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CHAPTER 7 

Learning and Relearning in Boltzmann Machines 

G. E. HINTON and T .  J. SEJNOWSKI 

Many of the chapters in this volume make use of the ability of a paral- 
lel network to perform cooperative searches for good solutions to prob- 
lems. The basic idea is simple: The weights on the connections 
between processing units encode knowledge about how things nornlally 
f i t  together in some domain and the initial states or external inputs to a 
subset of the units encode some fragments of a structure within the 
domain. These fragments constitute a problem: What is the whole 
structure from which they probably came? The network computes a 
"good solution" to the problem by repeatedly updating the states of 
units that represent possible other parts of the structure until the net- 
work eventually settles into a stable state of activity that represents the 
solution. 

One field in which this style of computation seems particularly 
appropriate is vision (Ballard, Hinton, & Sejnowski, 1983). A visual 
system must be able to solve large constraint-satisfaction problems 
rapidly in order to interpret a two-dimensional intensity image in terms 
of the depths and orientations of the three-dimensional surfaces in the 
world that gave rise to that image. In general, the information in the 
image is not sufficient to specify the three-dimensional surfaces unless 
the interpretive process makes use of additional plausible constraints 
about the kinds of structures that typically appear. Neighboring pieces 

of an image, for example, usually depict fragments of surface that have 
similar depths, similar surface orientations, and the same reflectance. 
The most plausible interpretation of an image is the one  that satisfies 



1 I constrai~its of this kind as well as possible, and the human visual sys- 
I ten1 stores enough plausible constraints and is good enough at applying 

them that i r  can arrive at the correct interpretation of most normal 

images. 
The computation may be perl'orrnetl by a n  iterative search which 

starts with a poor interprelation and progressively improves i t  by reduc- 

ing a cost function that measures the extent to which the current 

interpretation violates the plausible constraints. Suppose, for example, 

that each un i t  stands for a small three-dimensional surface fragment, 

and the state of the unit  indicates the current bet about whether that 

surface fragment is part of the best three-dimensional interpretation. 

Plausible constraints about the nature of surfaces can then be encoded 

by the pairwise interactions between processing elements. For 

example, iwo units that stand Sor neighboring surface fragments of 

similar depth and surface orientation can be mutually excitatory to 

encode the constraints that each of these hypotheses tends to support 

the other (because objects tend to have continuous surfaces). 

RELAXATION SEARCHES 

The general idea of using parallel networks to perform relaxation 

searches that simultaneously satisf'y multiple constr~~ints is appealing. I t  

might even provide a successor to telephone exchanges, holograms, or 

con~n~unities of agents as a metaphor f'or the style of  computation in 

cerebral cortex. But some tough technical questions have to be 

answered before this style of computation can be accepted as either 
efficient or plausible: 

Will the network settle down or will it  oscillate or wander aim- 

lessly? 

What does the network compute by settling down? We need 

some characterization of the computation that the network per- 
forms other than the network itself. Ideally we would like to 

be able to say what ought to be computed (Marr, 1982) and 

then to show that a network can be made to compute i t .  

How long does the network take to settle on a solution? If 

thousands of iterations are required the method becomes 

implausible as a model of how the cortex solves constraint- 

satisfaction problems. 



How much information does each unit need to convey to its 
'neighbors? In many relaxation schemes the units communicate 
accurate real values to one another on each iteration. Again 

this is implausible if the units are intended to be like cortical 
neurons which comn~unicate using all-or-none spikes. To send 
a real-value, accurate to within 5%, using firing rates requires 
about 100 ms which is about the time allowed for the whole 
iterative process to settle down. 

How are the weights that encode the knowledge acquired? For 
models of low-level vision i t  is possible for a programmer to 
decide on the weights, and evolution might do the same for the 
earliest stages of biological visual systems. But if the same kind 
of constraint-satisfaction searches are to be used for higher 
level functions like shape recognition or content-addressable 
memory, there must be some learning procedure that autornati- 
cally encodes properties of the domain into the weights. 

This chapter is mainly concerned with the last of these questions, b u ~  

the learning procedure we present is an unexpected consequence of our 
attempt to answer the other questions, so we shall start with them. 

