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This paper studies adaptive learning with multiple models. An agent operating in a self-referential

environment is aware of potential model misspecification, and tries to detect it, in real-time, using an

econometric specification test. If the current model passes the test, it is used to construct an optimal policy.

If it fails the test, a new model is selected. As the rate of coefficient updating decreases, one model becomes

dominant, and is used “almost always”. Dominant models can be characterized using the tools of large

deviations theory. The analysis is used to address two questions posed by Sargent’s Phillips Curve model.

Key words: Learning; Model Validation

JEL Codes: C120, E590

If only good things survive the tests of time and practice, evolution produces intelligent design. –

Sargent (2008, p.6)

1. INTRODUCTION

This article offers fresh insight into an age-old question — How should policymakers balance

theory and empirical evidence? We study one particular approach to answering this question. It

consists of the following four-step trial-and-error strategy: (1) an agent entertains a competing

set of models, M, called the “model class”, each containing a collection of unknown parameters.

The agent suspects that all his models are misspecified; (2) as a result, each period the agent tests

the specification of his current model; (3) if the current model survives the test, the model is

updated and used to formulate a policy function, under the provisional assumption that the model

will not change in the future, and (4) if the model is rejected, the agent experiments by selecting

a new model from M. We refer to this combined process of estimation, testing, and selection as

model validation. Our goal is to characterize the dynamics of this model validation process.

Our article builds on the previous work of Sargent (1999). Sargent compares two alternative

histories of the rise and fall of post-war U.S. inflation. These histories differ in the roles played by

theory and empirical evidence in macroeconomic policy.According to the “Triumph of the Natural

Rate Hypothesis”, inflation was conquered by a Central Bank that listened to theorists. Theorists

convinced the Bank to incorporate the public’s expectations into its model. According to the

“Vindication of Econometric Policy Evaluation”, inflation was instead conquered by a Central

Bank that adapted a simple reduced form statistical model to evolving conditions. Our model

validation approach blends elements of both the “Triumph” story and the “Vindication” story.
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46 REVIEW OF ECONOMIC STUDIES

According to model validation, the role of theorists is to convince policymakers to add (good)

models to M. The role of econometricians is to then evaluate these models empirically. We argue

that this blending of theory and evidence is reasonably descriptive of actual practice. Policymakers

rarely trust models that have obvious data inconsistencies. However, good policymakers know

that it is all too easy to make bad models fit the data, so it is important that models be based on

sound economic theory, even if there is disagreement about the right theory. Despite its descriptive

realism, the normative implications of model validation are not well understood, and so one of

our goals is to shed light on the conditions under which it produces good outcomes, and just as

important, when it does not. Given the assumed endogeneity of the data-generating process, this

kind of question has been neglected by the traditional econometrics literature.

1.1. A motivating example

It is useful to begin by illustrating model validation in action. This will highlight both its strengths

and its potential weaknesses. We do this by revisiting Sargent’s (1999) Conquest model. Sargent

studied the problem of a Central Bank that wants to minimize a quadratic loss function in

unemployment and inflation, E(u2
n +π2

n ), but is unsure about the true model. The Bank posits

a reduced form regression model of the form, un =γ0 +γ1πn, and then tries to learn about it

by adaptively updating the parameter estimates using a (discounted) least-squares algorithm.

The Bank’s optimal inflation target, xn =−γ̂0,nγ̂1,n/(1+ γ̂ 2
1,n

), evolves along with its parameter

estimates. Unbeknownst to the Bank, the true relationship between un and πn is governed by

a Natural Rate model, in which only unanticipated inflation matters, un =u∗−θ (πn −xn)+v1,n,

where u∗ is the natural rate of unemployment, and πn −xn =v2,n represents unexpected inflation.

The inflation shock, v2,n, is i.i.d. Notice that the Bank’s model is misspecified, since it neglects

the role of expectations in shifting the Phillips Curve. Evolving expectations manifest themselves

as shifts in the estimated intercept of the reduced form Phillips Curve.

The top left panel of Figure 1 illustrates the resulting inflation dynamics, using the same

parameter values as Sargent (1999).

The striking feature here is the recurring cycle of gradually rising inflation, and occasional

sharp inflation stabilizations. As noted by Cho et al. (2002), this cycle represents the interplay

between the model’s mean dynamics and its escape dynamics. The mean dynamics reflect the

Central Bank’s efforts to eliminate systematic forecast errors. These errors are eliminated once

inflation reaches its Self-Confirming Equilibrium (SCE) value of 5%. The escape dynamics are

more exotic.At the SCE, the Bank’s beliefs are free to wander in any direction, and when sequences

of positively correlated inflation and Phillips Curve shocks occur, they cause the Bank to revise

downward its Phillips Curve slope estimate, and therefore, its inflation target. Since in truth there

is no expoitable trade-off, these inflation reductions produce further downward revisions, and

the process feeds on itself until inflation reaches the Ramsey outcome of zero inflation. From

here, with no further changes in the inflation target, the Bank begins to rediscover the Phillips

Curve, due to the presence of inflation shocks acting within the model’s natural rate structure.

This produces a gradual pull back to the SCE.

Anatural question at this point is — To what extent is the Central Bank really learning anything

here? True, it is revising estimates of a model in light of new data, but in practice policymakers

spend most of their time looking for new and improved models, not refining estimates of a

given model. In Sargent (1999), the Central Bank never really evaluates the Phillips Curve as

a theoretical model of inflation and unemployment; it merely reconsiders the strength of an

unquestioned trade-off. Evidently, this produces a bad outcome, as the Bank repeatedly succumbs

to the temptation to try to exploit the Phillips Curve.
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Figure 1

Model averaging versus model validation in Sargent’s Conquest Model

The remaining three panels of Figure 1 therefore explore the consequences of more

sophisticated learning strategies, assuming the Bank confronts the same sequence of exogenous

shocks. The top right panel assumes the Bank engages in a traditional process of hypothesis

testing. In particular, suppose the Bank entertains the possibility that there is no trade-off. In

response, the Bank decides to sequentially test the hypothesis that γ1 =0, and if the hypothesis

is not rejected, it sets the inflation target to zero. Clearly, this makes virtually no difference,

other than a slight delay in the return to the SCE. The fact is, there is a correlation between

inflation and unemployment, albeit not an exploitable one, and this correlation causes the Bank to

quickly reject the null hypothesis that γ1 =0. The problem, of course, is that the Bank’s model is

subject to a fundamental misspecification, based on a misinterpretation of the role of the public’s

expectations in the inflation process. To break out of its inflation cycle, the Bank must consider

other models.

The bottom two panels of Figure 1 assume the Bank has two models: (1) the statistical Phillips

Curve, as before, and (2) a vertical Phillips Curve, un =γ0 +εn. The second model calls on the

Bank to always set target inflation to zero. The problem is that it is not sure which model is correct.

The lower left panel assumes the Bank responds to this uncertainty in traditional Bayesian fashion,

by averaging across the two models. That is, it assigns a prior to the two models, updates its prior

as new data come in, and each period sets its inflation target as the current probability weighted

average of the target recommended by each of the two models, which is optimal given its quadratic

loss function.1 The red line plots the recursively estimated probability of the Natural Rate model.

The initial prior is assumed to be (0.5, 0.5), with parameter values initialized at their respective

1. Note, the Bank is not fully complying with an optimal Bayesian strategy, since we assume it does not actively

experiment.
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48 REVIEW OF ECONOMIC STUDIES

SCE values.Although early on the Bank has confidence for awhile in the Natural Rate Hypothesis,

it eventually comes to believe that the misspecified Phillips Curve is the correct model, and it

never regains any confidence in the Natural Rate Hypothesis. How can this be? How could a

Bayesian ever settle on the wrong model when the true model is in the support of his prior? The

usual Bayesian consistency theorems do not apply here because the vertical Phillips Curve does

in fact contain a subtle misspecification, since the data continue to be generated by Sargent’s

expectations-augmented Phillips Curve, in which one of the shocks is unexpected inflation. This

introduces feedback from the Bank’s policy to the actual data-generating process, which the

vertical Phillips curve neglects. In contrast, the statistical Phillips curve exploits this feedback to

improve its relative fit, and so it eventually drives out the vertical Phillips Curve.2

The lower right panel of Figure 1 illustrates what happens under model validation. The Bank

has the same two models as before, but now selects just one model when formulating its inflation

target. The selection is based on the outcome of a recursive Lagrange Multiplier test (discussed

in more detail below). The current model continues to be used as long as it appears to be well

specified. If the current model is rejected, a new model is randomly selected, with selection

probabilities determined by historical relative forecast accuracy. (The figure uses a logit function

with a “choice intensity parameter” of 2). The simulation is initialized by assuming the Bank

begins with Sargent’s statistical Phillips Curve, with parameters set at their SCE values. As

before, parameter estimates eventually escape from the neighbourhood of the SCE, and move

towards the Ramsey outcome. In Sargent’s analysis, this large and rapid movement does not lead

the Bank to reconsider the validity of the Phillips Curve. In contrast, under model validation, the

escape triggers a rejection of the specification test, and the Bank switches to the vertical Phillips

Curve. Once it does so, it “never” goes back, and inflation remains at the Ramsey outcome.

Note, the Bank does not rule out the possibility of an expoitable trade-off once it switches to the

vertical Phillips Curve. The vertical Phillips Curve continues to be tested just as the exploitable

Phillips Curve was tested. The difference is that the likelihood of escape and rejection is orders

of magnitude smaller for the vertical Phillips Curve, and so for all practical purposes the Bank

learns not to exploit the Phillips Curve. The analysis in the article will explore in detail why some

models are more resilient to repeated specification testing than others. We shall see that a key

part of the story lies in the strength of their self-referential feedback.

1.2. Lessons

So what lessons have been learned here? First, the comparison between model validation and

recursive t-testing highlights the importance of allowing agents to entertain multiple models. A

statistician might argue that the difference between the statistical Phillips Curve and the vertical

Phillips Curve cannot possibly be relevant, since the vertical Phillips Curve is nested within the

statistical Phillips Curve. Is not there really just one model here? By starting with the more general

specification, would not a good econometrician eventually discover the right model? Although

2. Evans et al. (2013) contains a similar result. They consider a standard cobweb model, in which agents average

between a time-varying parameter specification, and a constant-parameter specification. They assume the true model has

constant parameters, but find that Bayesian model averaging often converges to the time-varying parameter model, even

when the initial prior puts significant weight on the true constant parameter model. This occurs when self-referential

feedback from beliefs to outcomes is sufficiently strong. Cogley et al. (2007) is also similar. They consider a Central

Bank that averages between a Natural Rate model and a statistical Phillips Curve. In their model, the Central Bank always

learns the true model. Two factors explain the difference: (1) their Natural Rate model is not misspecified, as it correctly

conditions on expected inflation. This eliminates one source of feedback. (2) They assume the Bank knows each model’s

parameter values, so that policy only depends on model weights, not parameter estimates. This eliminates the other source

of feedback.
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CHO & KASA MODEL VALIDATION 49

this is a valid argument when the data are exogenous and the general model encompasses the

true model, it does not apply when the data are endogenous and all models are misspecified, e.g.,

when alternative models respond differently to underlying feedback in the data. Fully capturing the

intricate feedbacks that exist between macroeconomic policy and time-series data is a challenging

exercise, to say the least, and so it is important to devise learning strategies that are reliable even

when all models potentially misspecify this feedback. Second, the comparison between model

validation and model averaging simply reinforces this point. A Bayesian would never commit to

a single model on the basis of a hypothesis test. Why not hedge your bets and average? Again,

this makes sense when the prior encompasses the truth, but there is no guarantee it produces

good outcomes when priors are misspecified. The above example illustrates the dangers of model

averaging with endogenous data and misspecified models.

Although suggestive, the above simulations are just an example. How, if at all, do they

generalize? As in Sargent (2008) and Fudenberg and Levine (2009), our goal in this article is

to understand how feedback and experimentation interact to influence macroeconomic model

selection. Addressing this question poses serious technical challenges. With endogenous data and

multiple models, each with adaptively estimated coefficients, the underlying state of the economy

is of high dimension, and it evolves non-linearly. The key to making this system tractable is to

exploit the fact that under certain conditions subsets of the variables evolve on different time-

scales. By appropriately averaging over each subset, we can simplify the analysis to one of

studying the interactions between lower dimensional subsystems. This is a commonly employed

strategy in science, going back to 19th century celestial mechanics. Marcet and Sargent (1989)

were the first to apply it in the macroeconomic learning literature.

