonical way of decomposing an 

overall task into components. This suggests that it may be necessary to develop new 

approaches that explicitly address the fact that brain functions emerge from non-linear 

interactions between components. Initial steps in this direction have been taken, as 

illustrated by various network approaches like structural equations modeling and dynamical 

causal modeling (Friston et al., 2003; McIntosh & Gonzalez-Lima, 1994, cf., section 3.4). 

In this context it should also be noted that it is only possible to detect quantitative 

differences with the activation approach. Qualitative differences in information processing 

that are not accompanied by quantitative changes will not be detected. However, the 



 87

complementary perspective represented by the network approach can in principle detect 

qualitative differences in the pattern of interactions between brain regions without any 

changes in mean activity (cf., sub-section 3.4). For further reflections on these issues see 

Ingvar and Petersson (2000). 

 

3.3.2.3 THE GENERAL LINEAR MODEL 

The general linear model (GLM) is a framework that encompasses all basic univariate 

models, including the ANOVA/ANCOVA and the multiple regression models. In the GLM 

framework n observations from a single image voxel are represented as column vector of 

length n, Y; the p effects and predictor variables are represented as p column vectors also 

of length n, forming an n x p matrix X called the design matrix. The fixed regression 

parameters are represented as a column vector β of length p; the residual random error is 

written as the column vector ε of length n. With the assumption of mean zero, independent 

and identically distributed error of magnitude σ2, the concise representation of the GLM is:  

  E(Y) = Xβ and Var(Y) = σ2I, 

where I is the n × n identity matrix. Note that we have made no specific distributional 

assumptions; the usual normality assumption is only needed for statistical inference. Using 

only the general assumptions above, according to the Gauss-Markov theorem (Bickel & 

Docksum, 1977; Bilodeau & Brenner, 1999; Brockwell & Davis, 1991), the linear 

unbiased estimates of β and σ2 that are best in terms of minimizing the squared estimation 

error are given by: 

  β = (X'X)-1 X'Y and s2 = 1/(n-p)(Y-Xβ)'(Y-Xβ), 

where b and s2 are the estimate of the unknown β and σ2, respectively. The form of b can 

be found from algebraic manipulation of Y=Xβ. Note that Y-Xβ is the residuals, so that the 

form of s2 is just the mean squared residuals (the n-p reflecting the dimensionality of the 

residuals that are left after fitting p independent effects). Tests of linear combinations of 

the parameters can be made under the normality assumption, which gives: 

  Cβ ~ N(Cβ, C(X'X)-1C'), 

where C is a row vector of length p, often called a contrast (cf., Frackowiak et al., 2004). 
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3.3.3 HYPOTHESIS TESTING AND STATISTICAL INFERENCE 

We have briefly outlined the ways in which effects of interest, confounds, and nuisance 

variables can be modeled and estimated. The parameters are always assessed relative to 

their uncertainty in a statistical hypothesis-testing framework. Informally, we wish to know 

if the magnitude of the parameter (or contrast of parameters) is substantial with respect to 

its uncertainty (i.e., its standard deviation). Hypothesis testing proceeds as follows: The 

null hypothesis is assessed with a test statistic, a function of the data that is sensitive to 

departures from the null hypothesis and reflects the effects of interest; the observed statistic 

is compared to its distribution under the null hypothesis, yielding a P-value. A small P-

value is interpreted as indicating that there is little support for the null hypothesis, though 

its interpretation is more subtle. The P-value is the probability of observing a statistic value 

as large or larger, under an identical replication of the experiment, and under the 

assumption that the null hypothesis is true. Hence, the P-value is a statement about the data 

under the null hypothesis, not the null hypothesis itself. 

 In the decision theoretic framework of hypothesis testing, a pre-specified level of 

significance is used to accept or reject the null hypothesis (Bickel & Docksum, 1977). In 

alternative frameworks, the smallness of the P-value is viewed as a measure of the strength 

of the empirical evidence against the null hypothesis (Edgington, 1995). This perspective 

views the size of P-value as representing a smooth transition from empirical evidence 

supporting the alternative hypothesis to empirical evidence in favor of the null hypothesis. 

Now, if one rejects the veracity of the null hypothesis whenever the P-value is below a 

critical value α then a valid test will control the false positive rate at α. The false negative 

rate β is closely related to the statistical power, 1-β. The statistical power is the probability 

of rejecting the null hypothesis when it is false. While it would seem natural to focus 

attention on the power of the test, the power is a function of the unknown alternative, and 

the best that can be done is to use test statistics that maximizes power over all alternatives 

(relative to all other tests of the same class). 

 The regression approach in functional neuroimaging fits univariate models at every 

voxel (the number of voxels is typically on the order of 105), and effects of interest are 

tested in each individual model by generating and assessing a statistic image. Usually an 

image regression approach is used, which implies that the same univariate model is fitted at 
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each voxel. The common test procedures in functional neuroimaging conform to the 

standard structure of hypothesis testing. If a particular, pre-specified voxel is of interest, 

then standard univariate theory can be applied. Otherwise the statistic image is searched 

for, for example, voxels of significant magnitude using the local maximum statistic, or, 

given an intensity threshold, significant clusters using the supra-threshold cluster size 

statistic. 

 

3.3.3.1 GENERAL ISSUES RELATED TO STATISTICAL INFERENCE 

The statistical analysis of functional neuroimaging data typically implies that many 

hypotheses are tested on the same data set. Central to the multiple (e.g., voxel-by-voxel) 

hypothesis testing is an adequate handling of the multiple comparisons problem; that is, it is 

necessary to appropriately control the false positive rate. Ideally, the statistical inference 

procedure should handle the multiple comparisons problem effectively, avoiding any 

unnecessary loss of sensitivity and statistical power. Given the null-hypothesis H0 and a test 

statistic T(X) of the data X, the test is said to be liberal, conservative, or exact, if for any 

given level α and rejection region R(α), the probability that T(X) belongs to the rejection 

region R(α), P[T(X)∈R(α))|H0], is greater than, less than, or equal to α, respectively. 

Appropriate control of the false positive rate requires an exact or conservative test. In 

general, the more conservative the test is the lower the sensitivity of the test. 

 In order to handle the multiple comparisons problem (Hochberg & Tamhane, 1987) 

appropriately, the rejection criteria has to be chosen so that the probability of rejecting one 

or more of the null hypotheses when the rejected null hypotheses are actually true, is 

sufficiently small. Let the search volume Ω = {v1,...,vK} consist of K voxels v1,...,vK, and 

let H1,...,HK be the null hypotheses for each voxel. The omnibus null hypothesis HΩ is the 

(logical) conjunction of H1,...,HK, that is HΩ = H1∩ ... ∩ HK. To test H1,...,HK we use a 

family of tests, T1,...,TK. For all j∈{1...K} let Ej be the event that the test Tj incorrectly 

rejects Hj, that is Ej = [Tj∈R(αj)], where R(αj) is the corresponding rejection region at the 

level αj. Suppose the test is exact or conservative, that is P[Ej|HΩ] ≤ αj. 

 In the context of the family T1,...,TK of tests, the family-wise error (FWE) rate is 

defined as the probability of falsely rejecting any of the null hypotheses H1,...,HK. Given 



 90

the level α, weak control over FWE requires that the probability of the rejecting the 

omnibus null hypothesis HΩ, the union event EΩ = E1∪ ... ∪ EK, is at most α, P[EΩ|HΩ] ≤ 

α. Evidence against the omnibus hypothesis HΩ indicates the presence of some activation 

somewhere. This implies that the test has no localizing power, meaning that the false 

positive rate is not controlled for individual voxels. Tests that have only weak control over 

FWE are called omnibus tests, and are useful to detect whether there is any experimentally 

induced effect at all, regardless of location. If, on the other hand, there is interest in not 

only detecting an experimentally induced signal but also reliably locating the effect, a test 

procedure with strong control over FWE is required. Strong control over FWE requires that 

FWE be controlled not just under HΩ, but also under any subset of hypotheses. Specifically, 

for any subset of voxels ω ⊆ Ω and corresponding omnibus hypothesis Hω, P[Eω|Hω] ≤ 

α.That is, all possible subsets of hypotheses are tested with weak control over FWE. This 

ensures that the test is valid at every voxel, and that the validity of the test in any given 

region is not affected by the truth of the null hypothesis elsewhere. Thus, a test procedure 

with strong control over FWE has localizing power. 

 

3.3.3.2 SPATIAL AUTOCORRELATION AND MULTIPLE NON-INDEPENDENT 

COMPARISONS 

One way to achieve strong FWE control is to adjust the level of significance with which the 

different hypotheses H1,...,HK are tested. The single step Bonferroni correction is an 

illustrative example of such a strategy. Suppose that H1,...,Hk are tested at an equal level, 

say b, that is, P[E1|HΩ] ≤ b,..., P[EK|HΩ] ≤ b. If all voxels have the same marginal 

distribution, then testing them at equal level amounts to thresholding the statistic image, 

giving a single threshold test. In general, P[EΩ|HΩ]  = P[E1∪ ... ∪ EK|HΩ] ≤ P[E1|HΩ]  +...+ 

P[EK|HΩ]  = K × b. If b is chosen so that K × b = α, that is, b = α/K, it follows that 

P[EΩ|HΩ] ≤ α. This so-called Bonferroni correction will be conservative when the 

individual tests are correlated, since then P[EΩ|HΩ] will be substantially smaller than 

P[E1|HΩ] +...+ P[EK|HΩ]. For a large number of correlated tests, the Bonferroni correction 

results in a conservative procedure and an unnecessary loss of statistical power. 
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 Functional neuroimaging data are often characterized by spatial autocorrelation, 

meaning that closely spaced voxels are correlated, due to the point spread function of the 

imaging system, physiological factors, as well as image smoothing. Given a non-trivial 

spatial autocorrelation in the statistic image this implies that multiple comparisons are non-

independent and a simple Bonferroni correction would be unnecessarily conservative. 

Instead, an effective solution of the multiple non-independent comparisons problem is 

central to the voxel-by-voxel approach. There are several approaches to handle this 

problem. Broadly speaking, these divide into parametric, non-parametric, and Monte-Carlo 

simulation approaches (Petersson, 1998; Petersson et al., 1999b). The parametric 

approaches used in functional neuroimaging are usually based on some type of random 

field theory (Adler, 1981, 1998; Friston et al., 1995; Worsley et al., 1996) generating 

distributional approximations. 

 

3.3.3.3 RANDOM FIELD THEORY 

In our studies we have generally used the GLM framework for modeling and estimation, 

while we have based our hypothesis testing and statistical inference on parametric 

approaches founded in smooth random field theory. Random field theory has proved 

versatile in testing a number of test statistics (e.g., local maximum, cluster size statistic, or 

the number of regions with size greater than a given size). The smooth random field theory 

approach has been extensively validated on simulated data and empirical studies using real 

null data have indicated that this approach gives accurate results (e.g., Aguirre, Zarahn, & 

D'Esposito, 1997; Zarahn, Aguirre, & D'Esposito, 1997). In addition, investigations of the 

robustness and characterization of inherent limitations of the random field theory approach 

with respect to the various assumptions and parameters have been carried out extensively; 

including, for example, with respect to degrees of freedom (Worsley, Evans, Marrett, & 

Neelin, 1992), smoothness estimation (Poline, Worsley, Holmes, Frackowiak, & Friston, 

1995), and variance heterogeneity (Worsley, 1996). In addition, non-parametric methods 

have been used as benchmarks for cross-validation of the random field theory approach and 

these investigations have also shown that the approach provides accurate results (e.g., 

Ledberg et al., 2001). Essentially, the random field theory approach allows for spatial 

correlation between voxels in the statistic image when correcting for multiple comparisons, 
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thereby improving on the Bonferroni correction and thus preserving statistical power. The 

approach has been developed to accommodate several statistical fields, such as Z, t, χ2 and 

F fields, where all non-Gaussian random fields are derived from Gaussian random fields. 

 In the original work of Worsley et al. (1992), it was assumed that the excursion sets 

(roughly the potentially significant regions) did not intersect the boundary of the search 

volume, limiting the results to infinite search volumes. This is a reasonable approximation 

for finite search volumes provided the search volume is large relative to the surface area 

and the smoothness of the field. In addition, it was assumed that the covariance structure of 

the random field was stationary. These constraints have subsequently been relaxed and a 

unified approach described; the random field is transformed to an isotropic random field 

and the volume, surface area, and diameter are estimated in the space of resolution elements 

(i.e., resel space, Worsley et al., 1996) and the sationarity assumption has given way for 

random fields with local non-stationarities (Worsley, Andermann, Koulis, MacDonald, & 

Evans, Abstract presented at HBM99). 

 Another general assumption in the application of smooth random field theory to 

discrete statistic images is that the statistic image can be considered a well sampled version 

of the smooth random field, or conversely, that the smooth random field is a good 

approximation of the statistic image. In general, the frequency spectrum of smooth 

stochastic process is not bounded. However, in experimental data, the observable spatial 

frequencies are limited (i.e., only the spatial frequencies below half the frequency of the 

sampling process are observable by the Shannon-Nyqvist sampling theorem). The sampling 

issue becomes particularly important in the context of smoothness estimation. Smoothness 

estimation amounts to the estimation of a parameter related to the spatial auto-correlation. It 

should be noted that the smoothness estimation in random field theory relates to the spatial 

autocorrelation of the statistic image (which is described by the smoothness parameter(s)), 

and this is different from image smoothing or spatial filtering applied to the data during 

pre-processing. The estimation of the smoothness parameter should be independent of 

experimentally induced effects and thus smoothness estimation is generally made on the 

residual images. Furthermore, it is important to note that the smoothness estimate itself is 

the realization of a random variable (Poline et al., 1995). Poline et al. (1995) gives an 

approximate expression for the variance of this estimator. When estimated on a single 
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image, the variability of the resulting corrected p-value is found to be moderate (i.e., 

stdev(p)/E[p] is of the order of 20%). 

 The multivariate Gaussian assumption is fundamental to the results derived by 

Adler (1981) and Worsley et al. (1996 a,b). This assumption is difficult to check for 

functional neuroimaging data. However, with sufficient image smoothing and a sufficient 

number of effective degrees of freedom, then the multivariate central limit theorem (cf. e.g., 

Billingsley, 1995) lends support to this assumption. As suggested by the central limit 

theorem and the fact that the PET reconstruction process (filtered back-projection) implies 

the summations of a large number of Poisson distributed count data, the regional activity 

observed in reconstructed PET images can be expected to be (approximately) Gaussian 

distributed. It has recently been shown that as the projection counts approach infinity the 

reconstructed images will become multivariate Gaussian distributed (Maitra, 1997). For 

further discussion of assumptions, approximations, and limitations in functional 

neuroimaging, see Petersson et al. (1999a; 1999b). 

 

3.4 FUNCTIONAL CONNECTIVITY AND NETWORK ANALYSIS 

The statistical models described so far are used to investigate the relationship between the 

experimental paradigm and the changes induced in brain activity. These approaches study 

changes in regional activity and how these changes co-vary with specific external 

experimental manipulations or variables. As outlined in chapter 1 and 2, it has been 

suggested that higher cognitive functions are the result of network interactions between 

different brain regions. This suggests that the understanding of different cognitive brain 

functions can benefit from analyzing the interactions between different brain regions. 

Based on the idea that brain regions, which constitute components of a functional network, 

will have activities that are correlated one approach is to investigate the covariance pattern 

observed in functional neuroimaging data, so-called functional connectivity. Functional 

and effective connectivity was originally introduced in the context of electrophysiology 

(Aertsen, Gerstein, Habib, & Palm, 1989; Aertsen & Preissl, 1991) and these concepts 

were transferred to hemodynamically based functional neuroimaging approaches, typically 

with a slightly modified connotation. Functional connectivity was defined as the observed 
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correlations over time between different brain areas, independent of the sources of these 

correlations, and effective connectivity explicitly referred to the influence that one neural 

system exerts over another (Friston, 1994). In following sub-section, we will briefly 

discuss some issues related to covariance sources as well as outline a network approach to 

the analysis of effective connectivity based on structural equations modeling that we have 

used in studying a simple network model of immediate verbal repetition (Petersson et al., 

2000). 

 Two different ways to estimate the covariances between brain regions in a given 

cognitive state have been described: over time within subject (Buechel & Friston, 1997) 

and over subjects (Horwitz, McIntosh, Haxby, & Grady, 1995). The basic hypothesis is 

that the intrinsic variability in the neural response of a cognitive state will emulate the 

relevant functional interactions and that these interactions will be reflected in the 

covariance structure. Several sources of interregional covariances have been proposed 

(Horwitz, Soncrant, & Haxby, 1992) and the actual sources of the observed covariances are 

largely unknown (Petersson et al., 1999a). If the covariances are estimated over subjects, it 

is necessary to assume that the subjects implement a sufficiently similar functional 

organization. The observed covariance structure can thus be viewed as reflecting an 

average common functional organization. However, it is conceivable that the functional 

organization can vary substantially between subjects; that is, the covariance structure of a 

subject may or may not be related to a common underlying functional organization. In PET 

studies the number of intra-subject observations is limited, so, in order to increase 

sensitivity, data is typically pooled over subjects. However, with FMRI, it is possible to 

study functional and effective connectivity in single subjects (Buechel & Friston, 1997). 

 

3.5 STRUCTURAL EQUATIONS MODELING 

It has been suggested that a comprehensive investigation using various network analysis 

approaches and large-scale neural modeling hold great potential and may add significantly 

to our understanding of human cognition (Horwitz, 1998; Horwitz et al., 1999). To 

characterize effective connectivity in functional neuroimaging data a network approach 

based on structural equations modeling (Bollen, 1989; Hayduk, 1987) was proposed by 

McIntosh and Gonzalez-Lima (1994). Structural equations modeling (SEM) provides an 
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opportunity to investigate functional-anatomical network models subserving different 

cognitive functions in terms of regions involved and their interactions. To characterize a 

functional network, a specific functional-anatomical model is used in conjunction with 

SEM to model the observed covariance structure between the regions included in the 

model. The functional-anatomical model is specified by selecting the network components 

and specifying the network topology (i.e., the connections between the components) based 

on theoretical and empirical considerations. Different constraints on the connections can 

also be specified. The interregional covariances are computed and the connection (or path) 

coefficients are estimated within condition. Differences between conditions or groups can 

then be evaluated using a stacked models approach (Bollen, 1989). 

 Structural equations modeling commonly use a linear system of equations to 

describe the interrelation between regions in the functional-anatomical model with the 

connection coefficients as free parameters. The connection coefficients are fitted in an 

optimization process. This procedure attempts to recreate the observed covariance structure 

between regions as closely as possible by finding optimal values of the path coefficients. 

There are several optimization algorithms available to estimate the connection strengths. 

Typically, the optimization process uses estimated starting values in combination with an 

iterative maximum likelihood procedure. For example, the standard implementation in 

LISREL (Boomsma, 1985; Jöreskog & Sörbom, 1996) a two-stage least squares approach 

in combination with the Davidon-Fletcher-Power algorithm and line search (other 

alternatives are available , cf., Jöreskog & Sörbom, 1996). With reasonably well-fitting 

models, the initial estimates are often close enough to the final maximum likelihood 

estimate for the optimization algorithms to quickly converge to this estimate. It should be 

noted that when the estimates depend non-linearly on the model parameters there is no 

guarantee that the global optimum will be reached with deterministic gradient descent 

algorithms or non-exhaustive search procedures. Alternatively, a simulated annealing 

approach to optimization can be used (Geman & Geman, 1984; Kirkpatrick, Gelatt, & 

Vecchi, 1983) even though practical annealing schedules can only guarantee good sub-

optimal solutions. 

 The results of SEM analyses are potentially difficult to interpret for several reasons. 

There is no guarantee that the connections modeled actually reflect direct effective 
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connections - it is possible that these are mediated through regions or connections not 

included in the model. Similarly, observed changes in the weights between conditions or 

groups may reflect common input from regions not modeled. Furthermore, unless 

reasonable goodness-of fit can be achieved with a given model in all conditions or groups 

investigated, the results of a stacked models comparison can also be difficult to interpret. 

For example, using an under-parameterized model to test differences in a stacked approach 

may yield results due to an ill-fitting model in one of the conditions or groups. The effect of 

using under-parameterized models (i.e., omission of network components, connections, or 

feedback loops) has been investigated in moderately complex models (McIntosh & 

Gonzalez-Lima, 1994). This simulation study indicates that the results from analysing 

moderately reduced models are fairly stable and that modification indices (Jöreskog & 

Sörbom, 1996) can provide indications of such omissions. 
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4. MEMORY 

In this chapter, which is more empirically oriented compared to chapters 1 and 2, we will 

review some aspects of human memory from a cognitive neuroscience perspective. In 

chapter 2 we defined learning, in the general sense of adaptation, as the processes by which 

the brain functionally restructures its processing networks and/or its representations of 

information as a function of experience. We suggested that the memory trace (i.e., the 

stored information) can be seen as the resulting changes in the processing system. On this 

view, learning is a dynamic consequence of information processing and network plasticity. 

