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Abstract. Location-enhanced mobile devices are becoming common,
but applications built for these devices find themselves suffering a mis-
match between the latitude and longitude that location sensors provide
and the colloquial place label that applications need. Conveying my loca-
tion to my spouse, for example as (48.13641N, 11.57471E), is less infor-
mative than saying “at home.” We introduce an algorithm called Beacon-
Print that uses WiFi and GSM radio fingerprints collected by someone’s
personal mobile device to automatically learn the places they go and
then detect when they return to those places. BeaconPrint does not au-
tomatically assign names or semantics to places. Rather, it provides the
technological foundation to support this task. We compare BeaconPrint
to three existing algorithms using month-long trace logs from each of
three people. Algorithmic results are supplemented with a survey study
about the places people go. BeaconPrint is over 90% accurate in learning
and recognizing places. Additionally, it improves accuracy in recogniz-
ing places visited infrequently or for short durations—a category where
previous approaches have fared poorly. BeaconPrint demonstrates 63%
accuracy for places someone returns to only once or visits for less than
10 minutes, increasing to 80% accuracy for places visited twice.

1 Introduction

Devices that can automatically figure out their geographic coordinates are be-
coming common. Many mobile phones are now location-enhanced due to U.S.
E911 and European E112 initiatives requiring location capability for calls placed
to emergency services. The Global Positioning System (GPS) covers most of the
earth’s surface, and GPS chipsets are continually decreasing in cost, making it
feasible for them to be integrated into many mobile devices. Technologies like
RightSpot [1] and Place Lab [2] have shown that beacon-based location can
allow a device to compute its position with high availability throughout some-
one’s day—including indoors and in environments like the “canyons” formed by
high-rise buildings where GPS is unreliable. Applications such as mapping and
way-finding are straightforward to build using any of these location technologies.

Many emerging location-enhanced applications, however, want colloquial place
names like “Home,” “Work,” “Movie Theater,” or “Tony’s Pizzeria” instead of



latitude and longitude coordinates. An example is a dynamic instant messag-
ing (IM) client that can set its status message to its user’s current place. Using
place names as the IM status is likely more informative to IM buddies than raw
coordinates like 48.13641N, 11.57471E. We call this disconnect between the co-
ordinates that devices provide and the place names emerging applications desire
as the problem of moving from location to place.

One step in the move from location to place is to use databases such as Yahoo!
Yellow Pages, Microsoft MapPoint, or governmental map and census repositories.
Each of these databases can translate a coordinate into a corresponding busi-
ness name, street address, map image, geographic feature, political subdivision,
or other label. This process is called geocoding. Applications like tour guides,
recommender systems, and franchise store locators (e.g. “Where is the nearest
McDonald’s Restaurant to my current position?”) have been built using geocod-
ing. A shortcoming of geocoding is that without the context of a specific query,
geocoded place names can be as challenging to interpret as raw coordinates—
particularly if the names are shared with others or reviewed in hindsight in a
log of the places someone went. For example, revealing to my spouse that I am
currently in the residential area 142 meters north of the cash machine located at
the corner of Broadway and Main, although a precise description of my position,
is less useful than saying I am at home. The problem is that geocoded infor-
mation, like a raw coordinate, does not correspond to someone’s mental model
of their personal routine nor to the terminology they use when discussing the
places they go.

To start to overcome these challenges in geocoding, the research community
has proposed ways of enabling people’s mobile devices to automatically learn
the places they go and then to recognize whenever they return to those places.
This paper’s contributions are on this topic. Note that this work is not about
automatically assigning semantics or names (e.g. “home”) to places, but in pro-
viding the mechanism for learning the physical destinations in someone’s life and
detecting whenever their devices return to those places.

Place learning algorithms take as input a sensor log gathered from a mobile
device and produce as output a list of the places the device went. The sensor
information collected about each of these places is called a waypoint. A recog-
nition algorithm uses a place’s waypoint to detect when the device returns to
that place. Figure 1 illustrates the learning and recognition cycle. An effective
learning algorithm can do two operations:

1. Segment a sensor log into times when the device was in a stable place and
assign a waypoint.

2. Merge waypoints which are captured from repeat visits to the same place.

Likewise, an effective recognition algorithm has two capabilities:

1. Recognize when the device returns to a known place using a waypoint list.
2. Recognize when the device is not in a place. We refer to this state as mobile.
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Fig. 1. The flow of data through the place learning and recognition cycle