Our analysis extends the work of Marcet and Sargent (1989). We show that model validation

dynamics feature a hierarchy of three time scales. This hierarchy of time-scales permits us to focus

separately on the problems of control, model revision, and model selection. As in Marcet and

Sargent (1999), economic variables evolve on a “fast”, calendar time-scale, whereas coefficient

estimates evolve on a “slow”, model revision time-scale. The new element here is that under

appropriate assumptions on specification testing, model selection occurs on a “really slow”, model

switching time-scale. Model switches are rare here, because they are triggered by departures from

a model’s self-confirming equilibrium, and are therefore “large deviation” events. The fact that

each model’s coefficients can be adapted to fit the data it generates is crucial to this result, and it

illustrates a key difference between specification testing with endogenous data and specification

testing with exogenous data.

We show that model selection dynamics can be approximated by a low-dimensional Markov

chain, in which each model’s coefficients are fixed at their self-confirming values, and the

economic data are fixed at the mean of the invariant distribution associated with these values. In

the limit, as the update gain parameter converges to zero, the invariant distribution of this Markov

chain collapses onto a single model. We can identify this model from its large deviations (LD)

rate function. Our analysis therefore provides an equilibrium selection criterion for recursive

learning models. It can also be interpreted as a refinement of the concept of self-confirming

equilibria.

LD methods provide an interesting interpretation of this limiting model. We show that it is the

model possessing the largest “rate function”. A key result in the theory of LD (Sanov’s theorem)

links this rate function to relative entropy and the Kullback–Leibler Information Criterion (KLIC).

The KLIC is a pervasive concept in the econometrics literature on model testing and selection.

The relative entropy that is being captured by each model’s rate function is the KLIC distance

between the probability distribution associated with its SCE and the distribution associated with

the closest model that triggers a rejection or escape. This extends the results of White (1982) in

a natural way to the case of endogenous data.
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50 REVIEW OF ECONOMIC STUDIES

The remainder of the article is organized as follows. Section 2 provides an overview of some

new issues that arise when combining model uncertainty with adaptive learning. Section 3 maps

our model validation approach into a standard Stochastic Recursive Algorithm. Section 4 uses

results from the LD literature to characterize model validation dynamics. Section 5 derives explicit

expressions for the case of linear Gaussian models. These expressions show that feedback is a

key determinant of a model’s durability. Section 6 returns to Sargent’s (1999) Conquest model.

We first use our LD analysis to explain the results in Figure 1. We then go on to consider a second

example. In this example the Bank is unsure about identification; in particular, whether to impose

a Classical or Keynesian identification restriction. Here model validation leads to the “wrong”

model. Section 7 briefly discusses some related literature, while Section 8 offers a few concluding

remarks. A Supplementary Appendix contains proofs of some technical results.

2. OVERVIEW

Incorporating multiple models into the learning literature raises a host of new questions and

issues. This section briefly outlines how model validation addresses these issues. Many of the

ingredients are inspired by the discussion in Sims (2002), who visited the world’s major Central

Banks, and described their basic policymaking strategies. Interestingly, these strategies are quite

similar. They share the following features: (1) they all use multiple models, (2) the models have

evolved over time in response to both theory and data, (3) at a given point in time, there is a

reliance on a “primary model”, and (4) the process itself is decentralized between a professional

staff that develops and monitors the models, and a smaller group of appointed policymakers who

make decisions by combining model projections with other (more subjective) data. Sims (2002)

goes on to criticize many of these practices, and advocates a more Bayesian approach to policy.

In contrast, we adopt a less normative and more descriptive viewpoint, and seek to characterize

the outcomes produced by this process.

2.1. Why not bayesian?

Bayesian decision theory offers an elegant and theoretically coherent methodology for dealing

with model uncertainty.3 From a Bayesian perspective, there is no meaningful distinction between

model uncertainty and parameter uncertainty.ABayesian would proceed as follows: (1) formulate

a single all-encompassing “hypermodel”, which nests all possible models. This converts model

uncertainty into parameter uncertainty, (2) update beliefs about parameters (including those that

index alternative models) using Bayes rule, (3) recognize that your own beliefs are part of the

current state, and actively experiment in order to improve future decisions, (4) do not select a

single model when formulating policy. Instead, hedge your bets by averaging across them using

estimates of their current probabilities, and finally (5) if for some reason you decide to select a

single model, base your selection on expected losses, not statistical fit. Since model validation

violates all of these precepts, before doing anything we should offer a few words of explanation.

We depart from Bayesian decision theory for three reasons. First, as noted above, our approach

here is more positive than normative. Our goal is not to recommend an optimal strategy, but rather

to study the properties of a strategy that is used in practice. It is important to know when such a

strategy produces good outcomes and when it does not. Second, although a Bayesian approach is

attractive in theory, there are serious practical difficulties associated with it. Of course, many of the

3. See, e.g., Brock et al. (2007) for an application of Bayesian decision theory to model uncertainty and

macroeconomic policy.
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computational challenges associated with Bayesian methods have been overcome, thanks to fast

computers and clever Monte Carlo simulation algorithms.4 However, those are not the challenges

that concern us. The challenges that concern us were illustrated in the above example. Bayesian

model averaging converged to the “wrong” model there because all models were misspecified.

The fact is, most of the normative claims of Bayesian methods are lost when one entertains the

possibility that priors are misspecified.5 Finally, our third reason for not being Bayesian is more

philosophical, and goes back to the roots of Bayesian decision theory. Savage (1972) himself,

the leading light of Bayesian decision theory, was careful to caution against the misapplication

of “small worlds” Bayesian methods to “large worlds” problems. On page 16 he states: “It

is even utterly beyond our power to plan a picnic or to play a game of chess in accordance

with the principle, even when the world of states and the set of available acts to be envisaged

are artificially reduced to the narrowest reasonable limits”. Since macroeconomic stabilization

policy is every bit as difficult as planning a picnic, it is not unreasonable to consider non-Bayesian

approaches.Actually, this third reason is not so different from the second. “Large world” problems

are presumably those with infinite-dimensional parameter spaces, where prior misspecification

occurs almost surely. Even without feedback, it has long been known that infinite-dimensional

parameter spaces create problems for Bayesian methods (Diaconis and Freedman, 1986). The

problem is even worse with feedback (Nachbar, 1997).

2.2. Fit versus losses

Given that one is going to select, even if provisionally, a single model as the basis for policy, there

remains the question of how to do this. According to Bayesian decision theory, the choice should

be based on expected losses. The institutional structure of most policy environments makes

this difficult in practice. Policy environments in economics often mimic those in the natural

sciences, which feature a division of labour between technicians, who build and validate models,

and policymakers, who evaluate costs and benefits and make decisions based (partly) on model

projections. The fact is, model builders often have imperfect knowledge of the objectives and

contraints of policymakers, which makes loss-based model selection procedures problematic.

Model validation focuses on the problem of the technicians. These technicians blend theory and

evidence in an effort to give the best advice possible to policymakers. It is not too surprising that a

separation between model validation and decision-making can produce bad outcomes. Section 6

provides an example.6 Perhaps more surprising is the observation that it sometimes does produce

good outcomes, as we saw in Figure 1.

2.3. Counterfactuals

The fact that the data-generating process responds to the agent’s own beliefs is a crucial issue

even without model uncertainty. It means all the classical econometric results on convergence

and consistency of least-squares estimators go out the window. Developing methods that allow

one to rigorously study the consequences of feedback has been a central accomplishment of the

macroeconomic learning literature. Evans and Honkapohja (2001) summarize this literature.

4. See Schorfheide (2013) for a recent survey.

5. Bayesian practitioners are well aware of this problem. For example, Schorfheide (2000) and Geweke (2010)

propose strategies designed to make Bayesian methods less sensitive to prior misspecification. These strategies involve

expanding the (theoretically motivated) model class to include (atheoretical) models that fit the historical data.

Unfortunately, as Lucas (1976) and Sargent (2008) have observed, fitting the historical data does not immunize you

against misspecification.

6. Kocherlakota (2007) provides more examples of the dangers of basing model selection on model fit.
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When one turns to inference, however, new issues arise. First, the presence of feedback means

that we cannot directly apply recent econometric advances in testing and comparing misspecified

models (White, 1994). Although we assume the agent is aware of these advances, and tries

to implement them, we cannot appeal to known results to study their consequences. Second,

traditionally it has been assumed that agents are unaware of feedback.Although beliefs are revised

in an adaptive and purposeful manner, this adaptation is strictly passive. This is a reasonable

assumption in the context of learning the parameters of a single model, mainly because one is

already confined to a local analysis. With multiple models, however, the distinction between

local and global analysis becomes more important. We depart from tradition here by assuming

the agent is aware of feedback, even though he responds to it in a less than optimal manner. In

particular, he realizes that with multiple models he confronts a difficult counterfactual — How

would things have been different if instead a different model had been used in the past? Fitting

a model to data that was generated while a different model was in use could produce misleading

inferences about the prospects of a given model. For the questions we address, it is not important

how exactly the agent responds to this counterfactual. What is important is that he is aware of its

dangers.

2.4. Specification testing

We assume the agent sticks with a model until sufficient evidence mounts against it. This evidence

takes the form of an econometric specification test. It turns out specification testing can be

embedded within a standard Stochastic Recursive Algorithm. In particular, the orthogonality

condition that drives parameter updating can be interpreted as a score statistic, or equivalently,

a localized likelihood ratio statistic, which can be used as the basis of a sequential Lagrange

Multiplier test. (See, e.g., Chapter 5 of Benveniste et al., 1990). When the score statistic exceeds

a time-varying theshold tuned to the environment’s feedback, it indicates that required parameter

changes are faster and larger than specified by the constant gain null hypothesis of gradual

parameter drift.7

2.5. Escape dynamics, type I errors, and the robustness of self-confirming equilibria

We assume for simplicity that each model, when used, has a unique, stable, self-confirming

equilibrium. This means that each model, if given the chance, is capable of passing the

specification test. This does not imply it is the “true” data-generating process. In fact, the entire

model class may be misspecified. However, with endogenous data, each model can adapt to fit

the data that it itself generates. It is this possibility that wreaks havoc with the application of

traditional statistical results.

Although all models are capable of passing the test, they are not all equally likely to do so on

a repeated basis. Some models are more “attached” to their self-confirming equilibrium, while

others are more apt to drift away. Model drift is driven by the fact that coefficient estimates drift in

response to constant gain updating. We calibrate the testing threshold so that this kind of normal,

gradual, parameter drift does not trigger model rejection. However, as noted by Sargent (1999),

constant gain algorithms also feature rare, but recurrent, “large deviations” in their sample paths.

These LD can be characterized analytically by the solution of a deterministic control problem.

It is these rare escapes from the self-confirming equilibrium that trigger model rejections. In a

sense then, model rejections here are Type I errors.

7. Another possible response to an excessively large score statistic would be to allow the update gain to increase.

See Kostyshyna (2012) for an analysis of this possibility.
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The value function of the LD control problem is called the “rate function”, and as you would

expect, it depends sensitively on the tails of the score statistic. In Section 4 we show that as the

update gain decreases the model with the largest rate function becomes dominant, in the sense

that it is used “almost always”. This bears some resemblence to results in the evolutionary game

theory literature (Kandori et al., 1993). It also provides a selection criterion for models with

multiple stable self-confirming equilbria.

2.6. Experimentation

When a model is rejected we assume the agent randomly selects a new model (which

may turn out to be the existing model). This randomness is deliberate. It does not reflect

capriciousness or computational errors, but instead reflects a strategic response to model

uncertainty (Foster and Young, 2003). It can also be interpreted as a form of experimentation.

Of course, macroeconomic policymakers rarely conduct explicit experiments, but they do

occasionally try new things.Although the real-time dynamics of model selection naturally depend

on the details of the experimentation process, our main conclusions about the stability and

robustness of self-confirming equilibria do not.

3. A GENERAL FRAMEWORK

Traditional learning models focus on the dynamic interaction between beliefs and observed data.

Beliefs are summarized by the current estimates of a model’s parameters, βn ∈Rd1 , and are updated

recursively as follows,

βn =βn−1 +ǫnG(βn−1,Xn),

where G :Rd1 ×Rd2 →Rd1 captures some notion of the model’s fit or performance. In many

applications G is determined by least squares orthogonality conditions. The “gain sequence”,

ǫn dictates how sensitive beliefs are to new information. In stationary environments ǫn →0, as

each new observation becomes less important relative to the existing stock of prior knowledge.

However, in nonstationary environments it is optimal to keep ǫ bounded away from zero, and

that is the case we consider. For simplicty, we assume it is a constant. The data, Xn ∈Rd2 , evolve

according to a stationary Markov process

Xn =F(βn−1,Xn−1,Wn),

where Wn ∈Rd3 is a vector of exogenous shocks. The function F :Rd1 ×Rd2 ×Rd3 →Rd2 captures

the interaction between the agent’s model, his beliefs, and the underlying environment. The key

feature here is the dependence of F on β. This makes the environment “self-referential”, in the

sense that the underlying data-generating process depends on the agent’s beliefs.

