
Learning and Performing by Exploration: Label Quality
Measured by Latent Semantic Analysis

Rodolfo Soto
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0344, USA

+1 (303) 492-4574
Rodolfo.Soto@Colorado.edu

ABSTRACT
Models of learning and performing by exploration assume
that the semantic distance between task descriptions and
screen labels controls in part the usersÕ search strategies.
Nevertheless, none of the models has an objective way to
compute semantic distance. In this study, participants
performed twelve tasks by exploration and were tested for
recall after a 1-week delay. Latent Semantic Analysis was
used to compute the semantic similarity between the task
descriptions and the labels in the applicationÕs menu
system. When the labels were close in the semantic space
to the task descriptions, subjects performed the tasks faster.
LSA could be incorporated into any of the current models,
and it could be used to automate the evaluation of computer
applications for ease of learning and performing by
exploration.

Keywords
Learning by exploration, label-following strategy, cognitive
models, semantic similarity, latent semantic analysis

INTRODUCTION
In the interaction of humans and computers, words are the
link between usersÕ goals and the actions required to
accomplish those goals. For command-based environments,
such as UNIX, users must memorize sets of keywords that
they type to interact with the system. Likewise, in display-
based environments, such as Mac OS or Win 95, users
must point at and click on display objects labeled by words
(e.g., menu items, tool bars, or dialog boxes). The right
choice of words can successfully lead users through novel or
rarely used applications such as library databases [1],
telephone menu systems [2], or graphics applications [3].

The study described in this paper provides empirical
evidence supporting the hypothesis that users act on those
interface labels that are semantically related to their task
goal. Additionally, it shows that Latent Semantic Analysis
(LSA) is a reliable technique to compute the semantic
distance between the interface labels and the usersÕ task
goals, and that semantic distance predicts ease of discovery

and recall of correct action sequences.

Learning and Performing by Exploration in
Display-Based Computer Applications
Polson and Lewis [4] analyzed the exploratory behavior of
novice users who have a goal in mind, and who have some
experience with a particular application or operating
system. In this situation, users engage in search through a
problem space [5] composed of the multiple application
states. Users employ some domain-independent method to
guide their search without having to know much about the
application. This kind of method is called a weak method,
and means-ends analysis is probably its most used
instance.

Two variants of means-ends analysis are frequently
observed in novice exploration: hill climbing, and back
chaining. In both cases, for each state, one action is chosen
among the available alternatives using "perceptual
similarity as a measure of distance" [4, p. 205]. Engelbeck
[6] observed that during exploration novice users tend to
explore those menu labels that share one or more words
with the experimenter-supplied description of the tasks (or
with the userÕs goal). Muncher [7] also found this behavior
in novice users learning Lotus 1-2-3. This heuristic has
been called the label-following strategy [4], and it can be
classified as a hill-climbing technique that uses semantics
to compute distance. Considerable evidence confirms that
label following is an effective method for discovering the
solution to novel computer tasks [3,4,8].

Users combine the label-following strategy with other
searching techniques such as depth-first or breadth-first
exploration. Rieman analyzed searching in menu systems
and concluded that an effective search algorithm would be a
combination of label-following and a hybrid between depth-
and breadth-first search called depth-first iterative deepening
(DFID). Rieman suggested that this combination of label
following and DFID should be called Òguided DFIDÓ, or
gDFID. Rather than using brute force, as in pure DFID,
gDFID "heuristically limits its search to items semantically
[italics added] related to the current task" [9, p. 747].

Models Based on Cognitive Architectures
Several models have been proposed to simulate the
exploration and recall of the action sequences needed to
performed novel tasks using a display-based computer
application. All these models emphasize the use of label

following as a means to acquire knowledge about the
interface. Independently of the details in each model, they
all use some version of semantic distance as an evaluation
function to direct the userÕs search.

SOAR models

The Task-Action Learning (TAL) model [10] simulates
users who are familiar with basic operations of the mouse
and keyboard, but unfamiliar with a particular menu
structure, object labels, and actions required to accomplish
a task. TAL emphasizes the role of semantics, since it
assumes that users analyze the instructions, the semantic
features of tasks, and the labels of the screen, hoping to find
a link between them. "Interpreting instructions involves
matching the task description to the instruction using a rule
base of semantic links [italics added] between features of the
task and items on the display" [10, p. 313]. The semantic
associations are implemented via a function that takes
semantic features of the tasks (defined by the experimenter)
and lexical items as parameters, and returns a Boolean
expression indicating semantic matching.