From this perspective, and in contrast to simple information storage, learning and 

adaptation can be viewed as a process of generalization. We also described memory as a 

process, decomposed into several processing stages, including on-line encoding (i.e., 

representation of the information to be stored), memory formation and storage, 

consolidation, re-organization and maintenance, as well as retrieval. We also noted that 

different acquisition problems require different learning processes instantiated in various 

memory systems in order to ensure effective solutions to learning problems and we argued 

for the idea of processing systems with multiple interacting memory systems, operating at 

several different characteristic time-scales (Figure 1.6). As noted in chapter 1, human 

learning and adaptive brain processes operate at many characteristic time-scales, spanning 

some seven to nine orders of magnitude and we concluded that different storage systems 

operate at different time-scales and show different forgetting characteristics. In addition, we 

outlined an independent rational for the existence of multiple memory systems, which is 

related to the serial learning problem (also called the stability-plasticity dilemma; cf., 

chapter 2 and Figure 2.2). This dilemma relates to the problem of up-dating the knowledge 

base in the light of novel information to be stored and integrated with previously acquired 

information. There is a trade-off between stability and plasticity: stability is necessary to 

ensure robust process reliability, while plasticity is necessary for the acquisition of new 

information; too much stability precludes sufficient plasticity, and conversely, too much 

plasticity threatens processing stability. 

 In our formulation of information processing systems with memory (adaptive) 

properties (cf., section 2.1.2) we conceptualized learning as the interaction between two 

(several) sets of dynamical variables, representational and adaptive, respectively. However, 
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there is another, more subtle form of memory, which can be instantiated in the state-space 

by the representational dynamics alone. This is a form of process memory which does not 

depend on learning instantiated in adaptive parameters. Fundamentally this form of 

memory is related to the fact that the current state on the state-space trajectory can be seen 

as representing aspects of the systems processing history. For example, if the state-space 

trajectory that the system is currently following crossed another possible trajectory at an 

earlier time point and no other trajectory-crossings take place, then the current state can be 

viewed as perfectly representing the segment between the trajectory-crossing and the 

current state. Thus, one sees that this form of process memory depends on the topology of 

possible state-space trajectories. 

T σ-1 C

A

B ⊕u x y

Neural network as a non-linear feedback system

 

[Figure 4.1] Neural networks as non-linear feedback systems. A generic first order 

(artificial) discrete-time neural network is a non-linear forced dynamical system typically 

defined by the transfer functions of the component processors T = [T1, …, TN] operating on 

the input u = u(t) according to: σ[xj(t)] = Tj(Σajkxk(t) + Σbjkuk(t) + dj), where σ is the time-

shift operator defined by σ[x(t)] = x(t+1). If we now define the matrices A = [ajk], B = [bjk], 
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and D = [dj] and let T act componentwise on Ax(t) + Bu(t) + D, while absorbing D in A by 

extending x(t) with an additional component xN+1(t)= 1, setting ajN+1 = dj, and aN+1N+1 = 1, 

we arrive at the following equivalent expression x(t+1) = σ[x(t)] = T(Ax(t) + Bu(t)). In the 

figure, the matrix C selects the output units of the system. Thus, a first order discrete-time 

neural network can be seen to be a special case of a controlled discrete-time nonlinear 

dynamical system with feedback (cf. e.g., Isidori, 1995; Sontag, 1998). 

 

 

Incidentally, this is the form of memory that finite-state architectures can instantiate and is 

commonly used as a strategy to implement short-term memory properties in such 

processing systems (i.e., via state-space coding, cf. e.g., Hopcroft et al., 2000). It follows 

that the processing system's response to a given input depends on the current internal state; 

this is immediately obvious from both the classical cognitive formulation (T: Ω x Σ → Ω; 

cf. section 1.4 and Figure 1.2) as well as the general dynamical systems formulation (which 

is also described by T: Ω x Σ → Ω; cf. section 1.6), but with the added twist that the current 

internal state also represents the process history. A slightly different way of implementing 

process memory is exemplified by non-adaptable linear systems (Oppenheim, Willsky, 

Hamid, & Hamid Nawab, 1996). In these systems, process memory is implemented via 

feedback loops. In this context, it is of interest to note that the standard recurrent network 

architecture (Haykin, 1998) can be viewed as a controlled non-linear system with feedback 

loops (cf. e.g., Isidori, 1995; Sontag, 1998) and is thus capable of this form of memory 

(Figure 4.1). 

 Now, returning to more earthly matters, several memory researchers have argued on 

both theoretical and empirical grounds that the brain is equipped with multiple memory 

systems (e.g., Eichenbaum & Cohen, 2001; Schacter & Tulving, 1994; Squire et al., 1993; 

Stadler & Frensch, 1998). These memory systems serve different purposes and are 

therefore thought to store different types of information. Endel Tulving (1995) suggested 

that cognitive memory research, which has produced a tremendous amount of empirical 

data can be meaningfully 'ordered' with the help of two general concepts, memory systems 

and memory processes, both of which we have already outlined in some detail in chapter 2. 

Tulving (1995) proposed a simple model, the SPI model, for memory organization. The SPI 
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model states that cognitive memory systems are related to one another in terms of the 

principle memory processes encoding, storage, and retrieval. Tulving (1995) hypothesized 

that the relations of the various cognitive memory systems (he lists five: procedural/non-

declarative, perceptual representation systems, semantic, short-term working, and episodic 

memory) are related in a process specific manner: information is serially (S) encoded into 

the systems in a contingent manner; the various memory traces are stored in parallel (P), 

while information can be retrieved independently (I) from each memory system. Despite its 

underspecified nature, the SPI model makes some empirical claims. The most important is 

that the relations between different memory systems are process specific. The serial 

character of encoding is consistent with the principle of co-localization of memory (in the 

general sense of adaptive changes) and information processing in the brain. Taking the 

more general view that information is encoded simultaneously in several interacting 

memory systems (cf., Figure 1.6), it is an empirical question if these interactions are best 

conceptualized as serial in character. Clearly there are dependencies between different 

processing systems, and in this sense the encoding of information in one system might be 

contingent on the processing of information in some other memory system (i.e., the output 

of one system is the input to another; e.g., episodic encoding might be dependent on 

semantic retrieval, while both processes are dependent on information being encoded, or 

represented, in the perceptual representation systems). Moreover, if the different cognitive 

memory systems correspond to different sets of physical systems (or sets of physical 

dynamical variables), then trivially information is stored in parallel and the fact that the 

same act of encoding can induce multiple effects in different parts of the brain is a natural 

consequence in a system with multiple and interacting memory systems. The strongest 

empirical consequence of the SPI model relates to the claim that information from each 

system (and subsystem) can be retrieved without the necessary implications for retrieval of 

corresponding information in other systems, which in this sense can be viewed as 

independent. However, the SPI model does not speak on the possibility that for example 

retrieval of information in one system might imply encoding and storage of information in 

another (e.g., retrieval of episodic or semantic information might induce encoding and 

storage in short-term working memory). 
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4.1 MULTIPLE MEMORY SYSTEMS 

Human memory is commonly divided into memory systems which operate on different 

characteristic time-scales. An example of this is the coarse division of memory into short-

term and long-term memory. One influential model of short-term memory was formulated 

by Baddeley & Hitch (1974). The Baddeley-Hitch model is not a simple model of short-

term encoding, storage, and retrieval of information but includes components which are 

thought to support several higher cognitive functions, including reasoning and language 

(Baddeley, 1986). The Baddeley-Hitch model is therefore a model of working memory. In 

the original Baddeley-Hitch model, working memory consists of a central executive with 

two support systems, the phonological loop, for short-term encoding and storage of verbal 

information, and the visuo-spatial sketch pad, for short-term encoding and storage of visuo-

spatial information. Recently Baddeley (2000) added another component, the episodic 

buffer to the working memory model (Figure 4.2). 

  

[Figure 4.2] The extended working memory model of Baddeley and Hitch. The 

episodic buffer comprises a limited capacity system that provides temporary storage of 

information held in a multimodal code, capable of binding information from the subsidiary 
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systems, and from long-term memory, into an episodic representational format. The 

episodic buffer is supposed to provide an interface to the other slave systems of working 

memory and to long-term memory, feeding information into and retrieving information 

from episodic long-term memory. 

 

 

Baddeley (2000) suggests that the episodic buffer is a capacity limited system that provides 

temporary storage of information held in a multimodal code, which is capable of binding 

information from the subsidiary systems as well as from long-term memory into an 

episodic representational format. The episodic buffer shares some characteristics with the 

concept of episodic memory (Tulving, 1989) with respect to its principal mode of storing 

information in episodes and its integrative aspects, but differs in that it is assumed to be a 

temporary store. In the extraction of information from working memory a key function for 

the episodic buffer is integration between the different subcomponents of working memory. 

The episodic buffer is thought to provide an interface between the components of working 

memory and long-term memory. In emphasizing its short-term integrative role and its 

episodic format, one may hypothesize that the episodic buffer is related to the prefrontal 

cortex (PFC) and the medial temporal lobe (MTL) as well as the interaction between these 

structures. The transient early role of the MTL system in long term memory formation and 

sequence encoding in conjunction with the PFC makes these likely candidates 

(Eichenbaum, 2000; Simons & Spiers, 2003). The functional anatomical correlate of the 

phonological store is putatively in the left inferior parietal region (Brodmann’s area [BA] 

39/40) together with parts of the superior temporal cortex (Becker, MacAndrew, & Fiez, 

1999; Paulesu, Frith, & Frackowiak, 1993), and the articulatory rehearsal process involving 

a left frontal circuit including Broca's region (BA 44) and the pre-motor cortex (BA 6, 

Smith & Jonides, 1998, 1999). 

 Human long-term memory is also commonly subdivided in different component 

memory systems (Tulving & Schacter, 1994) and although the concepts and terminology 

used to characterize these memory systems has varied, there is a consensus concerning the 

broad division of human memory into declarative and non-declarative memory (Figure 

4.3). Declarative memory supports the capacity to encode, store, and retrieve facts and 
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events and is contrasted with a heterogeneous collection of non-declarative memory 

abilities including skills and habits (Knowlton, Mangels, & Squire, 1996), different forms 

of conditioning (Bechara et al., 1995), and repetition priming (e.g., facilitation of 

recognition, reproduction or biases in selection of stimuli that have recently been perceived, 

Schacter, 1994). The knowledge or information acquired by non-declarative memory 

systems is commonly expressed through performance changes rather than explicit retrieval. 

Different forms of non-declarative memory depend on the integrity of specific brain 

systems; for example the basal ganglia, the amygdala, and the cerebellum (Eichenbaum & 

Cohen, 2001). 

skills/habits priming conditioning other

LTM

declarative

semanticepisodic

non-declarative

 

[Figure 4.3] Taxonomy of human long-term memory (LTM) systems. 

 

 

Another commonly used distinction is that between explicit and implicit memory. The 

terms explicit and implicit memory usually refer to forms of memory expression. In this 

usage, implicit memory denotes the expression of memory without awareness of its 
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acquisition or use; that is, behavioral expressions of what an individual has learnt without 

remembering how, when, or where the learning occurred. In contrast, explicit memory 

commonly refers to the expression of what the individual is aware of and can explicitly 

report if probed (Tulving, 1995). In the following we will focus on declarative memory, but 

we will also, briefly, mention some of the non-declarative memory system. 

 Explicitly retrieved declarative memories are commonly conceptualized as 

integrated associative structures, which are continuously updated through active re-

organization and integration of new information within the context of previous experiences 

and previously acquired knowledge (Eichenbaum, 2000). Recollection of memories 

represents a re-construction (re-creation) process which is partly determined by the nature 

and organization of the stored information as well as previously acquired knowledge. This 

type of memory, declarative memory, involves the representation of episodic information 

within the context of general knowledge. It is thought that episodic representations encode 

sequences of micro-events and micro-features that compose unique, individual experiences, 

indexed by specific times and places. Semantic (general) knowledge, on the other hand, 

represents an acquired knowledge base of organized and inter-related factual information, 

which is independent of the specific episode(s) in which the information was acquired 

(Eichenbaum, 2000). General world knowledge is not tied to a specific time and place of 

acquisition. Declarative memory thus represents the capacity to form and retrieve episodic 

and semantic information. A key feature of declaratively stored information is its flexible 

accessibility and expressibility that can be used adaptively in novel situations in an 

elaborate manner (i.e., flexible memory expression, Eichenbaum & Cohen, 2001; Schacter 

& Tulving, 1994), for example, to solve new problems and support the inferential 

expression of associations that are linked across separated experiences; the medial temporal 

lobe (MTL) memory system might play a role in integrating overlapping experiences into 

general knowledge in terms of reorganization, abstraction, and re-integration of episodic 

information (Eichenbaum, 2000). 

 The declarative memory system has a well-defined neuroanatomic correlate in the 

MTL memory system (Squire, 1992; Squire et al., 2004; Squire & Zola-Morgan, 1991). 

However, it should be noted that trace-conditioning is a form of complex conditioning 

which depends on the MTL (in particular trace conditioning, see e.g., Takehara, Kawahara, 
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& Kirino, 2003; Weiss, Bouwmeestev, Power, & Disterhoft, 1999), while simple 

conditioning seems not to depend on the MTL. In the trace-conditioning paradigm the 

conditioned- and unconditioned stimulus are separated by a relatively long stimulus-free 

interval, and it might be the case that trace-conditioning depends on associative and 

temporal integration capacities of the MTL. The MTL memory system is composed of 

three principal components: neocortical regions, the parahippocampal region and the 

hippocampus (Amaral, 1993; Amaral, 1999; Squire & Zola-Morgan, 1991; Suzuki, 1996, 

cf. Figure 4.4). The neuroanatomic organization complements the findings from studies of 

amnesia, suggesting that the MTL contribute to declarative memory by altering the nature 

and persistence as well as organization of stored memory representations in the neocortex 

(Eichenbaum, 2000). In contrast, the MTL memory system is not essential for non-

declarative memory, which include the acquisition of perceptual, cognitive, and motor 

skills, as well as acquired habits and learned response biases (cf. e.g., Packard & Knowlton, 

2002). These forms of memory are expressed implicitly through performance alterations 

(e.g., changes in error patterns, improved response times or performance scores) on a 

variety of tasks (cf. e.g., Knowlton et al., 1996; Knowlton & Squire, 1996; Petersson, 

Forkstam, & Ingvar, 2004; Poletiek, 2002; Salmon & Butters, 1996; Squire, 1994; Squire et 

al., 1993; Stadler & Frensch, 1998). For example, systems that include the basal ganglia 

and cerebellum mediate forms of implicit learning and non-declarative (procedural) 

memory. It now seems clear that the basal ganglia, in particular the dorsal striatum, play a 

role in learning and memory (Packard & Knowlton, 2002). Moreover, recent evidence 

suggests that the basal ganglia and the MTL memory systems can be activated 

simultaneously during learning and that in some learning situations competitive 

interference exists between these two systems (Poldrack et al., 2001; Poldrack, 

Prabhakaran, Seger, & Gabrieli, 1999). However, recent FMRI data indicate that the 

caudate nucleus and the MTL can interact non-competitively and that the caudate nucleus is 

not only engaged after repeated practice, but also after single-trial learning and thus in 

parallel with the hippocampus (Voermans et al., 2004). 

 Another prominent structure of the MTL is the amygdala and some forms of 

affective learning and memory rely on a system that includes the amygdala as a core 

structure. This memory system mediates fear conditioning as well as other forms of 
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emotional memory (Bechara et al., 1995; Cahill, Babinsky, Markowitsch, & McGaugh, 

1995). Here emotional memory refers to the formation of affective representations that is 

not necessarily available for explicit retrieval but can be implicitly expressed in for 

example attraction- and avoidance behavior, as well as in the modulation of autonomic 

nervous system responses. However, the amygdala appears to have a broader role in human 

long-term memory. In particular, the amygdala, which is a part of the anterior MTL, has 

prominent recurrent connections with the hippocampus and the MTL memory system. 

Thus, it seems that the amygdala is well placed anatomically to modulate declarative 

memory. For example, a time-varying learning rate that changes with the relevance of the 

information being processed, opens up for the possibility to control learning rate by various 

relevance or 'print-now' signals. This mechanism can be used to make the memory selective 

and modulated by relevance (cf., appendix 2.2). Several functional neuroimaging studies 

have investigated the role of the amygdala in enhancing declarative memory for emotional 

experiences and suggested a correlation between amygdala activation during encoding and 

subsequent memory. For example, the degree of activity in the left amygdala during 

encoding was predictive of subsequent memory (Canli, Zhao, Brewer, Gabrieli, & Cahill, 

2000). Furthermore, it has also been suggested that the amygdala may play a role in 

modulating the strength and consolidation of memories in other memory systems (Cahill et 

al., 1995, cf. chapter 2 and appendix 2.2). 

 

4.2 THE MEDIAL TEMPORAL LOBE 

The MTL region was identified as central for declarative memory when Scoville and 

Milner (1957) reported severe memory loss following bilateral removal of the MTL in their 

patient H. M. (see also Markowitsch, 1995). The subsequent investigations of H. M. 

established a central role of the MTL in long-term declarative memory relatively 

independent of other cognitive functions (Corkin, 2002). The most prominent behavioral 

deficit following MTL lesions is profound forgetfulness, so-called anterograde amnesia. 

Anterograde amnesia refers to the incapacity to encode and store new information in long-

term memory; for example, information stored in short-term memory is rapidly forgotten 

and not transferred into a long-term memory trace. According to Squire et al. (2004) there 

are three relevant aspects of this condition; (1) the impairment is multimodal; (2) 
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immediate short-term memory appears relatively intact; and (3) the memory impairment 

appears to occur against a background of intact perceptual, cognitive and motor abilities as 

well as intact non-declarative memory. Thus, important aspects of declarative memory are 

dissociated from general perceptual, cognitive, and motor function. Furthermore, the 

evidence suggest a particular role for the MTL memory system in encoding-storage-

consolidation processes, while the role of the MTL in retrieval processes is less clear (cf., 

Simons & Spiers, 2003; Squire et al., 2004). One way to understand this is that the MTL 

creates a long-term storage format, making the stored information suitable for effective 

retrieval; when the MTL is damaged, immediate short-term memory representations in 

neocortex are not adequately processed from the perspective of long-term retrievability. If 

the MTL is not functional at the time of learning, declarative memory is not established in a 

proper way and is therefore not readily available for later retrieval. However, this does not 

necessarily imply that the MTL is a (permanent) repository of memory, and because remote 

memory is spared in patients with large MTL lesions, it appears that long-term information 

would have to be stored elsewhere. 

 In addition to the phenomenon of anterograde amnesia, damage to the MTL often 

results in partial loss of memory for information acquired before the damage occurred, so-

called retrograde amnesia. Squire and colleagues (2004) suggest that when the MTL lesion 

is limited to the hippocampus, entorhinal cortex, and/or fornix, the retrograde memory 

impairment is temporally graded. This implies that more recently formed memories are 

relatively more impaired than more remotely acquired information. Temporal gradients of 

retrograde amnesia have also been described in patients with damage limited to the 

hippocampal region (Kapur & Brooks, 1999; Manns, Hopkins, & Squire, 2003). 

Furthermore, the remote memory for facts (semantic memory) is intact and it seems that 

remote episodic memory for autobiographical events can also be preserved (Bayley & 

Squire, 2003). 

 The consolidation view of temporally graded retrograde amnesia begins with the 

principle that long-term memory is stored as outcomes of MTL processing in interaction 

with the regions in the neocortex that are specialized for what is to be remembered (Squire 

et al., 2004). On this view, the MTL initially works together with the neocortex to allow 

memory to be formed into a retrievable format. Through a gradual process of integration 
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and re-organization (cf., Figure 2.2), it is suggested that the connections among neocortical 

regions are progressively strengthened until the neocortical memory can be retrieved 

independently of the hippocampus. 

The Medial Temporal Lobe Memory System

Prefrontal cortex

Hippocampus

Neocortical association areas

Parahippocampal 

cortex

Perirhinal 

cortex

Entorhinal cortex

Subcortical

structures

 

[Figure 4.4] The medial temporal lobe memory system. Adapted from Simons and 

Spiers 2001. Whereas the medial temporal lobe has been associated with the encoding, 

storage and retrieval of long-term declarative memory, the prefrontal cortex, and the 

neocortex more generally, also plays an important role in declarative memory (Eichenbaum 

& Cohen, 2001; Nyberg, Cabeza, & Tulving, 1996; Simons & Spiers, 2003; Squire et al., 

2004). The prefrontal cortex has been linked to short-term working memory, language 

processing, and various cognitive control processes such as selection, monitoring, 

manipulation and inhibition of information (Baddeley, 1992, 2000, 2003; Bookheimer, 

2002; Fletcher & Henson, 2001). Here working memory refers to short-term online 

representations of information that are explicitly available for further processing (e.g., 

active rehearsal or manipulation/processing). Encoding, consolidation, and retrieval from 

declarative memory are thought to depend on the interaction between the medial temporal 
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lobe and the prefrontal cortex, as well as posterior neocortical regions. Other brain regions, 

which are also important for long-term declarative memory, include the thalamus (e.g., the 

anterior and mediodorsal nuclei), the mamillary bodies, and the basal forebrain nuclei, as 

well as the retrosplenial cortex. 

 

 

Electrophysiological studies have demonstrated the importance of the parahippocampal and 

perirhinal cortices in memory consolidation in animal models. In rats, perirhinal cortex 

activation appears to promote enhancement in cortico-cortical pathways (Ivanco, Michelin, 

& Racine, 1996). In monkeys, Higuchi and Miyashita (1996) demonstrated that lesions of 

the entorhinal and perirhinal cortices prevented the formation of neuronal memory 

responses to visual paired associates in the inferotemporal cortex. The parahippocampal 

region seems to mediate the extended persistence of these cortical representations and 

processing within the neocortex may take advantage of lasting parahippocampal 

representations, and come to reflect complex associations between events that are processed 

in different neocortical regions or occur sequentially in the same or different areas 

(Eichenbaum, 2000). An alternative proposal states that the hippocampus and related 

structures are always necessary for recalling the richness of detail available in 

autobiographical recollections (Nadel & Moscovitch, 1997). 

 In the following section we will outline a position on human memory systems that 

is closely related to that of Squire et al. (2004) and Eichenbaum and Cohen (2001). 