Most of the existing learning literature has been devoted to studying systems of this form.

This is not an easy task, given that it represents a non-linear, dynamic, stochastic system. Until

recently attention primarily focused on long-run convergence and stability issues. A more recent

literature has focused on sample path properties. As noted earlier, the key to making the analysis

feasible is to exploit the fact that βn and Xn operate on different time-scales, due to the presence

of ǫ in the parameter update equations. As ǫ→0, βn evolves more and more slowly relative to

Xn. This allows us to decouple the analysis of the interaction between beliefs and outcomes into

two separate steps: (1) first examine the long-run average behavior of the data for given beliefs,

X̄(β), and then substitute this averaged behavior into the belief update equations, which then

produces an autonomous equation for βn. In the economics literature, this “mean ODE approach”
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was pioneered by Marcet and Sargent (1989). Evans and Honkapohja (2001) provide a detailed

summary.

Model validation represents a natural extension of these ideas. When agents entertain multiple

candidate models, one can simply index them by a discrete model indicator, sn ∈M, and then

think of sn as just another parameter. However, in contrast to Bayesian decision theory, the agent

is assumed to display a greater reluctace to revise beliefs about sn than about other parameters.8

Our maintained assumption is that the agent believes there to be a single best model within M,

and the goal is to find it, while at the same time balancing the ongoing pressures of meeting

control objectives.

Technically, the key issue is to show that specification testing introduces a third time-scale,

in the sense that the evolution of sn can itself be decoupled from the evolution of each model’s

parameter estimates. So, to begin the analysis, we just need to augment the updating and data

processes as follows:

β i
n = β i

n−1 +ǫGi(sn−1,βn−1,Xn) ∀i∈M (3.1)

Xn = F(sn−1,βn−1,Xn−1,Wn) (3.2)

The first equation implies the parameter estimates of each model will in general depend on which

model is currently being used. This reflects our assumption that each model is continuously

updated, even when it is not being used to make decisions. The second equation makes clear that

now the economy is operating with a new layer of self-reference. Not only does policy potentially

depend on beliefs about a particular model, but also on the model itself. The feedback from beliefs

to the actual DGP is case specific, and can be quite complex and highly non-linear. Fortunately,

all we need is the following assumption.

Assumption 1. For fixed (βn,sn)= (β̄,s̄), the state variables Xn possess a unique invariant

distribution.

Our analytical methods rely heavily on the ability to “average out” fluctuations in Xn for given

values of the model coefficients and model indicator. Assumption 1 guarantees these averages

are well defined. Evans and Honkapohja (2001) provide sufficient conditions. To facilitate the

analysis, we further assume that the set of feasible coefficients for each model satisfies some

regularity conditions.

Assumption 2. Let Bi be the set of all feasible coefficients for model i. We assume that Bi is

compact and convex.

This compactness assumption can be interpreted as a priori knowledge about the DGP.

Although the agent does not know the precise values of the coefficients, he can rule out

outrageously large coefficients. These bounds can be enforced algorithmically by a “projection

facility” (see, e.g., Kushner and Yin, 1997). Convexity is mainly a technical assumption, designed

to address the learning dynamics along the boundary of the parameter space.

As noted earlier, we assume the agent operates under a “if it’s not broke, don’t fix it” principle,

meaning that models are used until they appear to be misspecified, as indicated by a statistical

specification test. The test is performed recursively, in real-time, and for the same reasons that

8. We thank an anonymous referee for providing this interpretation. Note, this kind of distinction between models

and parameters is also present in Hansen and Sargent’s (2008, chpt. 18) work on robust learning.
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past data are discounted when computing parameter estimates, we assume estimates of the test

statistic, θn ∈R1
+, are updated using a constant gain stochastic approximation algorithm,

θn =θn−1 +ǫα[Q(sn−1,βn−1,Xn)−θn−1], (3.3)

where Q(sn−1,βn−1,Xn) is the time-n value of the statistic.Averaging by letting α>0 is important,

as it prevents single isolated shock realizations from triggering model rejections. At the same

time, letting α<1 is convenient, since otherwise θn evolves more slowly than βn, making the

test statistic depend on the history of the coefficient estimates, rather than just their current

magnitudes. This would complicate the derivation of the LD properties of the test statistic.

Finally, if |M|=m, then the model indicator parameter, sn, follows an m-state Markov chain

that depends on the current value of the test statistic relative to an evolving test threshold, θ̄n,

sn+1 =I(θn≤θ̄n) ·sn +(1−I(θn≤θ̄n))·	n+1, (3.4)

where I is an indicator function, and 	n is a post-rejection model selection distribution with

elements {π i
n}, i=1,2,···m. The only restriction that must be placed on 	n is that it have full

support ∀n. In practice, one would expect 	n to evolve, and to reflect the historical relative

performance of the various models, with better performing models receiving higher weights. Our

analysis permits this, as long as the elements of 	n remain strictly positive. In our simulations

we use the logit function,

π i
n = e−φωi,n

∑m
j=1e−φωj,n

,

where ωi,n is an estimate of model-i’s one-step ahead forecast error variance, and φ is a “choice

intensity” parameter. As φ increases, the agent is less prone to experiment.

Equations (3.1)–(3.4) summarize our model validation framework. Our goal is to understand

the asymptotic properties of this system (as ǫ→0), with a special focus on the asymptotic

properties of the model selection parameter, sn.

3.1. Mean ODEs and self-confirming equilibria

Notice the Xn vector on the right-hand side of (3.1) corresponds to the actual law of motion

given by (3.2), which depends on both the current model and the agent’s control and estimation

efforts. This makes the agent’s problem self-referential. It also makes analysis of this problem

difficult. To simplify, we exploit a two-tiered time-scale separation, one between the evolution

of the data, Xn, and the evolution of each model’s coefficient estimates, β̂ i
n, and another between

the evolution of the coefficient estimates and the rate of model switching, sn. A key concept when

doing this is the notion of a mean ODE, which is obtained by following four steps: (1) substitute

the actual law for Xn given by (3.2) into the parameter update equations in (3.1), (2) freeze the

coefficient estimates and model indicator at their current values, (3) average over the stationary

distribution of the “fast” variables, Xn, which exists by Assumption 1, and (4) form a continuous

time interpolation of the resulting autonomous difference equation, and then obtain the mean

ODE by taking limits as ǫ→0.

Assumption 1 assures us that this averaging is well defined. We also need to make sure it

is well behaved. To facilitate notation, write the update equations for model-i as follows. Let

Pk
β,s(Xn+k ∈·|Xn) be the k-step transition probability of the data for fixed values βn =β and

sn =s, and let Ŵβ,s(dξ )= limk→∞Pk(·) be its ergodic limit. Define the function

gi(s,β
i)=

∫

Gi(s,β
i,ξ )Ŵβ,s(dξ ). (3.5)
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We impose the following regularity condition on g(·),

Assumption 3. For all i and s, gi(s,β
i) is a Lipschitz continuous function of β i.

Continuity is essential for our averaging strategy to work. Note that since the parameter space is

bounded, Assumption 3 implies g is bounded.

A subtlety arises here from model switching. We assume that after a model is rejected it

continues to be fit to data generated by other models. As a result, there is no guarantee that

while a model is not being used its coefficient estimates remain in the neighbourhood of its

self-confirming equilibrium. Instead, its estimated coefficients tend to gravitate to some other

self-confirming equilibrium, one that satisfies the model’s orthogonality condition given that

data are being generated by another model. However, as long as model rejections occur on a

slower time-scale than coefficient updating, we can apply the same averaging principle as before,

the only difference is that now for each model we obtain a set of m mean ODEs (the next section

contains a formal proof),

β̇ i
s =gi(s,β

i
s) s=1,2,···m, (3.6)

where β i
s denotes model i’s coefficient estimates given that model s is generating the data. Note

that when model s �= i generates the data, its coefficent estimates influence model-i’s mean ODE.

This is because the rate of coefficient updating is assumed to be the same for all models. A self-

confirming equilibrium for model-i, β∗
i,s, is defined to be a stationary point of the mean ODE in

(3.6), i.e., gi(s,β
∗
i,s)=0. Note that in general it depends on which model is generating the data.

To simplify the analysis, we impose the following assumption.

Assumption 4. Each model i=1,2,··· ,m has a unique vector of globally asymptotically stable

Self-Confirming Equilibria, β∗
i,s, s=1,2,··· ,m

This is actually stronger than required. All we really need is global asymptotic stability of

β∗
i,i, ∀i. This guarantees that after a period of disuse, each model converges back to its own

unique self-confirming equilibrium. If this weren’t the case, then the problem would lose its

Markov structure. However, given the boundedness we have already imposed on the parameter

space, we do not need to worry too much about how a model’s coefficient estimates behave while

other models generate the data. Finally, note that if a model’s own self-confirming equilibrium is

unstable, one would expect its relative use to shrink rapidly to zero as ǫ→0, since in this case

model rejections are not rare events triggered by LD. Instead, they occur rapidly in response to

a model’s own mean dynamics.

3.2. Model validation

There is no single best way to validate a model. The right approach depends on what the model

is being used for, and the nature of the relevant alternatives. In this article we apply a Lagrange

Multiplier (LM) approach. LM tests can be interpreted as Likelihood Ratio tests against local

alternatives, or as first-order approximations of the KLIC. Their defining feature is that they

are based solely on estimation of the null model, and do not require specification of an explicit

alternative.As a result, they are often referred to as misspecification tests. Benveniste et al. (1990)

(BMP) outline a recursive validation procedure based on LM testing principles. Their method is

based on the observation that the innovation in a typical stochastic approximation algorithm is

proportional to the score vector. Essentially then, what is being tested is the significance of the

algorithm’s update term.
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Our approach is similar to that of BMP, except our null and alternative hypotheses are slightly

different. BMP fix a model’s coefficients and adopt the null that the score vector is zero when

evaluated at these fixed values. A rejection indicates that the coefficients (or something else)

must have changed. In our setting, with multiple models and endogenous data, it is not always

reasonable to interpret non-zero score vectors as model rejections. It takes time for a new model to

converge to its own self-confirming equilibrium. While this convergence is underway, a model’s

score vector will be non-zero, as it reflects the presence of non-zero mean dynamics. We want to

allow for this drift in our null hypothesis. One possible way to do this would be to incorporate a

“burn in” period after model switching, during which no testing takes place. The idea would be to

give new models a chance to adapt to their own data. Another possibility would be to only update

models while they are in use. Neither of these approaches seem to be widely applied in practice.

Instead, we incorporate drift into the null by using a decreasing test threshold. The initial value

must be sufficiently tolerant that new models are not immediately rejected, despite having drifted

away from their own self-confirming equilibrium values while other models are used. On the

other hand, as a model converges the test becomes more stringent and the threshold decreases, as

confidence in the model grows. We assume the threshold’s initial level and rate of decrease are

calibrated so that model rejections are rare events.

To be more explicit, consider the case of a linear VAR model, Xn =βXn−1 +εn, where Xn

is s×1, and where the true DGP is also linear, Xn =T (β)Xn−1 +C(β)vn. (We study this case in

more detail in Section 5). Letting �n be an s×s matrix with columns containing each equation’s

score vector, we have

�n =R−1
n−1Xn−1[X ′

n−1(T (βn−1)′−β ′
n−1)+v′

nC(β)′],

where Rn is a recursive estimate of the second moment matrix of Xn. The null hypothesis is then,

H0 :vec(�n)′�−1
n vec(�n)≤ θ̄n, where �n is a recursive estimate of var(vec(�n))

�n =�n−1 +ǫα[vec(�n)vec(�n)′−�n−1]

and where the threshold, θ̄n, decreases with n. Keep in mind this is a sequential test, much like the

well-known CUSUM test of Brown et al. (1975), or the “monitoring stuctural change” approach

of Chu et al. (1996). Hence, another reason to have a tolerant threshold is to control for the

obvious size distortions induced by repeated testing.9

3.3. Model selection

When the LM test is rejected a new model is randomly selected. Our main conclusions are robust

to the details of this selection process. For example, it could be based on a deliberate search

process which favours models that have performed relatively well historically. The only essential

feature is that the support of the distribution remain full. This ensures a form of ergodicity that

is crucial for our results. In what follows we simply assume that post-rejection model selection

probabilities are denoted by π i
n, where π i

n >0 ∀i,n. Hence, the most recently rejected model may

be re-selected, although this probability could be made arbitrarily small.