The IDXL model [9] simulates learning by exploration. It
implements gDFID searching and assumes that the userÕs
attention mechanism focuses on one object at a time. The
model is supplied with a task description in working
memory and it has knowledge about Macintosh
conventions and about the correct and legal actions that can
be taken in the menu system. Scanning is the main
operator used during exploration. It allows the visual focus
to shift right, left, up, down, and to jump from place to
place. Another operator comprehends the items that have
been under attention and "may note that the scanned item is
a label that matches [italics added] some key word in the
task" [9, p. 758]. The model considers that a direct match
costs less than an indirect match (e.g., a synonym). Thus,
it tries those items that have a direct match with the
experimenter-supplied task description before trying
anything else. All the knowledge about what words are
synonyms has to be explicitly given to the model.

A Comprehension-Based Model of Exploration

The LICAI+ model [11,12] simulates the userÕs
comprehension of task instructions and hints, the
generation of goals, and the use of these goals to discover
correct actions by exploration. This model is based on the
CI architecture [13], that was originally developed as a
model for text comprehension and extended to action
planning by Mannes and Kintsch [14]. LICAI+ predicts
that successful exploration and recall requires semantic
matching between the goal representation and the labels on
the display objects.

The CI architecture combines propositional knowledge
with connectionist spreading activation mechanisms. CI
assumes that two propositions are related if they share one
or more arguments. For LICAI+, this means that a menu
label and the description of a task (or a hint, or a piece of
instruction, or the userÕs goal) are related if there is concept
overlap between them. The semantic distance notion of
these models is very crude. If the labels and the task

descriptions do not share words, additional knowledge can
be provided by long-term memory to establish a link.

Other Models

Some models that are not based on cognitive architectures
have been developed to explain learning by exploration.
One of the most interesting is the Ayn model [15] that
simulates a user learning how to use MicrosoftÕs Word
menu system through exploration. Ayn makes decisions
about one menu at a time using four types of knowledge:
(1) semantic knowledge to avoid irrelevant menu labels; (2)
failure detection to avoid dead ends; (3) recognition to
avoid exploring the same path more than once; and (4)
task-control knowledge to remember the outcome of
previous trials. In the Ayn model, semantic knowledge is
explicitly given to the model as lists of words that may be
related to particular tasks.

In summary, all the available models of learning by
exploration share the same intuition about the role of
semantic distance: users tend to act on objects with labels
that "seem" to be semantically close to their task goals.
Additionally, some of the models explain how the label-
following strategy is frequently combined with other
exploratory mechanisms. Although all the simulations
confirm the reliability of the label-following strategy, they
do not include an objective measure of semantic distance.
This paper proposes that a mathematical model of
semantics, such as Latent Semantic Analysis, is a good
candidate for computing semantic distance.

Latent Semantic Analysis (LSA) As A Model For
Semantics
LSA is both a model and a technique to extract semantic
information from large bodies of text. LSA was originally
conceived as an information retrieval technique [16] that
makes use of statistical procedures to capture the similarity
of words and documents in a high-dimensional space
[17,18]. Once LSA is trained on a corpus of data
(consisting of several thousands of documents), it is able to
compute similarity estimates that go beyond simple co-
occurrence or contiguity frequencies. Although LSA does
not have any knowledge about grammar, morphology, or
syntax, it mimics humansÕ use of language in several areas
ranging from the rates of vocabulary acquisition by
schoolchildren, to word and passage priming effects, to
evaluating the performance of students on essay tests.

The collection of documents used to train LSA is arranged
in a matrix where the columns correspond to the
documents, and the rows correspond to unique word types.
An entry in the matrix indicates the number of times the
word appears in the document. Using a linear algebra
technique called singular value decomposition it is possible
to represent each document and each word as a vector of
high dimensionality (e.g., 400) that captures the underlying
relations of the words and their contexts. To determine how
similar two words are, LSA computes the cosine between
the vectors that represent the words. A cosine, like a
correlation coefficient, ranges between Ð1 and 1, where 1
represents a perfect match (i.e., the same word), and 0
represents no relationship between the words.

The available evidence suggests that LSA is a plausible
theory of learning, memory, and knowledge [18]. All the
tests that LSA has performed successfully have been solved
using semantic similarity as the main predictor of fitness.
For instance, LSA does well on the synonym portion of the
Test of English as a Foreign Language (Educational
Testing Service) [19,20]. It computes the semantic distance
between the stem word in each item and each of the four
alternatives, choosing the one with the highest cosine.
Using this method, LSA performed virtually identically to
the average of a large sample of non-English speaking
students. Since the HCI literature stresses the role of
semantics as a measure of distance during hill-climbing-like
strategies, LSA should be able to account for the Ògood-
labels effectÓ observed during exploration. In other words,
LSA could be extended to action planning.

