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ABSTRACT 

We present methods for inferring the cost of interrupting users 

based on multiple streams of events including information 

generated by interactions with computing devices, visual and 

acoustical analyses, and data drawn from online calendars. 

Following a review of prior work on techniques for deliberating 

about the cost of interruption associated with notifications, we 

introduce methods for learning models from data that can be used 

to compute the expected cost of interruption for a user. We 

describe the Interruption Workbench, a set of event-capture and 

modeling tools. Finally, we review experiments that characterize 

the accuracy of the models for predicting interruption cost and 

discuss research directions. 

 

Categories and Subject Descriptors 
I.2.10, J.4 [Artificial Intelligence, Social and Behavioral 

Sciences]: Perceptual Analysis, Economics   

General Terms 

Human Factors, Economics, Experimentation, Theory 

Keywords                                                                                       

Cognitive models, divided attention, interruption, notifications  

1. INTRODUCTION 
Interest has been growing over the last several years on methods 

for endowing computing systems with an understanding of users’ 

focus of attention, workload, and interruptability. The work builds 

on psychological research on interruption and divided attention, 

extending from classic studies in the early Twentieth Century 

[13,15]. Efforts have focused in parallel on user studies, the 

formulation of models of attention and cognitive load, the 

construction of real-time sensing and reasoning platforms, and the 

development of applications such as notification managers, 

communication agents, and dialog systems [7]. In user studies, 

researchers have elucidated the effects of interrupting people in 

various ways in different situations [2,3,10,11], and have probed 

the workload and availability of people in office settings [6,8,9].   

In this paper, we focus on efforts to build and use models of a 

user’s attentional focus and workload within the Attentional User 

Interface (AUI) project [5,7].  The models of attention play a 

central role in systems that perform ongoing cost-benefit analyses 

to mediate the flow of alerts and communications to users [5,6]. 

We have pursued models that can be employed to reason about a 

user’s workload from observed events and, more specifically, to 

infer in an automatic manner the cost of interruption to users 

associated with different kinds of alerts and communications. 

Such models of interruption fuse together information from 

multiple sensory channels, including desktop events, calendar 

information, and ambient visual and acoustical analyses. 

We shall present methods for building models that can be used to 

infer a user’s state of interruptability from multiple event sources, 

and, that can provide a well-characterized expected cost of 

interruption.    We first review work on the coupling of models of     

attention with event systems that provide streams of events, 

including desktop activity and sensory observations.  We describe 

in particular techniques for computing the expected cost of 

interruption, given a probability distribution over attention and a 

utility assessment that encodes preferences about the costs of 

interruption in different situations.  Then, we discuss the learning 

of models of attention and interruptability from data.  We review 

the learning paradigm and tools, describe the learned models, and 

discuss experiments that probe the classification accuracy of the 

models.  Then we present model ablation studies, including 

experiments with removing from consideration perceptual sensing 

and only including the discriminatory power of models that rely 

on events generated by interactions with a client computing 

system and information drawn from an online calendar.   

Figure 1. Dynamic Bayesian network for reasoning about a 

user’s attentional focus, capturing key variables and intra- and 

inter-temporal probabilistic dependencies (from [5]). 

2. INFERRING COST OF INTERRUPTION 
Initial versions of an alerting mediation system, named the 

Notification Platform employed handcrafted dynamic Bayesian 

network models [5].  Two adjacent states of such a temporal 

Bayesian model are displayed in Figure 1.  An important variable,  
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Figure 2. Control panel for Infoflow event system, showing 

event classes and graphical display of processing of acoustical 

and visual information. 

represented over time in the Bayesian network, is Attentional 

focus. The states of this variable are structured into approximately 

fifteen mutually exclusive states of attention, representing a 

spectrum of user situations, capturing different amounts of 

cognitive workload and tolerance of interruptions.  The states 

include such distinctions as high-focus solo activity, medium-

focus solo activity, low-focus solo activity, conversation in office, 

presentation, driving, private/personal time, and sleeping. 