9. As stressed by both Brown et al. (1975) and Chu et al. (1996), an optimal threshold would distribute Type I

error probabilities evenly over time, and would result in an increasing threshold. In fact, with an infinite sample, the size

is always one for any fixed threshold. The fact that our agent discounts old data effectively delivers a constant sample

size, and diminishes the gains from an increasing threshold.
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4. ANALYSIS

Let Xn = (Xn,β̂
1,β̂2,···β̂m,θn,θ̄n,sn) denote the period-n state of the economy. It consists of:

(i), the current values of all endogenous and exogenous variables, (ii), the current values of all

coefficient estimates in all models, (iii), the test statistic for the currently used model, (iv), the

current test threshold, and (v), the current model indicator. Clearly, in general this is a high-

dimensional vector. In this section, we show how the dimensionality of the state can be greatly

reduced. In particular, we show how the evolution of the state can be described by the interaction

of three smaller subsystems. None of these subsystems are Markov when studied in isolation on

a calendar time scale. However, they can be shown to be approximately Markov when viewed on

the appropriate time-scales. The analysis therefore consists of a sequence of convergence proofs.

We begin by casting model validation in the form of a Stochastic Recursive Algorithm (SRA).

We then approximate the evolution of the coefficient estimates under the assumption that model

switching takes place at a slower rate than coefficient updating. Next, conditions are provided

under which this assumption is valid, in the sense that model rejections become LD events. Fourth,

we prove that model switching dynamics can be approximated by a low-dimensional Markov

chain. Finally, using this Markov chain approximation, we show that in general the limiting

distribution across models collapses onto a single, dominant model, which we then characterize

using the tools of LD theory.

4.1. Representation as a stochastic recursive algorithm

We have purposely stayed as close as possible to the standard SRA framework.10 These models

feature an interplay between beliefs and outcomes. Our model validation framework features

these same elements, but incorporates model testing and selection dynamics as well. It is useful

to begin by collecting together the model’s equations for the case of linear VAR models and a

linear DGP:

We first have a set of model update equations,

β̂ i
n = β̂ i

n−1 +ǫ�i
n (4.7)

�i
n = (Ri

n−1)−1X i
n−1[(X i

n)′−(X i
n−1)′β̂ i

n−1] (4.8)

Ri
n = Ri

n−1+ǫ[X i
n−1(X i

n−1)′−Ri
n−1]. (4.9)

Through feedback, these determine the actual DGP,

Xn =A(sn−1,βn−1)Xn−1 +C(sn−1,βn−1)vn. (4.10)

Models are tested by forming the recursive LM test statistics

θ i
n = θ i

n−1 +ǫα[vec(�i
n)′�̂−1

i,n vec(�i
n)−θ i

n−1] (4.11)

�i,n = �i,n−1 +ǫα[vec(�i
n)vec(�i

n)′−�i,n−1]. (4.12)

Hence, θ i
n is just a recursively estimated χ2 statistic. If a model contains p parameters, its degrees

of freedom would be p.

10. Benveniste et al. (1990) and Evans and Honkapohja (2001) contain good textbook treatments of SRA methods.
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Finally, the model indicator, sn, evolves as an m-state Markov Chain, where m=|M|. Its

evolution depends on the evolution of the test statistic relative to the threshold, as well as the

model selection distribution

sn+1 =I(θn≤θ̄n) ·sn +(1−I(θn≤θ̄n))·	n+1, (4.13)

where I is an indicator function, and 	n is a model selection distribution with elements {π i
n},

i=1,2,···m. Let pn ∈�m−1 be the time-n probability distribution over models, and let Pn be an

m×m state transistion matrix, where Pij,n is the time-n probability of switching from model i to

model j. Model selection dynamics can then be represented as follows

p
′
n+1 =p

′
nPn. (4.14)

The diagonal elements of Pn are given by

Prob[θ i
n ≤ θ̄n]+Prob[θ i

n >θ̄n]·π i
n (4.15)

and the off-diagonals are given by

Prob[θ i
n >θ̄n]·π j

n, (4.16)

where θ̄n is a sequence of test thresholds (to be discussed below).

4.2. Time-scale separation

Equations (4.7) — (4.16) constitute a high-dimensional system of non-linear stochastic difference

equations. The key to making the system tractable is the application of so-called “singular

perturbation” methods, which exploit the fact that subsets of the variables evolve on different

time-scales. By appropriately averaging over subsets of the variables, we can simplify the analysis

to one of studying the interactions between smaller subsystems, each of which can be studied in

isolation.

We shall show that model validation dynamics feature a hierarchy of three time scales. The

state and control variables evolve on a “fast”, calendar time-scale. The coefficients of each model

evolve on a “slow”, model revision time-scale, where each unit of time corresponds to 1/ǫ units of

calendar time. Finally, model switching occurs on a “really slow”, LD time-scale, where each unit

of model time corresponds to exp[S∗/ǫ] units of coefficient time, where S∗ is a model-specific

“rate function”, summarizing how difficult it is to escape from each model’s self-confirming

equilibrium. This hierarchy of time-scales greatly simplifies the analysis of model validation, as

it permits us to focus separately on the problems of control, model revision, and model selection.

The novel aspect of our analysis is the ultimate, LD time scale. It involves rare but recurrent

Markov switching among the finite set of models, each with coefficients fixed at their self-

confirming values, and with the underlying data fixed at the mean of a model-specific invariant

distribution. In other words, we are going to replace the above time-varying Markov transition

matrix, Pn, with a constant, state-independent, transition matrix, P̄ , with elements determined

by the LD properties of each of the models. A key feature of these LD properties is that model

switches are approximately exponentially distributed, thus validating the homogeneous Markov

chain structure of the approximation. In the spirit of Kandori et al. (1993), it will turn out that as

ǫ→0 the stationary distribution across models will collapse onto a single model.
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4.3. Mean ODE approximation of model revisions

We need to characterize the dynamic interactions among three classes of variables: (1) the state

and control variables that appear as regressors within each model, Xn, (2) the coefficient estimates,

βn, and (3) the model indicator, sn. We start in the middle, with the coefficient estimates. Their

dynamics can be approximated by averaging over the Xn variables for given values of the

model coefficients and model indicator. This produces Equation (3.5). We want to show that

as ǫ→0, the random path of each model’s coefficient estimates can be approximated by the

path of a deterministic ODE when viewed on a sufficiently long time-scale. To define this time-

scale, let βi,n be the real-time sequence of coefficient estimates of model-i, and let β∗
i,n be its

SCE, given whatever model is generating the data during period-n. Let βǫ
i (t) be the piecewise-

constant continuous-time interpolation of the model-i’s coefficient estimates, βǫ
i (t)=βi,n ∀t ∈

[ǫn,ǫ(n+1)), and let β∗ǫ
i (t) be the continuous-time interpolation of the sequence of SCEs. Finally,

define β̃i,n =βi,n −β∗
i,n and β̃ǫ

i (t)=βǫ
i (t)−β∗ǫ

i (t) as the real- and continuous-time sequences

of deviations between model coefficient estimates and their SCE values. The following result

describes the sense in which the random paths of β̃ǫ
i (t) can be approximated by a deterministically

switching ODE.

Proposition 1. Given Assumptions 3.3 and 4.4, as ǫ→0, β̃ǫ
i (t) converges weakly (in the

space, D([0,∞)) of right-continuous functions with left-hand limits endowed with the Skorohod

topology) to the deterministic process βi(t), where βi(t) solves the mean ODE,

β̇i =gi(βi(t)) (4.17)

Proof See Supplementary Appendix A. ‖
Figure 2 illustrates the nature of this approximation for model-i, for the case of three models,

where the set of its self-confirming equilibria are assumed to be: β∗
i,1 =1, β∗

i,2 =2, and β∗
i,3 =3.

Over time, model-i’s coefficients converge to the self-confirming equilibrium pertaining to

whichever model is currently generating the data. The ODEs capture the mean path of the

coefficient estimates in response to rare model switches. Later we shall see that on a logarithmic,

LD time scale we can approximate these paths by their limit points, since the relative amount of

time they remain in the neighbourhood of each self-confirming equilibrium grows as ǫ→0.

Proposition 4.1 can be interpreted as a function space analogue of the Law of Large Numbers.

The scaled process βǫ(t) plays the role of “observations”, and the mean ODE β(t) plays the role

of the “expected value” to which βǫ(t) converges as the number of observations [t/ǫ] increases. It

implies that on any finite time interval the path of the interpolated process βǫ
i (t) closely shadows

the solution of the mean ODE with arbitrarily high probability as ǫ→0.

4.4. Diffusion approximations

We can also obtain a function space analogue of the Central Limit Theorem by studying the

fluctuations of βǫ
i (t) around the mean ODE βi(t). To do this, define the scaled difference between

the interpolated deviation process, β̃ǫ
i (t), and the mean ODE

Uǫ
i (t)=

β̃ǫ
i (t)−βi(t)√

ǫ

we can state the following result.
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Mean ODE approximation

Proposition 2. Conditional on the event that model i continues to be used, as ǫ→0 Uǫ
i (t)

converges weakly to the solution of the stochastic differential equation

dU(t)=gi
β (β i(t))U(t)dt+R

1/2(β i(t))dW ,

where gi
β (·) is the Jacobian of gi(·) and R(·) is the stationary long-run covariance matrix with

elements

Rij(β)=
∞
∑

k=−∞
cov[Gi(β,Xk(β),xk(β)),Gj(β,X0(β),x0(β))]

Proof See Supplementary Appendix B. ‖
This result can be used to calibrate the test threshold, θ̄n. The sequence of test statistics in

4.11 can also be approximated by a diffusion on the time-scale tθ = t ·ǫα−1. Under the null, the

mean dynamics are simple, E(�′�−1�)=p, the number of degrees of freedom of the test (i.e.,

the number of model coefficients). Letting θ̃ǫ(tθ )=θǫ(tθ )−p, we get the following Ornstein–

Uhlenbeck approximation for the path of the test statistic,

dθ̃ =−θ̃dtθ +
√

ǫαRdW

where R2 is the variance of the centered test statistic, which depends on the fourth moments of

the data. This implies the test statistic exhibits typical fluctuations of order
√

ǫα ·C, where C is
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given by,

C =
∫ ∞

0
e−s

R
2e−sds= 1

2
R

2.

If we want model rejections to be rare events, the limiting test threshold needs to be comfortably

above this, so that isolated shock realizations do not trigger model rejections.

4.5. Markov chain approximation of model switching

Propositions 1 and 2 describe the average behavior of each model’s coefficient estimates. Both are

conditioned on a fixed time horizon. Eventually, however, for any ǫ>0, the coefficient estimates

will wander a significant distance from the SCE (significant, that is, relative to the
√

ǫ Central

Limit scaling). We have in mind a situation where this potentially triggers a model switch. These

switches are rare, in the sense that they occur in response to tail events in the model revision

process. We must now characterize these tail events. We do this using the tools of LD theory.

The analysis consists of four main steps. First, using results from Dupuis and Kushner (1989)

and Cho et al. (2002), we provide conditions under which each model’s sequence of coefficient

estimates satisfies a Large Deviations Principle. Second, we use the Contraction Principle to

link the LD properties of the coefficient estimates to the LD properties of the LM test statistics.

Third, we use the LD properties of the test statistics to construct a homogeneous Markov Chain

approximation of the model selection process. Finally, using this approximation, we characterize

the limiting model distribution, and identify a “dominant” model in terms of its LD rate function.

We begin with a definition.

Definition 1. Let E be a separable Banach space. Suppose Sn,n>0 are E-valued random

variables. It is said that {n−1Sn} satisfies a Large Deviations Principle if there is a lower

semicontinuous rate function I :E →[0,∞], with compact level sets I−1([0,a]) for all a>0,

such that

liminf
n→∞

n−1 logP(n−1Sn ∈A)≥− inf
x∈A

I(x)

for all open subsets A⊂E , and

limsup
n→∞

n−1 logP(n−1Sn ∈B)≤− inf
x∈B

I(x)

for all closed subsets B⊂E .

In our setting, Sn will either be a sequence of coefficient estimates, or a sequence of test statistics,

with E then corresponding to the relevant path space. The crucial object here is the rate function,

I(x). Definition 1 shows precisely the sense in which LD events are rare, i.e., their probability

declines exponentially with n, and the rate function plays the role of a scale factor in this decline.

If one process has a uniformly larger rate function than another, the relative frequency of its

escapes will vanish.

LD calculations have three components: (1) An H-functional, (2) the Legendre transformation

of the H-functional, and (3) an action functional used to determine the LD rate function. The H-

functional is the log moment generating function of the martingale difference component of

the least-squares orthogonality conditions. Existence of the H-functional is the key existence

condition of our model. Write the parameter update equations for each model as (since the same
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condition applies for each i∈M, we omit superscripts for simplicity),

βn = βn−1 +ǫg(s,β)+ǫ[G(sn−1,βn−1,Xn−1,Wn)−g(s,β)]
= βn−1 +ǫg(s,β)+ǫG̃(sn−1,βn−1,Xn−1,Wn)

so that G̃(·) represents the martingale difference component of the update algorithm. We assume

G̃(·) satisfies the following assumption.