This paper contributes a new place learning and recognition algorithm called
BeaconPrint. BeaconPrint uses 802.11 and GSM radio response-rate fingerprints
to learn and recognize places more accurately than previous approaches. We
demonstrate BeaconPrint’s effectiveness with a thorough comparative evaluation
to three published place algorithms using one month of multi-sensor trace logs
collected from each of four people. To supplement these algorithmic tests, we
also conducted a survey study about the places people go. Because the data
collectors for the algorithmic experiments were all members of our research team,
the survey study allows us compare the places they went during the month to the
number, type, and visit frequency of places reported by survey participants. We
show that this comparison finds no obvious idiosyncrasies in the data collectors’
habits, thus lending credence to the claim that BeaconPrint generalizes.

2 Related Work

Place learning algorithms can be divided into two classes: geometry and fin-
gerprint. Geometric algorithms produce coordinates, circles, or polygons to de-
scribe the significant places the algorithm believes the user went. Examples of
geometric place algorithms are recurring GPS dropout used in the comMotion
system from Marmasse et al. [3], Ashbrook and Starner’s GPS dropout windows
plus hierarchical clustering [4], and the sensor-agnostic temporal point cluster-
ing contributed by Kang et al. [5]. Fingerprint algorithms, in contrast, produce
a waypoint list with no geography. Fingerprint waypoints are a “signature” of
each place which allows the device to detect when it returns to the place, but
provides no direct information about where that place is geographically located.
Fingerprint place algorithms include BeaconPrint, the graph clique-based GSM
cell fingerprints of Laasonen et al. [6], and cell-ID matching which has been
studied in depth by Trevisani and Vitaletti [7].

A variety of sensors can produce input logs for learning. These sensors range
from traditional technologies like WiFi network interfaces and GPS receivers
that are found on many mobile devices to sensors like accelerometers, barome-
ters, or altimeters that are custom built or currently not found on most devices.



Although data from more exotic sensors may support accurate place learning,
BeaconPrint shows that high accuracy is possible with commodity hardware. Mi-
crophones are a commodity sensor and there is promising work on using record-
ings of ambient audio as a sensor log [8]. However, continuous mobile recording
of audio (or video for that matter) presents social and legal challenges that have
hampered their adoption.

BeaconPrint is structurally similar to Krumm and Hinckley’s NearMe loca-
tion technology [9]. NearMe is a service allowing pairs of devices to compare the
802.11 radio signatures they hear to decide whether they are in physical proxim-
ity to one another. Although learning and recognizing places is a different task
then determining proximity, the similarities between NearMe and BeaconPrint
will be described in Section 3.3.

In evaluating BeaconPrint we compare it to the Ashbrook and Starner, com-
Motion, and Kang et al. algorithms. The following subsections discuss our im-
plementation and use of each of these algorithms. A post facto discussion of each
algorithm appears in Section 4 following the experimental results. We elected to
exclude the GSM fingerprint approach of Laasonen et al. from our evaluation.
This algorithm is clever but complex due to what we see as an artificial restric-
tion. The complexity in the Laasonen approach seems to come about because
programming interfaces on GSM phones only allow access to the unique ID of
the single tower to which the phone is connected. This restriction is an artificial
one imposed by the phone manufacturers and service providers. Industrial-grade
or low-level GSM modems can see multiple nearby towers. Using only a single
beacon requires significant complexity to build, merge, traverse, and interpret
hand-off graphs—ultimately to approximate the capability that 802.11 and low-
level GSM radios get for free: performing full parallel scans for all nearby radio
beacons. BeaconPrint uses parallel scans to achieve high accuracy in learning
and recognizing places with a significantly simpler approach.

2.1 Ashbrook and Starner’s GPS Dropout plus Hierarchical
Clustering Algorithm (A&S)

Ashbrook and Starner’s algorithm [4], henceforth referred to as A&S, learns
places people go in order to construct a Markov model predicting where they
might go next. A&S exploits the variable availability of GPS in real environ-
ments to learn a person’s places. It segments the GPS sensor log by marking
positions at the beginning of every window of at least t minutes where the per-
son’s GPS receiver loses the satellite signal or indicates a speed continually below
1 mile per hour. Both of these situations indicate the person probably stopped
or entered a building where the GPS signals cannot penetrate. These candidate
positions are then merged using a variant of k-means clustering. The clustering is
repeated hierarchically to identify sub-places. Clustering produces the waypoint
list. Our experience agrees with their observation that choosing t = 10 minutes
(9.6 actually) maximizes the number of correctly learned places.