Since LSA learns about language exclusively from the
training texts, it is very important to choose the right
corpus for the specific situation to be modeled. Several
corpora have been used to train LSA. One of the most
versatile is the TASA (Touchstone Applied Science
Associates, Inc.) corpus. This group of documents uses a
variety of text sources, such as newspaper articles and
novels that represent the kind of material students read
during the school years. The TASA corpus is broken into
grade levels, from third grade to college, using a readability
score (DRP-Degrees of Reading Power Scale) that is
assigned to each of its 37,651 documents. TASA is a good
training corpus to model na�ve or inexperienced users,
especially because it is assumed that these kinds of users
are forced to adapt their "everyday" knowledge about
common words to the new context that is imposed by a
computer application [10].

Predictions
Hypothesis 1
The main limitation of both the theoretical and the
empirical work on the label-following strategy is the lack of
a well-defined measure for semantic distance. In most cases,
semantic relationships are established exclusively via some
form of literal word overlap. Hence, the only well-defined
distance metric is, in LSA terms, a cosine of 1 (i.e., an
exact match). Likewise, "distance" is defined by the number
of shared words or by the number of links between hand-
coded ÒpropositionsÓ that describe the object labels, the
task descriptions, and any other knowledge related to them.
Unless informal intuitive estimates of semantic distance are
included in the models, it is difficult to study situations
where there are intermediate degrees of semantic matching.

For the present study, an add-in was written for Microsoft
Excel to change the applicationÕs interface and to
experimentally manipulate the semantic distance between
the screen labels and the task descriptions. It is predicted
that the probability of discovering and recalling a correct
action sequence increases as the semantic distance between
the labels on the menus and the task description decreases.
LSA cosines are used to estimate the semantic distance.

Hypothesis 2
Previous studies have examined different configurations of
matching and non-matching steps in an action sequence.
For instance, it has been found that the probability of
discovering a correct action sequence that contains two non-
matching steps, one after the other, is very low. Whereas
the probability of discovering an action sequence that
contains two matching steps, one after the other, is very
high. Finally, the probability of discovering a sequence
with a non-matching step followed by a matching step is
somewhere in the middle between the previous two
probabilities [12].

Examination of commercial graphics packages reveals that
it is not common to find tasks with a sequence of actions
where a matching step is followed by a non-matching step.
In the study described here, four possible combinations of
matching and non-matching pairs of steps are manipulated.
It is predicted that tasks where one matching step follows
another matching step are the fastest to perform, whereas
tasks where a non-matching step follows another non-
matching step are the slowest. The other two cases (i.e., a
non-matching step followed by a matching step, or vice
versa) are in the middle, and there are no significant
differences between them.

Hypothesis 3

In a pilot experiment for this study, subjects learned direct
manipulation tasks (those that required action directly on
the object, without any label involved) either by
exploration or by explicit instruction. During exploration,
subjects received hints if they could not figure out the
solution of the task after 60 s. The surprising finding was
that these tasks were recalled much better if they were
explicitly instructed as opposed to learned by exploration.
A possible explanation for this result is that the memories
of unsuccessful trials interfere with the storage of the correct
solution (i.e., with the hint given by the experimenter).

In the study described here, subjects learned one set of tasks
by exploration, and another set by explicit instruction.
Although none of the tasks involved direct manipulation, it
is predicted that there will be, at most, no significant recall
differences between the groups. If the tasks are recalled
better when they are explicitly instructed, it could be
argued that the unsuccessful exploration might be
interfering with the storage of a hint. If not, it could be
argued that this phenomenon, for some reason, only applies
to tasks where no label is involved, and that unsuccessful
exploration does not interfere with the storage of hints.