2.1 Representing Preferences about Disruption 

Beyond reasoning about the attentional states of users, an 

important goal of models of attention is to infer the cost of 

different types of interruption, conditioned on users being in 

particular  states.  To perform this inference, we consider the 

utility, u(Di,Aj), representing the cost of a user in attentional state 

Aj being disrupted by a task or communication event Di.  We have 

found that users are comfortable with assessing this cost as the 

willingness to pay to avoid a disruption in dollars for each 

outcome tuple. Willingness to pay to avoid outcomes has been 

used in decision analyses in several fields, including medical 

decision analysis. Given a set of dollar values that users assert that 

they are willing to pay to avoid different kinds of disruptions, and 

a probability distribution being inferred over the attentional state 

of a user, we compute the expected cost of interruption (ECI) by 

summing over the utilities, weighted by the likelihood of each 

state of attention, conditioned on the stream of incoming sensory 

information.  That is, the ECI is 

                                                                                                   (1) 

 

where p(Aj|E) is the probability of the attentional state, 

conditioned on evidence stream E. 

2.2 Event Systems for Sensing User State 

Let us now explore additional details of a real-world 

implementation of a system that can compute the cost of 

interruption from a real-time stream of events, including 

interactions sensed by a computing device and perceptual 

information gathered from acoustical and visual sensors. 

In the Notification Platform, we monitor the activity of a user 

interacting with their different client devices with event sensing 

and abstraction systems that sense computer events from the 

operating systems and applications executed on the clients.  Given 

the availability of a microphone and camera, computing devices 

or appropriately equipped locations can also report visual pose 

with a Bayesian head tracking system [14] and the presence of 

nearby conversation with an audio signal processing analysis. 

Finally, we examine information from users’ online appointment 

information via an interface to the Microsoft Outlook application 

to see if a meeting is scheduled, and if so, we identify and 

consider as observational events several properties of the meeting.  

Figure 2 displays a control panel from an event monitoring 

subsystem used in Notification Platform that we refer to as 

Infoflow. The event system provides an abstraction tool for 

coalescing patterns of low-level system events into higher-level 

events. We consider in the models of attention both low- and 

high-level events. For example, we capture such low-level states 

as the specific application currently in focus, whether the user is 

typing, clicking and/or moving the mouse, as well as a set of 

higher-level events such as the pattern of switching among 

applications (e.g., single application focus versus switching 

among applications) and indications of task completion (e.g., a 

message being sent, a file being closed, an application being 

closed, etc.).  For the calendar events, we consider whether a 

meeting is in progress, the length of time until the meeting is over, 

and the location of the meeting as indicated by information from 

Outlook. For the acoustical and visual analysis, we note the 

presence of conversation or non-conversational sounds associated 

with user activity, and whether a user is present near a desktop 

system, and if so, if the user is gazing at or away from the 

computer.  Figure 3 displays the status of a volatile event store 

used by Infoflow, named the Event Whiteboard. The Event 

Whiteboard is used to capture and share out the state of low-level 

and higher-level events gathered by Infoflow with other 

applications. 

 

Figure 3. Event Whiteboard of Infoflow subsystem, displaying 

low-level and higher-level events considered by the 

probabilistic models of interruption. 
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As indicated in the figure, events include details about the birth 

and death of specific applications, the application currently in 

focus and being interacted with (Outlook), and events that capture 

usage patterns such as the desktop usage pattern, in this case, 

showing that a user is switching between different applications 

within a preset time horizon (15 seconds in this case). 

2.3 Real-Time Analysis of Interruption 

We shall now briefly examine the reasoning performed by the 

Notification Platform in mediating notifications. The Notification 

Platform considers the events described in Section 2.2, and 

employs a Bayesian network to infer a probability distribution 

over attentional states. Figure 4a displays the output of a model 

that considers eight states of attention, including High-Focus Solo 

Activity, Low-Focus Solo Activity, Conversation in Office, 

Presentation or Meeting, Driving, Private Personal Time, 

Sleeping, and Now Available.  The curves in the figure depict that 

the initial high likelihood of Conversation in Office has, at the 

most recent time, become dominated by High-Focus Solo.  Figure 

4b shows inferences about the expected cost of interruption over 

time for different disruptions Di.  In this case, we compute, from 

the inferred probability distribution over the user attentional 

states, the expected dollars a user would be willing to pay to avoid 

different communication events.   