As published, A&S does not explicitly discuss or evaluate recognition, how-
ever, it seems clear that using A&S waypoints for recognizing places means using



live GPS data to lookup the nearest waypoint that is no further away than the
radius at which the place was learned during clustering. If no place meets the cri-
teria then the device is labeled as mobile. This distance-constrained containment
search is the recognition approach used for evaluating A&S in this paper.

2.2 The comMotion Recurring GPS Dropout Algorithm

The comMotion system [3] is a GPS-equipped wearable or hand-held device
which can present to-do lists or other information that is relevant to the person’s
current place, for example, a list of home chores when the person arrives home.
Systems like comMotion are often called remembrance agents.

The comMotion system learns places using GPS in a different way than A&S.
In comMotion, a place is a position where the GPS signal is lost three or more
times within a given radius. The segmentation step extracts these timestamped
GPS drop points, and the merge step groups them into places. The paper does
not reveal what radius was used, however our iterative refinement experiments
revealed 100 meters to be a good choice.

To perform recognition with comMotion for our experiments, we use live GPS
data to lookup the nearest 3-time GPS drop point place that is no further away
than the radius. If no place is found, the device is labeled as being mobile.

2.3 Kang et al.’s Sensor-Agnostic Temporal Point Clustering
Algorithm (KSAC)

Both of the previous algorithms depend on properties of the GPS satellite sig-
nals to work properly. To avoid this dependence, Kang et al. designed a sensor-
agnostic algorithm using temporal point clustering. We refer to this approach as
KSAC. KSAC takes as input a stream of timestamped coordinates derived from
any location system. It performs the segmentation and merging steps simulta-
neously using time-based clustering. For our experiments, we use the suggested
clustering parameters of time t = 300 seconds and distance d = 300 meters.

KSAC’s technology independence, although a good characteristic for an algo-
rithm to have, presents the challenge of first turning sensor logs into coordinates.
Using GPS alone provides poor results because GPS coverage is low and spotty
in daily-life usage—a fact exploited by A&S and comMotion. Therefore, we du-
plicated the approach used in KSAC by first running all of our traces through
the Place Lab location system (acquired from www.placelab.org) to produce
coordinates. For recognition using KSAC, we ran our testing traces through the
Place Lab system and used the coordinates it emitted at each time step to search
for the nearest cluster within the cluster separation radius. If no cluster is found,
the device is labeled as mobile.

3 The BeaconPrint Algorithm

Previous algorithms like A&S use exceptions experienced by the underlying lo-
cation system to learn places. For example, A&S logically reasons that the loss



of a GPS signal means the person entered a building, and entering a building
means the person is at a significant place. Reactive approaches, however, can be
sensitive to errors in the technology. For example, if a GPS signal is lost and
later acquired in the same position on multiple days as someone’s walk to work
takes them into an urban canyon, A&S could erroneously identify this point as
a place.

In contrast, BeaconPrint continually gathers statistics about the radio en-
vironment around the mobile device and uses this data to learn, merge, and
recognize waypoints. This proactive approach allows BeaconPrint to recognize
both indoor and outdoor places and be more robust to errors as our experiments
will show. Although not completely sensor agnostic like KSAC, BeaconPrint uses
as its sensors the commodity 802.11 or GSM wireless radios which are already
built into most mobile devices.

WiFi access points and GSM towers both broadcast unique identifiers for
the purpose of discovery and hand-off. For example, WiFi access points transmit
periodic beacon frames containing the AP’s unique MAC address. We refer to
these fixed radio sources as beacons. Mobile devices can periodically scan for
the IDs of nearby beacons. WiFi devices can scan without connecting to the
network or listening to any data traffic and can see the IDs of access points even
if the network is WEP encrypted. A timestamped log of these beacon scans is
the input to BeaconPrint’s learning phase.

BeaconPrint operates as follows: Define a time window w. Stable scans seen
continuously for at least w indicate a significant place. A stable scan is one that
contains no beacon IDs not seen in time w. The fingerprint (a histogram of all
the beacons seen during w) is the waypoint that allows BeaconPrint to recognize
return visits to the place. After constructing the waypoint list, BeaconPrint then
identifies and merges similar waypoints (those inferred to have come from repeat
visits to a single place). The recognition phase compares the live fingerprint seen
by the device to histograms in the waypoint list. By examining the degree of
the match, BeaconPrint is able to present a weighted and ordered list of device’s
most likely current places.