METHODS
Participants
Fifty-five undergraduate students participated in the
experiment. Twenty-eight received class credit and twenty-
seven received $10 for their participation. The data from
seven participants, four from the group that received class
credit and three from the group that received $10 were
discarded: two of them were not able to follow the
instructions correctly, and in the five other cases, technical
errors invalidated the results. The remaining forty-eight

participants had at least four years of experience with either
the Macintosh or the IBM-PC computer, or both. The
group that received class credit had significantly more
experience than the other group (on average 5.8 vs. 4.3
years, F(1,47) = 5.21, p < .03). However, the groups did
not differ significantly in their years of experience with
Microsoft Word, Microsoft Excel (without creating
graphics), Mac Draw, and WWW Browsers. Likewise, they
did not differ significantly in the number of graphs they had
created by hand in their life. None of the participants had
experience with graphics applications such as Cricket Graph
or with the graphics capabilities of Microsoft Excel.

Materials
Twelve computer tasks were designed manipulating the
semantic match between the labels of the menu system and
the description of the tasks. Microsoft Excel was used to
administer the tasks, running in a Macintosh Centris 650
with 16 MB in RAM, 500 MB in hard disk, and a page-size
grayscale monitor. An Excel add-in was developed to
reconfigure Excel’s interface. This made it possible to have
a fully-functional graphics application in which the tasks
had the features required by the experiment, and which
guaranteed that the application was novel for the
participants.

An S-VHS camera and a clip-on microphone were used to
record the computer screen and the participants’ voice. Each
participant received a package containing an informed
consent form, a blue pen, and a notebook with the
instructions and the description of tasks.

Tasks
There were four warm-up and eight experimental tasks. All
consisted of editing a bar graph, using a graphics
application (see [21], for a detailed description of the tasks).
Participants received detailed descriptions of the tasks, but
no information about how to perform them (Table 1 shows
the task descriptions). The eight experimental tasks
followed the same structure of five steps. (1) Choose a top-
level menu item. (2) Choose a submenu item. (3) Choose a
sub-submenu item. (4) Click on a radio button or check
box (in a dialog box). (5) Click on a button labeled "Ok" to
close the dialog and end the task.

Task 1 Change the graph type to column

Task 2 Apply the default format to the graph

Task 3 Hide the graph title

Task 4 Add a third dimension to the graph

Task 5 Change the graph font to bold

Task 6 Delete the values from the bar graph

Task 7 Change the graph background color to green

Task 8 Apply a logarithmic scale to the graph axes

Table 1. Description of the experimental tasks

Four levels of matching were used for the labels in the
second and third steps (submenu items): good match (G),
and three degrees of bad match (B1, B2, B3). LSA cosines
were computed between the description of the tasks and the
menu labels using the TASA space. To choose the menu
labels, the closest 1000 terms to the description of the tasks
were computed. From this pool, words were selected and
two-word phrases were created for each menu item. In all
cases cosines between the two-word phrases and the task
descriptions followed the relationship G > B1 > B2 > B3. G
exhibited the best semantic match, and B3 the worst. On
average, G labels had a cosine of .67 (SD = .17), B1 labels a
cosine of .25 (SD = .08), B2 labels a cosine of .15 (SD =
.02), and B3 labels a cosine of -.05 (SD = .01) with the task
descriptions. For all the experimental tasks, the fourth step
had a label matching in the range of the G level, whereas
the first step had a label matching in a range between B1 and
B2.

Design
Each of the eight experimental tasks could be presented in
one out of four configurations, depending on the semantic
matching for the second and third steps: C1 = (G,G); C2 =
(G,Bi); C3 = (Bi,G); C4 = (Bi, Bi), where Bi represents one
of the three degrees of bad semantic matching, and G
represents a good semantic match. For instance, a task with
a configuration C3 had a bad semantic match in the second
step, and a good semantic match in the third step. The tasks
were divided in two sets of four tasks: set A and set B. Each
set was equivalent to the other in number of steps and in
the degree of semantic match between the task descriptions
and the labels of the menus. Half of the participants
explored the tasks in set A, and they were explicitly
instructed in the tasks in set B. The other half explored the
tasks in set B, and they were explicitly instructed in the
tasks in set A. The presentation of the tasks were
counterbalanced using a greco-latin square design for the
eight tasks and the four configurations.

Procedure
The experiment consisted of two 30-minute sessions: a
training session followed by recall 7 days later. Participants
were interviewed individually, their responses were recorded,
and the computer screen was videotaped. In the training
session, participants read and signed a consent form and
received a written version of the instructions. During the
first 3 minutes, a verbal protocol practice task was
administered consisting of a "think aloud" description of the
participant parent’s house, as recommended by [22]. During
both sessions, participants had to think aloud while
performing the experiment. The experimenter reminded the
participants that they had to think aloud if they remained
silent for more than 15 s.