The curves in Figure 4b represent, from top to bottom, the 

expected costs associated with six different interruptions, 

including a telephone call, a pager, a full visual alert with audio 

chime herald, a thumbnail display with audio chime, a full visual 

alert without the chime, and a thumbnail display without chime. 

Figure 5 displays samples of full visual alerts (for news, email, 

and instant messaging notifications) generated by Notification 

Platform, employing additional models that balance the cost of 

interruption and information value. Decision-analytic models are 

used to consider an inferred expected cost for different messaging 

actions and the expected value of different communications, as 

assessed in a separate analysis of the value of information.  We 

shall not review the details of this cost-benefit analysis in this 

paper. Rather, we shall focus on learning and reasoning about the 

expected cost of interruption from data about users’ behavior and 

context. 

 

         

Figure 4. (a) Inference about the attentional state of the user 

over time. At the latest time, the dominant states, in order of 

likelihood are high-focus solo activity, conversation in office, 

and then low-focus solo. (b) Expected cost of interruption over 

time. Interruptions, sorted in descending order by expected 

cost, include (from the top) telephone call, pager, and full 

desktop herald with audio chime. 

          

    

 

 

 

 

 

 

Figure 5. Sample visual alerts from Notification Platform, 

including news, financial alerts, email, instant messages, and 

output from services, such as a scheduling agent, background 

querying, and new document tracking  The service weighs the 

expected cost of interruption and the value of information in 

decisions about alerting and display modalities.  

3. LEARNING PREDICTIVE MODELS 

FOR COST OF INTERRUPTION  
Over the last several years, we have explored the construction of 

models of attention and interruption via manual knowledge 

acquisition, via machine learning from data, and combinations of 

direct assessment and learning.  We shall focus here on the 

construction of personalized models via collection of streams of 

information, coupled with a process of tagging, machine learning, 

and evaluation. Our research in this realm has included the 

construction of models of attention with explicit temporal 

structure, including HMMs as well as more general dynamic 

Bayesian models, and models that represent temporal information 

intrinsically in the definition of variables.   

We dwell in this paper on learning models that predict the state of 

interruptability of users in office settings. Such models are 

designed for making inferences in situations where a user has 

current or recent access to a computing system. Complementary 

work [6] on learning models of the cost of interruption based on a 

detailed consideration of distinctions about appointments drawn 

from an online calendar and time since a user has interacted with 

different applications or devices are reviewed in Section 6.  

We shall consider the learning of models that predict the state of 

interruptability of users, where the detailed description of a user’s 

attentional focus or workload remains implicit. That is, we bypass 

explicit, detailed representation about the state of a user, and 

pursue instead models that characterize the user’s interruptability. 

We then map such inferences to a cost of interruption. 

3.1 Interruption Workbench  

We have developed a tool named the Interruption Workbench 

(IW) which provides facilities for event capture, annotation of 

segments of time, and building and testing statistical models of 

interruptability. A screenshot of the tagging tool being used 

during an annotation session is displayed in Figure 6. 

3.1.1 Phases of analysis 

The first phase of model building is event and context capture. 

During this phase, IW records streams of desktop, calendar, and 

available perceptual events. A video camera is employed to record  
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Figure 6. Screen from the Interruption Workbench.  The tool 

captures and synchronizes sensed perceptual and client events 

with a video log of a user’s activities.  Subjects can tag periods 

of time with cost of interruption for different types of 

interruptions. Foreground shows cost-assessment palette. 

a subject’s activities and overall office context.  The videotape 

with audio track is shot over the shoulder of subjects, revealing 

the content displayed on the user’s screen in addition to a portion 

of the user’s office environment.   