Relaxation, Optimization, and Weak Constraints 

One way of ensuring that a relaxation search is computing something 
sensible (and will eventually settle down) is to show that i t  is solving an 
optimization problem by progressively reducing the value of a cost 
function. Each possible state of activity of the network has an associ- 
ated cost, and the rule used for updating activity levels is chosen so 
that this cost keeps falling. The cost function must be chosen so that 
low-cost states represent good solutions to problems in the domain. 

Many optimization problems can be cast in a framework known as 
linear programming. There are some variables which take on real 
values and there are linear equality and inequality constraints bet ween 
variables. Each combination of values for the variables has an associ- 
ated cost which is the sum over all the variables of the current value 
times a cost-coefficient. The aim is to find a combination of values 
that satisfies all the constraints and minimizes the cost function. If the 
variables are further constrained to take on only the values 1 or 0 the 
problem is called zero-one programming. Hinton (1977) has shown 
that certain zero-one programming problems can be implemented as 
relaxation searches in parallel networks. This allows networks to find 
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good solutions to problems in which there are discrete hypotheses that 

are true or false. Even though the allowable so lu t~ons  all assign values 

of 1 or 0 to the hypotheses, the relaxation process works by passing 

through intermediate states in which hypothesis units have real-valued 

act~vity levels lying between 1 and 0. Each constraint is enforced by a 

feedback loop that measures the amount by which the current values 

violate the constraint and tries to alter the values of the variables to 

reduce this violation. 

Linear programming and its variants make a sharp distinction 

between constraints (which must be satisfied) and costs. A solution 

which achieves a very low cost by violating one or two of the con- 

straints is simply not allowed. In many domains, the distinction 

between constraints and costs is not so clear-cut. In vision, for 

example, i t  is usually helpful to use the constraint that neighboring 

pieces of surface are at similar depths because surfaces are mostly con- 

t ~ n u o u s  and are rarely parallel to the line of sight. But this is not an 

absolute constraint. I t  doesn't apply at the edge of an object. So a 

visual system needs to be able to generate interpretations that violate 

this constraint if i t  can satisfy many other constraints by doing so. 

Constraints like these have been called "weak" constraints (Blake, 1983) 

and ~t is possible to formulate optimization problems In which all the 

constraints are weak and there is no distinction between constraints and 

costs. The optimal solution is then the one wh~ch  m i n ~ m ~ z e s  the total 

constraint violation where different constraints are glven different 

strengths depending on how reliable they are. Another way of saying 

this is that all the constraints have associated plaus~bilities, and the 

most plausible solution is the one  which fits these plausible constraints 

as well as possible. 

Some relaxation schemes dispense with separate feedback loops for 

the constraints and implement weak constraints directly in the excita- 

tory and inhibitory interactions between units. We would like these 

networks to settle into states in which a few units are fully active and 

the rest are inactive. Such states constitute clean "digital" interpreta- 

tions. To  prevent the network from hedging its bets by settling into a 

state where many units are slightly active, i t  is usually necessary to use 

a strongly nonlinear decision rule, and this also speeds convergence. 

However, the strong nonlinearities that are needed to force the network 

to make a decision also cause it to converge on different states on dif- 

ferent occasions: Even with the same external inputs, the final state 

depends on the initial state of the net. This has led many people (Hop- 

field, 1982; Rosenfeld, Hummel, & Zucker, 1976) to assume that the 

particular problem to be solved should be encoded by the initial state of 

the network rather than by sustained external input to some of its 

units. 