However, it should be noted that there are several alternative perspectives (cf., section 4.3), 

suggesting that distinct sub-regions of the MTL support dissociable functions (e.g., 

Aggleton & Brown, 1999; Murray & Mishkin, 1986; Murray & Bussey, 1999; Simons & 

Spiers, 2003; Tulving & Markowitsch, 1998; Yonelinas et al., 2002). For example, one 

model suggests that a system involving the hippocampus (as well as the thalamus, 

mamillary bodies and retrosplenial cortex) subserve recollection, while parts of the 

parahippocampal cortex (perirhinal cortex) support familiarity-based recognition. In 

addition, Squire and colleagues (2004) as well as Eichenbaum and Cohen (2001) argue for 

a time-limited role in remote declarative memory and a central role of the MTL in memory 

consolidation. 



 110

 Afferent information to the MTL originates from most neocortical association areas 

(Suzuki & Amaral, 1994a, 1994b). These neocortical regions project to one or more of the 

parahippocampal subdivisions, which include the parahippocampal, the perirhinal, and the 

entorhinal cortices. The subdivisions of the parahippocampal region are strongly 

interconnected and send efferent projections to several parts of the hippocampus itself, 

including the dentate gyrus, the CA1-3 (Cornu Ammonis) fields, and the subiculum. Within 

the hippocampus, there are divergent and convergent connections, supporting plasticity 

mechanisms that participate in the rapid encoding of information (Amaral, 1993; Amaral & 

Witter, 1989; Bliss & Collingridge, 1993). In particular, the CA3 has the basic architecture 

of a generic recurrent network. The outcome of hippocampal processing is returned, via the 

parahippocampal region, to the same brain regions from where the information originated 

(Burwell, Witter, & Amaral, 1995; Suzuki, 1996). Several additional structures, including 

for example the mamillary bodies, the anterior and mediodorsal thalamic nuclei, the basal 

forebrain nuclei along with other subcortical nuclei, interact with the hippocampus through 

a major fiber bundle the fornix (Lavenex & Amaral, 2000; Squire, 1992; Squire & Zola-

Morgan, 1991; Suzuki, 1994). 

 A prominent feature of the structures forming the neocortical-MTL loop is their 

organization into hierarchical association networks (Felleman & Van Essen, 1991; Lavenex 

& Amaral, 2000). The connections within the parahippocampal, entorhinal, and perirhinal 

cortices as well as the convergence/divergence of inputs at the different levels of the 

neocortical-MTL loop enable a significant amount of integration before information 

reaches the hippocampus proper. Lavenex and Amaral (2000) suggest that the level of 

integration and complexity of the information increases when moving from the neocortex 

to the hippocampal complex; unimodal information becomes polymodal/amodal, and 

reaches the highest level of abstraction within the hippocampal complex, before it is 

returned to the neocortex. This suggests a significant contribution of the neocortical-MTL 

loop to declarative memory formation, consolidation, and memory retrieval. Furthermore, 

the hippocampal output can also influence the processing of incoming information through 

the feedback projections from the hippocampal complex to the neocortex. The output of the 

MTL system is ultimately distributed, via these feedback projections, to much of the 

neocortex. Neocortical regions have specific perceptual, cognitive, and motor processing 
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functions required to complete a given memory task, including the important aspects of 

short-term working memory. It has been suggested that the parahippocampal region is 

critical in extending the persistence of information over brief periods (Eichenbaum, 2000), 

while the ultimate structure along the neocortical-hippocampal loop, the hippocampal 

complex, participates at the highest level of integration and organization of information 

(Felleman & Van Essen, 1991; Lavenex & Amaral, 2000). Thus, it is suggested, that the 

parts of the parahippocampal region, which receives convergent inputs from the neocortical 

association areas and return projections to all of these areas, might mediate the extended 

persistence of neocortical representations. If this is correct, the interactions between 

neocortical regions and the MTL can utilize briefly lasting parahippocampal 

representations, which reflect complex associations between events that are processed 

separately in different cortical regions or occur sequentially in the same or different areas 

(Eichenbaum, 2000). It is interesting to note an early suggestion of David Marr (1971), who 

first suggested that the hippocampal formation creates indexes or pointers of incoming 

information for rapid storage. These pointers are thought to participate in the consolidation 

and integration/reorganization of neocortical representations during sleep. In line with this 

suggestion, Squire and colleagues (2004) suggest that the MTL interacts with the neocortex 

in order to establish, maintain, and retrieve long-term memory, and that ultimately, 

declarative memory becomes (relatively) independent of the MTL through a process of 

consolidation. Finally, it is likely that the principal component of the declarative memory 

system, including the neocortex, contributes differentially to declarative memory and the 

interactions between these components are essential (Simons & Spiers, 2003). However, 

given the neuroanatomic characteristics of the neocortical-MTL system (weak hierarchical 

organization, high level of associativity, and recurrent connectivity), it might be difficult to 

experimentally distinguish the different functional properties of some of the sub-structures. 

Although, it has been suggested that neurophysiological, neuroimaging, and neuroanatomic 

data indicate a division of labor within the MTL (Tulving & Markowitsch, 1997), Squire 

and colleagues (2004) suggest that the available data do not support simple dichotomies 

between the functions of the hippocampus and the adjacent MTL structures (e.g., 

associative vs. non-associative memory, episodic vs. semantic memory, recollection vs. 

familiarity). 



 112

 

4.3 SOME ALTERNATIVE PERSPECTIVES 

Since the discovery of hippocampal place cells in the rodent (O’Keefe & Dostrovsky 

1971), an influential idea has been that the MTL and in particular the hippocampus forms 

spatial cognitive maps and that the predominant function of the MTL is to support spatial 

memory (O’Keefe & Nadel 1978). Consistent with this suggestion, several lines of 

investigation have related the MTL to learning and memory of visuo-spatial material 

(Eichenbaum & Cohen, 2001; Maguire, Frith, Burgess, Donnett, & O'Keefe, 1998; Nadel, 

1994; O'Keefe, Burgess, Donnett, Jeffery, & Maguire, 1998). However, it has been argued 

that the formation of cognitive maps, and spatial memory more generally, can be viewed as 

a special case of declarative memory (Eichenbaum & Cohen, 2001; Squire et al., 2004). On 

the latter view, the role of MTL is conceived of as more general and not restricted to spatial 

memory only, suggesting that the MTL is central for both spatial and non-spatial 

declarative memory, in particular when information has to be acquired in ways that allows 

it to be used in a flexible manner to explicitly guide behavior (McNamara & Shelton, 

2003). 

 Memory-impaired patients with MTL lesions sometimes show a residual capacity 

for fact-like learning (i.e., semantic memory, Bayley & Squire, 2002; Tulving, Hayman, & 

MacDonald, 1991; Vargha-Khadem et al., 1997; Westmacott & Moscovitch, 2001). 

Similarly, it has been suggested that patients with developmental amnesia, with damage 

limited to the hippocampus, provide an exception to the necessary engagement of the MTL 

in semantic memory (Baddeley, Vargha-Khadem, & Mishkin, 2001; Vargha-Khadem et al., 

1997). This raises the question what kind of learning process or memory system is engaged 

in these cases? Squire and colleagues (2004) argues that when the MTL damage is 

extensive (complete), then acquisition is supported by the neocortex, while in non-complete 

cases the remaining MTL structures is responsible for successful learning. In 

developmental amnesia, it may be the case that early hippocampal lesions allow neocortical 

regions to compensate for the dysfunctional MTLs, or perhaps, through the use of acquired 

alternative learning strategies. Because general knowledge can be acquired through 

multiple learning events, and since episodic memory is unique to a single event, semantic 

memory is predictably better preserved than episodic memory. An alternative possibility is 
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that, given sufficient training and repetition, subjects with developmental amnesia are able 

to acquire semantic knowledge in proportion to what would be expected from their day-to-

day episodic memory ability, presuming residual MTL capacities (Squire et al., 2004). 

 It has also been suggested that the hippocampus may have a special role in tasks 

that depend on relating, associating, or combining information from multiple sources, such 

as episodic or associative memory. It has also been suggested that when these task 

requirements are not present or in tasks that only require familiarity judgments, then the 

hippocampus is not necessary but can be supported by the neocortex adjacent to the 

hippocampus (Tulving & Markowitsch, 1998). However, Manns et al. (2003) reported 

impaired semantic memory in patients with hippocampal damage, and based on such 

findings, Squire and colleagues (2004) as well as Eichenbaum and Cohen (2001) argue that 

the hippocampus is necessary for the acquisition of general knowledge. Similarly it has 

been suggested that the ability to combine two or more unrelated items into a long-term 

(conjunctional or associative) memory depends more on the hippocampal region compared 

to single-item memory. However, recent findings indicate that the hippocampus is 

important for single-item as well as associative memory (Stark & Squire, 2003). In 

addition, although the perirhinal cortex has been linked to non-associative (single-item) 

memory, activation of this region has also been observed in relation to associative memory 

(e.g., recollection), and activity in the hippocampal region has been correlated with non-

associative memory, for example item recognition and familiarity (for reviews see e.g., 

Fletcher, Frith, & Rugg, 1997; Lepage, Habib, & Tulving, 1998; Schacter & Wagner, 1999; 

Squire et al., 2004). 

 Another hypothesis suggests another division of labor within the MTL and concerns 

recognition memory (the capacity to identify an item previously encountered). Single-cell 

recordings during recognition performance in rodents, monkeys, and humans suggest that 

the contribution of the hippocampus is different compared to the contribution of the 

adjacent cortex (Suzuki & Eichenbaum, 2000). Moreover, studies of both monkeys and 

rodents have typically found recognition memory impairment following restricted 

hippocampal lesions (Eichenbaum, 2000; Eichenbaum & Cohen, 2001). 

 Subjectively, it appears that judgments in for example a recognition memory test 

can be based on a sense of familiarity or on recollection of detailed information about 
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previous events (Mandler, 1980). A variety of dual-process models propose that recognition 

reflects the products of two distinct memory processes and it is commonly suggested that 

recognition consists of two components: a recollective (episodic) component and a 

familiarity component. During recollection, information about a given episode is retrieved 

together with contextual information, while a familiarity signal only indicates that a 

stimulus has been encountered, and no additional information about the spatiotemporal or 

event context is retrieved. In general, dual-process models assume that recollection depends 

on the same or similar processes that are involved in recall tasks, while familiarity reflects a 

purely quantitative, ‘'strength-like’' memory signal (Rugg & Yonelinas, 2003). At a 

behavioral level, several methods have been used to measure the hypothetical components 

recollection and familiarity. These methods have indicated that the two forms of memory 

can be dissociated (Rugg & Yonelinas, 2003). For example, recollection benefits more than 

familiarity from elaborative meaning-based encoding or active generation compared with 

passive reading; recollection is slower and requires more attention during both encoding 

and retrieval than familiarity; familiarity is more sensitive to perceptual changes between 

study and test; and recollection is less affected by increased study-test interval compared to 

familiarity effects (Rugg & Yonelinas, 2003). 

 Several researchers have suggested that recollection depends on the hippocampus 

while familiarity depends on the adjacent parahippocampal cortex (e.g., Brown & 

Aggleton, 2001; Rugg & Yonelinas, 2003), that is, the hippocampus is more active when 

recognition is accompanied by recollection than when recognition is based on familiarity 

alone. For example, recent data suggest a process dissociation within the human MTL, 

successful retrieval of contextual information was accompanied by an activity increase, 

while it was suggested that a familiarity signal was provided by an activity decrease that 

was sufficient for successful item recognition (Weis et al., submitted), see also Henson et 

al. (2003). 

 The remember/know technique is commonly used to assess recollection and 

familiarity, respectively. Here, 'remember' is associated with recollection while 'know' is 

related to familiarity and a recent study on patients with lesions limited to the hippocampal 

formation reported similar impairment in terms of knowing and remembering (Manns, 

Hopkins, Reed, Kitchener, & Squire, 2003). At present, evidence does not support the view 
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that familiarity is preserved in amnesic patients (Rugg & Yonelinas, 2003). It may also be 

the case that the remember vs. know contrast is related to a difference in the amount of 

information retrieved (Nyberg, 1998; Nyberg, McIntosh, Houle, Nilsson, & Tulving, 

1996b) rather than recollective experience per se (Petersson et al., 2001; Rugg & 

Yonelinas, 2003). However, Rugg and Yonelinas (2003) suggest that FMRI findings can be 

interpreted as support for the dual-process framework as well as the proposal that the 

distinction between recollection and familiarity is maintained within the MTL. They also 

note that, although single-process models, in which recollection is assumed to reflect the 

retrieval of strong content-rich memories whereas familiarity is associated with weaker less 

specific memories, have difficulty accounting for all behavioral dissociations, and their 

parsimony makes them potential important alternative models. 

 Furthermore, attempts to related MTL sub-components to encoding and retrieval 

have also been pursued (Gabrieli, Brewer, Desmond, & Glover, 1997). For example, 

Lepage and colleagues (1998) suggested that encoding is more related to the anterior while 

retrieval is more related to the posterior MTL. However, Schacter and Wagner argued that 

based on the available functional neuroimaging literature (Schacter & Wagner, 1999) it is 

difficult to deduce any large-scale functional specialization with respect to encoding and 

retrieval. For example, Small et al. (2001) reported hippocampal activations extending over 

most of the longitudinal axis of the hippocampus during both encoding and retrieval, while 

Stark and Okado (2003) reported encoding and recognition related activity in both the 

hippocampal region as well as in the perirhinal and the parahippocampal cortices (see also, 

Weis, Klaver, Reul, Elger, & Fernández, 2004). 

 An alternative hypothesis concerning the role of the MTL suggests that the 

hippocampal formation may subserve aspects of novelty detection (Tulving, Markowitsch, 

Kapur, Habib, & Houle, 1994; Tulving, Markowitsch, Craik, Habib, & Houle, 1996). Both 

functional neuroimaging (Dolan & Fletcher, 1997; Stern et al., 1996) and 

electrophysiological studies (Grunwald, Lehnertz, Heinze, Helmstaedter, & Elger, 1998) of 

episodic encoding and the MTL have been interpreted in line with this suggestion. Novelty 

detection is commonly taken to mean that new information activates the MTL and that 

novelty might be related to attentional effects in combination with retrieval during 

encoding. In other words, new attended information is automatically encoded, engaging the 
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MTL, whereas if the information has already been encoded this may be retrieved, 

indicating to the learning system that the given information was recently encoded. 

However, the effects observed in the MTL may be secondary to the result of novelty 

processing elsewhere and/or attentional effects which do not relate to the MTL per se. 

Moreover, both Henke et al. (1997) and Montaldi et al. (1999) suggest that the MTL effects 

observed in their studies cannot be explained in terms of novelty detection. In addition, 

several studies of the subsequent memory effect also suggest that MTL activation cannot be 

related to novelty detection in any simple way, since novelty is held constant in these 

studies and thus cannot explain the subsequent memory effect (Brewer, Zhao, Desmond, 

Glover, & Gabrieli, 1998; Fernandez et al., 1998; Petersson et al., 1999; Wagner, Schacter 

et al., 1998). In the context of long-term declarative memory, it seems more natural to re-

interpret the novelty detection idea in terms of familiarity and item recognition (Petersson 

et al., 2001). Electrophysiological studies have shown that the activity of the (anterior) 

parahippocampal region decreases during item recognition (Brown, Wilson, & Riches, 

1987) as well as a consequence of decrease repeated exposure (Brown & Xiang, 1998). 

Moreover, a recent meta-analysis suggested that less anterior MTL activity is related to the 

degree of familiarity (Henson et al., 2003) and it has been hypothesized that the perirhinal 

cortex contributes to recognition memory by assessing relative familiarity, based on 

neuronal response decrements (Brown & Aggleton, 2001). In addition, recent results 

suggest that a similar mechanism might be at play in humans. These findings suggest that 

more neural resources may be needed for items that are processed for the first time 

compared to those that have been encountered before (Weis et al., submitted). Weiss and 

colleagues suggested that this mechanism might support item recognition by a familiarity 

signal which essentially is based on reduced processing demands for more familiar items. 

Thus, it was hypothesized that the anterior MTL region is related to both item recognition 

(activity decrease) as well as declarative memory formation (activity increase). This 

suggestion is in line with electrophysiological data recorded from within this region in 

epilepsy patients, where the very same event related potential is correlated negatively with 

item recognition and positively with encoding success (Fernández et al., 1999; Fernández et 

al., 2001; Fernández, Klaver, Fell, Grunwald, & Elger, 2002; Smith, Stapleton, & Halgren, 

1986). Finally, the MTL has been related to retrieval success. For example, Nyberg and 
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colleagues reported a positive correlation between retrieval success and MTL activity 

(Nyberg, McIntosh, Houle, Nilsson, & Tulving, 1996a), while Eldridge et al. (2000) more 

recently have related hippocampal activation to the remember – know contrast. 

 

4.4 THE FRONTAL LOBE 

Cognitive neuroscience has made progress in understanding the roles of the medial 

temporal and frontal lobes in long-term memory. The importance of the frontal lobe in 

long-term memory has been recognized only recently and largely due to functional 

neuroimaging studies. Although lesion studies had already hinted at this possibility 

(Shimamura, 1995; Wheeler, Stuss, & Tulving, 1995), a common observation made in 

these studies is that the prefrontal cortex (PFC) is activated during both encoding and 

retrieval (Nyberg, Cabeza et al., 1996; Tulving, Kapur, Craik, Moscovitch, & Houle, 1994). 

Thus it seems that the PFC is engaged in processes important for both memory formation 

and memory retrieval. Whereas the MTL has been associated with memory formation, 

storage, and retrieval of information from long-term memory, the PFC has been related to 

what can be called executive aspects of working memory or control processes such as 

monitoring, selection, and manipulation, as well as maintenance and inhibition. However, 

the precise functional role of the PFC is not well-understood in general and a precise 

characterization of PFC functions in long-term memory has been elusive and often couched 

in relatively unspecific general terms (Duncan, 2001; Fletcher & Henson, 2001; Kimberg, 

D'Esposito, & Farah, 1997; Miller & Cohen, 2001; Simons & Spiers, 2003; Wood & 

Grafman, 2003); this will also become apparent as we review some current perspectives on 

the functional role of the PFC in the following sections. 

 

4.4.1 SOME GENERAL PERSPECTIVES ON FRONTAL LOBE FUNCTION 

Although it seems clear that the PFC is important for higher cognition, including for 

example, attention, language, memory, problem solving, decision making, as well as the 

temporal organization of behavior – the question of how the PFC subserves these cognitive 

functions is not well-understood and to a large degree underspecified. One view of 

prefrontal function – a processing specific perspective - suggests that distinct regions of 

prefrontal cortex are specialized for different cognitive functions (Petrides, 1995) relatively 
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independent of modality, while others have emphasized the adaptive nature of the 

prefrontal cortex (Duncan, 2001; Miller & Cohen, 2001). In addition, various versions of 

domain or modality specific perspectives have been put forward (cf. e.g., Fuster, 1995; 

Fuster, 1997; Goldman-Rakic, 1988, 1998). 

 The primate PFC has been investigated at the neuronal level on a wide range of 

tasks, including for example categorization, working memory, rule learning, rule switching, 

and cross-modal integration (for reviews see e.g., Duncan, 2001; Duncan & Miller, 2002). 

The response properties of prefrontal neurons appear surprisingly adaptable and it seems 

that any given neuron can be driven by several different kinds of input. This might be a 

result of the dense recurrent connectivity that exist within the PFC itself and/or the 

reciprocal connections between the PFC and many other neocortical and sub-cortical 

structures (Fuster, 1997; Mesulam, 2002; Stuss & Knight, 2002). The adaptive coding 

model of Duncan (2001) suggests that working memory, attention and cognitive control are 

subserved by common processing properties of PFC neurons in combination with the 

adaptable nature of these neurons. This, it is argued, allows the PFC to represent task-

relevant information and provide a temporary, task-specific, context-dependent working 

memory space. Duncan (2001) suggests that this working space serves as a mechanism for 

selective attention and control by selecting task-relevant inputs, represented in the posterior 

neocortical regions, and for further elaborate processing or manipulation of the task-

relevant information. It is suggested that the PFC biases or focuses processing in posterior 

cortical regions on task-relevant representations. This idea is similar to the integrative 

theory of PFC function advanced by Miller and Cohen (2001). Miller and Cohen (2001) 

argue that the PFC stores representations of task-specific rules, attentional templates, and 

task relevant goals. In their view, an important role of the PFC is to bias the activation of 

goal related representations that are stored, represented, and processed in the posterior 

neocortical regions. They propose that this form of guided or controlled activation of 

posterior representations is essential for rule acquisition as well as the acquisition of new 

information and behaviors. Miller and Cohen (2001) suggest that repeated activation of the 

same processing pathways creates stronger associations between posterior representations 

(i.e., stronger connections between posterior representational regions), while at the same 

time, the role of the PFC gradually diminishes in controlling posterior neocortical 
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processing as this becomes increasingly automatic. 