The second phase of building models of interruptability is tagging 

and assessment. IW displays the video and synchronizes the video 

with events that were captured during the training session, 

enabling users to label segments of time by the state of their 

interruptability and to associate them with the constellation of 

sensed events. The labeling effort is minimized by allowing users 

to specify transitions among states of interruptability, rather than 

requiring users to label each small segment of time.  

The tool provides a means for specifying the way that the 

variables representing the cost of interruptability are discretized 

and how cost is represented.  Subjects can encode their 

assessments about their interruptability at different times in two 

ways, depending on their comfort. With the first method, subjects 

tag periods of time viewed on the video as high, medium, and low 

cost of interruption. As displayed in the foreground of Figure 6, 

users can separately map dollar values to each of the high-level 

states, for different kinds of interruptions (e.g., real-time 

telephone call, visual alert, audiovisual alert), reflecting the 

willingness to pay to avoid an interruption of each type during the 

states labeled as high, medium, and low cost of interruption.  In a 

second approach to labeling time segments of a training session, 

subjects can define a scale and use a slider to tag periods of time 

with costs of interruption. These yield models that provide 

inferences about the probability distribution over real-valued 

values, representing the costs of interruption.  

Finally, in the generation and testing phase, we construct and test 

a Bayesian network from the tagged library of cases generated in 

the first two steps.  The task of tagging one or more sessions of 

office activity creates a database of two-second periods of time 

tagged with an interruptability label and containing a vector of 

logged event states.  Given a set of tagged cases, the system can 

be instructed to build a classifier. We shall review the 

construction of Bayesian dependency models. These models 

reveal the dependencies among key observations and variables. 

The Bayesian learning procedure employs graph structure search 

[1], and outputs a Bayesian network for the cost of interruption. 

The model can be used to make real-time predictions about the 

expected cost of interrupting users in different ways, given a live 

stream of sensed events obtained from the Event Whiteboard.   

At run time, the probability distribution over the states of 

interruptability inferred by the model is used to compute the 

expected costs of interruption of different classes of interruption.  

For each disruption under consideration, we compute an expected 

cost of interruptability by invoking an expectation similar to the 

expected value calculation defined in Equation 1, substituting the 

likelihood of different states of interruptability, p(Ii|E), for the 

explicit states of attention, 

                                                                                                 (2) 

3.1.2 Beyond the Present Moment: Inferences about 

Future Cost of Interruption 

In addition to reasoning about the current state of interruptability, 

we also generate several variables representing attentional 

forecasts about future state of interruptability. These include 

variables that capture inferences about the probability 

distributions over times until a low, medium, or high state of 

interruptability will be reached, and more specialized variables 

representing the times until states of interruptability will be 

achieved that will persist for different amounts of time.  As an 

example, a variable in this family represents the time until a user 

will remain in a state of low cost of interruption for at least five 

minutes.  Such predictions are important for deliberating about if, 

when, and how to mediate communications. 

4. BUILDING AND TESTING MODELS 

For learning models from data, IW provides tools for selecting a 

portion of training data for constructing a model and for testing 

the model on data held out for evaluating.  Training data can be 

selected temporally as an initial segment of data or sampled 

randomly from the complete training set.  

4.1 Sample Model 

Figure 7 shows a Bayesian network model, output by the 

workbench. The model was built from a log of a subject’s (S1) 

activities tagged by cost of interruptability.  For this model, the 

database of cases represents activities in the subject’s office, 

including the subject’s interactions with a personal computer, for 

five hours collected in one-hour sessions at different times.  The 

database includes 9,384 two-second cases, representing 202 state 

transitions among interruptability levels. 85 percent of these cases 

were drawn randomly from the case library and used to build the 

model. The remaining cases were used for testing.  To avoid 

overfitting, we first tuned a parameter, used in the Bayesian score 

for penalizing complexity, by splitting the training set into sub-

training and holdout data sets to identify an optimal value of the 

parameter at a soft peak in the Bayesian score. This value was 

used to build the Bayesian network from the full training set. 