Hummel and Zucker (1983) and Hopfield (1982) have shown that 

some  relaxation Schemes have an associated "potential" or cost function 
and that the states to which the network converges are local minima of 

this function. This means that the  networks are  performing optiniiza- 
tion of a well-defined function. Unfortunately, there is no guarantee 
that the network will find the best minimum. One  possibility is to 

redefine the problem as finding the  local minimum which is closest to 

the initial state. This is useful if the  minima are  used to represent 
"items" in a memory, and the initial states are queries to memory 
which may contain missing or  erroneous information. The  network 

simply finds the minimum that best fits the query. This idea was used 
by Hopfield (1982) who introduced an  interesting kind of network in 

which the units were always in one  of two states. '  Hopfield showed that 

if the units are syn~metrically connected (i.e., the weight from unit i to 

unit j exactly equals the weight from unit j to unit i) and if they are 

updated one  at a time, each update reduces (or at worst does not 
increase) the value of a cost function which he  called "energy" because 

of the analogy with physical systems. Consequently, repeated iterations 

are guaranteed to find an energy minimum. T h e  global energy of the 

system is defined as 

where w,, is the strength of connection (synaptic weight) from the , j th  

to the i th  unit, s, is the state of the i t h  unit (0 or l ) ,  and 0 ,  is a 
threshold. 

T h e  updating rule is to switch each unit into whichever of its two 

states yields the lower total energy given the  current states of the other 

units. Because the connections are symmetrical, the difference between 

the  energy of the whole system with the  k t h  hypothesis false and its 

energy with the k th hypothesis t rue can be  determined locally by the 

k t h  unit, and is just 

Therefore,  the rule for minimizing the  energy contributed by a unit is 

to adopt the true state if its total input f rom the other units exceeds its 

threshold. This is the familiar rule for binary threshold units. 

I Hopfield used the states 1 and - 1 because his model was derived from physical sys- 

tems called spin glasses in which spins are either "up" or "down." Provided the units 

have thresholds, models that use 1 and - 1 can be translated into models that use 1 and 0 
and have different thresholds. 
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) Using  Probabi l is t ic  Dec i s ions  t o  Escape  F r o m  Local Min ima  

1 At about the same t ime that Hopfield showed how parallel networks 

of this kind could be used to access memories that were stored as local 

minima, Kirkpatrick, working at IBM, introduced an interesting new 
i search technique for solving hard optimization problems on conven- 

tional computers.  

One  standard technique is to  use gradient descent: The values of the 
variables in the problem are modified in whatever direction reduces the 

cost function (energy). For hard problems, gradient descent gets stuck 
at local minima that a re  not globally optimal. This is an inevitable 

consequence of only allowing downhill moves. If jumps to higher 

energy states occasionally occur, i t  is possible to break out of local 

minima, but i t  is not obvious how the  system will then behave and i t  is 

far from clear when uphill steps should be allowed. 

Kirkpatrick, Gelatt, and Vecchi (1983) used another physical analogy 

to guide the  use of occasional uphill steps. T o  find a very low energy 

state of a metal, t he  best strategy is to melt it and then to slowly reduce 

its temperature.  This process is called annealing, and so they named 

their search method "simulated annealing." Chapter 6 contains a dis- 
cussion of why annealing works. W e  give a simple intuitive account 

here. 

One  way of seeing why thermal noise is helpful is to consider the 

energy landscape shown in Fig~lre  1 .  Let us suppose thar a ball-bearing 

starts at a randomly chosen point on the landscape. I f  i t  always goes 

downhill (and has no  inertia), i t  will have an even chance of ending up 

at A or B because both minima have the same width and so the initial 

FIGURE 1. A simple energy landscape containing two local nimrna separated by a n  

energy barrier. Shaking can be used to allow the state of the network (represented here 

by a ball-bearing) to escape from local minima. 



random point is equally likely to  lie in either minimum. If we shake 

the .whole system, we are more likely to shake the ball-bearing from A 

to B than vice versa because the  energy barrier is lower from the A 

side. If the shaking is gentle, a transition from A to B will be many 

times as probable as a transition from B to A, but both transitions will 
be very rare. So although gentle shaking will ultimately lead to a very 

high probability of being in B rather than A, it  will take a very long 
time before this happens. On the other hand, if the shaking is violent, 

the ball-bearing will cross the barrier frequently and so  the ultimate 

probability ratio will be approached rapidly, but this ratio will not be 
very good: With violent shaking i t  is almost as easy to cross the barrier 
in the  wrong direction (from B to A) as in the right direction. A good 

compromise is to  start by shaking hard and gradually shake more and 
more gently. This ensures that at some stage the noise level passes 

through the best possible compromise between the absolute probability 

of a transition and the ratio of the probabilities of good and bad transi- 
tions. I t  also means that at the end, the ball-bearing stays right at the 

bottom of the chosen minimum. 
This view of why annealing helps is not the whole story. Figure 1 is 

misleading because all the states have been laid out in one dimension. 