 Fuster (1995; 1997) proposes that the over-arching role of the PFC is to temporally 

organize goal-directed behavior and that this global function can be analyzed in terms of 

working memory, attention and inhibitory control. Fuster (1995; 1997) outlines 

mechanisms for monitoring, short-term memory and attentional selection that prioritize 

goals and task appropriate behavioral sequencing. Temporal integration is achieved by the 

PFC in interactions with posterior cortical regions, determined by the modalities of task-

relevant sensory and motor information. Moreover, he suggests that prefrontal 

representations and processing are recruited in non-automatic behavior, while well-

practiced tasks can be performed relatively independently of the PFC. Several other 

researchers have sketched similar ideas in terms of a global workspace for non-automatic 

cognitive processing (Cohen, Dunbar, & McClelland, 1990; Cohen, Servan-Schreiber, & 

McClelland, 1992; Dehaene, Kerszberg, & Changeux, 1998). Similarly, it has been 

suggested that the PFC serves as a working memory structure (cf. the Baddeley-Hitch 

model outlined in section 4.1) that keeps stimulus representations active for on-line 

processing (Fuster, 1995; Fuster, 1997; Goldman-Rakic, 1988). In particular, it is proposed 

that the PFC, being part of an integrated network of regions including temporal, parietal, 

and limbic, is involved in the representation of stimuli in their absence. This would allow 

the PFC to guide behavioral responses through internal representations (in the sense of 

cognitive states; cf., chapter 1 and 2). 

 Closely related views, emanating from investigations of language processing, 

suggest that the PFC is engaged in structural integration that serve to rapidly and 

selectively bring together information in posterior representational regions; different 

linguistic representations (e.g., phonological, syntactic, semantic, and pragmatic) are 

activated in parallel and integrated in a prefrontal workspace where incremental unification 

takes place (cf. e.g., Forkstam, Hagoort, Ingvar, & Petersson, in preparation; Hagoort, 

2004; Petersson et al., 2004). Similar ideas have been put forward with respect to structural 

integration in music perception (for a review see, Patel, 2003). 

 Several of the perspectives outlined so far are processing oriented, but also 

representational perspectives on PFC function have been put forward (cf., Miller & Cohen, 

2001; Wood & Grafman, 2003). For example, in the structured event complex framework 
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outlined by Wood and Grafman (2003), it is suggested that PFC stores representations of 

knowledge in the form of so-called goal-oriented sets of events. These goal-oriented sets 

carries a schematic sequence structure and represents various forms of knowledge, like 

event features, event boundaries, social rules, thematic knowledge, concepts, as well as 

grammars; the different aspects of a structured event complex are represented 

independently, they are encoded and retrieved in an episodic format (Wood & Grafman, 

2003). 

 In summary, given the capacity for on-line maintenance as well as the monitoring, 

manipulation, and selection functions of the executive part of working memory and its 

suggested relation to the PFC, it can be hypothesized that the PFC is involved in attentional 

processing, cognitive and behavioral selection, the decomposition of task processing into 

goals and sub-goals (i.e., prioritized dynamic scheduling or planning of sub-tasks), problem 

solving, as well as non-automatic and flexible cognition and behavior. 

 

4.4.2 THE FRONTAL LOBE AND LONG-TERM MEMORY 

As already noted, while the importance of MTL in declarative memory has been recognized 

for at least half a century, the importance of the frontal lobe has been appreciated only 

recently. The role of PFC regions in long-term memory has been intensely investigated 

with functional neuroimaging and several types of regional specializations of the PFC have 

been suggested. In the meta-analysis of Wheeler, Stuss, and Tulving (1995), it was shown 

that patients with frontal lesions exhibit memory deficits for both recognition and recall, 

and that the impairment appeared to be greater for recall compared to recognition tests. 

More specifically, patients with frontal lesions show retrieval difficulties when it is 

necessary to retrieve contextual details or when minimal retrieval cues are provided 

(Gershberg & Shimamura, 1995; Shimamura, 1995). This suggests that patients with 

frontal lesions are not able to effectively utilize organizational retrieval strategies. In 

addition, it appears that patients with frontal lobe lesions are more sensitive to interference 

between stimuli during encoding or retrieval (Incisa della Rocchetta & Milner, 1993; 

Shimamura, 1995). Thus, it has been suggested that the PFC support control processes 

during long-term memory encoding and retrieval rather than automatic storage and retrieval 

processes (Fletcher & Henson, 2001). Based on this, it seems natural to suggest that the 
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role of the PFC in long-term memory is related to various aspects of working memory. 

 One of the first, empirically guided, frameworks for the role of PFC in declarative 

(episodic) memory was put forward by Tulving and colleagues, the so-called hemispheric 

encoding and retrieval asymmetry (HERA) model (Tulving, Kapur et al., 1994). According 

to HERA, the left PFC is more involved than the right in episodic memory encoding, 

whereas the right PFC is more involved than the left in episodic memory retrieval (Habib, 

Nyberg, & Tulving, 2003). The retrieval part of the HERA model, which also seems to be 

the most empirically substantiated part of the HERA generalization, was recently 

elaborated in terms of a specific episodic retrieval mode (Lepage, Ghaffar, Nyberg, & 

Tulving, 2000). Here, retrieval mode refers to a cognitive state that sets the stage for 

episodic remembering (Lepage et al., 2000). Several PET and FMRI studies have reported 

results which are consistent with the general HERA pattern, but there are also a number of 

exceptions (for reviews see e.g., Fletcher & Henson, 2001; Habib et al., 2003; Simons & 

Spiers, 2003), and based on this, others have argued that the HERA generalization is not 

sufficient to capture all the relevant data (Fletcher & Henson, 2001; Miller, Kingstone, & 

Gazzaniga, 2002; Owen, 2003). For example, there are studies of verbal retrieval that have 

reported bilateral or left PFC activations (Fletcher & Henson, 2001). Similarly, both left 

and right PFC activations have been observed during encoding of figurative and non-

figurative visual material (Petersson, Sandblom, Elfgren, & Ingvar, 2003). Furthermore, the 

PFC has been shown to be sensitive to the type of material processed during both encoding 

and retrieval. For example, Kelley and colleagues (1998a) reported material specific PFC 

activation during both encoding and retrieval, where the left PFC was more related to 

verbal or verbalizable material while the right PFC was shown to be more related to non-

verbalizable material (see also Wagner, Poldrack et al., 1998b). However, it has been 

argued that material specific effects may occur independent of process specific effects 

(Habib et al., 2003; Nyberg et al., 2000). 

 It is well-accepted that episodic encoding benefits from meaning-based elaborate 

processing of information. When stimulus material is processed in an elaborate meaning-

based or conceptual manner, so-called deep processing, the material will be better 

remembered or more effectively retrieved than when the same material is processed with an 

emphasis on superficial or perceptual (surface) features, so-called shallow processing. This 
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so-called levels-of-processing (LOP) effect is a robust effect observed in human memory 

(Craik & Lockhart, 1972). Given that the left hemisphere is generally regarded as more 

related to language processing compared to the right, it seems reasonable to suggest that the 

left-lateralization of activation during encoding is related to language based processing 

(e.g., with respect to meaning, which entails among other things retrieval from semantic 

long-term memory), which might generate a linguistic format which is highly effective for 

long-term memory storage and retrieval. This hypothesis would provide a potential 

explanation for the left hemisphere part of the HERA generalization as well as the LOP 

effect. 

 An alternative approach to the role of PFC in long-term-memory, proposed by 

Nolde and colleagues (1998), suggests that the various component processes involved in 

encoding and episodic remembering (as well as in working memory, comprehension, 

problem-solving, etc.) are drawn from the same set of underlying cognitive processes. An 

example of such a component processing perspective is outlined by the multiple-entry-

modular memory system, the so-called MEM-model of Johnson and Hirst (1993). This 

model distinguishes between perceptual processes (e.g., locating and identifying external 

targets) and reflective processes (e.g., processes that sustain/maintain, manipulate, revive, 

and evaluate information). Nolde and colleagues (1998) suggest that reflective processes 

are subserved by the PFC in interaction with other (posterior) neocortical regions. With 

respect to the HERA generalization they suggest that the right PFC subserves a variety of 

heuristic reflective processes (e.g., refresh activated information, shift between 

representations, register relations, such as whether an item matches a standard or criterion, 

and comparison of two stimuli on some relevant dimension), which are sufficient to support 

simple episodic memory tasks, but that more complex episodic memory tasks require 

additional systematic reflective processes mediated by the left PFC (e.g., rehearsing, 

initiating recursive strategies, and generating cues for retrieval of inactive information). 

Thus, Nolde and colleagues  (1998) argued, the observed empirical generalization 

described by the HERA model arises because the encoding tasks that have been 

investigated so-far require on average more complex reflective processing than the retrieval 

tasks that has been investigated. Nolde and colleagues (1998) suggested that the specific 

processes supported by the left and right PFC might be best analyzed in the context of more 
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general component process architectures rather than as processes dedicated to any 

particular process, such as episodic encoding or retrieval. Fletcher and Henson (2001) 

reached a similar conclusion. 

 

4.4.2.1 THE FRONTAL LOBE AND MEMORY FORMATION 

Cognitive research on long-term memory indicates that several factors and modes of 

processing contribute to memory formation, including for example material, task and task 

instruction, as well as meaning-based (vs. surface based), associative relational and context 

processing, emotional significance and attention allocation. Moreover, functional 

neuroimaging studies have demonstrated that several types of processing interact to 

promote long-term memory formation. For example, meaning-based semantic generation, 

verbal working memory, and episodic memory encoding activate similar left PFC regions 

during active processing (Buckner & Koutstaal, 1998). One common denominator of these 

active on-line processes is the concept of working memory, which is likely to be engaged 

during retrieval of general knowledge, maintenance and further processing of the generated 

information (e.g., manipulation, selection, and organization), dynamically organizing 

different task objectives, as well as keeping encoding and retrieval strategies on-line. 

 Returning to the LOP effect and the framework formulated by Craik and Lockhardt 

(1972), which suggested that a deeper more elaborate and meaning-based processing of 

information yields more extensive associations with previously acquired general 

knowledge. Craik and Lockhardt (1972) thus hypothesized that the richness and the number 

of associations that results from the processing of the stimulus determine the stability (or 

durability) of the memory trace. Consequently, encouraging a processing strategy that leads 

to the formation of relatively more associations will prolong the lifetime of the memory 

trace, reduce its forgetting rate, and generate more associative access pathways for later 

retrieval. Subsequently Craik and Tulving (1975) provided data indicating that the LOP 

effect could not be explained in terms of task demand, that is, that the meaningful semantic 

encoding was simply more demanding (task difficulty) or time-consuming (time on task) 

compared to shallow processing. Another related hypothesis regarding the basis of the LOP 

effect suggests that the effect depends on the discriminability or distinctiveness of the 

memory trace relative to other memory traces (Baddeley, 1998; Craik & Tulving, 1975). 
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This reasoning suggests that recognition depends on the selection from any number of 

memory traces to match the retrieval cue. It follows that the likelihood of a memory trace 

being correctly selected is a function of its distinctiveness or discriminability. As already 

noted, another possibility is that the use of a linguistic representational format might be 

particularly efficient with respect to memory formation and subsequent retrieval. 

 Whether memory encoding is incidental or intentional appears to be of little 

consequence for the occurrence of the LOP effect (Kapur et al., 1994) and processing that 

engages meaning-based elaboration activates the left PFC specifically, independent of 

whether verbal (Kapur et al., 1994; Otten, Henson, & Rugg, 2001; Rugg, Fletcher, Frith, 

Frackowiak, & Dolan, 1997) or non-verbal material (Petersson et al., 2003) is used. 

Moreover, it seems that meaning-based instructions promote a mode of processing that 

enhances retrieval regardless of whether there is explicit semantic content in the stimulus 

material or not (Petersson et al., 2003; Vochatzer & Blick, 1989). For example, Vochatzer 

and Blick (1989) investigated the LOP effect using words and pseudowords and their 

results indicated that the LOP effect in the pseudoword condition was comparable to the 

effect in the word condition. Similarly, the LOP effect was similar for figurative and non-

figurative line-drawings (Petersson et al., 2003). 

 The anterior parts of the left ventrolateral PFC have been associated with semantic 

working memory processes, including the retrieval, selection, maintenance, integration and 

evaluation of semantic knowledge, presumably represented elsewhere in neocortex 

(Bookheimer, 2002; Demb et al., 1995; Gold & Buckner, 2002; Hagoort, Hald, 

Baastiansen, & Petersson, 2004; Thompson-Schill, D'Esposito, Aguirre, & Farah, 1997), 

while the posterior parts of the left ventrolateral PFC have been related to phonological 

working memory (Bookheimer, 2002; Gold & Buckner, 2002; Wagner, 1999). Moreover, 

while the left PFC is more active during verbal working memory conditions, the right PFC 

is more active during visuo-spatial working memory conditions (D’Esposito et al., 1998). 

Owen and colleagues (1996) proposed a two-stage model of working memory, in which the 

ventrolateral and dorsolateral PFC regions mediate distinct working memory processes (cf., 

Simons & Spiers, 2003). They hypothesized that the ventrolateral PFC subserve 

maintenance and evaluation of information held on-line, while the dorsolateral PFC 

subserve monitoring and manipulation of the representations maintained in working 
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memory. Similarly, Simons and Spiers (2003) argue that the dorsolateral PFC organizes 

information to be remembered, while the ventrolateral PFC is related to 

semantic/phonological elaborative processing of MTL representations to ensure trace 

distinctiveness. Furthermore, memory formation is suggested to depend on perceptual 

processing in hierarchically organized posterior regions, resulting in more abstract 

representations that are integrated into a memory trace in interaction with the MTL. Thus, 

encoding control is supported by the PFC, involving elaborative processing of 

representations in the ventrolateral PFC, and information is selected, manipulated and 

organized in the dorsolateral PFC (Simons & Spiers, 2003). In the context of episodic 

memory formation, Simons and Spiers (2003) suggest that one role of the PFC is to ensure 

event separation (i.e., reduction of trace overlap) in order to reduce interference or cross-

talk between memory traces. 

 Fletcher and Henson (2001), summarizes several ideas about the role of the (left) 

PFC in memory formation. They conceptualize the function of PFC in terms of working 

memory related processes regardless of whether the PFC is engaged in memory formation 

or retrieval; these, include: generation and retrieval of general knowledge (semantic 

information), maintenance and task-appropriate selection as well as organization the 

information to be encoded. They suggest that organization depends on selection, which 

depends on maintenance, and that maintenance depends on generation/retrieval from 

semantic memory. Hence, it is suggested that the contribution from meaning-based 

elaborated processing is derived from the anterior ventrolateral PFC, while selection is 

related to the dorsolateral and the posterior ventrolateral PFC and organization to the 

dorsolateral PFC (cf., Nyberg et al., 2003; Petersson et al., 1997; Petersson et al., 1999a; 

Petersson et al., 2001; Wagner, 1999). 

 

4.4.2.2 THE FRONTAL LOBE AND MEMORY RETRIEVAL 

Retrieving information from declarative long-term memory is a complex cognitive process 

that emerges from the interaction of an array of processes in order to reconstruct a 

representation of the retrieved information. Memory retrieval is thought to depend on the 

interaction between retrieval cues, supplied by the environment as in recognition or self-

generated by a goal-directed retrieval attempt as in free recall, and the long-term memory 
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store, leading to the reconstruction of some aspects of a memory trace (Rugg & Wilding, 

2000). Whether a retrieval attempt is successful or not is influenced by several factors, 

including the way information was encoded, the type of cues available, and the processes 

engaged during the retrieval attempt (Tulving, 1983). As already noted in this chapter, 

several investigators have emphasized the close connection between working memory, 

long-term memory retrieval and the PFC (Fletcher & Henson, 2001; Nyberg et al., 2003; 

Petersson et al., 1997; Petersson et al., 1999a; Simons & Spiers, 2003; Wagner, 1999). A 

general characterization of the functional role of different PFC regions in long-term 

memory retrieval has been outlined by Fletcher and Henson (2001, see also, Buckner & 

Wheeler, 2001; Simons & Spiers, 2003; Wagner, 1999), relating the ventrolateral PFC to 

the specification of memory search parameters, up-dating (bringing new information into 

working memory) and maintenance of retrieval cues; the dorsolateral PFC to monitoring, 

evaluation (verification), and processing (manipulation, selection) of the retrieved 

information; while the anterior PFC is thought to subserve control processing in terms of 

developing retrieval objectives, utilizing and coordinating retrieval (i.e., search) strategies 

as well as monitoring processes. 

 In order to understand the role of the frontal lobes in memory retrieval it is 

necessary to understand how PFC regions subserve executive control processes in general 

and how these processes control retrieval. The retrieval process can broadly be divided into 

several component processes: processing of retrieval cues; access to the memory store; re-

instantiation of retrieved information in working memory, in which this information is 

maintained and subjected to further processing in terms of monitoring, evaluation, and 

selection; as well as higher-order control processing in terms of developing and utilizing 

retrieval strategies, specifying retrieval objectives and dynamic scheduling of different 

component processes as well as meta-mnemonic reasoning (cf., Buckner & Wheeler, 2001; 

Fletcher & Henson, 2001; Wagner, 1999). It has been suggested that the PFC interacts with 

posterior brain regions as well as the MTL during retrieval. By this account, the PFC 

support representations of retrieval cues that trigger reactivation of the cortical networks 

(including posterior regions) that represent the memory trace, while the MTL participates in 

these interactions (in particular for non-consolidated information). The MTL may be 

thought of as storing intermediate-term retrieval pointers, created by the rapid initial 
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binding of information during memory formation, which is subsequently consolidated in 

neocortical networks (cf., section 4.2 and 4.5). As information is being retrieved and 

represented in neocortical networks, it is suggested that the re-activation processes cascade 

backwards through the neocortical hierarchy, depending on the level of perceptual or motor 

detail that is required (Buckner & Wheeler, 2001; Rugg & Wilding, 2000). Thus, 

reactivation of the domain-specific memory contents engages different stages of perceptual 

and motor processing regions (Nyberg et al., 2000; Nyberg et al., 2001). Moreover, since 

memory content extends beyond perceptual and motor information, higher-level abstract 

representation (e.g., language mediated conceptual cognition, emotional significance, 

individual perspective, general world knowledge and model based cognition, etc.) 

supported by amodal/polymodal neocortical regions also become engaged. For example, 

Buckner and Wheeler (2001) suggest that it is likely that the PFC participates in the 

ongoing evaluation and integration of the information emerging during the process of 

retrieval attempt and that these processes are recursively engaged depending on retrieval 

success as well as retrieval objectives. 

 Several factors have been suggested to play a role in declarative memory retrieval, 

including retrieval mode, retrieval attempt, retrieval effort, the content of the retrieval 

process, retrieval objectives as well as retrieval success (cf., Rugg & Wilding, 2000). For 

example, Tulving (1983) suggested that a stimulus event is only treated as an episodic 

retrieval cue if the individual is in a particular cognitive state, the so-called retrieval mode, 

which thus constitutes a constantly maintained state that is necessary when there is need for 

episodic retrieval (Lepage et al., 2000). Retrieval effort refers to the level of processing 

resources utilized during retrieval attempt; retrieval success encompasses any process 

which depends on successfully retrieved information (Rugg & Wilding, 2000). Rugg and 

Wilding (2000) introduced an additional factor which they call retrieval orientation and 

suggest that retrieval orientation determines the specific form of the processing that is 

applied to a retrieval cue; retrieval orientation differ according to task requirements and the 

type of information to be retrieved. 

 The objective of retrieval attempt processes is to reconstruct previously encoded 

information from memory and several investigators have suggested that strategic, working 

memory related, aspects of a retrieval attempt is supported by the PFC. The PFC is also 
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likely to support conceptually oriented (language- or non-language based) processing as 

well as on-line integrative monitoring and maintenance related retrieval processes. Some of 

these proposed higher-order strategic aspects of retrieval are hypothesized to be related to 

the anterior frontopolar region (Buckner & Wheeler, 2001; Simons & Spiers, 2003), while 

posterior regions of the PFC have been related to more general-purpose cognitive 

processes. Buckner and Wheeler (2001) suggest the posterior PFC regions are recruited to 

the degree which they are engaged in retrieval, that is, as the retrieval more difficult, they 

will be recruited more extensively and will thus reflect the level of retrieval difficulty (so-

called retrieval effort). Relative to the posterior PFC, the anterior PFC appears to be more 

selectively engaged in long-term memory retrieval. For example, the anterior PFC appears 

to be engaged in dynamic organization and scheduling of multiple sub-tasks (Koechlin, 

Basso, Pietrini, Panzer, & Grafman, 1999), and based on this, Buckner & Wheeler (2001) 

proposed that some aspects of long-term memory retrieval might depend on dynamic 

navigation between retrieval cues, retrieval objectives, and reconstructions from long-term 

memory. This suggestion is clearly related to the idea of process complexity (Nolde et al., 

1998) and context dependent retrieval processing (Wagner, Desmond, Glover, & Gabrieli, 

1998). The context-dependent view of retrieval (Wagner, Desmond et al., 1998) suggests 

that the PFC supports several aspects of information processing during retrieval (including 

for example selection of retrieval strategies, initiation of retrieval search, and evaluation of 

information retrieved, as well as repeated initiation of retrieval attempts) and is consistent 

with the view that different prefrontal processing components are selected from the same 

set of underlying sub-processes but engaged differentially depending on task context and 

task complexity. However, several prefrontal regions seem to be co-activated relatively 

independent of the cognitive demand (Duncan & Owen, 2000; Nyberg, Forkstam, 

Petersson, Cabeza, & Ingvar, 2002; Nyberg et al., 2003). The PFC has also been related to 

retrieval success (Henson, Rugg, & Shallice, 2000; Rugg, Fletcher, Frith, Frackowiak, & 

Dolan, 1996); while the dorsolateral PFC regions might have a role in retrieval monitoring, 

the activity pattern of the anterior PFC region seems to be consistent with a retrieval 

success perspective (Henson et al., 2000). However, Wagner et al. (1998a) argued that their 

results were inconsistent with a retrieval success interpretation and Tulving et al. (1999) 

observed a negative correlation between recognition performance and PFC activation, both 
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in the anterior PFC and the posterior dorsolateral regions, casting some doubt on these 

suggestions. 