We then test the abilities of the learned model to predict the 

outcomes in the test data set. We compute the classification 

accuracy for the learned and marginal models to characterize the 

power of these models.    The classification accuracy is the likeli- 
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Figure 7. Bayesian network model learned from tagged data 

for training session. Model infers probability distribution over 

interruptability (COI), as well as predictions of time until 

reaching different future states of cost of interruption, and 

future states of interruption persisting for different times. 

hood that the model will correctly identify the state of 

interruptability of the user. The variable in the Bayesian model 

representing the current state of interruptability (with states Low, 

Medium, and High cost) is labeled COI.  Other variables include 

forecasts Time Until Next Low, Time Until Next Medium, Time 

Until Next High, and variants of these variables, representing the 

time until periods of low, medium, and high costs of interruption 

will be reached and persist for at least 5 and 10 minutes. In this 

case, the states of the forecasting variables are discretized into five 

time states, including Less than one minute, 1-5 minutes, 5-10 

minutes, 10-15 minutes, and Greater than 15 minutes.  

Figure 8 displays a decision graph representing a compact 

encoding of the probability distribution underlying the COI 

variable of the Bayesian network.  The bar graphs at the leaves of 

the tree represent probability distributions over high, medium, and 

low costs of interruptability (ordered, top to bottom, from high to 

low) for sets of observations represented by the paths leading to 

the leaves.  The paths to the leaves identify important 

combinations of events for decomposing the probability 

distribution over COI and other variables into sub-distributions. 

The paths branch on key observations drawn from the user’s 

calendar and from the real-time activity event stream, including 

patterns of presence, application usage, and perceptual events.  

Similarly detailed trees, encoding variable state paths and 

associated probability distributions at the leaves, are produced for 

the attentional forecasting variables. 

4.2 Evaluation of Learned Models 

We have integrated tools into IW for testing the performance of 

sample models and for probing the discriminatory power of 

different features.   

4.2.1 Accuracy of marginal and inferential models 

Tables 1 summarizes the classification accuracies for COI, and for 

several of the attentional forecasting variables for the model for 

S1 displayed in Figure 7, and for a second model, built from data 

from another subject (S2). The data set for subject S2, also 

collected in 5 one-hour segments, is comprised of 8048 two-

second cases, representing 926 transitions among states of cost of 

interruption.  As in the procedure for S1, the model was 

constructed by splitting the data 85/15 into training and test cases. 

The classification accuracies of the marginal models for each 

subject are listed under the variable names.  The classification 

accuracies of marginal models are obtained by assuming the most 

likely states of the variable when testing predictions on the held-

out data set.  We found that the marginal models may provide 

good classification accuracy in some cases.  In such situations, 

there may be little or only small lift in classification accuracy with 

the use of the inferential model. However, in most cases, the 

inferential model provides a discriminatory boost over the 

marginal model.  For example, the inferential model, based on a 

consideration of all monitored events (column 1 of Table 1), 

yields a 0.73 accuracy for predicting COI for S1, while the 

marginal model provides a base classification accuracy of 0.53.  

For S2, the inferential model shows a 0.64 accuracy for predicting 

COI for S1, a boost over the marginal model’s classification 

accuracy of 0.37.   

Figure 8. Portion of decision graph (for branch: No Meeting, 

Not Outlook.exe as Top Applications) encoding probability 

distribution for the COI variable of the Bayesian network in 

Figure 7. Bar graphs at leaves represents, from top to bottom, 

likelihood of high, medium, and low cost of interruption. 