3.1 Learning

Making BeaconPrint work in practice requires a bit more logic than the basic
outline presented above. The problem with the basic version is that it cannot
distinguish beacons seen infrequently while a device is in the same physical place
(e.g. a beacon that is only detected every 100th scan because of signal atten-
uation or multipath effects) from new beacons seen as the device is physically
leaving a place. Consequently the basic version fails to learn some places and the
ones it does find are erroneously divided into multiple places by the detection of
low response-rate beacons. To fix this problem, we define a certainty parameter
c with range 0 . . . cmax and divide the window w into dwell increments of length
d = w/cmax. If d time passes without seeing a new beacon, i.e., the scans are
stable, then start collecting a fingerprint. This fingerprint’s certainty c incre-
ments every additional dwell d that passes without seeing a new beacon. When



c = cmax, the fingerprint becomes valid. Seeing a new beacon decrements c. If
c reaches 0, the fingerprint is recorded if valid or else discarded. Beacons are
considered new if they are not seen for at least w and are not in the current
fingerprint.

3.2 Parameters in BeaconPrint

BeaconPrint takes two parameters: window size w and confidence depth cmax.
Window size is the adjustment offered by most place learning algorithms to
specify how long the person must stay somewhere for it to be considered a place.
Choosing w under 2 minutes works poorly in practice because spurious places
such as stoplights and crosswalks where the person stopped only briefly will be
discovered.

The other parameter, cmax, determines the dwell time and confidence. Choos-
ing cmax too low results in the problems of the basic version where infrequently
seen beacons cause places to be erroneously fragmented. Choosing cmax too high
causes distinct places with a short physical travel distance between them to be
incorrectly grouped together because an insufficient number of new beacons to
end the fingerprint is seen during transit between the places. When the per-
son starts moving and leaves a place, the algorithm should detect new beacons
and end the fingerprint gathering within the time length of one dwell window
d = w/cmax. Therefore, if r is the average arrival rate of new beacons seen when
moving between places, this goal will be met if:

new beacons during one dwell time > max confidence
r · w

cmax
> cmax

cmax <
√

rw

Choosing cmax =
√

rw works well in practice for any window size.
To investigate the rate r, we examined our trace logs for the new beacon

arrival rate in portions of the log where the person was mobile. We first tried
to determine mobility only considering portions of the log with a valid GPS
lock indicating non-zero ground speed, however this approach proved unreliable
because the amount of time with a GPS lock is very low with receivers carried
by a typical person in his daily life. Instead, we determined mobility by ex-
tracting portions of the log where each data collector’s ground-truth diary (see
Section 4.1) indicated they were in transit between two places. This results in
an r value of 0.0631Hz, 0.0055Hz, 0.0686Hz for WiFi, GSM, and both together.
These values are used in subsequent experiments in this paper. For example,
using GSM and WiFi with a time window w of 2 minutes (120 seconds) specifies
a cmax of 3.

It may be possible to update r in real time based on beacon arrival rate.
However, detecting when the person is mobile without supervised labeling is
difficult. Although BeaconPrint itself detects mobility, the feedback loop created
by using the algorithm to tune its own r value presents a challenge. Alternatively,
a classification method such as the one provided by the Opportunity Knocks to



infer and predict the person’s mode of transportation (e.g., car, bus, bike, or
walk) [10] might make it possible to compute different r values for each mode
and improve BeaconPrint further. It is not clear, however, that adding dynamism
to r is even needed. If we repeat the rate analysis broken down by each individual
person, the consistency of r across our four data collectors suggests that instead
of online adjustments, it is appropriate to simply set r based on the beacon
technologies in use (WiFi, GSM, or both) and perhaps according to the general
beacon density of the region (e.g., beacons per square kilometer in the greater
San Fransisco Bay Area for all local residents). Examining these ideas in greater
detail is future work.

3.3 Fingerprints: Merging and Matching

Place learning algorithms using fingerprints often choose signal strength as their
metric. Instead, BeaconPrint follows the conclusions offered by LaMarca et al. [2]
and constructs its fingerprint using a response-rate histogram where response-
rate is (1-beacon loss rate). Response-rate is an aggregate statistic based on
MAC layer characteristics, signal fading, multipath, and interference. LaMarca
et al. showed that when a device is stationary, the percent of scans which see a
particular beacon can be more effective in predicting the distance to that beacon
than the signal strength values reported by the wireless network interfaces of
both WiFi cards and GSM phones.