 In conclusion, as has become clear from this overview of PFC function, caution is 

prudent when interpreting the role of the PFC in long-term memory as well as in cognition 

more generally. Most conceptualizations of prefrontal functions are at present general in 

character, too general to specify with confidence the contribution of the PFC in cognition 

(Buckner & Wheeler, 2001; Simons & Spiers, 2003). These conceptualizations need to be 

developed into explicit accounts of the role of the various proposed PFC functions and their 

interplay. Moreover, these accounts need to indicate how these component processes and 

their interactions can be empirically characterized (i.e., measured). 

 

4.5 NEOCORTICAL AND MEDIAL TEMPORAL LOBE INTERACTIONS 

As emphasized through out this chapter, accumulating evidence suggests that long-term 

declarative memory formation and retrieval are supported by distributed functional 

networks of brain regions, including the PFC and the MTL (Eichenbaum, 2000; Simons & 

Spiers, 2003). Equally important to the specification of the separate contributions of these 

regions is an understanding of the interaction between these regions and several studies 

have shown that the PFC and the MTL are activated in parallel during various memory 

tasks (Eichenbaum, 2000; Simons & Spiers, 2003). 

 For information to be encoded, that is, transferred from an active working memory 

representation to a long-term memory trace, the information is processed and integrated in 

the neocortical hierarchy. Thus higher-level abstract representations are formed and 

subsequently bound into a MTL representation (e.g., index or pointer; cf., section 4.2). It is 

hypothesized that the MTL is involved in associative binding of distributed neocortical 

representations which are actively processed on-line and subsequently stored as a long-term 

declarative memory at the time of memory formation. The interaction with the PFC, 

presumably subserving working memory processes as outlined above, provides 

organization and control of the memory formation as well as the retrieval process (Buckner, 

Logan, Donaldson, & Wheeler, 2000; Buckner & Wheeler, 2001; Fletcher & Henson, 2001; 

Simons & Spiers, 2003; Wagner, 1999). 

 Recently Cabeza and colleagues (Cabeza, Dolcos, Graham, & Nyberg, 2002) 
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reported overlapping activations in the MTL related to episodic retrieval and verbal 

working memory. They argued, based on a review of the literature, that there are evidence 

linking MTL regions with working memory; for example, in both human (Holdstock, 

Shaw, & Aggleton, 1995; Murray & Mishkin, 1986; Owen, Sahakian, Semple, Polkey, & 

Robins, 1995) and nonhuman primates (Eichenbaum & Cohen, 2001; Zola et al., 2000) 

MTL lesions have been found to impair performance in trial unique working memory tasks 

with short retention intervals. There is also electrophysiological (Davachi & Goldman-

Rakic, 2001; Suzuki, Miller, & Desimone, 1997), autoradiographical (Curtis, Zald, Lee, & 

Pardo, 2000; Sybriska, Davachi, & Goldman-Rakic, 2000), and functional neuroimaging 

evidence (Elliott & Dolan, 1999; O'Reilly, Braver, & Cohen, 1999; Ranganath & 

D'Esposito, 2001) indicating that the MTL is active during working memory tasks. 

However, the interpretation of these results is still unclear. 

 Preliminary investigations, using a network approach based on structural equations 

modeling (cf., chapter 3), indicate that the neocortex and the MTL might interact during 

short-term working memory tasks. More specifically, preliminary results indicate that the 

interaction between a neocortical verbal working memory network and the MTL is 

sensitive to task modulation (Petersson, Gisselgård, Gretzer, & Ingvar, in preparation). One 

possibility is to interpret this finding in the light of a recently introduced, fourth component 

of the Baddeley-Hitch working memory model, the so-called episodic buffer (Baddeley, 

2000). The episodic buffer comprises a capacity limited system that provides temporary 

storage of information in a multimodal code, which is capable of binding information 

represented in the subsidiary systems (i.e., phonological loop, visuo-spatial sketch pad), 

and in long-term memory, into an episodic representational format (Figure 4.2). Similar 

concepts have been put forward in terms of long-term working memory (Ericsson & 

Kintsch, 1995) and working-with-memory (Moscovitch, 1992, 1994). Another possibility, 

suggested by Cabeza and colleagues (2002), is that rehearsal processes might involve the 

reactivation of the working memory representations transiently stored in the neocortex and 

that accessing these representations may engage the MTL. Similarly, it has been suggested 

that the MTL may serve as a convergence zone that rapidly store arbitrary associations or 

conjunctions of information and thus binding distributed neocortical representations that 

are active at the time of memory formation. For example, the PFC, and other neocortical 
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regions, may utilize briefly lasting parahippocampal representations to support on-line 

working memory processing (cf., Eichenbaum, 2000). One possibility is that such pointers, 

indexes or chunks (Wickelgren, 1979) are created by the MTL and might be used to access 

working memory traces transiently stored in neocortex. Following Miller (1991), it may 

thus be suggested that that working memory can be supported by MTL indexing 

mechanisms, when necessary, in order to access short-term memory representations. Since, 

the episodic buffer provide an interface between the slave systems of short-term working 

memory and long-term (or intermediate-term) memory, an interesting possibility is that the 

episodic buffer may be instantiated as an interaction between the PFC and the MTL, 

probably also including posterior cortical regions (Petersson et al., in preparation). This 

would suggest a more intimate relation between the MTL and working memory, although a 

prominent short-term deficit is not a typical feature in amnesic patients. However, as noted 

above, there are data indicating that MTL lesions can be paralleled by short-term 

recognition deficits in humans (Buffalo, Reber, & Squire, 1998; Holdstock et al., 1995; 

Owen et al., 1995) and functional neuroimaging evidence (Cabeza et al., 2002; Elliott & 

Dolan, 1999; O'Reilly et al., 1999; Ranganath & D'Esposito, 2001) indicating that the MTL 

is active during working memory tasks. A potential explanation may be that simple short-

term memory tasks may not be sensitive enough to detect subtle short-term memory 

deficits, instead such deficits may be more pronounced if an additional distracting task or 

disturbing input is delivered. Consistent with this suggestion, Zarahn and colleagues (2004) 

speculate, based on lesion studies in human and non-human primates (Buffalo et al., 1998; 

Holdstock et al., 1995; Owen et al., 1995; Squire, Zola-Morgan, & Chen, 1988), that in the 

absence of a perceived possibility of distraction, memory over brief delays is independent 

of the hippocampus while this might not be the case in the presence of distraction. This 

hypothesis may be tested directly on patients with MTL lesions. 

 Along similar lines it may be suggested that the PFC–MTL interaction during 

retrieval to a large degree reflect the interaction between attentional processes, working 

memory, and long-term memory, in particular for relatively non-consolidated information. 

For example, Simons and Spiers (2003) suggested that the PFC-MTL interaction might be 

particular important for complex retrieval tasks such as recall with greater demands on 

retrieval organization in terms of search, generation, evaluation and possible further 
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processing in service of response organization. Moreover, studies of functional connectivity 

have provided support for the view that neocortical-MTL interaction is important for 

declarative memory retrieval (Köhler, McIntosh, Moscovitch, & Winocur, 1998; McIntosh, 

Nyberg, Bookstein, & Tulving, 1997). However, the precise characterization the patterns of 

neocortical-MTL interaction during both memory formation and retrieval from long-term 

memory remain to be worked out. 

 

4.6 PRACTICE, WORKING MEMORY AND THE FRONTAL LOBES 

Schneider and Shiffrin (1977) suggested that there is a qualitative difference between 

performance on novel tasks compared to well-practiced automatic tasks. Novel task 

performance is dependent on attentional resources and controlled processing, closely 

related to on-line working memory, to a greater extent than practiced automatic 

performance. The attentional and control processes, on which novel task performance is 

dependent, are characterized by flexibility, rapid establishability, and capacity limitations. 

With practice and increased automaticity, processing typically becomes faster, less 

variable, less sensitive to capacity limits, and more difficult to alter or inhibit; automaticity 

appears to develop gradually with practice (Cohen et al., 1990; MacLeod & Dunbar, 1988; 

Schneider, Pimm-Smith, & Worden, 1994). Thus, novel task performance is thought to 

depend more, and as performance becomes more automatic, less on attentional and working 

memory resources (Carr, 1992; Cohen et al., 1990; Petersson et al., 1999a; Raichle et al., 

1994).  

 The ability to automate performance is important for complex task execution as it 

enables reallocation of limited attentional and control resources, and it enables learning of 

increasingly complex modes of processing by building upon previously acquired 

information and skills (Logan, 1988). Restructuring proposals suggest that the shift from 

controlled to automatic processing involves organizational changes in the sense of 

restructuring of processing pathways and that different sub-systems might be involved in 

automatic and controlled processing. Logan (1988) suggested that the transition from 

controlled to automatic processing represents a transition from algorithm-based to memory-

based processing. In other words, performance will gradually come to depend on memory 

and adaptive changes as a result of practice. Alternatively, processing-based proposals 
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suggest that the processes involved in novel task performance are refined and become more 

effective as a result of practice. For example, the various sub-systems involved, may come 

to interact more efficiently as well as develop more efficient and appropriate 

representations for task performance (Jansma, Ramsey, Slagter, & Kahn, 2001; LaBerge & 

Samuels, 1974). 

 Presumably some aspects of the controlled processing are related to executive 

aspects of working memory supported by the PFC (Baddeley, 2003) and, as has already 

been outlined, attentional processes as well as working memory processes interact with 

learning and memory processes (Baddeley, 1998; Cohen et al., 1990; Schneider et al., 

1994). We suggest that it is likely that the gradual transition from controlled to automatic 

processing is supported both by a restructuring of the functional processing architecture and 

the development of a more efficient processing infrastructure as well as representations of 

information. Functional neuroimaging studies have yielded support for both the 

restructuring and the processing efficiency perspective (Garavan, Kelley, Rosen, Rao, & 

Stein, 2000; Jansma et al., 2001; Petersson et al., 1999a; Raichle et al., 1994; Wiser et al., 

2000). Overall, the general finding in these studies suggests a progressive reduction of the 

level of activation in attention and working memory related neocortical regions, including 

the dorsolateral PFC, the anterior cingulate/supplementary motor area, and posterior 

parietal and temporal regions, which putatively correspond to the transition from controlled 

to automatic processing as a consequence of practice. In addition, several studies have 

reported increased levels of activations with practice in domain specific posterior regions 

(Petersson et al., 1999a; Raichle et al., 1994; Wiser et al., 2000). This set of findings is 

consistent with the hypothesis, based on behavioral data, that aspects of controlled and 

automatic processing are supported in part by qualitatively or quantitatively different 

processing modes correlating with a restructuring of the functional processing architecture 

(cf., section 6.3). 
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5. CHARACTERISTICS OF ILLITERATE AND LITERATE COGNITIVE 

PROCESSING 

Literacy and education represent essential aspects of contemporary society and subserve 

important aspects of socialization and cultural transmission. The study of illiterate subjects 

represents one approach to investigate the interactions between neurobiological and cultural 

factors and their influence on the outcome of cognitive development. Acquiring reading 

and writing skills as well as other cognitive skills during formal education can be viewed as 

an institutionalized cultural process and an important source for structured cultural 

transmission (cf., Figure 1.1). Important alternative approaches have also been explored 

with respect to cross-cultural variation, including the implications of transparent and non-

transparent orthographies on brain function (Paulesu et al., 2000) and their consequences 

for the expression of dyslexia (Paulesu et al., 2001). 

 Reading and writing represent cognitive abilities that depend on human cultural 

evolution (Vygotsky, 1962). Varney (2002) emphasizes that reading and writing evolved 

through cultural developments and became typical acquired human abilities only within the 

last 200 years in Europe and America, and only after World War II in the rest of the World. 

In fact, reading and writing skills are still far from universal at the beginning of the 21st 

century. At present, it is estimated that there are close to one billion illiterate humans in the 

world, two thirds who are women (UNESCO, 2003, www.portal.unesco.org), while the 

mean educational level is only about 3–4 years of school (cf., the World Bank Report on 

'Improving adult literacy outcomes: Lessons from cognitive research for developing 

countries' (Abadzi, 2003)). In this chapter, which is based on Petersson et al. (2005, in 

press; 2001), we will give an overview over some recent work comparing literate and 

illiterate cognition on a variety of experimental tasks. In particular we will focus on results 

from a series of experiments with an illiterate population and their matched literate controls 

living in southern Portugal and we review some recent cognitive, neuroanatomic, and 

functional neuroimaging results indicating that formal education influences important 

aspects of the human brain. Taken together this provides strong support for the idea that the 

brain is modulated by literacy and formal education. As a consequence, this changes the 

brains capacity to interact with its environment, including the individual's contemporary 
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culture: the individual's ability to participate in, interact with, and actively contribute to the 

process of cultural transmission in new ways through acquired cognitive skills. 

 Reading and writing skills do not represent a species wide adaptation of the kind 

that natural language is a paradigmatic example of. In contrast to language acquisition, 

which is largely a spontaneous, non-supervised, and self-organized process (cf., section 

2.1.1), the learning of reading and writing skills typically requires great effort and focused 

training on the part of the individual. During the process of reading and writing acquisition, 

the child creates the ability to represent aspects of the phonological component of language 

by an orthographic representation and relate this to a visuo-graphic input-output code. This 

is commonly achieved by means of a supervised learning process (i.e., teaching; cf. section 

2.1.1). Writing was a relatively late invention in human history, invented some 6,000 years 

ago, and it seems unlikely that specific brain structures have developed for the purpose of 

mediating reading and writing skills. Instead it may be suggested that these skills are 

supported by pre-adapted brain structures, brain structures that have evolved to serve 

specific functions but have come to serve as means for a different end. 

 Natural language is a system of knowledge, a system of representation and 

processing, as well as a system for communicative use (Chomsky, 1986). However, aspects 

of language can also be an object of cognition, so-called meta-cognition. Meta-linguistic 

awareness involves explicit processing and intentional control over aspects of phonology, 

syntax, semantics, discourse, as well as pragmatics. These processes are different from the 

implicit language processes used in natural language comprehension and production. In 

addition to the acquisition of language, children gradually develop explicit representations 

and acquire processing mechanisms that allow for reflecting and analyzing different aspects 

of language function and language use (Karmiloff-Smith, Grant, Sims, Jones, & Cuckle, 

1996). Children do not learn language passively but actively construct representations on 

the basis of linguistically relevant constraints and abstractions of the linguistic input 

(Karmiloff-Smith et al., 1996). Meta-cognitive and meta-linguistic awareness develops 

progressively over the early years of life (Karmiloff-Smith, 1992). When children 

subsequently learn to read this has repercussions on the phonological representations of 

spoken language (Morais, 1993; Petersson et al., 2000). Rather than a simple one-way 

influence, several lines of research indicate that there is an intricate interplay between 
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meta-linguistic awareness and reading. Moreover, various types of meta-linguistic skills, 

including phonological awareness, correlate with literacy skills as well as levels of formal 

education (Ravid & Tolchinsky, 2002). 

 Literacy, reading and writing, as well as printed media represent extensive cultural 

complexes and like most cultural expressions they originate in human cognition and social 

interaction. Goody's work on literacy emphasizes the role which written communication 

has played in the emergence, development, and organization of social and cultural 

institutions (e.g., Goody, 2000). The emergence of writing, entailing the ability to preserve 

speech and knowledge in printed media, transformed human culture. This allowed societies 

with a literate tradition to develop and accumulate knowledge over time, and also, in 

general sense, greater opportunities to control the environment as well as living conditions. 

For example, the nature of oral communication has a considerable effect upon both the 

content and transmission of the cultural repertoire of a society; the content of the cultural 

traditions and knowledge has to be held in memory when written record is not an option. 

Instead, individual memory will mediate the cultural heritage between generations and new 

experience will be integrated with the old by a process of interpretation. The invention of 

new communication media have had significant impact on the way information is created, 

stored, retrieved, transmitted, and used, and by implication on cultural evolution as a 

whole. Moreover, reading and writing makes possible an increasingly articulate feedback 

and independent self-reflection as well as the development of other meta-cognitive skills; 

while auditory-verbal language use is oriented towards content, aspects of this knowledge 

can become explicitly available to the language user in terms of cognitive control and 

analytic awareness. It has thus been suggested that the acquisition of reading and writing 

skills, as well as formal education more generally, facilitates this by a process of 

representational construction and reorganization (Karmiloff-Smith, 1992). Ravid and 

Tolchinsky (2002) suggest that meta-linguistic development is catalyzed by the acquisition 

of literacy and school-based knowledge; the acquisition of written language skills promotes 

flexible and manipulable representations for meta-cognitive use (Karmiloff-Smith, 1992). 
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5.1 THE STUDY POPULATION OF SOUTHERN PORTUGAL 

The fishermen village Olhão of Algarve in southern Portugal, where all of our studies have 

been conducted, is socio-culturally homogeneous and the majority of the population has 

lived most of their lives within the community. Mobility within the region has been limited 

and the main source of income is related to agriculture or fishing. Illiteracy occurs in 

Portugal due to the fact that forty or fifty years ago, it was common for older daughters of a 

family to be engaged in the daily household activities instead of being sent to school. 

However, later in life they may have started to work outside the family. In larger families, 

the younger children were generally sent to school when they reached the age of 6 or 7 

while the older daughters typically helped out with the younger siblings at home. 

 Literate and illiterate subjects live intermixed in this region of Portugal and 

participate actively in their community; illiteracy is not perceived as a (functional) 

handicapped and the same socio-cultural environment influences both literate and illiterate 

subjects on similar terms. Some of the literate and illiterate subjects in our studies are from 

the same family and thus increasing the homogeneity in background variables. 

Furthermore, most of the literate subjects participating in our studies are not highly 

educated and most often they have had approximately 4 years of schooling. In the context 

of our research, it is important to ensure that the subjects investigated are not cognitively 

impaired and also that the illiterate are matched to the literate subjects in as many relevant 

respects as is possible (except for the consequences of not having had the opportunity to 

receive formal education). In our studies we have attempted to match the different literacy 

groups as far as possible in terms of several relevant variables, including for example age, 

sex, general health, socio-cultural background, and level of everyday functionality. The 

literacy groups are comparable along socio-economic dimensions as well. For a more 

detailed characterization of our study population and our selection procedures see Reis, 

Guerreiro, & Petersson (2003). These protocols and procedures ensures with reasonable 

confidence that the illiterate subjects are cognitively normal, that their lack of formal 

education results from specific socio-cultural reasons and not due to, for example, low 

intelligence, learning disability, or any other pathology potentially affecting the brain.  
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5.2 COGNITIVE-BEHAVIORAL FINDINGS 

Cognitive-behavioral studies have demonstrated that literacy as well as the extent of formal 

education influence the performance of several behavioral tasks commonly used in 

neuropsychological assessment (e.g., Ardila, Rosselli, & Rosas, 1989; Lecours, Mehler, 

Parente, Aguiar et al., 1987; Lecours, Mehler, Parente, Caldeira et al., 1987; Manly et al., 

1999; Rosselli, Ardila, & Rosas, 1990). For example, behavioral results indicate that the 

acquisition of written language skills significantly modulates the auditory-verbal language 

system (e.g., Mendonça et al., 2002; Morais, 1993; Morais & Kolinsky, 1994; Reis & 

Castro-Caldas, 1997; Silva et al., 2002). Additional data indicate that other cognitive 

functions are influenced as well, for example, visuo-spatial skills (e.g., Kremin et al., 1991; 

Manly et al., 1999; Ostrosky, Efron, & Yund, 1991; Reis, Guerreiro, & Castro-Caldas, 

1994; Reis, Petersson, Castro-Caldas, & Ingvar, 2001; Rosselli et al., 1990). However, it is 

still unclear which processes and mechanisms mediate these effects of literacy and formal 

education. A detailed understanding of which parts of the cognitive system and which 

processing levels are affected is still lacking. In this section we will focus on some aspects 

of object naming, short-term memory, phonological processing and word awareness in 

spoken sentence context, as well as semantic memory organization and semantic 

processing. The basic idea is that literacy influences some aspects of auditory-verbal 

language processing related to phonological processing and verbal short-term working 

memory as well as visuo-motor skills related to reading and writing. 

 

5.2.1 OBJECT NAMING 

Literacy influence the performance when naming 2D pictorial representations of objects 

(e.g., Kremin et al., 1991; Manly et al., 1999; Reis et al., 1994; Rosselli et al., 1990). The 

performance on simple object naming tasks is mainly dependent on the systems for visual 

recognition, lexical retrieval, and the organization of articulatory speech output, as well as 

the interaction between these systems (Levelt, 1989). In our study population, learning and 

practice in interpreting schematic 2D representations most often took place in school 

simultaneously with the acquisition of written Portuguese. It is of course also the case that 

reading and writing depend on advanced visual and visuo-motor skills in coding, decoding, 

and generation of 2D representations. It is therefore likely that the interpretation and 
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production of 2D representations of real objects as well as the coding and decoding 2D 

material in terms of figurative/symbolic semantic content is more practiced in literate than 

in illiterate individuals, who generally have received little systematic practice in 

interpreting conventional visuo-symbolic representations. We thus speculated that there 

may be differences in 3D and 2D object naming skills between literate and illiterate 

individuals. This speculation was followed up in a simple visual object naming experiment 

in which the participants named common everyday objects (Reis, Petersson et al., 2001). 

Reis et al. (2001) reported differences between literate and illiterate subjects related to 2D 

object naming but found no difference when subjects named real 3D objects, both with 

respect to naming performance and in terms of response times. In addition, the two groups 

dissociated in terms of their error patterns, with the illiterate group more prone to make 

visually related errors (e.g., pen instead of needle), while the literate group tended to make 

semantically related errors (e.g., necklace instead of bracelet). 