4.2.2 Probing information value with model ablation 

Beyond testing the performance of models built from a 

consideration of all available observed events, we performed 

model-ablation studies, focusing on the sensitivity of 

classification accuracy to the loss of specific features and classes 

of features.  We have been particularly interested in the sensitivity 

of the performance of the models with the removal of perceptual 

features from learning and inference.  As many computers in use 

may not have acoustical and visual sensing capabilities, we have 

sought to better understand the base discriminatory power of 

events associated with rich patterns of desktop activity and from 

calendars.  For the ablation studies, we constructed models in the 

same manner as the procedure described in Section 4.1 from the 

data from subjects S1 and S2. However, rather than using all 

observations, we omitted specific sets of features from the 

learning process.  
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Table 1. Classification accuracies for marginal and inferential 

models for current and future states of subjects’ COI, showing 

contributions and synergies for system events, and acoustical 

(aud.), visual (vis.), and calendar (cal.) observations. 

Attentional  

state 
All events 

Marg. 

model 

Sys. 

only 

Sys. + 

aud + vis. 

Sys. + 

cal. 

Current 

state of COI 

S1:   .73 

S2:   .64 

.53 

.37 

.64 

.60 

.69 

.63 

.69 

.63 

Time until 

low 

S1:   .61  

S2:   .69 

.35 

.65 

.51 

.65 

.58 

.66 

.58 

.67 

Time until 

med 

S1:   .68 

S2:   .82 

.49 

.76 

.59 

.76 

.64 

.81 

.67 

.76 

Time until 

high 

S1:   .72 

S2:   .83 

.66 

.69 

.67 

.72 

.70 

.79 

.71 

.77 

 

Table 2. Focus on classification accuracies for subsets of 

observations in the absence of the system event stream.  

Attentional  

state 

Cal. 

only 

Aud. 

only  

Vis. 

only 

Vis. + 

aud.  

Aud. + 

vis. + 

cal. 

Current 

state of COI 

S1:   .53 

S2:   .44 

.53 

.54 

.53 

.46 

.55 

.54 

.57 

.58 

Time until 

low 

S1:   .37  

S2:   .65 

.35 

.65 

.35 

.65 

.38 

.65 

.42 

.67 

Time until 

med 

S1:   .58 

S2:   .76 

.49 

.76 

.54 

.76 

.54 

.76 

.63 

.78 

Time until 

high 

S1:   .66 

S2:   .69 

.66 

.70 

.66 

.69 

.65 

.72 

.67 

.74 

 

Table 1 shows the classification accuracies for models built from 

all events, system events only, system events and perceptual 

observations, and system events and calendar information. We 

found varying sensitivities of classification accuracy for different 

variables under consideration and different kinds of ablations. 

Such sensitivities also differed for the models for subjects S1 and 

for S2. Table 2 reviews the accuracy of models relying solely on 

calendar, acoustical, visual, and on acoustical, visual, and 

calendar events together.  Although, lifts are not as high as 

provided by models that include system events, synergistic 

contributions among calendar, acoustical, and visual information 

sources is apparent. Overall, for the majority of cases where 

inferential models provided boosts over the marginal models, we 

found that classification accuracy of a base model, employing 

only system events, is dominated by models that also include 

either perceptual observations or calendar information. Adding a 

consideration of both classes of observations to the base model 

led to the most accurate predictions.  

Beyond studies of classification accuracy, we can investigate the 

structural influences on predictive models of adding and removing 

different classes of observations. We can examine changes in 

variables and dependencies of the overall Bayesian network, or 

can explore the sensitivity of the structure of the decision graphs 

encoding the probability distributions for COI and COI 

forecasting variables.  As an example, Figure 9 displays a 

refinement of a branch of the tree encoding the probability 

distribution for COI for S1 that was particularly sensitive to the 

introduction of audio and visual sensory information, given a base 

model of system events and calendar information.   

     

Figure 9. Sensitivity of a branch of decision graph for COI to 

gaining access to visual and acoustical sensory streams. 

Introducing gaze and acoustical information enables the 

distribution at the former leaf in the tree (ending in the 

identification that Internet Explorer is not in focus at the moment) 

to be specialized into subdistributions that hinge on the status of 

visual and acoustical observations.  Beyond such modular 

refinements, we noted situations where the removal of classes of 

features led to larger-scale changes in structure. For example, the 

loss of perceptual features may lead to shifts in the specific 

desktop activities being considered at key branches in the trees 

(e.g., removing vision and acoustics may lead to the introduction 

of Outlook  vs. Not Outlook in Focus as a central consideration). 