Assumption 5. For all i∈M, the following limit exists uniformly in β and s (with probability

one),

lim
k,n

1

k
logEnexp

⎡

⎣a′
k−1
∑

j=0

G̃i(s,β
i,X i

n+j,W
i
n+1+j)

⎤

⎦,

where limk,n means the limit exists as k →∞ and n→∞ in any way at all.

This limit defines the H-functional, and we denote it as H :M×B×R
d
++ �→R+, where d is the

dimensionality of the parameter space. Existence of H(s,β,a) imposes restrictions on the tails of

the data and the shocks, and must be verified on a case-by-case basis.11

The Legendre transform of H(s,β,a) is defined as follows,

L(s,β,λ)=sup
a

[λ·a−H(s,β,a)]. (4.18)

In static, i.i.d., environments this is the end of the story. The probability of witnessing a LD

of λ from the mean would be of order exp[−nL(λ)]. However, in dynamic settings things are

more complicated. The relevant sample space is now a function space, and LD consist of sample

paths. Calculating the probability of a LD involves solving a dynamic optimization problem. The

Legendre transformation L(s,β,λ) now plays the role of a flow cost function, summarizing the

instantaneous probabilistic cost of any given path away from the self-confirming equilibrium. For

a given boundary, the value function of this control problem captures the probability of escaping

from the self-confirming equilibrium to any given point on the boundary. If only the radius of the

boundary is specified, as in our specification testing problem, then one must also minimize over

the boundary. The control problem characterizing the LD properties of the estimated coefficients

can now be written as the minimization of the following action functional:

S(s0,β0)= inf
T>0

inf
β

∫ T

0
L(s,β,β̇)dt (4.19)

subject to the boundary conditions β(0)=β0, s(0)=s0, and β(T )∈∂B, where ∂B denotes

the escape boundary. Since the action functional is stationary and T is free, the solution is

characterized by the following Hamilton–Jacobi–Bellman (HJB) equation,

inf
β̇

{L(s,β,β̇)+∇S ·β̇}=0,

11. In Cho and Kasa (2013), we provide an example for the case of univariate linear regression models and Gaussian

data and shocks.
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where ∇S denotes the gradient of S with respect to β. This can equivalently be written,

sup
β̇

{−∇S ·β̇−L(s,β,β̇)}=0. (4.20)

We now make an important observation. The Legendre transform in (4.18) defines a convex

duality relationship between H(s,β,a) and L(s,β,λ). This means the HJB equation in (4.20) can

be written compactly as,

H(s,β,−∇S)=0. (4.21)

The solution of this problem depends on both the model being estimated and the model being

used to generate the data. Denote its solution by S∗. The following proposition links S∗ to the

LD properties of each model’s sequence of coefficient estimates.

Proposition 3. Fix s=s0, and let βǫ
i (t) be the continuous-time interpolation of model-i’s

estimated coefficient vector. Let S∗
i denote the solution of the control problem in 4.19, and B

be a set containing model-i’s unique SCE (given s=s0). Then, given Assumptions 3.1–3.4 and

Assumption 5, model-i’s LD properties are given by:

1. If the exogenous shocks, W i are i.i.d. and unbounded, and there exist constants κ >1 and

Q<∞ such that ∀n and s≥0

P(|Gi(·)|≥s|Fn)<Qe−sκ

(w.p.1)

then, for βǫ(0)∈B

limsup
ǫ→0

ǫ logP(βǫ
i (t) /∈B for some 0< t ≤T )≤−S∗

i .

2. If the exogenous shocks, W i, are bounded, and S∗
i is continuous on ∂B, then

lim
ǫ→0

ǫ logP(βǫ
i (t) /∈B for some 0< t ≤T )=−S∗

i .

3. Given the assumptions of part (2), and letting τ ǫ
i = inf t≤T (βǫ

i (t) /∈B) then

lim
ǫ→0

ǫ logE(τ ǫ
i )=S∗

i

If the shocks are unbounded then limǫ→0ǫ logE(τ ǫ
i )≥S∗

i .

Proof For part (1) see Dupuis and Kushner (1989). For parts (2) and (3) see Kushner and Yin

(1997) and Dupuis and Kushner (1987) (Theorem 5). ‖
The are several noteworthy features of this result. First, note that the escape probabilities

and mean escape times are independent of βǫ
i (0)∈B. This reflects the fact that the mean

dynamics are stabilizing for all βǫ(t)∈B, so it is very likely that βǫ
i (t) converges to a small

neighbourhood of β∗
i before it succeeds in escaping.12 Second, and closely related, the escape

12. A little more formally, given two initial conditions, (β1(0),β2(0)), within some ρ1-neighbourhood of β∗, then

for any ρ2 <ρ1, the probability that one of them escapes to ∂B before both get within a ρ2-neighbourhood of β∗ goes to

zero as ǫ→0.
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times are approximately exponentially distributed. This is important in delivering a homogeneous

Markov Chain approximation to the model switching dynamics. Again, this reflects the fact that

points within B are very likely to converge to the SCE before escaping. This makes each escape

attempt independent from its predecessors, which eliminates “duration dependence” and makes

waiting times exponential. Third, note that we have said nothing about the evolution of the second

moment matrix, R. Remember that it is being updated at the same time (and at the same rate) as

β(t). However, its evolution is deterministic, and does not introduce additional sources of noise

that can drive escape. Consequently, the dynamics of R are tied to those of β. Fourth, since S∗

depends on B, the escape boundary, so do the escape probabilities and mean escape times. The

“bigger” B is, the less likely an escape.13

The remarkable thing about Propositions 1 and 3 is that together they characterize the sample

paths of a non-linear stochastic dynamic process in terms of the solutions of two deterministic

differential equations; one characterizing the mean dynamics and the other characterizing the

escape dynamics.

Solution of the LD control problem in 4.19 involves a minimization over points on the

boundary, ∂B, of the parameter space. Since with overwhelming probability the escape path

hits the boundary at a unique point, one could in principle calculate test statistics based directly

on fluctuations in the coefficient estimates. However, a better approach is to base inferences on

the sequence of estimated scores. Under the null, these behave as innovations, and therefore

will more clearly reveal alternatives featuring breaks or other structural changes.14 Hence, we

must now translate the LD results for the coefficients into LD results for the LM test statistics in

equation (4.11).

To do this, we make use of the following result (Dembo and Zeitouni, 1998, p. 126).

Theorem 1. (Contraction Principle) Let X and and Y be Hausdorff topological spaces and

f :X →Y a continuous function. Consider a rate function S :X →[0,∞].

(a) : For each y∈Y define S′(y)= inf {S(x) :x∈X, y= f (x)}. Then S′ is a rate function on Y.

(b) : If S controls the LDP associated with a family of probability measures με on X, then S′

controls the LDP associated with the family of probability measures με ◦f −1 on Y.

The contraction principle tells us that LD principles are preserved by continuous mappings.

Of course, depending on the properties of f , the rate function S′ might be quite different from the

rate function S, so the LD properties of x and y themselves (e.g., escape times and escape routes)

might be quite different. However, the contraction principle provides a means for translating

between the two.

To use this result, we must establish that θn is in some sense a continuous function of βn.

This requires two steps. First, define the function, Fi :Rdi →R+, where di is the number of

variables in model i, as the score function, Fi(β i
n−1)=vec(�i

n)′�̂−1
i,n vec(�i

n), and then form the

continuous-time interpolation of the recursive LM test statistic

θǫ(t)=θǫ(0)+ǫα

[t/ǫ]
∑

i=0

[F(βǫ(i))−θǫ(i)]. (4.22)

13. Technically, this is only true of uniform expansions of B, e.g., increasing the radius of a symmetric ball around

β∗. Since escapes are very likely to occur in a single particular direction, expanding B in other directions will have no

effect on escape probabilities.

14. Benveniste et al. (1990) emphasize this point. See p. 182.
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As usual, average out the state dynamics by defining θ (t)= limǫ→0θǫ(t) as its limit. The second

step is to note that for 0<α<1 the θǫ(t) process evolves faster than the βǫ(t) process. More

precisely, θǫ(t) is “exponentially equivalent” to θǫ(F(βǫ(t)).15 This means the LD properties of

θ are driven by the LD properties of F(β) via the contraction principle (See Theorem 4.2.13 in

Dembo and Zeitouni (1998)). Hence, we have:

Proposition 4. Each model’s LM test statistic process, θǫ
i (t), has a locally stable equilibrium

at θ∗
i =F(β∗

i )=0, and it satisfies a LD principle with rate function given by

Vi(θ )= inf
T>0

inf
{β:θ=F(β)}

∫ T

0
Li(s,β,β̇)dt

subject to θ (te) /∈Bθ for some 0< te <T, where ∂Bθ defines a rejection threshold.

Proof The stability of θ∗ is clear from inspection of (4.22). The proof then just consists in

verifying that F(β) is continuous. ‖
The analysis so far has exploited a time-scale separation between the data and each model’s

coefficient estimates. We have studied the evolution of a model’s coefficients by averaging out

the dynamics of the state variables. Everything has been conditional on sn, i.e., the current model.

The next step in our analysis exploits a different kind of time-scale separation; namely, between

the coefficient estimates and the frequency of model switching. After a new model is selected,

its coefficients can be well away from their new SCE values. Applying the LM test with a fixed

threshold would lead to instantaneous rejection. As noted earlier, we assume the agent in our

model is quite sophisticated, and is aware of feedback. Specifically, he knows that it takes time

for a new model to converge to its own SCE. While this convergence is underway, a model’s

score vector will be non-zero, as it reflects the presence of non-zero mean dynamics. The agent

wants to incorporate this drift into the null hypothesis. We assume that drift is incorporated into

the null via a declining test threshold. In other words, the test becomes more stringent the longer

a model has been in use.

To be more precise, let {nk} be a sequence of random model switching times, i.e., nk+1 =
inf {n>nk :sn �=snk

}. Define an “epoch” as an interval during which a single model is in use.

To ensure new models are given a chance to fit their own data, we assume the test threshold

begins each epoch at a sufficiently high value that model rejections continue to be rare events,

in the above LD sense. Since the contribution of the mean dynamics to the test statistic is given

by the difference in the gradients of the gi functions, θ̄0 should be of the same order as the

maximum distance between the gradients. If convergence between SCE is monotone, then θ̄0 ≈
maxi,j ||gi

β (i,β i,∗)−gi
β (j,β i,∗)||. (If convergence is not monotone, then one would also need to

maximize over the paths of β). In principle, one could allow model specific θ̄0, but the extra

conservativism associated with maximizing over i has no bearing on inferences about model

dominance. Then, over time, as the currently used model converges to its SCE, the agent can

afford to increase the test’s power by letting the test threshold decline, i.e., θ̄n+1 <θ̄n ∀ n∈
{nk,···nk+1 −1}. Note that an optimal threshold sequence would require detailed knowledge of

the dynamic properties of each model. Such knowledge is not likely to be possessed by actual

policymakers. Fortunately, none of our conclusions depend on the assumption that the threshold

15. θ ǫ (t) and θ ǫ (F(βǫ (t))) are exponentially equivalent if for each δ>0, limsupǫ→0ǫlogP[d(θ ǫ (t),θ ǫ (F(βǫ (t)))>

δ]=−∞, where d is the sup norm on the space of continuous, bounded functions.
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sequence is optimal in any sense, or that the test’s nominal size corresponds to its actual size. To

summarize, we impose the following assumption.

Assumption 6. There exists a deterministic sequence of test thresholds, θ̄n, such that Assumption

5 and Proposition 3 remain valid for all i∈M and all s∈M.

Given global asymptotic stability, existence is not an issue. However, actually computing θ̄n will

be unavoidably model specific. (See Cho and Kasa, 2013, for an example).

Since model rejections are rare in the LD sense, we can now average out the dynamics in

β i(t) and focus on switches between models. To do this we define a new logarithmic time-scale,

τ =ǫ log(t), where τ can be interpreted as the time-scale over which model switching occurs.

In other words, each unit of model switching time, τ , corresponds to exp[ǫ−1] units of model

revision time. LD events only become “visible” on this scale. Over this length of time we can

average over the excursions that β(t) takes away from the SCE, and fix its value at β∗ (its long-run

average), just as we fixed the values of the state variables at their stationary equilibrium values

when studying the dynamics of β(t). In fact, to obtain the necessary averaging for all models, we

must actually employ the time-scale (ǫ/V̄ )log(t), where V̄ is the largest LD rate function among

all the models.