Complex systems have high-dimensional state spaces, and so the barrier 
between two low-lying states is typically massively degenerate: The 

number of ways of getting from one low-lying state to another is an 

exponential function of the height of the barrier one is willing to cross. 

This means that a rise in the level of thermal noise opens u p  an enor- 

mous variety of paths for escaping from a local minimum and even 

though each path by itself is unlikely, i t  is highly probable that the sys- 

tem will cross the barrier. We conjecture that simulated annealing will 

only work well in domains where the energy barriers are highly 

degenerate. 

Applying Simulated Annealing to Hopfield Nets 

There is a simple modification of Hopfield's updating rule that allows 

parallel networks to implement simulated annealing. If the energy gap 

between the 1 and 0 states of the k t h  unit is AEk then, regardless of 

the previous state set, sk = 1 with probability 



where T is a parameter which acts like the temperature of a physical 

system. This local decision rule ensures that in thermal equilibrium the  

relative probability of two global states is deterniined solely by their 

energy difference, and follows a Boltzmann distribution: 

where P, is the  probability of being in the a t h  global state, and E,, is 

the energy of that state. 

At low temperatures there is a strong bias in favor of states with low 
energy, but t he  t ime required to reach equilibrium may be long. At 

higher temperatures the bias is not so  favorable, but equilibrium is 
reached faster. T h e  fastest way to reach equilibrium at a given tem- 

perature is generally to use simhlated annealing: Start with a higher 

temperature and  gradually reduce it. 

T h e  idea of implementing constraints as interactions between sto- 

chastic processing elements was proposed by Moussouris (1 974) who 

discussed the identity between Boltzniann d~srributions and Markov 

random fields. T h e  idea of using simulated annealing to find low 

energy states in parallel networks has been investigated independently 
by several different groups. S. Genian and D. Geman (1984) esta- 

blished limits on  the allowable speed of the annea l~ng schedule and 

showed that siniulated annealing can be very efl'ect~ve for removing 

noise from images. Hinton and Sejnowski (1983b) showed how the use 
of binary stochastic elements could solve some problems that plague 

other relaxation techniques, in particular the problem of learning the 

weights. Smolensky ( 1  983) has been investigating a similar scheme 

which h e  calls "harmony theory." This scheme is discussed in detail in 

Chapter 6. Smolensky's harmony is equivalent to our energy (with a 
sign reversal). 

Pattern Completion 

One  way of using a parallel network is to treat it as a pattern comple- 

tion device. A subset of the units are "clamped" into their on  or  off 
states and the  weights in the  network then complete the pattern by 
determining the  states of the  remaining units. There are  strong limita- 

tions o n  the  sets  of binary vectors that can be learned if the network 
has o n e  unit for  each component of the vector. These limits can be 

transcended by using extra units whose states d o  not correspond to  
components in t he  vectors to  be  learned. T h e  weights of connections 

t o  these extra units can be  used to represent complex interactions that 



cannot be expressed as pairwise correlations between the con~ponents  
of the' vectors. We call these extra units hiddcn uuits (by analogy with 
hidden Markov processes) and we call the  units that are used to specify 
the patterns to be learned the visible unils. T h e  visible units are the 

interface between the network and the environment that specifies vec- 
tors for it to learn or  asks i t  to complete a partial vector. The  hidden 

units are where the network can build its own internal representations. 

Sometimes, we would like to be able to complete a paltern from any 

sufficiently large part of i t  without knowing in advance which part will 
be given and which part must be completed. Other times we know in 

advance which parts will be given as input and which parts will have to 
be completed as output.  So there are  two different completion para- 

digms. In the first, any of the visible units might be part of the 

required output.  In the second, there is a distinguished subset of the 

visible units, called the input units, which are always clamped by the 

environment,  so  the network never needs to determine the states of 

these units. 