The decision graph in Figure 10, composed from data from S1 for 

system events and perceptual information, provides some insight 

about the use of visual pose information in predicting the time 

until the start of the next low cost of interruption period. The tree 

highlights how observations from a head tracking system about 

presence and pose can influence the probability distribution over 

the time until next low cost of interruption.  Figure 11 shows the 

tree for the same prediction for the case where we have removed 

consideration of visual and acoustical information.  The system is 

forced to rely on desktop activity and presence for making the 

forecast of time until low cost of interruption. 

5. MODEL TRANSFER AND REUSE 
In addition to developing and evaluating tools for generating 

personalized models that predict the cost of interruption, we are 

interested in the prospect for developing models and methods that 

can provide useful inferences to users with little or no effort. One 

goal of efforts on machine learning in this vein is the 

identification of important variables for determining the cost of 

interruption.  Although we found that the detailed parameters and 

structure of predictive models shifts significantly from user to 

user, we found that specific sets of variables appear important 

across users. For example, information about the application that 

is currently active and in focus, and patterns of activity and 

quiescence are often important, early branches in decision graphs 

for COI. Machine learning can assist designers with formulating 

predicates, languages,  and user controls that could enable people 
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Figure 10.  Decision graph for predicting the time until a user 

will next be in a low cost of interruption state, based on system 

events and perceptual sensing. 

       

Figure 11. Decision graph for predicting time until a user will 

next be in a state of low cost of interruption, when perceptual 

events are removed from consideration. 

to specify, in an efficient manner, policies that define the cost of 

interruption as a function of such variables.  

In another approach to reducing the need for special training, we 

have been investigating prospects for applying models trained on 

one or more users to other users. We found that applying a 

personalized model from one user to predict the outcomes of 

another user may yield poor performance.  As an example, Table 

3 demonstrates the results of applying the predictive model 

developed for subject S1 to the test cases for subject S2 and vice 

versa.  The performance is poor for the case of using all events 

and selected subsets of events, where inferential models can show 

poorer classification accuracy than the marginal models.  

We found better performance with the construction of composite 

models from the training data of multiple individuals. Table 4 

shows the performance of such a generalized model, constructed 

from the training data of subjects S1, S2, and a third subject, S3 

who also provided 5 hours of data.  Although the model does not 

perform as well as the users’ own personalized models, we see 

significant boosts in classification accuracy, when compared with 

the simple substitution of models among users.   

Table 3. Performance for cross-user classification of COI. 

Attentional  

state 
All events 

Sys. 

only 

Aud. + 

vis. + 

cal. 

Aud.  

only 

Vis. 

only 

Cal. 

only 

Current 

state of COI 

 

S1→S2:   .28 

S2→S1:   .32 

.39 

.35 

.30 

.25 

.37 

.34 

.37 

.38 

.37 

.31 

 

Table 4. Performance of a composite model constructed from 

data from multiple subjects. 

Attentional  

state 
All events 

Sys. 

only 

Aud. + 

vis. + 

cal. 

Aud.  

only 

Vis. 

only 

Cal. 

only 

Current 

state of COI 

 

All→S1:   .55 

All→S2:   .66 

.38 

.60 

.42 

 .54 

.34 

  .54 

.33 

.34 

.34 

.31 

 

As highlighted by the classification accuracies displayed in Table 

4, multiple classes of observations work in a synergistic manner to 

boost the performance of the composite models.  In contrast, 

combining multiple classes of features for the model substitution 

situation tends to diminish the classification accuracy, as captured 

by the results in Table 3.  