As when studying the evolution of a model’s coefficients, we start by defining a continuous-

time interpolation of the discrete distribution over the models, pn. Over short horizons, the

transition probability matrix, Pn, of this Markov Chain is quite complex (see equations (4.15)–

(4.16)). Our goal is to simplify this matrix by applying singular perturbation methods. Define the

continuous-time interpolation of pn as usual, i.e., pǫ(t)=pn for t ∈[ǫn,ǫ(n+1)). Next, use the

change of variables τ = (ǫ/V̄ )log(t), and consider the rescaled process, pǫ(τ ). This process can

be characterized as an m-state homogeneous Markov Chain.

Proposition 5. Assume ∀i∈{1,2,···m} that θ i(t) is calibrated to reject during escapes of Model

i. Assume π i(t)∈[a,ā] ∀i,t, where a>0 and ā<1. Then for τ fixed, pǫ(τ ) converges weakly as

ǫ→0 to a homogenous m-state Markov Chain with generator Q,

qij =π∗
j e(V̄−V∗

i )/ǫ qii =−

⎛

⎝

m
∑

j �=i

π∗
j

⎞

⎠e(V̄−V∗
i )/ǫ

which possesses a unique invariant distribution as τ →∞,

p̄ǫ
i =

π∗
i eV∗

i /ǫ

∑m
j=1π∗

j e
V∗

j /ǫ
, (4.23)

where π∗
i is model i’s selection probability defined at its SCE.

Proof See Supplementary Appendix C. ‖
Note that for τ to remain constant, t must increase very rapidly as ǫ→0. This reflects the

rarity of the escapes.
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4.6. Dominant models

The invariant distribution in (4.23) shows what happens when τ →∞ “slower” (or after) ǫ→0.

It is also useful to ask what happens when τ →∞ “faster” (or before) ǫ→0. It is clear from

equation (4.23) that this limit is degenerate.

Proposition 6. As ǫ→0 the invariant model distribution collapses onto the model with the

largest LD rate function.

This means that in the limit, and over very long time horizons, the agent uses one of the models

“almost always”. The dominant model will be the model with the largest LD rate function. This

model survives specification testing longer than any other model. Interestingly, the dominant

model may not be the best fitting model. Of course, all else equal, poorly fitting models will

have smaller rate functions and will not endure specification testing for long. A large residual

variance generates a lot of noise around the SCE, and therefore, makes escape easier. However,

the precision of a model’s estimates also matters. Precise estimates are less liable to wander from

their SCE values. Hence, overfitted models can escape just as quickly as underfitted models. In

fact, recursive testing based on one-step ahead forecast errors embodies a model complexity cost

that resolves the bias/variance trade-off that inevitably arises when attempting to discriminate

among models (Hansen and Yu, 2001).

The reader may have noticed that we have not paid much attention to the details of

randomization. Propositions 5 and 6 show why. It turns out that our LD approach is robust

with respect to the details of experimentation. All that matters is that each model’s chances of

being selected remain strictly bounded between 0 and 1.

Corollary 1. As long as the experimentation probabilities, π i
t , remain strictly bounded between

0 and 1 as ǫ→0, the identity of the dominant SCE is independent of the details of randomization.

Proof Follows directly from equation (4.23). ‖

4.7. An information-theoretic interpretation

We have defined a validated self-confirming equilibrium as an outcome generated by a model

which survives specification testing longer than any other model in M. We have identified this

model as the model with the maximum LD rate function, defined at its own self-confirming

equilibrium. To readers familiar with information theory and statistics, this may appear to be

a puzzling result. From Sanov’s Theorem we know rate functions are connected to relative

entropies, and then, from either Stein’s lemma (classical) or Chernoff bounds (Bayesian), we

know that relative entropies are connected to detection error probabilities. In particular, larger

relative entropies should make it easier to detect discrepancies between a model and the true

DGP. That is, larger relative entropies reduce the probabilities of Type I and Type II errors. Why

then are models with large rate functions more durable?

This apparent contradiction illustrates a key difference between model validation with

exogenous data and model validation with endogenous data. With endogenous data, each model

has the capacity to mimic the true DGP. In this case, rejecting a model constitutes a Type I error,

and as usual, a larger rate function implies a smaller Type I error probability (or more precisely,

it increases the rate at which it converges to zero).
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4.8. Example

Suppose |M|=3. Let V∗
i be the LD rate function for model-i, evaluated at its unique stable SCE.

The combination of constant gain learning, specification testing, and random model selection

induces an approximating three-state ergodic Markov chain across models. Model switches are

triggered by escapes from each model’s SCE. As ǫ→0, these escape probabilities are of order

e−V∗
i /ǫ . Model selection dynamics can therefore be approximated by the three-state transition

matrix, P̄ = I +Qǫ , where Qǫ is the generator

Qǫ =

⎛

⎜

⎜

⎜

⎜

⎝

−(π∗
2 +π∗

3 )e−V∗
1 /ǫ π∗

2 e−V∗
1 /ǫ π∗

3 e−V∗
1 /ǫ

π∗
1 e−V∗

2 /ǫ −(π∗
1 +π∗

3 )e−V∗
2 /ǫ π∗

3 e−V∗
2 /ǫ

π∗
1 e−V∗

3 /ǫ π∗
2 e−V∗

3 /ǫ −(π∗
1 +π∗

2 )e−V∗
3 /ǫ

⎞

⎟

⎟

⎟

⎟

⎠

(4.24)

and where π∗
i ∈ (0,1) are parameters determining which model is more likely to be selected

following a given model rejection.

The stationary distribution is as follows,

p̄1 = �−1a1e−(V∗
2 +V∗

3 )/ǫ

p̄2 = �−1a2e−(V∗
1 +V∗

3 )/ǫ

p̄3 = �−1a3e−(V∗
1 +V∗

2 )/ǫ,

where

�=a1e−(V∗
2 +V∗

3 )/ǫ +a2e−(V∗
1 +V∗

3 )/ǫ +a3e−(V1+V∗
2 )/ǫ

and where ai are constants that are independent of ǫ. Therefore,

p̄2

p̄1
∝e−(V∗

1 −V∗
2 )/ǫ p̄3

p̄1
∝e−(V∗

1 −V∗
3 )/ǫ .

Suppose Model 1 is dominant, so that V∗
1 >V∗

2 and V∗
1 >V∗

3 . Then notice that as ǫ→0, Model 1

is used almost always, and this conclusion does not depend on the experimentation probabilities.

4.9. Real-time relevance of model switching

Model switches are rare events here, which raises the question of whether they occur

sufficiently often to be of empirical relevance. In the context of monetary policy, evidence in

Romer and Romer (2002) suggests the Fed switched models every 10–20 years during the post-

war era, or once every 150–250 periods if the discrete time interval is a month. Can model

validation generate switches this often? On the one hand, it almost certainly can. Suppose T is an

observed mean switching frequency. The above results imply T ∼ǫ ·e−V∗/ǫ , which increases in

ǫ. Hence, one can typically match an observed mean escape time by selecting a sufficiently high

gain. On the other hand, remember these are limit results, as ǫ→0. For a given ǫ>0, they are just

approximations, and the quality of the approximation is case-specific. In some cases, ǫ=0.10

might be sufficiently small to provide an adequate approximation. In others, ǫ=0.001 might be

too large. In practice, one could first calibrate ǫ to observed model switches, and then conduct

simulations to verify that the predicted escape times match the simulations.

One should keep in mind that the results here are also useful when observed model switching

takes place too infrequently to be of empirical relevance. That is, one can adopt the perspective
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of a game-theorist, or of the early advocates of the Rational Expectations Hypothesis, and view

our analysis as providing an equilibrium selection criterion. From this perspective, learning has

already taken place at some prior stage, and the task is to explain why a given equilibrium/model

is observed.

5. THE LINEAR GAUSSIAN CASE

The previous section showed that the asymptotic properties of model validation hinge critically

on a set of model specific LD rate functions. Unfortunately, numerical methods are typically

required to compute these rate functions. For example, even if a closed-form expression for the

H-functional can be obtained, one must still proceed to solve a non-linear control problem to find

the rate function. In this section, we consider a class of models where some analytical headway is

possible. These models feature conditionally linear state dynamics and Gaussian disturbances. In

this case, least squares orthogonality conditions are quadratic forms of Gaussian random variables,

and we can use the results of Bryc and Dembo (1997) to simplify the resulting calculations.

Consider then a model class where each model is a vector autoregression,

Xn =βXn−1 +εn (5.25)

and the actual law given these beliefs is

Xn =T11(β)Xn−1 +T12(β)Zn−1 +v1,n, (5.26)

where Xn is an s×1 vector, β and T11(β) are s×s matrices, T12(β) is an s×q matrix, and

v1,n ∼ i.i.d.N(0,�). The Tij(β) functions encode the feedback between beliefs and outcomes,

and can be highly non-linear. For Assumption 1 to be satisfied, they must be appropriately

bounded (uniformly). The presence of Zn−1 allows for the possibility that the model in question

is underparameterized. Alternative models can be represented by alternative specifications of the

X and Z vectors. It is assumed that omitted variables also follow a Gaussian vector autogression,

Zn =T21(β)Xn−1 +T22(β)Zn−1 +v2,n. Notice that model specification determines the dynamic

properties of a model’s error term.

The linear Gaussian model in (5.25)–(5.26) has been a workhorse in applied macroeconomics,

both under Rational Expectations and under adaptive learning. For example, it has been

used in present value asset pricing models and New Keynesian Phillips curve models (See

Evans and Honkapohja (2001) for a full catalogue of examples). As a simple example, if the

true model takes the form of a Lucas supply curve (or cobweb model),

Xn =δEn−1Xn +γ Xn−1 +vn

and the Perceived Law of Motion (PLM) is correctly specified, then the Actual Law of Motion

(ALM) is

Xn = (δβ+γ )Xn−1 +vn =T (β)Xn−1 +vn.

Hence, the results derived here are of wide applicability.

5.1. Calculation of H-functional and LD rate function

Define (�n)′ = ((Xn)′,(Zn)′) as the combined vector of included and excluded variables, so that

�n =T (β)�n−1 +vn, with var(vn)=�. Let F(ω) be the spectral density matrix of �n, and define

the s×s matrix of co-states, α, where columns are the co-states pertaining to the coefficients

 at S
im

o
n
 F

raser U
n
iv

ersity
 o

n
 Jan

u
ary

 7
, 2

0
1
5

h
ttp

://restu
d
.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://restud.oxfordjournals.org/


CHO & KASA MODEL VALIDATION 71

in each equation. The rate function is then the solution of the following calculus of variations

problem S(β)= inf β̇

∫

L(β,β̇), where L is the Legendre transform of the H-functional. From

Bryc and Dembo (1997), the solution of this problem can be stated as follows:

Proposition 7. Assume the following Riccati equation has a unique positive definite solution ∀
β ∈B

P=�+T (β)′PT (β)+T (β)′P[(2W (α,β)−1 −P]−1PT (β),

where the weighting matrix, W (α,β), is given as follows:

W (α,β)=
[

(T11(β)−β)′α′R−1 + 1
2 R−1α�α′R−1 1

2 T12(β)′α′R−1

1
2 R−1αT12(β) 0

]

(5.27)

and is assumed to be uniformly positive semi-definite. Then for the case of linear Gaussian VAR

models the LD rate function solves the following non-linear PDE

detF0(−Sβ ,β)=1, (5.28)

where F0 =F(0) is given by the following (canonical) spectral factorization

Is+q −2WF(z)F(z−1)′ =F(z)F0F(z−1)′.

Proof See Supplementary Appendix D. ‖
This non-linear PDE must be solved subject to the boundary conditions, S(β∗)=0, where β∗

are the self-confirming values of the model’s coefficients (presumed to be unique), and β(T )=∂B,

where ∂B defines the relevant escape boundary. The value of the rate function is then found by

taking the minimum over the escape boundary. Clearly, this sort of problem cannot in general be

solved with pencil and paper. In practice, since it is first-order, one would use the “method of

characteristics” to convert it to a system of ODEs, which can then be solved relatively easily with

standard algorithms. However, rather than pursue a numerical approach, we consider a few special

cases, which can be solved by hand. This will provide some intuition about what determines a

dominant model.

5.2. Case 1: correctly specified univariate model

In this case, s=1, q=0, and only the upper left element of W in (5.27) is relevant. One can then

readily verify that (5.28) is solved by

−(T11(β)−β)= 1

2
SβR−1�.

Using the fact that R evolves deterministically, we can first integrate this with respect to β and

then evaluate R at β. This yields the following rate function

S(β)=2�−1R(β)

∫ β

β∗
[s−T11(s)]ds, (5.29)

where β∗ is the SCE value of β and R(β)=�/(1−T2
11(β)). Note that a model will be resilient

(i.e., have a large rate function) when the mean dynamics are strong, as represented by s−T11(s).
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When this term is large, deviations from the SCE produce large discrepancies between the ALM

and the PLM, which are easily identified and corrected. This makes escapes difficult. Escapes

are also difficult when parameters are precisely estimated, which occurs when R (the second

moment matrix of X) is large relative to �. Variation in the explanatory variables produces

precise parameter estimates. Notice that � cancels out of (5.29). On the one hand, a higher �

adds noise, which makes escape easier. On the other hand, a higher � increases variation of the

explanatory variables. This makes parameter estimates more precise, and escapes more difficult.