EASY AND HARD LEARNING 

Consider a network which is allowed to run freely, using the proba- 

bilistic decision rule in Equation 3, without having any of its units 

clamped by the environment.  When the network reaches thermal 

equilibrium, the probability of finding i t  in any particular global state 
depends only on the energy of that state (Equation 4 ) .  We can there- 

fore control the probabilities of global states by controlling their ener- 
gies. If each weight only contributed to the energy of a single global 
state, this would be straightforward, but changing a weight will actually 

change the energies of many different states s o  i t  is not immediately 

obvious how a weight-change will affect the  probability of a particular 

global state. Fortunately, if we run the network, until i t  reaches thermal 

equilibrium, Equations 3 and 4 allow us to derive the way in which the 
probability of each global state changes as a weight is changed: 

where SF is the  binary state of the i t h  unit in the a t h  global state and 

P i  is the probability, at thermal equilibrium, of global state a of the 
network when none  of the visible units are  clamped (the lack of clamp- 
ing is denoted by the  superscript - ) .  Equation 5 shows that the effect 
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of a weight on  the  log probabil ity of a global state can be computed 

from purely local information because i t  only involves the behavior of 

the  two units that the weight connects ( the second term is just the 

probability of finding the i t h  and j t h  units on  together).  This makes i t  

easy to  manipulate the  probabilities of global states provided the desired 

probabilities are  known (see Hinton & Sejnowski, 1983a, for details). 

Unfortunately, it is normally unreasonable to expect the environment 

o r  a teacher to specify the required probabilities of entire global states 

of the  network. T h e  task that the network must perform is defined in 

terms of the states of the visible units, and s o  the environment or  
teacher only has direct access to the states of these units. The difficult 

learning problem is to  decide how to use the hidden units to help 

achieve the required behavior of the visible units. A learning rule 

which assumes that the  network is instructed from outside on how to 

use all of its units is of limited interest because i t  evades the main 

problem which is to discover appropriate representations for a given 

task among the hidden units. 

In statistical terms, there are many kinds of statistical structure irnpli- 

cit in a large ensemble of environmental vectors. The  separate proba- 

bility of each visible unit being active is the  first-order structure and 

can be captured by the thresholds of the visible units. The v2/ 2 pair- 

wise correlations between the 11 visible units constitute the second- 

order structure and this can be captured by the weights between p t l r j  of' 
units.* All structure higher than second-order cannot be captured by 

pairwise weights be tweet^ tl ic vis~hlr ~it1ir.s. A simple example may help to 

clarify this crucial point. 

Suppose that the ensemble consists of the vectors: ( 1  1 01, ( 1  0 l ) ,  
(0 1 l ) ,  and (0  0 01, each with a probability of 0.25. There IS  clearly 

s o m e  structure here because four of the eight possible 3-bit vectors 

never occur. However, the structure is entirely third-order. The  f~ r s t -  

order probabilities are  all 0.5, and the second-order correlations are all 

0, s o  if we consider only these statistics, this ensemble is indistinguish- 

able from the  ensemble in which all eight vectors occur equiprobably. 

T h e  Widrow-Hoff rule or  perceptron convergence procedure (Rosen- 

blatt, 1962) is a learning rule which is designed to capture second-order 

structure and it therefore fails miserably o n  the  example just given. If 

t he  first two bits a re  treated as an input and the  last bit is treated as the 

required output,  the  ensemble corresponds to  the function "exclusive- 

or" which is o n e  of the  examples used by Minsky and Papert (1969) to  

show the  strong limitations of one-layer perceptrons. The  Widrow-Hoff 

2 Factor analysis confines itself to capturing as much of the second-order structure as 

possible in a few underlying "factors." I t  ignores all higher order structure which is where 

much of the interesting information lies for all but the most simple ensembles of vectors. 



rule can d o  easy learning, but i t  cannot d o  the kind of hard learning 

that involves deciding how to use extra units whose behavior is not 
directly specified by the task. 