Choosing response-rate fingerprints adds the final piece of logic to the learn-
ing algorithm: When cmax reaches 0 and a valid fingerprint is recorded, beacons
with less than cmax entries in the fingerprint histogram are discarded. This ap-
proach trims outliers and discards the new beacons which caused the fingerprint
to end when the user left the place being fingerprinted.

In implementing the NearMe location server [9], Krumm and Hinckley stud-
ied four ways to detect if two wireless signatures are similar:

1. Number of beacons the fingerprints have in common.
2. Spearman rank-order coefficient of the ordered relative signal strengths.
3. Sum of squared differences of the signal strengths.
4. Number of beacons the fingerprints do not have in common.

BeaconPrint applies the first technique, extended to operate on response-rate
histograms instead of simple sets. During the merging phase of BeaconPrint, if
the overlapping set of beacons in the two fingerprints contains more than 68%
of the weight of both histograms (68% is 1 standard deviation of a standard
normal), then the fingerprints are deemed similar and merged. For each new
fingerprint, all pairs of fingerprints are iteratively compared and merged until
the set stabilizes.

During recognition, BeaconPrint considers the device to be in a place if more
than 1 standard deviation of the weight in the observed fingerprint overlaps with
any part of the place’s fingerprint. The fingerprint currently seen by the device
thus might match multiple learned places. In this case, the list of recognized



places can be ordered by the weight of the shared beacons in each matching
place fingerprint. If no fingerprints match, the device is labeled as mobile.

4 Algorithm Evaluation

To evaluate BeaconPrint, we compare it with the three algorithms described in
Section 2.

4.1 Data Collection

To accurately evaluate BeaconPrint and overcome any startup effects, we col-
lected a substantial amount of multi-sensor trace data as well as ground-truth
about the places people actually went and the times they were there.

Sensor Logs We collected 24x7 GPS, WiFi, and GSM trace logs for one month
from each of four members of our research team as they went about their normal
lives. We choose members of our team as the data collectors instead of recruiting
external participants because the data collection task required substantial effort
as well as technical expertise to diagnose and fix any problems. Furthermore, the
data is inherently sensitive making it challenging to recruit external volunteers.
However, as we will describe in Section 5, we also conducted a small, in depth
survey study of the places people go using recruited participants to compare our
data collectors to people not on our research team.

Each data collector carried a backpack containing a laptop, mobile phone,
and 16-hour battery. The laptop had attached to it a standard WiFi network
card and a GPS unit which was modified to send data into and draw power
from the laptop’s PC card slot. As described previously, WiFi access points and
GSM towers both have unique identifiers. Our data collection software scanned
for these unique identifiers at 2Hz and kept a timestamped log of all the nearby
beacons heard in each scan. GPS data arrived in a serial stream and was logged
at 1Hz. The GSM scanning occurred on the mobile phone and was relayed to the
laptop over a Bluetooth data link. In total, we collected 3.4GB of multi-sensor
data amounting to over 1,440 hours of sensor logs. On later analysis we discovered
that one of our data collector’s laptops experienced periodic hardware failures
and its logs were segmented and incomplete. This data was excluded from our
analyses.

Ground-Truth To collect ground-truth, each data collector was given a clip-
on watch and a small paper notebook to carry with them everywhere. In the
notebook, they kept a diary of the name and time they entered and left every
place they went during the month. At the end of the data collection these diaries
were coded and each data collector used map software to indicate the coordinates
of every unique place in their diary. These diaries and maps provide the ground-
truth information about the coordinates of the actual places the data collectors
went as well as the actual times they arrived and left those places. Finally, each
data collector completed the survey study described in Section 5.



Data Collector Demographics Our data collectors are assigned the pseudonyms
Adam, Bob, and Charles.

Adam is a parent of 2 children. Many of his places involve driving his kids to
school, doctors, restaurants, and extra curricular activities. He usually walks
to work but chooses to drive about one time in four. He stops for coffee on
his way to work every day and typically goes out for coffee at least once
more during the day. He usually eats out for lunch.