In the VAR case, the two effects exactly offset.

Although this is a special case, it does reveal a crucial point that applies more generally, namely,

there is no guarantee that true models will be dominant. Misspecified models can dominate either

because their feedback is stronger, or because their parameters are more precisely estimated. This

highlights a key distinction between specification testing with endogenous data and specification

testing with exogenous data.16

Finally, note that in the above cobweb example, T (β)=δβ+γ is linear, and the integral in

(5.29) can actually be evaluated to give: S(β)=�−1R(β)(1−δ)(β−β∗)2, where R(β)=�/[1−
(γ +δβ)2)], and β∗ =γ /(1−δ) is the SCE in this case. Note that the feedback parameter, δ, has

an ambiguous effect on the rate function. On the one hand, a larger δ produces stronger feedback

between the PLM and ALM. This makes specification errors harder to identify, and weakens the

pull back to the SCE, which makes escapes easier. On the other hand, a larger δ increases the

variance of the regressor, which increases the precision of the parameter estimate, which makes

escape more difficult.

5.3. Case 2: correctly specified multivariate model with potential function

Again q=0, and only the upper left part of W in (5.27) is relevant. Now, however, this is an s×s

matrix, and the PDE in (5.28) becomes

−(T (β)−β)′S′
βR−1 = 1

2
R−1Sβ�S′

βR−1.

Assuming Sβ is invertible, we can write this as

Sβ =2R(β−T (β)′�−1, (5.30)

where R(β) is the solution of the Lyapunov equation R=T (β)RT ′(β)+�. Although in the scalar

case we can always integrate this to derive the rate function, this integration strategy would not

work in general in the vector case. However, it will work if appropriate symmetry conditions

are satisfied, which guarantees the existence of a potential function. To derive these conditions,

vectorize the HJB equation in (5.30) to get

vec(Sβ )=2(�−1 ⊗R(β))vec(β−T (β). (5.31)

This gives us

Proposition 8. If there exists a function V (β) such that ∇V (β)= (�−1 ⊗R(β))vec(β−T (β)

and V (β∗)=0 then the rate function for a correctly specified multivariate model is S(β)=2V (β).

16. Although more precise estimates yield a lower test threshold, making model rejection easier, remember we

assume this effect is O(var(β̂)), whereas the escape time to a given boundary point is O(exp(1/var(β̂))).
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When will this potential function exist? Besides the usual differentiability conditions, a

necessary and sufficient condition is that ∂�i(β)/∂βk =∂�k/∂βi ∀i,k where �i is the ith

component of the vector function on the right-hand side of (5.31). A simple example occurs

when both T11 and � are diagonal, in which case all cross partials are zero. When this is the case,

the rate function takes the form

S(β)=2

s
∑

i=1

∫ β
β∗ [s−Ti(s)]ds

1−T2
i (β)

which is an obvious vector analogue of the previous scalar example.

5.4. Case 3: misspecified models

So far we have only considered correctly specified models, which of course is rather limiting

given our purposes. The easiest case of misspecification to consider is when relevant variables

are omitted. Consider the case of a univariate model (s=1), which can always be integrated, and

assume there is a single omitted variable (q=1), which is both exogenous and i.i.d (T21 =T22 =0).

In this case, misspecification just produces an error term with larger variance. However, as noted

above, in VAR models this has offsetting effects on the rate function. Hence, if two VAR models

differ only in which i.i.d. exogenous variables they exclude, their relative rate functions will

depend only on the their own T -mappings.

5.5. LD of the test statistic

The previous section showed that the contraction principle can be used to deduce the rate function

for θ from the rate function for β. Consider again the case of a correctly specified univariate

VAR. Averaging over (xn,vn) while keeping βn fixed, we have E(�2)=[T (β)−β]2 +σ 2R−1

and �=σ 2R−1. Hence, F(β)=1+σ−2R[T (β)−β]2. Proposition 4 then yields the following

expression for the rate function of θ ,

V (θ )= inf
{β:θ=F(β)}

2

{

σ−2R

∫ β

β∗
[s−T (s)]ds

}

.

Suppose T (β) is linear, e.g., T (β)=a+bβ, so that
∫ β
β∗ [s−T (s)]ds= 1

2 [β−T (β)]2/(1−b). Notice

then that the rate function takes the extremely simple form, V (θ )= (θ −1)/(1−b). Minimization

over the escape boundary, ∂B, is also simple, since θ is univariate and obviously positive, so there

is only one direction to escape. If θ̄∞ is the limiting value of the threshold, the rate function in

the neighbourhood of the SCE is just V∗ = (θ̄∞−1)/(1−b). As noted in section 4.4, θ̄∞ should

be set so that routine fluctuations in θn do not trigger model rejections. These fluctuations are of

order ǫ(1−α)/2R, where R is the standard deviation in the diffusion approximation of θ (around

its SCE). Thus, θ̄∞ >1+ǫ(1−α)/2R.

Unfortunately, matters are not quite so simple when T is non-linear, or when the model is

multivariate. In these more general cases, the tight connection between the form of the test statistic

and the form of the coefficient rate function will be severed, and V∗ will depend on θ̄∞ non-

linearly. In practice, it is easier to leave the calibration of the test statistic implicit, and to assume

that model rejections are triggered by escapes of the coefficients. Inferences about dominant

models can then be based directly on the coefficient rate functions.
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6. APPLICATIONS

This section applies our results to two examples based on Sargent’s (1999) Conquest model. The

first example illustrates the importance of the model class. The second example shows that model

validation can be used to learn about identification.

6.1. Importance of the model class

Let us return to the example in the Introduction. That example showed, as Sims (1982) argued

long ago, that adaptive policymakers could learn to do the right thing even without a priori

knowledge of the true model. The key was to expand the model class, and consider multiple

models. We saw that averaging across these models in a Bayesian fashion, or formulating a single

large encompassing model, produced worse outcomes than selecting a single small model. We

are now in a position to understand why.

Model validation predicts that a dominant model will be the model with maximum LD rate

function. In this case, this is an easy comparison to make. We know from CWS (2002) that the

static Phillips Curve rate function is S̄∗ =0.0005, using the same parameter values as in Sargent

(1999). The mean escape time is exp[S̄∗/ǫ] continuous time units, or ǫ−1exp[S̄∗/ǫ] discrete time

units, where ǫ is the gain. Hence, when ǫ=0.01 we should observe escapes every 105 periods.17

Figure 3 plots a representative inflation path from Sargent’s model, along with its associated LM

specification test statistic.18

With two degrees of freedom, a conventional critical value would be in the neighbourhood of

6.0. Clearly, during escapes the Bank would have reasons to doubt the specification of its model.

Notice, however, that escapes occur less frequently than predicted. This discrepancy could arise

for two reasons. First, as noted in Proposition 3, with Gaussian shocks the above formula merely

provides a lower bound on mean escape times. Second, keep in mind these are all asymptotic

results. It could well be that ǫ=0.01 is too large to provide an accurate approximation.19

The calculation of the rate function for the vertical Phillips Curve is especially simple. Since

the sequence of coefficient estimates becomes Gaussian, the rate function is well known to be

S̄∗(x)=0.5(x−u∗)2/(σ 2
1 +σ 2

2 ). Note that in this linear setting, the rate function is symmetric, and

escapes are equally likely to occur in either direction. To maintain comparability with the static

Phillips Curve we need to calibrate the boundary point, x, so that model rejections occur only

during escapes, and with approximately equal statistical evidence. From Figure 3, rejections of

the static Phillips Curve occur when the LM test reaches levels of approximately 16. Since in the

case of a vertical Phillips Curve, the LM test essentially becomes a recursive F-test, or a squared

t-statistic, this suggests a mean escape time of approximately ǫ−1exp[8] discrete time units; that

is, about once every 300,000 periods! Clearly, the vertical Phillips Curve would dominate, and

for all practical purposes the Bank would stick to a low inflation policy forever.

The intuition for why the vertical Phillips Curve dominates follows from our previous results.

Earlier we saw that models exhibiting strong self-referential feedback will be relatively fragile.

Strong feedback makes it difficult to identify discrepancies between the Perceived and Actual

laws of motion, and so coefficient estimates more easily escape from their SCE values. Feedback

17. Warning: the distribution of escape times is not symmetric. It is exponential, with a long right tail. Hence, the

median escape time is less than this.

18. Some details: (1) let xn = (1,πn) be the regression vector, Rn be its second moment matrix, ξn be the time-n

model residual, and let σ̂ 2
n = σ̂ 2

n−1 +η(ξ2
n − σ̂ 2

n−1), (2) the bottom panel of Figure 3 then reports the recursively estimated

statistic, θn =θn−1 +ǫ[(x′
nξ

′
n)R−1

n (xnξn)/σ̂ 2
n −θn−1].

19. Kolyuzhnov et al. (2014) show that in dynamic Phillips Curve models the gain must be much smaller than

ǫ=0.01 before LD approximations become accurate.
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Figure 3

Sequential LM tests in Sargent’s Model

strength is determined by the slope (or Jacobian) of a model’s T -map. When this is large,
∫

[s−
T (s)]ds is small, and so the rate function is also small. The static Phillips Curve is relatively

fragile because its T -map is steeper (Evans and Honkapohja (2001, pp. 325–328) provide a

detailed derivation). In fact, the T -map of the vertical Phillips Curve is flat, since there is no

feedback whatsoever from beliefs to the actual law of motion in this case.

6.2. Classical versus Keynesian identification restrictions

The Phillips curve can be estimated two ways, depending on which variable is assigned as the

dependent variable. This choice reflects an assumption about causation and identification. Sargent

(1999) and CWS (2002) assume unemployment is the dependent variable,

un =γ0 +γ1πn. (6.32)

They call this the “Classical fit”, since it regards inflation as an exogenous process that is under

the control of the Central Bank. In practice, a more common specification assumes inflation

is the dependent variable. This is called the “Keynesian fit”, since it regards inflation as being
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determined by aggregate demand.20

πn =β0 +β1un. (6.33)

It is important to note that here both the Classical fit and the Keynesian fit are misspecified models

of the true expectations augmented Phillips curve

un =u∗−θ (πn −xn)+v1,n πn =xn +v2,n (6.34)

since they both neglect the role of the public’s expectations in the inflation process. However,

there is a sense in which the Keynesian fit is “more” misspecified, since its implicit identification

restriction that unemployment is uncorrelated with the error term is invalid.

The key difference between the Classical and the Keynesian models stems from alternative

identification restrictions, which are based on alternative assumptions about the nature of the

inflation process. Different assumptions about identification produce different beliefs about

the “sacrifice ratio”, and hence, produce different self-confirming inflation rates. An important

question is to what extent deliberate or “natural” experiments can be used to learn about which

identification restriction is valid. The usual claim that identification restrictions are untestable

does not apply here, since the data are endogenous and the decisionmaker receives information

about identification by witnessing the economy’s response to policies that are based on alternative

identification restrictions.

As before, suppose the Central Bank updates each model’s coefficients using a recursive

least square algorithm, and then selects the inflation target xn by minimizing Eu2
n +π2

n . The

two models lead to different optimal policies, and more importantly, different self-confirming

equilibrium inflation rates. Under the Classical fit, optimal policy is

xc,n =−γ0,nγ1,n

1+γ 2
1,n

(6.35)

and estimates converge to the self-confirming equilibrium

γ̄0 =u∗(1+ γ̄ 2
1 ), γ̄1 =−θ. (6.36)

Optimal policy in the self-confirming equilibrium is x̄c =θu∗. Under the Keynesian fit in (6.33),

optimal policy is

xk,n = β0,n

1+β2
1,n

(6.37)

and estimates converge to the self-confirming equilibrium

β̄0 =−
u∗(1+β̄2

1 )

β̄1

, β̄1 =−
θσ 2

2

(σ 2
1 +θ2σ 2

2 )
. (6.38)

Optimal policy in the self-confirming equilibrium is x̄k =θu∗
(

1+ σ 2
1

θ2σ 2
2

)

. Note that inflation is

higher in the Keynesian self-confirming equilibrium. Comparing (6.36) and (6.38), it is clear

20. See King and Watson (1994) for a detailed account of the debate between these two schools of thought, and

the evidence each used to bolster its case. Romer and Romer’s (2002) evidence points to a third possibility. They argue

that by the early 1970s the Fed believed in the Natural Rate Hypothesis, but adopted a Keynesian identification scheme,

which required an estimate of the natural rate. They argue the inflation of the 1970s was caused by an underestimate of

the natural rate.
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the Keynesian fit produces a flatter Phillips curve, which then produces a larger estimate of the

sacrifice ratio. Fears about the consequences of inflation stabilization cause the Keynesian Central

Banker to tolerate a higher average inflation rate.