I t  is tempting to think that networks with pairwise connections can 
never capture higher than second-order statistics. There is one  sense in 

which this is true and another in which i t  is false. By introducing extra 

units which are not part of the definition of the original ensemble, i t  is 

possible to express the third-order structure of the original ensemble in 
the second-order structure of the larger set of units. In the example 

given above, we can add a fourth component to get the ensemble 

( ( 1  101), ( l o l o ) ,  (01 l o ) ,  (0000)). It is now possible to use the thresh- 
olds and weights between all four units to express the third-order struc- 

ture in the Sirst three components. A more familiar way of saying this 

is that we introduce an extra "feature detector" which in this example 

detects the case when the first two units are both on.  W e  can then 

make each of the first two units excite the third unit, and use strong 

inhibition from the feature detector to overrule this excitation when 
botli of the first two units are on.  T h e  difficult problem in introducing 

[he extra unit was deciding when i t  should be on and when i t  should be 

off-deciding what feature i t  should detect.3 

One  way of thinking about the higher order structure of an ensemble 

of environnlental vectors is that i t  implicitly specifies good sets of 

underlying features that can be used to model the structure of the 

environment.  In  common-sense terms, the weights in the network 

should be chosen so that the hidden units represent significant underly- 

ing features that bear strong, regular relationships to each other and to 

the states of the visible units. T h e  hard learning problem is to figure 

out what these features are, i.e., to find a set of weights which turn the 

hidden units into useful feature detectors that explicitly represent 

properties of the environment which are only implicitly present as 

higher order statistics in the ensemble of environmental vectors. 

Maximum Likelihood Models 

Another view of learning is that the weights in the  network consti- 

tute a generative model of the environment-we would like to find a 

set of weights so  that when the network is running freely, the patterns 

of activity that occur over the visible units are the  same as they would 
be if the environment was clamping them. T h e  number of units in the 

3 In  this example there are six different ways o f  using rhe extra unit to solve the task 



network and their interconnectivity define a space of possible models of' 

the environment ,  and any particular set of weights defines a particular 
model within this space. T h e  learning problem is to I'ind a combination 

of weights that gives a good model given the limitations imposed by the 

architecture of the network and the way i t  runs. 

More forn~al ly,  we would like a way of finding the combination ol' 

weights that is most likely to have produced the observed ensemble of 

environmental vectors. This is called a ~ ? ~ a s i t ? ~ u t ~  l ~ ~ c l i h o o t i  model and  

there is a large literature within statistics on maximum likelihood esti- 

mation. T h e  learning procedure we describe actually has a close rela- 

tionship to a r n e ~ h o d  called Expectation and Maximiza~ion (EM)  
(Dempster,  Laird, & Rubin, 1976). EM is used by statisticians for 

estimating missing pararneters. I t  represents probability distributions by 

using pararneters like our  weights that are exponentially related to 

probabilities, rather than using probabilities themselves. The  EM algo- 

rithm is closely related to an earlier algorithm invented by Baum that 
manipulates probabilities directly. Baum's algorithm has been used suc- 

cessfully for speech recognition (Bahl, Jelinek, & Mercer, 1983).  I t  

estimates the parameters of a hidden Markov chain-a transition net- 

work which has a fixed s t r u c t ~ ~ r e  but variable probabilities on the arcs 

and variable probabilities of eniirting a particular output symbol ;is i t  

arrives at each internal node. Given an ensemble of strings of' synibols 

and a fixed-topology transition network, the algor-it hm finds the combi- 

nation of transition probabilities and output probabilities that is most 

likely to have produced these strings (actually i t  only finds a local max-  

imum).  

Maxirnuni likelihood methods work by adjusting the pa rme te r s  to 

increase the probability that the generative model will produce the 

observed data. Baum's algorithm and EM are able to estimate new 

values for the  probabilities (or weights) that are guaranteed to be better 

than the  previous values. Our algorithm simply estimates the gradient 

of the  log likelihood with respect to  a weight, and so the magnitude of 

the  weight change must be decided using additional criteria. Our algo- 

ri thm, however, has the advantage that i t  is easy to implement in a 

parallel network of neuron-like units. 