 Though the results on 2D line drawings and real objects were clear in the study of 

Reis et al. (2001), the result on colored photos did not clearly dissociate between the 

literacy groups in terms of 2D vs. 3D naming skills. We therefore speculated that the 

semantic significance of object color might play a role, in particular for the illiterate 

subjects, since they are prone to be driven by semantic rather than formal aspects of stimuli 

or information, a theme we will return to in subsequent sections (cf., e.g., section 5.2.3). In 

a recent follow-up study, using a similar experimental set-up as Reis et al. (2001), we 

presented common everyday objects as black and white (i.e., grey scaled) as well as colored 

drawings and photos in an immediate 2D object naming task. Consistent with the results 

outlined above the literate group performed significantly better than the illiterate group on 

black and white items (i.e., both line drawings and photos). In contrast, there was no 

significant difference between literacy groups on the colored items (Figure 5.1). 

Interestingly, the illiterate participants performed significantly better on colored line 

drawings compared to black and white photos. Preliminary investigations also indicate that 

the color effect is related to the semantic value of the color in the sense that the effect 

seems more pronounced for objects with no or little consistency in the color-object-relation 

compared to objects with a consistent relation to its color (e.g., lemons are yellow). 
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[Figure 5.1] Simple immediate object naming of common everyday objects. The 2D 

stimuli included black and white (B&W) as well as colored line drawings and photos of 

common everyday objects. The literate subjects performed significantly better than the 

illiterate group on black and white items (B&W line drawings: P = 0.009; B&W photos: P 

< 0.001). In contrast, there was no significant difference between literacy groups on the 

colored items (colored photos: P = .21). The illiterate participants performed significantly 

better (P = 0.02) on colored line drawings compared to black and white photos. 

 

 

 In summary, the absence of group differences when naming real 3D objects, and in 

particular the absence of response time (RT) differences on correctly named real objects 

indicate that the RT differences on drawings and photos is not simply related to slower 

visual or language processing in general. Instead, the longer processing time in the illiterate 

group appears to be related to the processing of 2D visual information or the interaction 

between lexical retrieval and the processing of 2D visual information. The latter possibility 
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would suggest that the interface between the two systems is configured differently in the 

two literacy groups, leading to differences in the effectiveness of the necessary information 

transfer between the two systems. The result of the error analysis is consistent with this 

interpretation, since the illiterate subjects made relatively more visually related errors than 

language related while the pattern was the opposite for the literate group. In fact the 

qualitative distribution of errors was not significantly different for real object naming 

between groups. Taken together this interpretation is consistent with a recent suggestion 

that orthographic knowledge is an integral component of the general visual processing 

system (Patterson & Lambon Ralph, 1999) indicating that the acquisition of alphabetic 

orthographic knowledge may affect specific components of visual processing. A positive 

correlation between reading abilities and the capacity to name line drawings have also been 

reported (Goldblum & Matute de Duran, 2000). Recent findings also indicate that color can 

play an important role for the illiterate group, when naming 2D pictorial representations of 

common everyday objects. This seems so when the semantic value of the color of an object 

is prominent (Reis, Petersson, Faísca, & Ingvar, in preparation). 

 

5.2.2 SHORT-TERM WORKING MEMORY AND PHONOLOGICAL 

PROCESSING 

Our previous investigations of our study population have indicated that the acquisition of 

reading and writing skills influences aspects of the auditory-verbal language system. In 

particular, aspects of sub-lexical phonological processing appear to differentiate the two 

literacy groups. This is most prominently expressed in terms of phonological awareness, 

the most well-accepted difference between schooled and unschooled individuals that does 

not depend on educational level as such (Coppens, Parente, & Lecours, 1998). Previous 

results have also indicated that there are differences in phonological loop interactions 

between literate and illiterate subjects related to the inferior parietal cortex (Petersson et al., 

2000) and it was recently suggested that the phonological loop (cf., Figure 4.2) might serve 

as a language learning device, with an integral role in the systems for spoken and written 

language acquisition (Baddeley, Gathercole, & Papagno, 1998). 

 The relation between literacy and so-called phonological awareness has been 

investigated since Morais et al. (1979) indicated that illiterate subjects have some difficulty 
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in dealing with tasks requiring explicit phonological processing. The results of Morais et al. 

(1979) showed that illiterate subjects found it more difficult to add or remove phonemes in 

the beginning of words and pseudowords. However, these tasks may be of different 

ecological validity for literate and illiterate individuals complicating the interpretation of 

the finding (cf., discussion in e.g., Reis & Petersson, 2003; Silva, Petersson, Ingvar, & 

Reis, 2001; Silva, Petersson, Faísca, Ingvar, & Reis, 2004). It is still an open question what 

type of relation exists between phonological processing, verbal working memory, and the 

acquisition of orthographic knowledge. Moreover, it may be suggested that the 

phonological processing difficulties in illiterate subjects are not limited to phonological 

awareness but involve other aspects of sub-lexical phonological processing and skills 

related to verbal (phonological) working memory (e.g., phonological recoding in working 

memory). There is some evidence indicating that these effects may be specific to alphabetic 

orthographies and may not necessarily generalize to non-alphabetic orthographies. 

 Pseudoword repetition and digit span tasks are good measures of verbal working 

memory capacities and these measures have also been related to reading achievements in 

children (Gathercole, 1995a, 1995b, 1995c; Gathercole & Baddeley, 1995). Additional 

research points toward a role of verbal working memory and the efficiency of phonological 

processing in relation to reading skills (Brady, 1991). Several studies have indicated that 

there is a difference in digit span between literate and illiterate individuals (e.g., Ardila et 

al., 1989; Garcia & Guerreiro, 1983; Reis, Guerreiro, Garcia, & Castro-Caldas, 1995). In a 

recent study by Reis et al. (2003) it was shown that the difference in digit span is not a 

simple effect of literacy as such but the digit span performance appears to be dependent on 

other factors as well as including the extent of formal education. In particular, illiterate 

participants had a mean digit span of 4.1 (± 0.9) performing significantly lower than literate 

participants. However, also literate subjects with 4 years of education (5.2 ± 1.4) performed 

significantly lower than literate subjects with 9 years of education (7.0 ± 1.8). Thus it 

appears that not only literacy but education more generally contribute to the observed 

difference (overall effect P < 0.001). In a recently completed follow-up study we compared 

19 literate (4.4 ± 1 years of schooling) and 19 illiterate participants (mean age 66.2 ± 7 and 

68.9 ± 4 years; non-significant P = 0.1) directly on the digit span and spatial span sub-tasks 

of the Wechsler Memory Scale (III revision). Consistent with the results just described 
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there was a significant difference between literacy groups on the digit span (P = 0.004) 

while there was no significant difference on the spatial span task (P = 0.3). Thus, literate 

and illiterate subjects appear to dissociate in terms of performance on verbal- but not on 

spatial span tasks. This is of interest since the illiterate group performs less well on 

immediate 2D object naming but not on 3D naming compared to literate subjects. These 

results are thus a first indication that verbal short term memory is specifically influenced by 

literacy and formal education, possibly related to more effective verbal working memory 

representations in literate individuals (e.g., chunking, cf. e.g., Olesen, Westerberg, & 

Klingberg, 2004). 

 The second task commonly used task to investigate verbal working memory 

capacity is pseudoword repetition (Gathercole, 1995a, 1995b, 1995c; Gathercole & 

Baddeley, 1995). Reis et al. (1997) concluded that illiterate performed similarly to literate 

subjects on word repetition, while there was a significant difference on pseudoword 

repetition (P < 0.001; Figure 5.2). We have suggested that this is related to an inability to 

handle certain aspects of sub-lexical phonological structure and also indicates that the 

phonological representations or the processing of these representations are differently 

developed in literate and illiterate individuals (Petersson et al., 2000; Petersson et al., 

2001). Taken together these results indicate that there is a relation between the acquisition 

of reading and writing skills and aspects of phonological processing. Alternatively, the 

system for orthographic representation may support phonological processing as an auxiliary 

interactive network (Petersson et al., 2001). 

 Because several aspects of auditory-verbal language may differ between literate and 

illiterate subjects it is of interest to isolate the different sources contributing to these 

differences between literacy groups in phonological processing. In particular, it is important 

to study the differences in phonological processing relatively independent of lexicality 

effects (e.g., vocabulary size and frequency effects) as well as articulatory mechanisms. In 

order to do so we used an immediate auditory-verbal serial recognition paradigm 

(Gathercole, Pickering, Hall, & Peacker, 2001) in a recent follow-up study (Petersson et al., 

manuscript in preparation). In general, immediate serial recognition is independent of 

speech output and serial recognition of pseudowords is (relatively) independent of 

lexicality effects. In this experiment we compared illiterate and literate subjects on 
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immediate recognition of lists of 3 CVCV-syllable items (C = consonant, V = vowel). The 

lists varied in lexicality (words/pseudowords) and phonological similarity 

(dissimilar/similar) and the participants to judge whether two lists (presented one after the 

other) contained items presented in the same or different order. 

 

 

[Figure 5.2] Immediate verbal repetition. Literate and illiterate subjects repeated 

common words and pseudowords constructed from the words, by changing the consonants, 

thus preserving the length and syllable structure of the words. 

 

 

Group comparisons indicated that the literate group performed better than the illiterate in 

all conditions (pseudoword/dissimilar P < 0.001; pseudoword/similar P = 0.03; 

word/similar P = 0.003) except recognition of phonologically different words (P = 0.2). Of 

the four different conditions, the phonologically different word condition is of course the 

easiest to handle from a phonological point of view; on the one hand words are more 

familiar than pseudowords, and on the other hand, the phonological contrast is greater in 
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the different compared to the similar condition. These results are thus consistent with the 

differences in pseudoword repetition (literate > illiterate) and digit span performance and 

indicate that there are differences in verbal working memory performance between literacy 

groups. In addition, the results on immediate serial recognition indicate that these 

differences are independent of lexicality effects, articulatory organization (e.g., output 

phonology) or other speech output mechanisms. 

 

5.2.3 AWARENESS OF PHONOLOGICAL FORM AND THE INTRUSION OF 

LEXICAL SEMANTICS 

A characteristic of problem solving capabilities in illiterate individuals is their tendency to 

prefer semantic-pragmatic strategies if such are possible. More specifically, when an 

illiterate individual is confronted with a problem that can be solved by using strategies 

based on formal/abstract or semantic/pragmatic aspects the illiterate individual is likely to 

base his or her strategy on the latter type of information. For example, Kolinsky et al. 

(1987) investigated the notion of phonological word length in literate and illiterate subjects 

when asked to attend to abstract phonological properties of words the illiterate group found 

it difficult to ignore their semantic content. In other words, the illiterate group showed 

difficulty in inhibiting the intrusion of semantic information when attempting to solve the 

task based on form criterion. This suggests that explicit awareness of words as 

phonological form may depend on orthographic knowledge or more generally on formal 

education. 

 In a recent experiment literate and illiterate participants listened to words and 

pseudowords (Silva et al., 2002) during a phonological (‘sound’) length decision task, in 

which the participants were asked to decide which item in a pair was the longest in 

phonological terms. In the word condition we manipulated the relationship between word 

length and size of the denoted object yielding three sub-conditions: 1) Congruent - the 

longer word denoted the larger object; 2) Incongruent - the longer word denoted the smaller 

object; 3) Neutral - only phonological length of the words varied, denoting objects of 

similar size. Pseudowords pairs were constructed based on the real words pairs by changing 

the consonants and maintaining the vowels as well as word length. Each subject practiced 

each condition until the subject fully understood the task. 
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[Figure 5.3] The literate group performed significantly better than the illiterate group on 

both words (P < 0.001) and pseudowords (P = 0.001). The results between the different 

word conditions (i.e., congruent, neutral, vs. incongruent) showed a significant effect in the 

illiterate group (P < 0.001). There was no significant difference between word (collapsed 

over conditions) and pseudoword performance in the literate group (P = 0.3). In contrast, 

the illiterate group showed significantly better performance on pseudowords compared to 

words (P = 0.01). 

 

 

Two effects were of interest in the results. Firstly, the literate subjects showed no effect of 

semantic interference while this was clearly the case in the illiterate group (Figure 5.3). 

Secondly, while the literates performed at similar levels on words and pseudowords, the 

illiterate group performed significantly better on pseudowords compared to words. In fact, 

the mean performance in the pseudoword condition was slightly better than in the neutral 

word condition. Thus, as predicted, these results indicate that the illiterate subjects show a 
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greater difficulty in inhibiting the influence of semantic interference, that is, the intrusion of 

lexical semantics in the decision process. 

 

5.2.4 AWARENESS OF WORDS IN A SENTENCE CONTEXT 

Little is known about how adult illiterate subjects perceive words in the context of a 

sentence. Awareness of words as independent lexical units has been investigated in 

children, both before and after acquiring reading skills (e.g., Barton, 1985; Hamilton & 

Barton, 1983; Karmiloff-Smith et al., 1996), and also in illiterate adults (Cary & 

Verhaeghe, 1991). The results of these studies suggest that explicit knowledge of words as 

independent lexical units is to some degree dependent on literacy. Cary & Verhaegh (1991) 

suggested that the difficulty for illiterate subjects to efficiently identify closed-class words 

because of their relative lack of semantic content. However, given the prominent syntactic 

role of closed-class words in sentence processing, including sentence comprehension, and 

the fact that illiterate and literate individuals acquire spoken natural language on similar 

terms, we were interested in whether the effects related to closed-class words could be 

given a phonological explanation. In two recent studies we revisited these issues 

(Mendonça et al., 2002). In the first study, we investigated the awareness of words in the 

context of sentences with the aim of clarifying the role of literacy in the recognition of 

words as independent lexical units and the possible relation to the known phonological 

processing characteristics of illiterate subjects. We used short sentences, presented in 

random order to the participants, that varied in their constituent structure. All articles, 

prepositions, pronouns, and adverbs were included in the closed-class category and we 

divided this class into phonologically stressed and non-stressed words, where the latter are 

characterized by the absence of a stressed vowel in contrast to the former. Each sentence 

was orally presented and subjects were instructed to listen to the sentence, to immediately 

repeat it after the presentation, and to identify its constituent words by enumerating them. 

All spontaneous corrections were considered and after the experimental session subjects 

were asked to correct three of the incorrect segmentations. The behavioral data were scored 

according to the following: A) Global quantitative: (1) total of correct sentence 

segmentation (maximum score: 18); (2) spontaneous corrections; and (3) corrections made 

when probed; B) Segmentation errors: (1) blending (a so-called ‘clitization’ phenomena) 
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words in the boundaries of sentence’s main constituents and (2) blending words within 

phrases; C) Omissions of stressed and non-stressed closed-class words: (1) and (2) non-

stressed closed-class words. 

 

Table 1. (a) Means and standard deviations for sentence segmentation scores (maximum = 

18; between-group Mann-Whitney U Test). (b) Mean and standard deviations of 

proportions of segmentation errors committed internal to the phrase type by the illiterate 

group. 

 

Behavioral Measure Illiterate Literate P-value 

Correct sentence segmentation 3 ± 2.9 17 ± 2.0 <0.001 

Spontaneous corrections 0.1 ± 0.2 1 ± 1.3 0.001 

Percentage of questions corrected 19 ± 33 80 ± 45 0.01 

 

 

It is clear from Table 1, that the literate group performed significantly better compared to 

the illiterate on the sentence segmentation task and the results show that illiterate subjects 

did not spontaneously correct themselves, not even when probed. For all error types, the 

group comparison investigated showed significant differences. 

 

Table 2. Mean and standard deviations of proportions of errors committed in the internal 

composition of phrase by the illiterate group. 

 

Blending internal constituents of phrases Percentage 

Determiner + noun 51 ± 22 

Preposition + determiner + noun 18 ± 19 

Preposition + determiner 14 ± 13 

Preposition + noun 77 ± 28 

Contraction + noun 62 ± 28 
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Therefore, and in order to further understand the behavioral pattern of illiterate group, the 

subsequent error analysis focused on this group only. In order to compare the incidence of 

the different error types, percentage of errors was computed based on the total number of 

possible occurrences for each type. The illiterate group showed a specific pattern of 

merging or ‘clitization’ of words (Table 2 and Figure 5.4). There are very few mergers 

between the major syntactic constituents (1.4% error rate), meaning that illiterates are 

sensitive to the major syntactic structure of the sentence, as expected. 

 

[Figure 5.4] (a) The proportion of errors related to closed-class words. The closed-class 

words were either phonologically stressed or non-stressed. The illiterate subjects committed 

significantly more segmentation errors related to the non-stressed (64 ± 24%) compared to 

the stressed closed-class words (17 ± 14%; Wilcoxon P < 0.001). (b) The proportion of 

segmentation errors related to the phrase structure of the sentence. 
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This was also the case for syntactic boundaries within verb phrases (4.3%). Increasing rates 

of merging were observed within phrase internal constituents related to noun- (NP) and 

prepositional phrases (PP), but this seemed to depend on the particular syntactic context or 

alternatively on the linear sentence position. The words of NPs in subject position were 

more frequently merged (60%) compared to NPs within VPs or PPs in complement 

position (47% and 37%, respectively). Within the PPs composed of a preposition or 

contraction and a noun, the illiterates committed the highest rate of mergers; in differently 

composed PPs mergers were less frequent. 

 The closed-class word analysis revealed that illiterate subjects were unable to 

correctly segment 50% of the instances. Comparing the stressed and the non-stressed 

closed-class words showed that the merging tendency was significantly more prominent for 

the non-stressed closed-class words (Figure 5.4). In a recent follow-up study (Mendonça et 

al., 2003), using a similar experimental design, these effects were replicated. In brief, while 

there was no significant difference in sentence repetition (P = 0.7), the literate sentence 

segmentation performance was significantly better than the illiterate (P < 0.001). The 

mergers observed in the illiterate group related to closed-class words was observed 

significantly more often with non-stressed compared to stressed closed-class words in the 

illiterate group (P < 0.001; Table 3). 

 

Table 3. Mean scores and standard deviation of proportion of errors committed with 

closed-class words (both phonologically stressed and non-stressed) in the illiterate group 

(within-group comparisons Wilcoxon). 

 

 Stressed Non-stressed P-value 

Closed-class words 17% ± 14 64% ± 24 < 0.001 

 

 

More detailed preliminary analysis indicates that the merging effect is dependent on the 

type of closed-class, that is, the stressed vs. non-stressed effect was most common for 

determiners and least common for prepositions. Overall then, the present results 

corroborate previous suggestions that recognition of words as independent phonological 



 151

units in sentence context depends on literacy. Cary & Verhaegh (1991) suggested that the 

difficulty observed in illiterate subjects is related to a difficulty in efficient identification of 

closed-class words due to their relative lack of semantic content. However, the present 

results show that this cannot serve as a unitary explanation since the segmentation failures 

did not distribute evenly over closed-class words, not even within sub-types, but occurred 

more often with phonologically non-stressed than phonologically stressed closed-class 

words. The illiterate subjects are thus more sensitive to phonologically stressed closed-

class words which they are able to segment quite efficiently. Instead, we suggest that 

illiterate segmentation performance is closely related to sentence internal prosody and 

phonological stress. Thus, the difficulty seems to be a phonological phenomenon rather 

than related to lexical semantics per se. In addition, the ‘clitization’ phenomenon seem not 

to be related to phrase structure per se since the illiterate group respected phrasal 

boundaries, that is, blending mainly occurred within phrases and rarely across phrasal 

boundaries or boundaries between major sentence constituents (e.g., specifier, verb and 

complement). Another contributing factor to segmentation difficulties may be verbal 

working memory capacity, since the performance of the illiterate group increased from the 

start to the end of sentences. In other words, also the linear sentence position may play a 

role. In summary, illiterate word segmentation of sentences appears to depend on factors 

related to phonology, syntactic structure, and linear position, but appears to be unrelated to 

lexical semantic. 

 

5.2.5 SEMANTIC FLUENCY AND THE IMPORTANCE OF ECOLOGICAL 

RELEVANCE 

Literacy and formal education has also been associated with the capacity to acquire a 

broader base of general information as well as the capacity to process this information in a 

more abstract and systematic manner. Hence, literacy and formal education catalyze the 

development of several cognitive skills in addition to reading and writing skills. Task 

selection is thus of importance when investigating populations with different cultural 

backgrounds. In particular, when the objective is to relate differences in performance 

between populations it is important that the tasks investigated are of comparable ecological 

relevance to the study populations involved. This goes beyond matching populations for 
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background variables related to socio-economic status (cf. e.g., Coppens et al., 1998; Reis 

& Petersson, 2003). A clear illustration of this are the results reported in a recent study of 

semantic fluency by Silva et al. (2004). 

 Verbal fluency tasks (i.e., production tasks in which subjects generate as many 

words as possible during e.g. 1 min according to some given criteria) are commonly used in 

neuropsychological assessment since they are easy to administer, sensitive to brain damage 

and cognitive deterioration. Clear and consistent differences between literacy groups have 

been reported when a phonological fluency criterion was used (for a recent review see Silva 

et al., 2004). In contrast, several studies, comparing literate and illiterate subjects on 

semantic criteria have yielded contradictory results. At present the reasons for this are 

unclear but might be related to the specific semantic criterion used and/or the particular 

study populations investigated. Reis et al. (2003) suggested that the non-convergence of 

results could be related to the ecological or cultural relevance of semantic criterion used. In 

order to investigate this issue further, Reis et al. (2001; 2003) decided to use a semantic 

criterion of equal natural relevance to female literate and illiterate subjects and asked the 

participants to name things one can buy at the supermarket. The relevance of this criterion 

springs from the fact that almost all of these individuals do the major part of their regular 

shopping at supermarkets and at comparable levels over time. Reis et al. (2001; 2003) 

found no significant difference between illiterates, subjects with 4 years of education, and 

subjects with more than 4 years of education. 