Bob is a challenging person for any place learning algorithm. He lives in an area
of dense urban high-rises. The places he goes for errands and entertainment
around his home are tightly clustered and close to one another. Bob typically
takes public transit to work which is outside the urban area. He occasionally
drives to work. He eats out for lunch at a wide variety of restaurants nearly
every day. Bob frequently goes out for coffee, although less often than Adam.

Charles walks to work every day but frequently drives to specialty shops and
other destinations located several miles from his house. He packs his lunch
many days but is also a regular patron at a small set of restaurants near
his home and work. Charles is a frequent traveler, particularly on weekends.
During our logging he made two train trips to the same destination over 100
miles from his home and a plane trip to a destination over 600 miles from
his home. Obviously Charles’ log has a gap during the time he was in flight
since radio technology is prohibited on airplanes.

4.2 Experimental Results

We divided each data collector’s sensor logs in half. Each algorithm was given
the first half of the log to learn the data collector’s places. The second half of the
log was then used to evaluate how well the algorithm could recognize based on
the places it learned. Places which the data collector only visited in the second
half of their log were time-spliced out. Table 1 summarizes the results of this
experiment. It shows the percent of time each algorithm correctly identifies the
data collector’s actual place. For example, the percent of time an algorithm
correctly identifies place p is the total amount of time the algorithm predicts p
divided by the total amount of time the data collector actually spent at p. The
total percentage appearing in the table is the aggregate of this statistic across
all the data collector’s places.

Because our data collectors, like most people, spend most of their time at
home, at work, or in transit, Table 1 also shows the correctness statistics when
home and work and then when all three of these periods are omitted from the
analysis. Factoring out these periods reveals the effectiveness of each algorithm
at recognizing less frequented places.

For the total percent of the time each algorithm was incorrect, we also ana-
lyzed the data further to understand why it erred. To present these results, the
table shows a breakdown of the percent of time the algorithm made each of the
four possible errors:



Wrong means the data collector was in a place but the algorithm reported they
were in a different place.

Missed means the data collector was in a place but the algorithm reported they
were mobile.

Spurious is the result of a learning error. A spurious error occurs when the
data collector was in a place but the algorithm reported they were in another
place which does not correspond to anywhere they actually went in learning.
Merging or clustering errors are usually the cause of spurious recognition
errors.

False Positive means the data collector was actually mobile but the algorithm
reported they were in a place.

BeaconPrint performs well. It has the highest overall accuracy for all three
data collectors in all three situations presented in the table. The percent of time
it chooses the wrong place is also strictly the lowest. BeaconPrint is less accurate
for Bob when compared to its performance for Adam and Charles, but the other
algorithms are significantly worse on Bob’s data. Bob’s urban neighborhood has
a density of nearly 2000 beacons per square mile. Beacon density in and of itself
can be a good thing for a fingerprint algorithm like BeaconPrint, but density
combined with unpredictable radio propagation is not. The concrete and steel
canyons formed by urban buildings wreak havoc on the signals of GPS and other
radio technologies. Unpredictable radio propagation makes it difficult to get a
GPS lock and challenging to acquire clean beacon fingerprints with good place
discrimination capability. Consequently, learning and recognition errors rise for
Bob. Despite these challenges, BeaconPrint still performs much better for Bob
than we anticipated.

BeaconPrint’s improvement in the accuracy of recognizing places other than
home and work is particularly notable as shown by the second and third sections
of the table. To investigate these infrequent places further we examined the
percent of time the algorithm was correct, broken down by the number of visits
the data collector made to each place and the amount of time they spent in
each place. These results are presented in Figures 2 and 3. Values in parentheses
are the total number of places and amount of time our data collectors spent in
places with the given visit frequency or dwell characteristics. The right-most set
of columns on both graphs is obviously dominated by time spent at home and
work.

From these graphs it is clear that BeaconPrint provides a significant im-
provement in the ability to recognize places visited infrequently or for short vis-
its. These infrequently visited places are also quite numerous. When examined
strictly by count, they make up the majority of the places our data collectors
went. We believe BeaconPrint’s ability to recognize places that are visited infre-
quently or for short durations is the most significant contribution of the overall
accuracy improvements offered by the approach. We will examine this conclusion
further in Section 5 in the context of our survey study.
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Correctness by Number of Visits
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BeaconPrint 63.79% 80.46% 92.78% 85.09%
A&S 36.74% 10.08% 25.85% 67.74%
comMotion 11.03% 0.00% 11.89% 67.17%
KSAC 39.42% 26.36% 27.33% 84.68%

1 visit
(68 places; 49.8 hrs)
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Fig. 2. Success of each algorithm by the number of visits to the place
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Fig. 3. Success of each algorithm by time spent at the place



comMotion The comMotion algorithm was reasonably successful at learning
and recognizing the 2 or 3 places our data collectors visited regularly, but worked
poorly for other places. The requirement for the user to go to a place at least
three times before it can be recognized is overly restrictive. The small amount of
success comMotion appears to have in recognizing a one-visit place in Figure 2
is due to a coincidental learning error which turned out to be beneficial during
recognition.