T h e  idea of a stochastic generative model is attractive because it  pro- 

vides a clean quantitative way of comparing alternative representational 

schemes. T h e  problem of saying which of two representational schemes 
is best appears to  be intractable. Many sensible rules of thumb are  

available, but these a re  generally pulled out of thin air and justified by 
commonsense and practical experience. They lack a firm mathematical 

foundation. If we confine ourselves to a space of allowable stochastic 

models, we can then get a simple Bayesian measure of the quality of a 
representational scheme: How likely is the  observed ensemble of 



environmental vectors given the representational scheme? In our net- 

works, representations are  patterns of activity in the units, and the 

representational scheme therefore corresponds to the set of weights that 

determines when those patterns a re  active. 

THE BOLTZMANN MACHINE LEARNING ALGORITHM 

If we make certain assumptions it is possible to  derive a measure of 

how effectively the  weights in the network are  being used for modeling 

the structure of the  environment,  and it is also possible to  show how 

the weights should be changed to  progressively improve this measure. 

W e  assume that the  environment clamps a particular vector over the 

visible units and i t  keeps it there long enough for the network to reach 

thermal equilibrium with this vector as a boundary condition (i.e., to 
"interpret" i t ) .  W e  also assume (unrealistically) that the  there is no 

structure in the sequential order of the  environmentally clamped vec- 

tors. This means that the complete structure of the ensemble of 

environmental vectors can be specified by giving the probability, 
P+(<, ) ,  of each of the 2' vectors over the  v visible units. Notice that 

the P + ( V , )  d o  not depend on the weights in the network because the 

environment clamps the  visible units. 

A particular set of weights can be said to constitute a perfect model 
of the structure of the environment if it leads to exactly the same 

probability distribution of visible vectors when the network is running 
freely with no units being clamped by the environment. Because of the sto- 

chastic behavior of the  units, the network will wander through a variety 

of states even with no  environmental input and it will therefore gen- 
erate a probability distribution, P - (  V,), over all 2' visible vectors. 

This distribution can be compared with the  environmental distribution, 

P+(V, ) .  In general, it will not be  possible t o  exactly match the 2" 
environmental probabilities using the  weights among the  v visible and 

h hidden units because ' there  a re  at most (v+ h- 1 ) (v+ h ) / 2 
symmetrical weights and  (v+ h ) thresholds. However, it may be possi- 

ble t o  d o  very well if the  environment contains regularities that can be 

expressed in the weights. An information theoretic measure (Kullback, 

1959) of the  distance between the  environmental and free-running 

probability distributions is given by: 

where P + (  V,) is t he  probability of t he  a t h  state of the  visible units in 
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phasef when their states are  determined by the environrnen t ,  and 

P - (  V,) is t he  corresponding probabil~ty In phase- when the network I \  

running freely with n o  environmental input. 

G is never negative and is only zero if the  distribut~ons are ident~cal 

G is actually t he  distance in bits j iom the free running d i s t r~bu t~on  t o  

the  environmental d i ~ t r i b u t i o n . ~  I t  is sometimes called the asymnieti-lc 

divergence or  information gain. T h e  measure is not symmetric with 

respect t o  the  two distributions. This seems odd but is actually very 

reasonable. When  trying to approximate a probabiltty d i s t r~bu t~on ,  i t  I S  

more  important to  get the probabilities correct for events that happen 

frequently than for rare events. So the  match between the actual and 

predicted probabilities of an event should be weighted by the actual 

probability as in Equation 6. 
It is possible to  improve the network's model of the structure of its 

environment  by changing the weights s o  as to reduce G ' To perform 

gradient descent in G ,  we need to know how G wrll change when a 

weight is changed. But changing a single weight changes the energles 

of o n e  quarter of all the global states of the  network, and i t  change5 the 
probabilities of all the states In ways that depend on 011 the other 

weights in t he  network. Consider, for example, the very s ~ m p l e  net- 

work shown in Figure 2. If we want the two units at the end5 of the 

chain to be either both on or both off, how should we change thc 

weight w 3  4?  I t  clearly depends on the slgns of remote ue1gh15 l ~ k e  

because we need to  have an even number of i nh~b~ to r !  \reightb In rhc 

chain. So  the  partial der iva t~ve  of G w ~ t h  re5pecL to onc wo~ght 

depends on all the  other weights and minimizing G nppears I O  be 'i 

input 

unit 
output 

unit 

FIGURE 2 A very s ~ r n p l e  network w ~ t h  o n e  Input unlt,  o n e  output unlt dnd Iiro h ~ d d e n  