After signing the consent form, participants opened the
notebook and read the instructions. At this point, the
experimenter answered any question the participants had.
Participants were informed that they would be explicitly
instructed in 4 of the 12 tasks, and that they would have to
pay close attention to what they did because they had to
repeat it in one week. When a task was explicitly
instructed, the experimenter gave step-by-step instructions
on how to perform the task. When the task was not
explicitly instructed, the participant could explore the
interface to "figure out" how to perform the task. During
this process, users could undo or cancel any incorrect
action. If after 60 s the participant did not show progress,
the experimenter gave a hint that consisted in revealing the
corresponding step of the sequence. The hints were the same
as the ones used in the explicitly instructed version. The
experimenter gave as many hints as needed in order from the
first step to the last step, and allowed 60 s for exploration
at each step.

For the recall session, participants had to perform the same
training tasks and in the same order. During the recall
session, none of the tasks was explicitly instructed, but
hints were given if necessary following the same procedure
used in the training session. At the end of the recall
session, a survey was administered to obtain information
about the participants’ computer experience. After the
questionnaire, the experimenter turned off the computer
screen and handed them a piece of paper with the description
of the tasks used during the experiment. Participants were
asked to write down as many labels as they could recall
from the menus and other screen objects that had to be
manipulated to perform each of the tasks.

Scoring and Data Measurement
During the explored part of the training session and during
the whole recall session two measures were recorded for
each task step: elapsed time, and number of hints. The
experimenter recorded the number of hints whereas the
VCR’s counter was used to measure the time per step from
the videotapes of the sessions.

RESULTS
ANOVA tests were conducted for both dependent variables
(time and number of hints) to determine the effect of the
"design" factors. On average, no significant differences in
performance were found between the group that received $10
for the experiment and the group that did not receive any
payment. Likewise, no overall difference was found between
the group that explored set A during training compared to
the group that explored set B. Additionally, there was no
effect of task and configuration order. None of these factors
was included in further analyses.

Task Data
The total elapsed time for each task was computed as the
sum of the elapsed time for each of the 5 steps. Likewise,

the number of hints was computed as the number of steps
that could not be performed in less than 60 s and, therefore,
required a hint. On average, each task was performed in
87.36 s during training (SD = 15.1), and in 68.1 s during
recall (SD = 20.1). This difference was significant, F(1, 47)
= 51.35, p < .0001. Similarily, 0.96 hints per task were
given on average during training (SD = .35), and 0.67
during recall (SD = .22). This difference was also
significant, F(1,47) = 29.12, p < .0001.

Time and number of hints were collapsed over the
individual tasks and over training and recall to analyze the
effect of the configuration of the task ((good, good), (good,
bad), (bad, good), and (bad, bad)). As predicted, the
configuration (good, good) was performed much faster and
required fewer hints than the other three task configurations
(F(1, 47) = 195.3, p < .0001, F(1,47) = 189.8, p < .0001,
for time and for hints, respectively). Likewise, the (bad,
bad) configuration was performed much more slowly and
required more hints than the other three task configurations
(F(1, 47) = 183.9, p < .0001, F(1,47) = 156.1, p < .0001,
for time and for hints, respectively). Finally, there was no
significant difference between the (good, bad), and the (bad,
good) configurations (F(1,47) = 1.71, p = .19, F(1, 47) =
2.19, p = .14, for time and for hints, respectively). Figure 1
shows the effect of task configuration and the effect of
degree of badness on task performance time. The interaction
between task configuration and degree of badness was not
significant.

Figure 1. Effects of task configuration and degree of badness
on task performance time. (3rd degree of badness represents
the worst semantic match)

Step Data
Since the semantic distance of only the second and third
steps in each task was manipulated, only the data from
those two steps were used to analyze the effects of practice,
semantic distance, degree of badness, and type of training.
Collapsing over task configuration, sessions, and step
number (second and third), the closer in the semantic space
the label of the step was to the task description, the faster it
was performed and the fewer hints were needed. Good steps
(average LSA cosine of .67) were performed, on average, in

7.97 s (SD = 4.56) and required .05 hints (SD = .06). On
average, bad steps (average LSA cosine of .11) were
performed in 20.83 s (SD = 7.71) and required .17 hints
(SD = .1). Broken down by degree of badness, bad steps
(first degree of badness, LSA cosine of .25) were performed,
on average, in 18 s (SD = 7.75) and required .13 hints (SD
= .1). Bad steps (second degree of badness, LSA cosine of
.15) were performed, on average, in 20.67 s (SD = 8.13)
and required .17 hints (SD = .09). Bad steps (third degree of
badness, LSA cosine of -.05) were performed, on average,
in 23.83 s (SD = 6.47) and required .22 hints (SD = .09).