Although comMotion uses GPS loss to find places, we found that the avail-
ability of GPS during transit between places was far less continuous than com-
Motion seems to assume. Bob, our data collector who lives in the urban high-rise
area, would often be mobile for a substantial period without achieving GPS lock.
He could travel from his home to the bus stop, ride the bus for 20 minutes, and
then walk a few blocks to work with little to no GPS lock—not surprising since
he lacked a clear view of the satellites for almost the entire journey. Adam and
Charles fared a bit better, probably because both of them commute by foot in
less urban areas.

A&S As in comMotion, the low availability of GPS limited the amount of
available data, although this does not hurt the accuracy of A&S as much as
might be expected. Filtering for GPS dropout windows and then also for GPS
readings with velocity less than 1mph is a clever enhancement. For example,
both Adam and Charles live in wood-frame houses where GPS had weak and
intermittent but not lost coverage. Because of its velocity filter, A&S found these
places quickly.

Hierarchical clustering of locations and sublocations did not prove useful. It
was difficult to choose a constant pair of radii for the hierarchical clustering.
Indeed, the approach yielding the highest accuracy was to only cluster locations
(not sublocations) using the single radius of 200 meters—close to the sublocation
radius proposed in the original paper. The success of single-level clustering is
logical because our data collectors do not have readily identifiable groups of
nearby places connected by longer commutes. Their places are dense in certain
areas but there are many scattered places in between. To capture these weaker
place hierarchies it may be possible to alter A&S to choose different radii for
locations and sublocations in different regions of the map, however this is not
a trivial change because it would require a different clustering algorithm. The
published clustering algorithm depends on having a single constant radius per
level.

KSAC The KSAC algorithm performed reasonably well in our experiments.
Although its performance lagged behind BeaconPrint, it was able to recognize
infrequently or briefly visited places somewhat better than A&S or comMotion
because of its use of temporal clustering. KSAC does seem to have a weakness
in its ability to distinguish mobility as seen by the high number of false positive
errors. We believe this issue arises because its clustering tries to account for



large regions resulting in a good set of place waypoints, but a lack of sharp
demarcation between places.

5 Survey Study

The data collectors mentioned previously were all members of our research team.
Therefore the question remains whether they, and hence the sensor logs they col-
lected, are representative of a wider population. To address this issue and sup-
plement the algorithmic evaluations, we conducted a survey study investigating
the places people go.

We recruited 6 participants of varying ages and professions. Note that we
use the term participants here to distinguish the people who participated in this
survey study from the data collectors who wore the backpacks and gathered the
sensor trace logs. The data collectors were also participants and completed this
study bringing the total number of survey study participants to 9. Recruited
participants consisted of 2 males and 4 females, ranged in age from 25 to 40, and
were drawn from a variety of professions including homemaker, scientist, writer,
and retail clerk. All participants were from the Seattle area. Participants received
a US $75 American Express gift cheque as a thank-you for their participation.

The study asked participants to recall all the places they go at least twice a
year (once per year for medical-related places) and within 50 miles of home. We
used two techniques to help reduce the recall bias associated with survey stud-
ies. First, we used categorical prompting. We structured the survey as a packet
where each page was a broad category such as restaurants, medical, shopping–
food, shopping–non-food, etc. The head of each page then contained check-boxes
for many subcategories which the participant could check off one-by-one as they
completed the page to remind them about the types of places they go within
categories (e.g., Asian-fusion vs. French restaurants). Second, we allowed partic-
ipants to complete the survey packet on their own time over the course of several
days, thus allowing them the opportunity to fill in places periodically as they re-
membered more. By using a carefully designed prompting exercise and leisurely
homework, we hope that we were able to gather a more complete set of places
then would have been generated from a straight recall task with participants
brought to our lab. However, we realize the list of places generated likely repre-
sents a lower bound, as participants may have forgotten about some places they
go that met the criteria and may have deliberately left off other places. For each
place, participants recorded the subcategory name, the name they use to refer
to the place, the frequency with which they visit the place, and a description or
address of its location.