A natural question at this point is why a Central Bank would use the Keynesian model, since it

is “more” misspecified than the Classical model, and produces larger social costs. The validation

process offers a clue.

6.2.1. Calculation of H-functionals. Both models here are linear and Gaussian, so

in principle the H-functionals follow directly from the results in Section 5. However, in

the neighbourhood of their respective SCE, they are also static, since neither contains lags

and both imply a constant inflation target at the SCE. The i.i.d./Gaussian nature of the

disturbances then means we can compute the H-functionals with pencil and paper, via a standard

complete-the-squares calculation. The following lemma summarizes the results.

Lemma 1. Define the change of variables, z′ =α′R−1, where α are the original co-states for the

model coefficients. For the Classical model define δc,0 =u∗+θxc(γ )−γ0 and δc,1 = (−θ −γ1),

where xc(γ ) is given by (6.35). For the Keynesian model define δk,0 =u∗θ−1 +xk(β)−β0 and

δk,1 = (−θ−1 −β1), where xk(β) is given by (6.37). The Classical and Keynesian H-functionals

are then given as follows:

Hc(γ,z) = z1δc,0 + 1

2
σ 2

1 z2
c,1 +

Acxc + 1
2σ 2

2 A2
c +x2

c Bc

1−2σ 2
2 Bc

− 1

2
log(1−2σ 2

2 Bc) (6.39)

Hk(β,z) = z1δk,0 −λz1u∗+ 1

2
σ 2

1 z2
1 +

Aku∗+ 1
2σ 2

u A2
k
+u∗2Bk

1−2σ 2
u Bk

− 1

2
log(1−2σ 2

u Bk),

where

Ac = (z1δc,1 +z2δc,0 +σ 2
1 z1z2) Bc = (z2δc,1 + 1

2
σ 2

1 z2
2)

Ak = z1δk,1 +z2δk,0 +λ(z1 −u∗z2)+σ 2
ε z1z2 Bk = (z2δk,1 + 1

2
σ 2

1 z2
2)

and where σ 2
ε =θ−2χ2σ 2

1 +(1−χ )2σ 2
2 and χ =θ2σ 2

2 /(θ2σ 2
2 +σ 2

2 ).

Proof See Supplementary Appendix E. ‖

6.2.2. Calculation of rate functions. The rate function solves a control problem with

flow cost given by the Legendre transform of the H-functional. First consider the Classical model.

Exploiting duality, we can write the HJB equation as, Hc(γ,α)=0. This is a first-order non-linear

PDE. An analogous PDE characterizes the Keynesian rate function. The solutions of these PDEs

are described in the following proposition.

Proposition 9. The Classical model’s LD rate function is given by,

Sc(γ0,γ1)= 1

σ 2
1

(

u∗− γ0

1+γ 2
1

)2

+
σ 2

2

σ 2
1

(−θ −γ1)
2 (6.40)
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while the Keynesian model’s LD rate function is given by,

Sk(β0,β1)= 1

σ 2
ε

(

β0β
2
1

1+β2
1

+u∗β1

)2

+ σ 2
u

σ 2
ε

(

λ−θ−1 −β1

)2
. (6.41)

Proof See Supplementary Appendix F. ‖
Notice that both Sc =0 and Sk =0 at the SCE. However, due to correlation between the error

term and the regressor in the Keynesian fit, the self-confirming value of β1 is biased away from

−1/θ . Since λ>0, the Keynesian Central Bank thinks |θ | is bigger than it really is, which leads

it to set a higher inflation target.

6.2.3. Interpretation. Equations (6.40) and (6.41) are the bottom-line of the analysis.

They offer the following clues about which model is likely to dominate:

1. Assuming units are such that variances are small numbers, as in Sargent (1999), the escape

dynamics in both models are driven by the first term in (6.40) and (6.41), since the second term

is multiplied by a (small) variance. Hence, the magnitude of the rate function is dominated by

small changes in the first term.

2. Notice that in the Classical fit the first term remains nearly zero as the Ramsey outcome is

approached (i.e., as |γ1| goes to zero and γ0 goes to u∗). Although the decline in |γ1| causes the

second term in Sc to increase, it is multiplied by σ 2
2 , which tempers its influence.

3. In the Keynesian model, notice that since β1 <0, the first term remains small when |β1|
increases. It is much less sensitive to changes in β0. Via the “inverse Phelps problem”, increases

in |β1| cause the central bank to reduce inflation.

4. For Sargent’s (1999) calibration, the Keynesian rate function is larger than the Classical rate

function. When θ =1 and σ 2
1 =σ 2

2 =σ 2 we have σ 2
u =2σ 2 and σ 2

ε =σ 2. Hence, the denominator

variances are the same in both, but the numerator variance multiplying the second term is twice

as large in the Keynesian model. This implies escapes are much rarer in the Keynesian model

(This has been confirmed by our simulations, available upon request). Intuitively, the regressor

in the Keynesian model has a higher variance, because the variance of u is double the variance

of π . This causes the Keynesian slope coefficient to be relatively precisely estimated, which

makes escape difficult. Interestingly, the relative stability of the Keynesian fit was emphasized

by King and Watson (1994).

6.2.4. Escape boundary. Note that (6.40) induces an ellipse in the space of coefficients

(γ0,γ1), with a centre at the SCE (6.36). By changing coordinates, we can convert the minimization

problem over the boundary to an eigenvalue problem. Specifically, notice that if we set y1 =
u∗+θx−γ0 and y1 =−θ −γ1, then finding the escape point to a disk of radius ρ around the SCE

becomes the eigenvalue problem: miny′Rcy subject to y′y=ρ2. The escape direction is given by

the eigenvector associated with the smallest eigenvalue. To determine which of the two endpoints

is the minimum we can just substitute into Sc. Letting λ be the smallest eigenvalue of Rc, escape

occurs along the non-linear trajectory (1−λ)(u∗−γ0)−λθxc(γ )=xc(γ )γ1. Escape is dictated by

the smallest eigenvalue of Rc, since this is the largest eigenvalue of R−1
c , and R−1

c is proportional

to the variance–covariance matrix of the regression coefficients. Hence, escapes occur in the

direction along which coefficient estimates are most variable.

6.2.5. Comparison. In our first example, model validation led to the “right” model,

whereas in this second example it led to the “wrong” model. Why the difference? With endogenous
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data, where models can adapt to their own data, a statistical specification test will not necessarily

identify the true model. Nor will it necessarily identify the best model in terms of the policymaker’s

objectives. In the first example it did, but in the second it did not. Clearly, if the test were

based on outcomes, the Classical identification scheme would prevail, despite its more frequent

statistical rejection. Not only does it produce lower self-confirming inflation (with the same

average unemployment rate), its more frequent escapes would actually enhance its relative fitness,

since escapes to Ramsey lead to better outcomes. As discussed in Section 2, we base specification

testing on statistical fit not because we think it is normatively appealing, but rather because

we think it is often more descriptively accurate. Still, it would be interesting to adopt a more

normative approach, and study the implications of a validation process that is based on outcomes

rather than on fit. It could also be interesting to combine the previous two examples, by adding

a vertical Phillips Curve to M in the second example. One might conjecture that it would again

dominate, and model validation would again lead to the right model.

7. RELATED LITERATURE

Our proposed model validation framework departs from the existing literature in two respects.

First and foremost, it allows agents to consider more than one model. Second, the agents in

our approach are somewhat more sophisticated than in conventional macroeconomic learning

models, in the sense that they are assumed to be aware of their own influence over the DGP. Here

we briefly review some prior work that has examined each of these issues separately.

From the beginning, researchers have worried about the passive nature of recursive least-

squares learning. For example, the early work of Bray and Savin (1986) touched on this

issue, asking whether agents could use standard diagnostics, like Chow tests and Durbin-

Watson statistics, to detect the parameter variation that their own learning behaviour generates.

Bray and Savin (1986) found that when convergence is slow, agents are generally able to detect

the misspecification of their models. Bullard (1992) and McGough (2003) studied convergence

and stability when the agent’s Perceived Law of Motion allows for time-varying parameters.

McGough (2003) showed that convergence to Rational Expectations can still occur as long as

this time-variation is expected to damp out at a sufficiently rapid rate. Perhaps more closely

related to our own work, Sargent and Williams (2005) showed that priors about parameter drift

have a strong influence on the LD properties of constant gain learning algorithms. However, this

prior work all takes place within the confines of a single model.

More recently, a number of papers have begun to consider adaptive learning with multiple

models. For example, in a repeated game context, Foster and Young (2003) allow players to

construct, test, and revise simple models of their opponent’s behaviour. Hypothesis testing

produces convergence to Nash equilibria in a relatively strong sense, although testing errors

produce rare but recurrent experimentation phases. Our paper shares many of these same features,

but focuses on equilibrium selection rather than convergence. Adam (2005) studies a Central

Bank that selects between two inflation forecasting models. He shows that a misspecified model

can be dominant. With feedback, use of a misspecified model can place correctly specified

models at a forecasting disadvantage. In Adam (2007), he presents experimental evidence

suggesting that subjects do indeed switch between forecasting models. We show that similar

results can arise with real-time hypothesis testing and model validation. Our approach is also

similar to Brock and Hommes (1997) and Branch and Evans (2007). However, their goal is quite

different. They posit a large collection of agents who randomly select between two models,

with weights determined by recent forecasting performance. In contrast, we posit a single agent

who continuously challenges the existing model, and where hypothesis testing generates model

switches.
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Finally, one criticism that could be made of our approach is that it lacks formal decision-

theoretic foundations. Interestingly, there has been some recent work along these lines.

Gilboa et al. (2008) argue that hypothesis testing and model selection are actually more consistent

with recent developments in decision theory than are Bayesian methods. Ortoleva (2012) proposes

a formal axiomatic justification of hypothesis testing based on a “prior over priors”. Selecting a

new prior in response to a low probability event is analogous to selecting a new model. However,

his framework is essentially static, and therefore does not incorporate the feedback that is so

central to our problem.

8. CONCLUDING REMARKS

Macroeconomic policymakers use multiple models. These models evolve over time, and there

appear to be switches between them. The narrative evidence in Romer and Romer (2002) provides

a fascinating description of this process. This article has tried to model this process and evaluate

its properties. We have done this by combining recent work in both macroeconomics and

econometrics. From macroeconomics, we have borrowed from the work of Sargent (1999) and

Evans and Honkapohja (2001) on boundedly rational learning dynamics. From econometrics, we

have borrowed from work on the analysis of misspecified models (White 1994). As it turns out,

this produces a rather difficult marriage.

From a macroeconomic standpoint, it is difficult because we abandon the Rational

Expectations Hypothesis, thereby putting ourselves into the “wilderness of bounded rationality”.

We do this not because we like to analyse difficult and ill-posed problems, but simply because of

the casual observation that, as econometricians, macroeconomic policymakers do not spend their

time refining estimates of a known model, but instead spend most of their time searching for new

and better models. Although it is not necessary to abandon Rational Expectations and traditional

Bayesian decision theory when confronting model uncertainty, we think there are good reasons

to explore alternative approaches.21

The marriage between macroeconomics and econometrics is difficult from an econometric

standpoint because, presumably, policymakers have some influence over the data-generating

processes they are attempting to learn about. The econometric analysis of misspecified models

with endogenously generated data is truly uncharted territory.

Although we feel this article takes a significant step forward in understanding the interplay

between macroeconomics and econometrics, there are certainly many loose ends and unexplored

avenues remaining. One possibility is to consider alternative specification tests. Here we focused

on LM tests. However, there are many possibilities, depending on what sort of potential

misspecification is of most concern. As noted earlier, it would be useful to study the implications

of a validation process that is based on economic objectives, rather than on measures of statistical

fit. Perhaps the most interesting and important extension would be to allow the agent to entertain

doubts about the entire model class itself. The work of Hansen and Sargent (2008) on robust

filtering of discrete hidden states offers one route towards such an extension.

Acknowledgments. We thank the editor and three anonymous referees for helpful comments. We are also grateful
to Jim Bullard, Steve Durlauf, Lars Hansen, Seppo Honkapohja, Albert Marcet, and Tom Sargent for helpful discussions.
Financial support from the National Science Foundation (ECS-0523620, SES-0720592) is gratefully acknowledged.

Supplementary Data

Supplementary materials are available at Review of Economic Studies online.

21. See Sargent (1993), Hansen and Sargent (2008), Kreps (1998), Bray and Kreps (1987), and Gilboa et al. (2008).
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