Figure 2 shows a linear trend in the effect of semantic
match on performance time. As expected, good steps were
performed faster than the average bad step, F(1,47) =
127.47, p < .0001. Likewise, there was a reliable linear
effect of degree of badness on the bad steps performance
time, F(1,47) = 4.86, p < .05. When moving from one
degree of badness to another (i.e., moving farther away in
the semantic space), the performance time increases, on
average, by 2.9 s. Good steps required fewer hints than the
average bad step, F(1,47) = 60.69, p < .0001. Additionally,
for the bad steps, there was a reliable linear effect of degree
of badness, F(1,47) = 7.5, p < .05. When moving from one
degree of badness to another (i.e., moving farther away in
the semantic space), on average, .04 more hints were
required per step.

Figure 2. Effect of degree of badness on step performance
time. (3rd degree of badness represents the worst semantic
match)

Effect of Type of Training
Only the data for the recall session was analyzed to
determine whether the type of training (exploration or
explicit instruction) made a difference. As shown in Figure
3, explored tasks were performed faster than the instructed
tasks. On average, explored tasks were performed during the
recall session in 63.5 s (SD = 21.7) and required 0.58 hints
(SD = .34), whereas instructed tasks where performed in
72.7 s (SD = 22.29) and required 0.76 hints (SD = .35). As
expected, the time difference was not significant. However,
the difference in the number of hints was significant, F(1,
47) = 5.52, p < .05. The interaction between type of

training and degree of badness was not significant for task
performance time, nor it was significant for the number of
hints per task.

Figure 3. Effects of type of training and degree of badness
on task performance time. (3rd degree of badness represents
the worst semantic match)

The same analyses were performed at the step level, using
the performance time and the number of hints required for
the manipulated steps (the second and the third ones).
Figure 4 shows that, on average, steps from explored tasks
were performed faster than steps from instructed tasks. On
average, steps belonging to explored tasks were performed
during the recall session in 11.9 s (SD = 6.58) and required
0.06 hints (SD = .08), whereas instructed tasks where
performed in 13.5 s (SD = 6.2) and required 0.1 hints (SD =
.09). The difference in time was not significant, but the
difference in the number of hints was significant, F(1, 47) =
6.29, p < .05. The interaction between type of training and
degree of badness was not significant for step performance
time, nor for the number of hints per step.

Figure 4. Effects of type of training and degree of badness
on step performance time. (3rd degree of badness represents
the worst semantic match)

Free Recall Data
Replicating the literature [23], the correct action sequences
necessary to perform the tasks were very poorly recalled
when participants did not have access to the application

interface. None of the subjects was able to recall a complete
sequence of steps, and although 46 out of the 48
participants were able to recall at least one label, on
average, only .11 labels were correctly recalled for each
task. This number is significantly different from zero,
F(1,47) = 127.55, p < .0001.

DISCUSSION
Semantic distance between task descriptions and menu
labels reliably predicted the ease of discovering and recalling
the experimental tasks. The semantic distance, computed as
a LSA cosine, predicted users’ performance not only at the
task level, but also at the individual step level.
Additionally, there was no significant difference between
training methods (exploration vs. explicit instruction), and
it was shown that subjects had very poor recall of the
correct action sequences when they were away from the
application interface.

Models of learning by exploration have been reviewed. All
of them describe an attention mechanism that is driven by
semantics. Regardless of the details of the processes
assumed by each model, there is consensus that users select
actions based on the semantic distance between the goal and
the labels of the objects on the screen. It is assumed that
the display can be represented as a collection of objects and
labels, and that other information about the objects (e.g.,
what action can be carried out on them) is stored in long-
term memory. Therefore, deciding what object to act on is a
matter of matching object labels, task descriptions, and
long-term memory knowledge. LSA can then be applied to
any of these models to estimate semantic distance.