6. RELATED RESEARCH 
We have been exploring related challenges and opportunities via 

other ongoing projects.  On the Coordinate project [6], we have 

explored the construction of models of the cost of interruption 

based on detailed appointment information.  The Coordinate 

effort centers on the use of machine learning about presence and 

availability based on such events as the time of day, the user’s 

current or recent presence on devices, a user’s last sensed 

location, and details about meeting information drawn from a 

user’s online calendar. The Coordinate server performs real-time 

machine learning and inference in response to ongoing, heartbeat 

queries or in response to special queries by a trusted colleague or 

communications agent. The system computes the cost of 

interruption now and in the future, considering multiple properties 

of a meeting drawn from the online calendar (number of 

attendees, organizer, location, duration, subject, etc.). In contrast 

to the work described here, Coordinate was initially developed to 

reason about forecasts about a user’s location and availability 

when the user is out and about, rather than the detailed case of 

models of attention in an office setting, where we have access to 

the rich stream of data from a desktop system and perceptual 

sensing. Nonetheless, we have been working to unify the detailed 

office analysis with the detailed analysis of meetings and location 

provided by Coordinate.  Beyond integration of the two kinds of 

models and modeling methodologies, there is opportunity for 

integrating the detailed meeting distinctions into the inferences 

about attention in an office setting.  In contrast to the Coordinate 

work, the modeling efforts described in this paper employ only a 

few high-level distinctions about the likelihood and duration of a 

meeting in the office, and rely more centrally on system 

interactions and perceptual information. 

Other relevant work includes the Seer effort on distinguishing 

among different office situations, such as identifying from 

perceptual information whether a user is on the telephone or in a 

conversation with other people in their office [12].  There is an 
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opportunity for integrating the inferences provided by systems 

like Seer into the Interruption Workbench tool set. 

In other related work, a team at Carnegie Mellon has recently 

performed a Wizard of Oz study in an attempt to understand the 

value of different features in predicting the interruptability of 

several subjects [9]. In the study, the users’ interruptability was 

probed with a “beeper study” methodology, intermittently seeking 

feedback from users about their interruptability. Features were 

coded by researchers and classifiers were constructed from the 

coded data in an attempt to identify the value of different 

observations.  The researchers identified such features as whether 

the user is speaking, writing, sitting, or interacting with objects 

such as a keyboard or phone, the presence and activities of 

occupants, and whether the user’s office door is open or closed. A 

list of top features was identified, including different kinds of 

talking, positions and configurations of people, and interaction 

with a keyboard. The work complements our ongoing research on 

modeling interruptions; features identified by the Wizard of Oz 

effort may provide valuable guidance as the tools are refined. 

7. SUMMARY 
We have described effort to build models that can predict the cost 

of interrupting users. We presented research on harnessing 

machine learning to generate statistical models for inferring the 

state of interruptability of users.  We focused on a methodology 

and tools for logging and tagging a database of cases and 

discussed our attempts to probe the sensitivity of the classification 

accuracy and structure of the learned models in response to 

overlooking classes of observations.  Finally, we touched on our 

investigation of the potential for building transferable models of 

interruptability and assessment tools, in pursuit of systems that 

could provide users with valuable attention-sensitive services 

without requiring costly training procedures. Beyond focusing 

solely on the opportunity for integrating statistical models in 

fielded systems, we discussed the potential value of leveraging 

insights from machine learning to identify important features that 

might be manipulated directly by users in crafting statements 

about their interruptability in different settings. 

In ongoing research, we are continuing to investigate the 

discriminatory value of considering additional observational 

features about the environment and activities of users, drawn from 

computing devices and perceptual apparatus. Beyond exploring 

new system events, appointment information, and enriched 

acoustical and visual features, we are investigating the 

discriminatory power of other sensors such as accelerometers, 

proximity, and motion detectors [4]. We are also continuing to 

gather data from multiple subjects in pursuit of answers to several 

questions about the power and generality of the models we can 

build from the data.  We are particularly interested in studying the 

accuracy of predictions of the cost of interruptability in settings 

where we build models with data from multiple users and use 

these models to predict the interruptability of new users. 

Characterizing the accuracy of such composite models promises 

to provide insights about the possibility for minimizing the need 

for custom-tailored training. 
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