 Silva et al. (2004) attempted to relate the concept of ecological relevance to the 

level of shared cultural background except for differences in literacy or formal education. 

More specifically, Silva et al. (2004) compared the performance of the same illiterate and 

literate subjects on two time-constrained semantic fluency tasks, the first using the semantic 

category of food items that can be bought at the supermarket (supermarket fluency task), 

and the second, animal names (animal fluency task, Figure 5.5). The equal performance on 

the supermarket task exclude a simple explanation for the performance differences on the 

animal fluency task (literate > illiterate) in terms of general factors such as cognitive speed 

or fluency. Instead, the interaction between literacy and semantic criterion might be 

explained in terms of similarities and differences in shared cultural background, that is, 

greater for supermarket items and lesser for animals. 
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[Figure 5.5] Semantic fluency. Two time-constrained semantic fluency tasks, which were 

identical except for the semantic criterion used, were investigated in literate and illiterate 

subjects. The first used the semantic category of food items that can be bought at the 

supermarket, and the second, animal names. The literate group performed significantly 

better on the animal fluency task compared to the illiterate subjects, while there was no 

difference on the supermarket fluency task. 

 

 

One possibility is that this reflects a type of frequency of exposure effect, making lexical 

access less readily available in illiterate subjects on the animal fluency task. In other words, 

this difference may be a consequence of education or secondary effects of literacy. For 

example, reading skills should facilitate access to information, through printed media, thus 

providing an opportunity to broaden different semantic categories that transcend the shared 

socio-cultural background of the two literacy groups. However, it appears that it is not just 

that the two semantic categories used in this study are associated with differences in socio-

cultural background specifically related to literacy/education; they also differ in the level of 
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reference to concrete knowledge and situation specificity. Thus, the observed differences 

between the literacy groups may not only relate to the semantic category used but 

potentially also to the extension (the semantic field; the potential number of available 

elements) of the semantic category. In other words, written language provides an 

opportunity to broaden the different semantic categories, and by using written language, we 

can access information (i.e., elements of the semantic category) that we cannot access 

though our direct experience. Thus, an important determinant for verbal fluency 

performance might relate to the type of experience we have had with the elements of a 

semantic category. 

 

[Figure 5.6] Literate and illiterate semantic spaces related to the animal fluency task. 

(a) Hierarchical cluster analysis (Ward’s method) of the semantic fluency responses. (b) 

Multi-dimensional scaling including the seventeen most frequent responses. Observe that 

the results are rotationally invariant so the results indicate that the aspects of semantic 

memory reflected in the data are similarly organized in both literacy groups 
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 We further investigated the effects of formal schooling on the semantic organization 

of the responses from the animal fluency task (Faísca, Reis, & Petersson, in preparation) 

using a non-metric multidimensional scaling approach. This approach assumes that the item 

sequence in a fluency task reflects the semantic organization for a given semantic domain. 

The most frequent responses in both groups were selected for further analysis and the serial 

position was used to build a distance matrix. The matrixes for each group were analyzed 

and displayed in a 2D semantic space. As can be seen from Figure 5.6, the semantic 

organization for the common responses are similar in the two literacy groups. Both groups 

allocated the different exemplars according to the same sub-categories (farm birds, farm 

animals and wild animals). Note that the literacy group differed on the animal fluency task 

in terms of the number of generated exemplars, but there was little support for any 

differences in semantic organization on the seventeen most frequent responses, as 

characterized by non-metric multidimensional scaling. 

 In summary, the semantic fluency results shows that significant literacy effects may 

or may not be observed depending on the choice of semantic criterion. This emphasizes the 

importance of developing instruments that are free of educational and cultural biases, or 

alternatively, in an effective manner handles such effects (e.g., statistically), and at the 

same time permit the investigation of cognitive functions of interest. The multidimensional 

scaling results on animal category responses suggest that on the high frequency responses 

there is no difference between groups in terms of semantic organization, indicating that 

differences between groups emerged after the first items of a category had been generated. 

We suggest that the initial production reflects the shared cultural background, while 

differences related to differences in cultural background only emerge in the later phase of 

the production and that these later differences are associated with differences in literacy. 
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5.3 NEUROIMAGING STUDIES OF LITERATE AND ILLITERATE SUBJECTS 

 

 

[Figure 5.7] Brain activations in the literate and illiterate brain during immediate 

verbal repetition. Word repetition in (A) the literate and (B) in the illiterate group. 

Pseudoword repetition in (C) the literate and (D) in the illiterate group. 

 

 

In our first PET study of literate and illiterate subjects, we compared the two literacy 

groups on immediate verbal repetition (Castro-Caldas et al., 1998). The groups were 

matched for age and socio-cultural background (Reis et al., 2003) and the subjects in the 

literate group had received 4 years of schooling. The subjects were instructed to repeat 

words or pseudowords and to avoid any other type of speech production. Though there 

were performance differences between groups, these did not correlate with the pattern of 

brain activations in either group or condition (Petersson et al., 2000). Including the 

performance scores as a confounding covariate did not affect outcome and the differences 
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between the literate and illiterate group were generally independent of whether 

performance was included in the analysis or not (Petersson et al., 2000). Comparing the 

PET data between groups (Figure 5.7) suggested that there was a more prominent left-sided 

inferior parietal (BA 40) activation in the words vs. pseudowords comparison in the literate 

group. In the reverse comparison (pseudowords vs. words), the literate group displayed a 

significant activation in the anterior insular cortex (BA 14/15) bilaterally and in the right 

inferior frontal/frontal opercular cortices (BA 44/45/47/49), left perigenual anterior 

cingulate cortex (BA 24/32), left basal ganglia, midline anterior thalamus and midline 

cerebellum. In the illiterate group, significant activation was only observed in the middle 

frontal/frontopolar region (BA 10). These results represented the first indication that the 

functional architecture of auditory-spoken language processing is influenced by literacy. 

This suggests that there exists a relation between the acquisition of alphabetic orthographic 

knowledge and aspects of phonological processing in terms the functional brain 

organization, consistent with behavioral findings outlined above. 

 

5.3.1 A NETWORK ANALYSIS OF IMMEDIATE VERBAL REPETITION IN 

LITERATE AND ILLITERATE SUBJECTS 

Complementary to the approach and results outlined in the previous section is to take a 

network perspective on cognitive brain function. In general, information is thought to be 

represented as distributed activity in the brain while information processing, subserving 

cognitive brain functions, is thought to emerge from the interactions between different 

functionally specialized regions or neural groups. When trying to understand cognitive 

processing as instantiated in the brain it is therefore natural to analyze functional 

interactions from a network perspective (Ingvar & Petersson, 2000). 

 Structural equation modeling (SEM, cf., chapter 3) provides one approach to test for 

differences in network interactions explicitly. Petersson et al. (2000) attempted to 

characterize the functional organization of immediate verbal repetition in literate and 

illiterate subjects in terms of effective connections between regions in a given functional-

anatomical model (cf., section 6.6). In terms of network interactions, the results showed no 

significant difference in the literate group when comparing the word and pseudoword 

condition. Neither was there any significant difference between the literate and illiterate 
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group in the word repetition condition. In contrast, there were significant differences 

between word and pseudoword repetition in the illiterate group and between the illiterate 

and literate group in the pseudoword condition. The differences between groups were 

mainly related to the phonological loop, in particular, the interaction between Broca’s 

region and the inferior parietal region. 

 

[Figure 5.8] Differences between literacy groups in the local thickness (circle) of the 

corpus callosum indicate that this is thinner in illiterate compare to the literate subjects (P < 

0.01). 

 

 

 The absence of significant difference between word and pseudoword repetition in 

the literate group relates to the fact that the network interactions were similar during both 

word and pseudoword repetition. This indicates that the literate subjects automatically 

recruit the same processing network during immediate verbal repetition for words and 

pseudowords. In contrast, this was not the case for the illiterate group. This is consistent 
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with the suggestion that phonological processing is differently organized in illiterate 

individuals due to a different developmental background related to the acquisition of 

alphabetic reading and writing skills. Based on this and in conjunction with the behavioral 

results outlined in sections 5.2.2-4, we suggest that these differences in phonological loop 

interactions might represent a primary difference between the two literacy groups related to 

differences in sub-lexical phonological processing. This is in line with the suggestion that 

the parallel interactive processing characteristics of the language system differ between 

literate and illiterate subjects (Petersson et al. 2000). 

 

5.3.2 NEUROANATOMICAL FINDINGS RELATED TO THE CORPUS 

CALLOSUM 

One may wonder whether there are neuroanatomic correlates corresponding to the literacy 

status. It is well-known that the corpus callosum, the large fiber bundle that interconnects 

the two brain hemispheres, develops during childhood and into young adulthood. In 

particular, there is an active myelination process of the neuronal axons running through this 

structure in order to establish efficient communication between the brain’s two hemispheres 

(Giedd et al., 1996). Recent results suggest that the posterior mid-body part of the corpus 

callosum undergoes extensive myelination during the years of reading acquisition in 

children, that is, during 6-10 years of age (Thompson et al., 2000) and the fibers that cross 

over in this region of the corpus callosum interconnect the parieto-temporal regions (for a 

general review see e.g., Zaidel & Iacoboni, 2003). A recent study of the morphology of the 

corpus callosum suggested that the posterior mid-body region of the corpus callosum 

(Figure 5.8), that is, the part that interconnect the left and right parieto-temporal cortices, is 

thinner in illiterate compare to the literate subjects (Castro-Caldas et al., 1999). Petersson et 

al. (1998) hypothesized that this may be related to a difference in the inter-hemispheric 

interactions between literacy groups with respect to the parieto-temporal cortices. 

 A large number of neuropsychological studies of acquired reading and writing 

impairment (alexia and agraphia) describe neuroanatomic lesions most prominently 

centered on the parieto-temporal region, including the inferior parietal cortex and the 

posterior portions of the superior temporal gyrus, thus suggesting this region is important 

for the mapping of orthographic representations onto phonologic representations 
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(Friedman, Ween, & Albert, 1993). Ernest Weber suggested in 1904 that the left 

hemispheric language dominance might depend on the acquisition of reading and writing 

skills and early attempts to address the issue in aphasic patients appeared to support this 

hypothesis (Cameron, Currier, & Haerer, 1971; Wechsler, 1976). Specific differences in 

language processing between literate and illiterate aphasic subjects has been reported, in 

particular with respect to pseudoword repetition and verbal memory tasks (Coppens et al., 

1998). Lecours (1989) suggested that illiterate subjects are more likely to use processing 

networks that include right-hemisphere regions when performing language tasks (Coppens 

et al., 1998). Moreover, a reversal of ear advantage for phonetically similar words in 

illiterate subjects has been reported (Damásio, Damásio, Castro-Caldas, & Hamsher, 1979). 

However, the mechanisms influencing hemispheric specialization and the consequent 

interhemispheric interaction are not well-understood and both genetic as well as 

environmental factors appear to be relevant (Sommer, Ramsey, Mandl, & Kahn, 2002; 

Thompson et al., 2001). Functional hemispheric lateralization has been shown to depend on 

several factors, including stimulus material (Kelley et al., 1998), experimental task 

(Stephan et al., 2003), and a recent review concluded that hemispheric specialization for 

language is multi-factorial and may depend on both task as well as brain region (Josse & 

Tzourio-Mazoyer, 2004), and it is well accepted that both hemispheres play a role in 

language processing (Friederici, 2002; Knecht et al., 2002). Furthermore, computational 

modeling has indicated that several possible mechanisms can support hemispheric 

lateralization (Reggia & Schulz, 2002). 

 

5.3.3 HEMISPHERIC DIFFERENCES RELATED TO LITERACY 

In a recent study (Petersson et al., submitted) we investigated two different samples of 

illiterate female subjects and their matched literate controls with respect to the hemispheric 

lateralization of the inferior parietal cortex in two simple auditory-verbal language tasks 

encompassing four different conditions (cf., section 6.7). In brief, while the literate group 

showed a positive left–right difference, the illiterate subjects showed a negative left–right 

difference in the inferior parietal region (Figure 6.4 and 6.5). Detailed inspection of the 

results suggested that the degree of functional lateralization may be task dependent. 

However, what stayed constant independent of task was the relation of the left-right 
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differences between the two literacy groups (i.e., group x hemisphere interaction), 

indicating that this relation generalizes over auditory-verbal tasks. Thus, it appears that 

literacy influences the functional hemispheric balance in the inferior parietal region. It is 

interesting to note that recent experimental results have suggested a rostral to caudal 

myelination process of the corpus callosum during childhood and early adulthood 

(Thompson et al., 2000; Zaidel & Iacoboni, 2003), indicating an ongoing developmental 

process to establish efficient interactions between the two hemispheres. The fibers that 

cross over in the posterior mid-body region of corpus callosum interconnect the parieto-

temporal regions and undergoes extensive myelination during the years of reading 

acquisition (Thompson et al., 2000) and this is the same region in which recent evidence 

indicate that literate subjects are thicker compared to illiterate subjects (cf., section 5.3.2). 

Thus, one may speculate that acquiring reading and writing skills at the appropriate age 

shapes not only the local morphology of the corpus callosum but also the degree of 

functional specialization as well as the pattern of interaction between the interconnected 

inferior parietal regions. 

 In conclusion, literacy represents an essential aspect of contemporary culture. 

Formal education and the educational system can be viewed as an institutionalized process 

of structured cultural transmission. The results outlined in this chapter indicate that formal 

education and its use influence important aspects of cognition and behavior as well as 

structural and functional properties of the brain. Taken together, the evidence provides 

strong support for the hypothesis that the brain is modulated by literacy and formal 

education. 
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6. EXPERIMENTAL STUDIES 

In this chapter, we will briefly outline and discuss the main findings of the eight 

experimental studies included in this thesis. For further details and results we refer to the 

original papers in chapter 9. 

 

6.1 LEARNING RELATED EFFECTS AND FUNCTIONAL NEUROIMAGING 

A problem in the study of learning in the human brain is that non-specific time effects not 

necessarily related to learning may parallel learning related changes. However, there are 

several ways to account for non-specific time effects. Petersson and colleagues (1999b) 

describe these approaches and we outlined the potential difficulties in investigating learning 

related effects in humans using functional neuroimaging. We also illustrated and compared 

two approaches by analyzing a PET dataset related to the medial temporal lobe from a 

previously reported learning study (Petersson et al., 1997). The first strategy for separating 

specific learning effects from non-specific time effects is to model time as a confounding 

covariate. The second strategy views learning related effects as a condition x time 

interaction in a linear model. The main finding of the Petersson et al. (1999b) study 

suggested that the two approaches yielded similar results. More specifically, the particular 

approach used to characterize the learning related effects influenced the outcome of the 

statistical analysis only weakly, in the case of statistically robust results, while it made a 

difference for less robust results, at least for the particular dataset investigated. We also 

proposed a third way to investigate learning related effects. This approach is basically a 

variation on a common experimental design theme, which handles the influence of non-

specific time-changes by balancing the experimental design over this factor. In other words, 

the proposal is based on a temporally balanced experimental design, which is perhaps 

theoretically the most satisfying of the three approaches, but entails an additional overhead 

from a practical point of view in terms of stimulus material, stimulus presentation, and 

number of practice sessions. 

 

6.2 A DYNAMIC ROLE OF THE MEDIAL TEMPORAL LOBE IN FREE RECALL 

Learning and memory are fundamental brain functions that enable the brain to learn and 

adapt in its environment. Learning can be defined as the processes by which the central 
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nervous system functionally restructures its processing pathways or its representations of 

information (cf., chapter 2). Memory, or more specifically, the memory trace results from 

active processing of information in combination with system plasticity (cf., chapter 1 and 

2). In other words, from a dynamical systems perspective, learning is a dynamical 

consequence of information processing and network plasticity. In the case of the human 

brain, learning and memory is thought to result from changes in the synaptic structure of 

the processing network. Such changes can be detected indirectly at a behavioral level as 

changes in the performance of a task as a result of practice. 
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[Figure 6.1] Retrieval related activity decreases as a function of practice (Petersson et al., 

1997). 

 

 

 Petersson and colleagues (1997) investigated the role of the medial temporal lobe 

during free recall of simple abstract designs in a less practiced memory condition as well as 

in a well-practiced (well-encoded) memory condition. The results showed an increased 

activity of the medial temporal lobe bilaterally (Figure 6.1) during retrieval in the less 
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practiced memory state compared to the well practiced memory state. This result was 

interpreted as support for a dynamic role of the medial temporal lobe in retrieval. More 

specifically, the medial temporal lobe activation decreased during free recall when 

comparing the earlier stages of acquisition compared to the well-encoded memory 

condition. 

 The medial temporal lobe has been ascribed several functions (cf., chapter 4). For 

example, the medial temporal lobe may be needed to bind together distributed 

representations (associative conjunctive learning) supported within different neocortical 

association regions, to enable the rapid acquisition of declarative knowledge for long-term 

integrative learning, to create flexible cognitive map representations (relational 

representations), to reduce interference in information to be encoded with respect to 

information previously stored (representation separation/orthogonalization), and has also be 

suggested to play a role in memory consolidation (cf., chapter 4). 

 The phenomenon of temporally-graded retrograde amnesia has given rise to the 

concept of memory consolidation (Ribot, 1882; Zola-Morgan & Squire, 1990), meaning the 

high-level process by which declarative memory becomes independent of the medial 

temporal lobe memory system (Squire, 1992; Squire, Cohen, & Nadel, 1984). This concept 

of memory consolidation entails the idea that information is reorganized and integrated in 

the neocortex and should be distinguished from other concepts of memory consolidation 

(e.g., with a biochemical connotation), which view consolidation as a simple stabilization 

of the memory trace. 

 If distributed activity in the neocortex, subserving perception and short-term 

memory, is to be stored as a long-term declarative memory trace, then the medial temporal 

lobe structures must be engaged at the time of learning (Eichenbaum & Cohen, 2001; 

Squire, 1992). Presumably, the final storage site of declarative knowledge is in the 

neocortex (Eichenbaum & Cohen, 2001; Squire, 1992). This implies that declarative 

learning and memory storage is dependent on some form of interaction between the medial 

temporal lobe and the neocortex. Several researchers have suggested that repeated 

reactivations of the neocortical representations of declarative memories strengthen the 

neocortical interconnections so that the neocortical memory network eventually can support 

declarative memory retrieval independently of the medial temporal lobe (Alvarez & Squire, 
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1994; McClelland, 1994; Squire & Alvarez, 1995; Treves & Rolls, 1994). This suggests 

that the interaction between the medial temporal lobe and the neocortex is dynamic and 

changing as a function of repeated activations of the interacting networks. In the study of 

Petersson and colleagues (1997) it was assumed that practice (in this case repeated 

encoding) would reactivate the relevant neocortical regions and hence strengthen 

interconnections in the neocortical network in such a way that the neocortex eventually 

would support declarative retrieval, if not independent, so at least less dependent on the 

interaction with the medial temporal lobe. 

 

[Figure 6.2] Declarative memory consolidation. The medial temporal lobe showed a 

decline over time (the figure on the right represents an overlap of the significant effects 

observed in the medial temporal lobe; i.e., the day 1 – day 2 effect inclusively masked by 

the day 30 – day 90 and the overall time x condition interaction). 

 

 

Petersson and colleagues (1997) also assumed that this would translate into a decreased 

level of activity of the medial temporal lobe as a function of repeated encoding. Our 
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findings are consistent with this hypothesis and suggests an inverse relation between the 

strength of encoding and the activation of the medial temporal lobe during retrieval 

(Mesulam, 1998). This also suggests that re-activation (e.g., during sleep, rehearsal, or 

repeated remembering) of neocortical representations could support system-level 

consolidation. Besides time and rehearsal, sleep, in particular slow wave sleep, appears to 

play an important role in memory consolidation (Maquet, 2001; Stickgold, Hobson, Fosse, 

& Fosse, 2001). During sleep, evidence suggests that hippocampal assemblies reactivate 

neocortical representations of recent events (Hoffman & McNaughton, 2002; Skaggs & 

McNaughton, 1996), which may thereby strengthen and refine cortical assemblies so that 

they can be used for retrieval without requiring hippocampal processing. In a recent study, 

we investigated both the effects of slow wave sleep and time on declarative memory 

retrieval with event-related FMRI (Takashima, Petersson et al., submitted). Preliminary 

results indicate that subjects who had a short nap improved their memory performance 

compared to those who did not sleep in a yes-no visual recognition paradigm using 

landscape scenes. Moreover, the level of medial temporal lobe activity related to hit events 

correlated negatively with the amount of slow wave sleep. In addition, the level of medial 

temporal lobe activity during hit events decreased over time (cf., Figure 6.2). 

 

6.3 DYNAMIC CHANGES IN THE FUNCTIONAL ANATOMY OF THE HUMAN 

BRAIN DURING RECALL OF ABSTRACT DESIGNS RELATED TO PRACTICE 

In the study of Petersson and colleagues (1999a), we explored the less practiced and the 

well-practiced condition during free recall of abstract designs from the perspective of 

controlled and automatic processing. The results suggest that as an automatic processing 

mode develops (i.e., a decreased dependence on attentional and working memory 

resources), a parallel decrease of activity is observed in the prefrontal, anterior cingulate, 

posterior parietal regions. Furthermore, a pattern of practice related increases were 

observed in the auditory, posterior insular-opercular extending into perisylvian 

supramarginal, and right mid occipito-temporal regions. 