The instruction-less approach
No differences were found between the tasks that were
learned by exploration and the tasks learned by explicit
instruction. This manipulation was included to explore
whether the memories for unsuccessful trails interfered with
the storage of the experimenter’s hints. In this experiment,
every subject required at least one hint in both the training
and the recall sessions. As Figure 3 shows, for the 3rd
degree of badness (the worst semantic match), the difference
in recall between the explored and the instructed tasks is
virtually zero. During training, each 3rd degree task
received, on average .84 hints (.70 for 1st degree tasks),
which means that almost every subject, after 60 s of
exploration, received a hint. These results show that
memories from unsuccessful exploration do not interfere
with the recall of the hint. In practical terms, it is
worthwhile to explore the application for a while, and then
ask for help from a peer, the manual, or the help system.
This is just as good as receiving step-by-step instruction.
Hopefully, new techniques can be developed with the help
of LSA to minimize the number of tasks that cannot be
discovered by exploration, so that users will be able to learn
new applications without needing explicit instruction.

It can be speculated that memories from successful trials,
especially those from well-labeled tasks, do not need to be
stored in users’ memory at all. Every time users face the
task, they can reconstruct the whole action sequence by
following the best matching labels. In other words, the
external memory supplied by the application interface
provides the necessary cues to re-discover the action
sequence. Related to this, previous research [3] has found
that subjects do not improve performance in well-labeled
tasks from the training to the recall session. The putative
lack of memory required for well-labeled tasks may be the
reason why subjects have poor recall of the action sequences
when they are away from the display.

Other applications of Latent Semantic Analysis
to HCI
Perhaps it is impossible to design an application in which,
for each task, the best matching labels can be always
included in the action sequence. However, a good design
should guarantee that the correct label is always the best
match among the available labels. In order to evaluate the
differences in semantic distance between labels and task
descriptions, an objective method, such as LSA, could be
desirable. So far, theorist and designer have used very
informal estimates of semantic distance. This study
suggests that this may not be necessary.

LSA could be used as an "automated" cognitive
walkthrough [2]. This is a method for assessing the
usability of a system, focusing on ease of learning. It
involves hand simulation of the cognitive processes of how
users, with no formal instruction, learn an application by
exploration. The method takes into account users’
elaboration of goals and users’ interpretation of the
application’s feedback. The cognitive walkthrough is very
labor intensive, and for this reason it is impractical for large
modern applications. However, with LSA it would be
possible to construct an automated system to evaluate large
applications. Given a set of task descriptions and the labels
of the objects that have to be acted on to perform these
tasks, it is possible to evaluate the learnability of the
system.

As stated above, LSA can be trained in any written
language and with different corpora of texts. This makes it
possible to model users with different backgrounds and skill
levels. In the present study, a corpus of very broad and
general knowledge was used to train LSA because the
participants were mostly college freshmen, and there was no
reason to believe they had any advanced technical
knowledge. During the construction of the stimuli, it was
found that one of the closest words to the phrase "hide the
legend" (referring to a graph legend) was "dragons", with a
cosine value of .41. This result is due to the fact that all the
knowledge that the TASA space has about the word
"legend" comes form epic novels, rather than from
computer manuals ("map" and "heroes" are among the top 5

closest terms to "legend"). LSA has no way of knowing
that “legend” also refers to part of a graph. The word
"legend" was not used in the present experiment because
"legend" does not seem to be a good way to describe this
object to a novice user. Using computer manuals to train
LSA could bring more information about how more
advanced users exercise the label-following strategy.

Conclusions
This study showed that users rely on semantic similarity to
discover the correct action sequence necessary to perform
tasks using a novel application. The degree of closeness in
a semantic space between the labels of the objects to be
acted on and the description of the tasks determines how
easy is for users to discover the correct action sequences and
later to recall them. Latent semantic analysis proved to be a
reliable way to measure and explain the users’ action-
planning processes. The cognitive phenomena involved in
the discovery and recall by exploration of computer tasks
could be described as hill climbing driven by semantics or,
in other words, as a process led by the label-following
strategy.

LSA can be also applied to any of the cognitive models that
has been developed to explain users’ performance of rarely
used applications. Regardless of the particular mechanisms
that the models propose to explain users’ behavior, they all
rely on semantic issues that can be modeled with LSA.
Eventually, LSA could be used in conjunction with other
already available techniques (e.g., the cognitive
walkthrough method) to automatically test the usability of
computer applications. Additionally, it was shown that
users have very poor recall of correct action sequences when
they are away from the display. It was also shown that the
type of training (exploration vs. explicit instruction) has no
effect on recall.

ACKNOWLEDGMENTS
Partial support was provided by NASA Grant NCC 2-904.
This paper is based on the author’s master thesis [21]. The
author thanks his thesis committee members, Professor
Peter G. Polson (chair), Professor Tomas K. Landauer, and
Professor Walter Kintsch, for their help and support in
developing this project. Dr. Eileen Kintsch provided very
useful comments on an earlier version of this manuscript.