We used participants’ data to search for idiosyncrasies in our data collec-
tors’ places or habits that would cast suspicion on their data logs and hence
our conclusions about the success of BeaconPrint. Fortunately, there are no
suspicious mismatches to be found. In fact, the participants’ survey data, the
data collectors’ survey data, the data collectors’ diary records of the places they
went during data logging, and even the BeaconPrint algorithm’s predictions are



very consistent as shown by Figure 4. This graph demonstrates that places our
data collectors went are not distributed in visit frequency significantly different
from the places external participants report going. This comparison supports
the claim that there is no reason to believe the BeaconPrint results will not
generalize beyond the three data collectors whose sensor logs were used in the
algorithmic analyses. The fourth column of this graph shows no data for diaries
and BeaconPrint because sensor data collection only occurred for one month.
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Fig. 4. The average number of places visited by visit frequency. Participants in the
survey study reported an average of 72.3 total significant places

Analyzing Figure 4, we hypothesize that the data collectors might have re-
ported more infrequent places (columns 3 and 4) because, being members of our
research team who frequently participated in our “hallway” discussions about
this work, they were primed to recall all the odd places they go once or twice
a year. The data collectors’ diaries, which recorded where they actually went,
however, are quite consistent with the participants’ surveys. BeaconPrint clearly
does well. The fact that the third grouping is lower for BeaconPrint can be
explained by the characteristics of the experiment. BeaconPrint’s recognition
ability was only tested on the evaluation half of the month-long sensor logs, so
multiplying the value in this case by 2 is probably appropriate, thus raising it
to a comparable level.



6 Future Work

Armed with statistics about the amount of time BeaconPrint is correct, we
plan to conduct additional user studies to understand the ways in which people
respond to wrong, missed, spurious, and false positive errors. We hope to under-
stand which types of errors are benign and which are egregious in the context of
different applications and scenarios from the users’ perspective. This new study
will both inform our design of place-enhanced applications and help us focus
future work on improving the BeaconPrint algorithm.

Algorithmically, we plan to extend BeaconPrint to support partially super-
vised learning of places. Active Campus Explorer (ACE) [11] has shown the value
of allowing users to click or tap the screen of their mobile device to indicate their
actual position when the location system is unsure. ACE uses this correction to
improve its accuracy whenever the user is again near the corrected position.
ACE has shown that these manual corrections have low cognitive overhead on
users and are a well liked feature. We believe that manual correction techniques
extend quite naturally to BeaconPrint and have the potential to significantly
improve its accuracy by avoiding any ambiguity about when to collect a finger-
print for a place. We also imagine that the mechanism for manual correction in
BeaconPrint could be combined with an interface for adding semantics or names
(e.g., “home”) to the places BeaconPrint learns.

7 Conclusion

The BeaconPrint algorithm presented in this paper addresses the problem of au-
tomatically learning the places a person takes their mobile device and then being
able to recognize whenever the device returns there. BeaconPrint uses 802.11 and
GSM response-rate histograms to learn and recognize places using radio finger-
prints. Using 802.11 and GSM radios as its sensors allows BeaconPrint to run
on commodity hardware, since many mobile devices have these radios built in.
BeaconPrint can begin to recognize a place after the first time the devices goes
there. We evaluated BeaconPrint using 1 month of multi-sensor trace logs from
each of three people.

BeaconPrint increases the accuracy of place learning and recognition to over
90%. When it does err, the percent of time BeaconPrint chooses the wrong place
is also lower than previous approaches. The largest contribution of BeaconPrint,
however, is its success in learning and recognizing places visited infrequently
or only for short durations. People in our studies averaged 72.3 places they go
at least twice a year (or once per year for medical-related places). Only 1 or 2
of these places are visited every day (usually home and work) and only 7 or 8
others are visited at least weekly. The other 63 places are visited infrequently.
Although places visited most frequently are arguably the most personally signif-
icant, previous algorithms are generally quite poor at learning and recognizing
anything except those most frequented places. Their accuracy with infrequent
places averages 5-35%. BeaconPrint patches this deficiency by demonstrating an



accuracy rate of over 63% even for places someone returns to only once or visits
for less than 10 minutes, increasing to 80% accuracy for places visited twice.
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