 This set of results were interpreted as providing support for the view the neural 

network subserving free recall includes dynamic components and that there is a functional 

restructuring of the processing networks during the learning process. More specifically, we 
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suggested that the development of automaticity is associated with decreased activity in 

attentional and working memory related prefrontal, anterior cingulate, posterior parietal 

regions, while activity increases in the auditory, posterior insular-opercular, and perisylvian 

supramarginal regions reflect a lower degree of attentional suppression of task irrelevant 

processing. This is in general agreement with several recent and closely related functional 

neuroimaging studies (Garavan et al., 2000; Jansma et al., 2001; Wiser et al., 2000). 

Moreover, the increase observed in the right occipito-temporal region was interpreted as 

reflecting a more well-developed representation of the acquired knowledge (i.e., the 

abstract designs). More specifically, as the representation of the acquired knowledge 

developed, this was reflected in the progressively stronger engagement of this region. This 

suggestion is consistent with results from studies in monkeys which indicate that the 

development of representations of visual paired associates in the infero-temporal cortex 

depends on an intact parahippocampal region (Higuchi & Miyashita, 1996). Finally, we 

suggested that a gradual transition from controlled to automatic processing is supported 

both by a restructuring of the processing architecture and the development of a more 

efficient representations of information (cf., chapter 4). Recent functional neuroimaging 

studies have provided support for both the restructuring as well as the processing efficiency 

perspective (Garavan et al., 2000; Jansma et al., 2001; Petersson et al., 2001; Wiser et al., 

2000). 

 

6.4 LEARNING RELATED MODULATION OF FUNCTIONAL RETRIEVAL 

NETWORKS 

In the follow up studies reported in Petersson et al. (2001) these investigations of learning 

related modulation of functional retrieval networks were extended in two different 

experiments. The first experiment investigated episodic recognition of object-location 

conjunctions with the objective of comparing recognition and recall paradigms as well as 

achieving high performance already in the initial stages of learning. This would allow us to 

examine whether similar practice related changes as described in Petersson et al. (1997; 

1999a) would result also during recognition as well as relatively independent of the 

performance level. In the first experiment we adapted the experimental paradigm of Owen 

et al. (1996). This experiment was divided into two sub-experiments, the first being a 
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replication of the study of Owen et al. (1996) and the second using a sensory-motor 

baseline condition without explicit encoding or retrieval demands to investigate practice 

related effects. Furthermore, in the second experiment, material specific effects were 

examined using pseudowords in a free recall paradigm and an experimental design very 

similar to that used by Petersson et al. (1997; 1999a). 

 Overall, the results of the first part of the first experiment confirmed the results of 

Owen et al. (1996). Owen et al. (1996) showed that object-location recognition activated 

the in the occipito-temporal regions and in the right medial temporal lobe relatively more 

compared to location recognition, while in the reverse comparison, activations were 

observed in the right mid-dorsolateral prefrontal and right posterior parietal regions. 

However, we observed bilateral medial temporal lobe activations in the object-location vs. 

location comparison. Furthermore, we observed learning related medial temporal lobe 

decreases as a function of repeated encoding; in other words, like in our previous study 

(Petersson et al., 1997), the practiced (repeated encoding) object-location condition showed 

decreased medial temporal lobe activity relative object-location. This finding again 

suggests that there is an inverse relation between the strength of encoding and the 

activation of the medial temporal lobe during retrieval (Mesulam, 1998). Results reported 

by Montaldi et al. (1997), related to verbal episodic retrieval, can also be interpreted along 

these lines. Montaldi et al. (1997) also used repeated encoding manipulation and observed 

that the left medial temporal lobe was more active in the less practiced compared to the 

well-practiced retrieval condition. Nyberg and colleagues (1996b) reported a positive 

correlation between retrieval success and medial temporal lobe activity. The observed 

increase in medial temporal lobe activity in object-location recognition compared to 

location recognition, both in this and the study of Owen et al. (1996), is consistent with this 

finding. However, the learning related medial temporal lobe decrease observed here and 

particularly in the study of Petersson et al. (1997), suggest that there is a positive 

correlation between retrieval success and medial temporal lobe activity at a given level of 

encoding strength. 

 Several alternative interpretations of the practice related decreases observed in the 

medial temporal lobe have been put forward (Petersson et al., 1997; Petersson et al., 2001). 

One speculation suggests that the initial stabilization of the memory trace is dependent on 
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neocortical-medial temporal lobe interaction, as described in section 6.2. Alternatively, 

repeated encoding and retrieval might transform an initial episodic memory to a semantic-

like memory, suggesting a 'semantization' of the information. In the light of recent findings 

of Eldridge and colleagues (2000), this suggestion can be phrased as follows. Initial 

episodic retrieval of information, which is mainly based on recollective remembering, 

gradually looses its precise spatio-temporal context with repeated encoding experiences, 

which translates the stored information into a general fact. In parallel with this process, the 

recognition judgment is increasingly based on familiar knowing (Henson et al., 2003). 

 In parallel with the medial temporal lobe decrease, we also observed decreases in 

the prefrontal, the anterior cingulate, the posterior parietal, and parts of the inferior 

temporal regions, in general agreement with our previous study (Petersson et al., 1999a) as 

well as more recent functional neuroimaging studies (Garavan et al., 2000; Jansma et al., 

2001; Wiser et al., 2000). Again, we suggested that these learning related changes might be 

conceptualized in terms of dynamic modulatory effects on the interaction between 

attentional/control processes and learning/memory. These dynamic effects were tentatively 

related to the different demands for attentional and working memory resources, reflecting 

different adaptive processes related to the transition from a non-automatic to a more 

automatic mode of processing. Furthermore, in Petersson et al. (1999a) it was suggested 

that these practice related changes could not be explained by differences in performance 

and the results reported in Petersson et al. (2001) are consistent with this suggestion since 

the performance was almost perfect (96% correct) already in the object-location condition. 

 In the second experiment of this study the role of material was investigated, using 

pseudowords instead of visuo-spatial material as in the previous studies. The general 

pattern of practice related decreases and increases were similar to the results observed in 

the previous two studies, suggesting that these effects are independent of stimulus material. 

The most prominent difference between this second experiment and the previously reported 

results concerns the medial temporal lobe and the posterior parietal cortex. In contrast to 

the previous studies no significant differential retrieval related medial temporal lobe 

activity was observed in the free-recall compared to the base-line condition, neither was 

any practice related changes observed in the medial temporal lobe (not even at low 

thresholds of significance). This suggests that, with respect to the medial temporal lobe, 
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non-specific time effects, novelty detection, attentional effects, retrieval performance, or 

retrieval effort are not likely to explain in a simple way the observations in the first 

experiment of this study or the study of Petersson et al. (1997). This may instead point to a 

material specific effect. Thus, the practice related decreases observed in the medial 

temporal lobe might be more strongly expressed for either meaningful verbal material, 

triggering meaning based associative processing, or visuo-spatial material, triggering the 

processing of visuo-spatial relations. Some indications that this may be the case come from 

the comparison of the recall of pseudowords with the base-line task (filling in contours of 

simple pre-drawn shapes). The activity of the medial temporal lobe was significantly 

greater in the base-line task compared to the free recall of pseudowords. 

 Finally, in the present study, the prefrontal activation was right lateralized in the 

recognition condition but bilateral in the free-recall condition supporting the suggestion that 

free-recall is dependent on bilateral prefrontal processing (Petersson et al., 1999a). The 

practice related prefrontal decreases were bilateral in both recognition and free-recall. 

However, the prefrontal decreases, similar to the pattern observed in Petersson et al. (1999), 

were most prominent on the left. This is consistent with the conclusion of Nolde et al. 

(1998) that complex retrieval tasks are dependent on bilateral prefrontal processing, 

particularly complex cued-recall and free-recall tasks (cf., chapter 4). 

 

6.5 EFFECTIVE AUDITORY-VERBAL ENCODING 

Recent event-related FMRI studies (Brewer et al., 1998; Wagner et al., 1998c) indicate that 

the prefrontal region and the medial temporal lobe are more active during effective 

encoding (i.e., when the to-be-remembered information is actually successfully retrieved) 

compared to ineffective encoding (i.e., when the to-be-remembered information is 

forgotten). The within-subject design and the use of well educated young college students 

in these studies make it important to replicate these results in other study populations. In 

the study of Petersson et al. (1999) we explored the issue of effective encoding further in a 

group of healthy older illiterate women. The illiterate subjects were investigated in an 

auditory word-pair cued-recall paradigm. In the encoding condition there was a positive 

correlation between the subsequent cued-recall success and the level of activation in the 
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inferior frontal region and the anterior medial temporal lobe, suggesting that these regions 

are more active during effective encoding compared to ineffective encoding. 

 

6.6 THE ILLITERATE BRAIN 

Learning specific skills during childhood may influence the functional organization of the 

adult brain. This hypothesis led us to investigate auditory-verbal language processing in 

illiterate subjects (cf., chapter 5). Here we will just restate the main findings of our first 

study of literate (4 years of schooling) and illiterate subjects (matched for age and socio-

cultural background, cf., Reis et al., 2003), and refer to chapter 5 and the original paper for 

the detailed results and discussion. Instead, we move on to discuss the follow-up study in 

greater detail (Petersson et al., 2000). Thus, in brief, we compared the two literacy groups 

on immediate verbal repetition of words and pseudowords (Castro-Caldas et al., 1998). The 

behavioral results replicated those reported by Reis and colleagues (1997) suggesting that 

literate subjects performed significantly better on pseudoword repetition (cf., Figure 5.2). 

During word repetition, both groups performed similarly and activated similar brain 

regions. In contrast, illiterate subjects showed greater difficulty in repeating pseudowords 

correctly and did not activate the same neural structures as literate subjects. Though there 

was performance differences between groups, performance did not correlate with the 

pattern of brain activations in either group or condition and including the performance 

scores as a confounding covariate did not affect the results (Petersson et al., 2000). 

 In the follow-up study (Petersson et al., 2000), we investigated whether the parallel 

interactive processing characteristics of the underlying language processing network differ 

in literate and illiterate subjects. We therefore investigated the pattern of interactions 

between the regions in a large-scale functional-anatomical network for language processing 

with a network approach based on structural equations modeling (cf., chapter 3). The 

construction of the functional-anatomical language network was based on theoretical 

considerations as well as the empirical functional neuroimaging, neuropsychological and 

anatomical literature. The regions included in the functional-anatomical network were 

represented as spherical regions of interests in the Karolinska Computerized Brain Atlas of 

Greitz (1991). 
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Functional network

Region of interest Brodmann’s area

S - primary/secondary auditory cortex BA 41/42

W - Wernicke’s area BA 22 (posterior)

iPC - angular/supramarginal gyrus BA 39/40

pI - mid-posterior insula BA 13

B    - Broca’s area BA 44

ACC  - anterior cingulate cortex BA 24/32

PFC  - dorsolateral prefrontal cortex BA 45/46

M - primary speech motor region BA 4

NcL - lentiform nucleus

Cdx   - right lateral cerebellum
 

[Figure 6.3] The simple functional network model for immediate verbal repetition used to 

investigate word and pseudoword repetition in literate and illiterate subjects. 

 

 

The objectives of constructing the functional-anatomical network were to generate a simple 

model which was able to explain a sufficient part of the observed covariance structure in 

both groups and both conditions. At the same time we required that the network model 

should be both theoretically and empirically plausible. The network model (Figure 6.3) 

include a simplification of the Wernicke-Geschwind model represented by the Wernicke’s 

area (W; i.e., the posterior third of the left superior temporal gyrus, BA 22) connected to 

the posterior part of Broca’s region (B; i.e., the posterior part of the left inferior frontal 

gyrus BA 44; W →  B) with input from the left auditory cortex (S; BA 41/42; S → W) and 

a simple articulatory motor output circuit (including the left lentiform nucleus, NcL, and 

the left articulation part of motor cortex, M, BA 4; B → M, B → NcL → M). This core was 

extended to include the anterior cingulate cortex (ACC), related to attention, error detection 

and response competition/selection; the phonological loop (Becker et al., 1999; Paulesu et 
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al., 1993; Paulesu et al., 1996), which introduce the inferior parietal cortex (iPC on the 

border between the angular and supramarginal gyrus; BA 39/40) and the mid-insular cortex 

(pI). The connections of the phonological loop were recurrent (W ↔ iPC ↔ B). Since the 

insula has been hypothesized to be a neural relay for automatic language processing the 

connections to and from the insula were feedforward (W → pI → B) (Damasio & Damasio, 

1980; Dronkers, Redfern, & Knight, 2000; Mesulam & Mufson, 1985; Paulesu et al., 1996; 

Raichle, 1994; Raichle et al., 1994). The interactions between the ACC and the 

phonological loop were represented by recurrent connections (W ↔ ACC ↔ B and pI ↔ 

ACC ↔ iPC). In addition, the left middle-inferior dorsolateral prefrontal region (PFC, on 

the border between BA 45 and 46) suggested to subserve central executive aspects of 

verbal working memory (Baddeley, 2003) was included with input from the ACC, the 

Wernicke’s area, and the inferior parietal cortex (ACC → PFC, W → PFC, iPC → PFC) 

and with outputs modulating the organization of the articulatory motor output (PFC → B, 

PFC → M, PFC → NcL, PFC → Cdx). Finally, the right lateral cerebellar region (Cdx) was 

included since this region has been related to certain aspects of language processing with 

inputs from cortical motor regions (PFC → Cdx, B → Cdx, M → Cdx → NcL). 

 In this network model for language processing, the results indicated that the 

functional interactions during word and pseudoword repetition differed between literacy 

groups. More specifically, while there were no significant differences in the literate group 

between word and pseudoword repetition, there were significant differences in terms of 

network interactions in the illiterate group. The differences between the two tasks in the 

illiterate group were interpreted in terms of differences in attentional, verbal working 

memory, and the articulatory organization of verbal output between conditions. Moreover, 

there were no significant differences between the literate and illiterate group during word 

repetition. In contrast, the network interactions differed between the literate and illiterate 

group during pseudoword repetition. In particular, these differences were prominent in the 

phonological loop. More specifically, these differences were related to the interaction 

between Broca’s region and the inferior parietal cortex as well as the insular bridge 

between Wernicke’s and Broca’s region. Additional differences, similar to the between-

condition differences observed in the illiterate group, were also reported. In conclusion, the 

results of this network analysis are consistent with the previously reported results and 
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support the hypothesis that learning to read and write during childhood influences the 

functional architecture of the adult human brain. In particular, it was suggested that the 

basic language network in the human brain is modified as a consequence of acquiring an 

alphabetic orthographic representation. 

 In conclusion, we suggested that the absence of significant difference between word 

and pseudoword repetition in the literate group is related to the fact that the literate subjects 

automatically recruit the same processing network for both words and pseudowords during 

immediate verbal repetition. In contrast, this was not the case for the illiterate group, 

suggesting that phonological processing is differently organized in illiterate individuals due 

to a different developmental background related to the acquisition of alphabetic reading and 

writing skills. Based on this and in conjunction with the behavioral results outlined in 

sections 5.2.2-4, we suggest that these differences in phonological loop interactions related 

to differences in sub-lexical phonological processing and reflected in the observation that 

the parallel interactive processing characteristics of the language system differ between 

literate and illiterate subjects (Petersson et al. 2000). 

 

6.7 LITERACY: A CULTURAL INFLUENCE ON THE HEMISPHERIC BALANCE 

IN THE INFERIOR PARIETAL CORTEX 

In the final study (Petersson et al., submitted), we investigated two different samples of 

illiterate female subjects and their matched literate controls with respect to the hemispheric 

lateralization of the inferior parietal cortex in two simple auditory-verbal language tasks 

encompassing four different conditions. 

 There are several principal reasons for investigating the inferior parietal region in 

literate and illiterate subjects: functionally this region has been related to reading 

(Friedman et al., 1993; Horwitz, Rumsey, & Donohue, 1998; Paulesu et al., 2000; 

Shaywitz et al., 1998) as well as to phonological processing and verbal working memory 

(Baddeley, 2003; Becker et al., 1999; Jonides et al., 1998; Vallar & Papagno, 1995); and 

recent neuroanatomic findings indicate that there are differences between literacy groups 

in the part of corpus callosum interconnecting the parieto-temporal cortices, as described 

in the previous section. Given these findings, we investigated whether the literate group 

would be relatively more left lateralized compared to the illiterate group, which would 
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show a bilateral or relatively more right lateralized pattern of results. In the first 

experiment (Petersson et al., 2000), in which subjects repeated words and pseudowords, 

task-related activation levels from regions of interest in the inferior parietal cortex (BA 

39/40) were compared. The result showed a significant group difference (group x 

hemisphere interaction P = 0.009; Figure 6.4 a) indicating a positive left-right difference in 

the literate group while the illiterate subjects showed a prominent negative left-right 

difference. The group x hemisphere interaction was independent of whether the subjects 

repeated words (P = 0.017) or pseudowords (P = 0.006). Thus, while the literate subjects 

showed a tendency for left lateralization, the illiterate group was clearly right lateralized. 

 

[Figure 6.4] Hemispheric differences (left-right) in activations levels between literacy 

groups in the inferior parietal region (Brodmann's area 39/40). (a) In experiment 1 the 

participants listen to and repeated words and pseudowords. The diagrams show the level of 

left- and right activation levels (regional cerebral blood flow, arbitrary units) as a function 

of literacy group (illiterate: dashed). Differences averaged over conditions P = 0.009. (b) 

In experiment 2 the participants were listening to and encoded word-pairs. Again we 

observed left-right activation differences (nearest supra-threshold cluster test, P = 0.029, 
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corrected) between literacy groups in the inferior parietal region (Brodmann's area 39/40). 

(e) To test the specificity of these left-right results with respect to the inferior parietal 

cortex, we also investigated the superior temporal region (BA 22/41/42) in the second 

experiment. The results showed that both literacy groups were similarly left lateralized in 

this region indicating that the functional lateralization of early speech related brain regions 

does not depend on literacy. 

 

 

In the second experiment, in which the subjects listen to and encoded word-pairs, we 

examined whether the findings from the first study could be replicated in an independent 

sample of subjects. We thus tested for between-group left–right differences in the supra-

threshold cluster nearest to the region investigated in the first experiment and observed a 

significant inferior parietal cluster (BA 39/40, group x hemisphere interaction P = 0.029, 

corrected; local maximum at [-60, -44, 38], P = 0.013, FWE-corrected; Figure 6.4 b and 

6.5). Again, the group x hemisphere interaction was independent of whether the subjects 

listened to semantically related word-pairs (BA 39/40, cluster P = 0.015; local maximum at 

[-64, -42, 36], P = 0.009, FWE-corrected) or phonologically related word-pairs (BA 39/40, 

cluster P = 0.005; local maximum at [-52, -44, 40], P = 0.005, FWE-corrected). Thus, while 

the literate group showed a positive left–right difference, the illiterate subjects showed a 

negative left–right difference in the inferior parietal region extending inferiorly towards the 

temporo-parietal junction (Figure 6.5). Detailed inspection of the results suggests that the 

degree of functional lateralization may be task dependent. However, what stays constant 

independent of task is the relation of the left-right differences between the two literacy 

groups (i.e., group x hemisphere interaction), indicating that this relation generalizes over 

auditory-verbal tasks. Thus, it appears that literacy influences the functional hemispheric 

balance in the inferior parietal region. 

 It has recently been indicated that infants are left lateralized in the superior temporal 

gyrus when listening to speech or speech-like sounds (Dehaene-Lambertz, Dehaene, & 

Hertz-Pannier, 2002) and in order to test the specificity of our results with respect to the 

inferior parietal cortex, we also investigated the superior temporal region (BA 22/41/42). 

The results showed that both literacy groups were similarly left lateralized in this region 
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(Figure 6.4 c) indicating that early speech related brain regions does not depend on literacy. 

The present results provided evidence that a cultural factor, literacy, influences the 

functional hemispheric balance in the inferior parietal region. In contrast, both literacy 

groups showed a similar degree of left lateralization in early speech related regions of the 

superior temporal gyrus. The results provide further support for the idea that the degree of 

functional lateralization is task dependent and argues for a regional view on functional 

hemispheric lateralization. 

 

[Figure 6.5] In experiment 2 the participants were listening to and encoded word-pairs. 

Again we observed left-right activation differences (nearest supra-threshold cluster test, P = 

0.029, corrected) between literacy groups in the inferior parietal region (Brodmann's area 

39/40). 

 

 

 It is interesting to note that recent experimental results have suggested a rostral to 

caudal myelination process of the corpus callosum during childhood and early adulthood 
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(Thompson et al., 2000; Zaidel & Iacoboni, 2003), indicating an ongoing developmental 

process to establish efficient interactions between the two hemispheres. The fibers that 

cross over in the posterior mid-body region of corpus callosum interconnect the parieto-

temporal regions and undergoes extensive myelination during the years of reading 

acquisition (Thompson et al., 2000) and this is the same region in which recent evidence 

indicate that literate subjects are thicker compared to illiterate subjects (cf., section 5.3.2). 

One may speculate that acquiring reading and writing skills at the appropriate age shapes 

not only the local morphology of the corpus callosum but also the degree of functional 

specialization as well as the pattern of interaction between the interconnected inferior 

parietal regions. Thus there might be a causal connection between reading and writing 

acquisition, the development of the corpus callosum, and the hemispheric differences 

reported here, suggesting an active process of functional reconfiguration of the role of the 

left and right inferior parietal cortex. One possibility that cannot be addressed in the 

present study, which is based on comparing anatomically homotopic regions, is that the 

functionally relevant regions are not anatomically co-localized in the two literacy groups. 

However, the present findings would then indirectly reflect this underlying hemispheric 

difference between the literacy groups. Another issue is whether the present results reflect 

direct effects of acquiring reading and writing skills or reflect cumulative life-span effects. 
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