REFERENCES
1. Rieman, J., et al. (1991). An automated walkthrough.

Proceedings of CHI'91 Conference on Human Factors
in Computer Systems, pp. 427-428. New York, NY:
ACM Press.

2. Polson, P.G., et al. (1992). Cognitive walkthroughs:
A method for theory-based evaluation of user interfaces.
International Journal of Man-Machine Studies, 36(5),
741-773.

3. Franzke, M. (1995). Turning research into practice:
Characteristics of display-based interaction.
Proceedings of CHI'95 Conference on Human Factors

in Computing Systems, pp. 421-428. New York, NY:
ACM Press.

4. Polson, P.G. and Lewis, C.H. (1990). Theory-based
design for easily learned interfaces. Human-Computer
Interaction, 5(2-3), 191-220.

5. Newell, A. and Simon, H.A. (1972). Human Problem
Solving. Englewoods Cliffs, NJ: Prentice-Hall.

6. Engelbeck, G.E. (1986). Exceptions to
generalizations: implications for formal models of
human-computer interaction. Unpublished masters
thesis, University of Colorado, Boulder, CO.

7. Muncher, E. (1989). The acquisition of spreadsheet
skills. Unpublished masters thesis, University of
Colorado, Boulder, CO.

8. Kitajima, M. and Polson, P.G. (1997). LICAI+: A
Comprehension-Based Model of Learning for Display-
Based HumanÐComputer Interaction. Proceedings of
CHI'97 Conference on Human Factors in Computing
Systems, pp. 333-334. New York, NY: ACM Press.

9. Rieman, J., Young, R.M., and Howes, A. (1996). A
dual-space model of iteratively deepening exploratory
learning. International Journal of Human-Computer
Studies, 44(6), 743-775.

10. Howes, A. and Young, R.M. (1996). Learning
consistent, interactive and meaningful device methods:
A computational model. Cognitive Science, 20, 301-
356.

11. Kitajima, M. and Polson, P.G. (1997). A
Comprehension-Based Model of Exploration. Human-
Computer Interaction, 12, 439-462.

12. Kitajima, M., Soto, R., and Polson, P.G. (1998).
LICAI+: A Comprehension-Based Model of The
Recall of Action Sequences. In F. Ritter and R.M.
Young (Eds.), Proceedings of the Second European
Conference on Cognitive Modelling (Nottingham,
April 1-4, 1998) (pp. 82-89). Nottingham, UK:
Nottingham University Press.

13. Kintsch, W. (1998). Comprehension: A paradigm for
cognition. New York, NY: Cambridge University
Press.

14. Mannes, S.M. and Kintsch, W. (1991). Routine
Computing Tasks: Planning as Understanding.
Cognitive Science, 15, 305-342.

15. Howes, A. (1994). A model of the acquisition of menu
knowledge by exploration. Proceedings of CHI'94
Conference on Human Factors in Computing Systems,
pp. 445-451. New York, NY: ACM Press.

16. Deerwester, S., et al. (1990). Indexing by Latent
Semantic Analysis. Journal of the American Society
For Information Science, 41(6), 391-407.

17. Landauer, T.K., Foltz, P., and Laham, D. (1998). An
Introduction to Latent Semantic Analysis. Discourse
Processes, 24, 259-284.

18. Landauer, T.K. and Dumais, S.T. (1997). A solution
to Plato's problem: The latent semantic analysis

theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2), 211-240.

19. Landauer, T.K. and Dumais, S.T. (1996). How come
you know so much? From practical problem to
theory. In D. Hermann, et al. (Eds.), Basic and
applied memory: Memory in context (pp. 105-126).
Mahwah, NJ: Erlbaum.

20. Landauer, T.K. and Dumais, S.T. (1994). Latent
semantic analysis and the measurement of knowledge.
In R.M. Kaplan and J.C. Burstein (Eds.), Educational
testing service conference on natural language
processing techniques and technology in assessment
and education . Princeton, N.J.: Educational Testing
Service.

21. Soto, R. (1998). Learning and Performing by
Exploration: Label Quality Measured by Latent
Semantic Analysis. Unpublished master thesis,
University of Colorado, Boulder, CO.

22. Ericsson, A.K. and Simon, H.A. (1980). Verbal
Reports as Data. Psychological Review, 87(3), 215-
251.

23. Payne, S.J. (1991). Display-based action at the user
interface. International Journal of Man-Machine
Studies, 35, 275-289.