unlts T h e  task is t o  m a k e  the  output  unlt adopt t h e  s a m e  state 'is the Input unlt T h e  

d~ff icul ty IS that t h e  correct value for weight w 3  depends  o n  remote ~nfornintion Itke the  

value of  w e ~ g h t  w 

4 If we use base 2 logarithms. 

5 Peter Brown (personal communicat ion)  has pointed out that minimizing G is 

equivalent t o  maximizing t h e  log of  t h e  likelihood of  generating the environmental 

probability distribution when the  network is running freely at equilibrium. 

6 T h e  thresholds mus t  also be  adjusted appropriately 



difficult computational problem that requires nonlocal information. 

Fortunately, all the  information that is required about the other 

weights in order to  change w,, appropriately shows up in the behavior 

of the  i t h  and j t h  units at thermal equilibrium. In addition to perform- 

ing a search for low energy states of the  network, the process of reach- 

ing thermal equilibrium ensures that the  joint activity of any two units 

contains all the  information required for changing the weight between 

them in order to  give the  network a better model of its environment. 
T h e  joint activity implicitly encodes information about all the other  

weights in the  network. T h e  Appendix shows that 

where p,: is the probability, averaged over all environmental inputs and 

measured at equilibrium, that the  i t h  and j t h  units are both on when 

the network is being driven by the  environment, and p,; is the 
corresponding probability when the network is free running. One  

surprising feature of Equation 7 is that i t  does not matter whether the 

weight is between two visible units, two hidden units, or one of each. 

T h e  same rule applies for the gradient of G .  

Unlearning 

Crick and Mitchison (1983) have suggested that a form of reverse 

learning might occur during REM sleep in mammals. Their proposal 
was based on the assumption that parasitic modes develop in large net- 

works that hinder the distributed storage and retrieval of information. 
T h e  mechanism that Crick and Mitchison propose is based on 

More o r  less random stimulation of the forebrain by the brain 
s tem that will tend to  stimulate the inappropriate modes of 

brain activity . . . and especially those which are too prone to be 

set off by random noise rather than by highly structured 

specific signals. (p. 1 12) 

During this state of random excitation and free running they postulate 

that changes occur at synapses to  decrease the probability of the 

spurious states. 

A simulation of reverse learning was performed by Hopfield, Fein- 

stein, and Palmer (1983) who independently had been studying ways to  
improve the associative storage capacity of simple networks of binary 

processors (Hopfield, 1982). In their algorithm an input is presented to  
the  network as  an  initial condition, and the system evolves by falling 



into a nearby local energy minimum. However, not all local energy 
minima represent stored information. In creating the desired minima, 

they accidentally create other  spurious minima, and ro eliminate these 
they use "unlearning": T h e  learning procedure is applied with reverse 

sign to  the  states found after starting from random initial conditions. 

Following this procedure, the performance of the system in accessing 

stored states was found to  be improved. 

There is an  interesting relationship between the reverse learning pro- 

posed by Crick and Mitchison and Hopfield et al. and the form of rhe 

learning algorithm which we derived by considering how to minimize 

an information theory measure of the discrepancy between the environ- 

mental structure and  the network's internal model (1-Iinton & 
Sejnowski, 1983b). T h e  two phases of our learning algorithm resemble 

the learning and  unlearning procedures: Positive Hebbian learning 

occurs in phase.+ during which information in the environ~iient is cap- 

tured by the weights; during phase- the system randomly samples states 

according to their Boltzmann distribution and Hebbian learning occurs 

with a negative coefficient. 

However, these two phases need not be implemented in the manner 

suggested by Crick and Mitchison. For example. during pI1a.s.c the 

average co-occurrences could be computed without rnaking any changes 

to the weights. These  averages could then be used as a baseline for 

making changes during phasef; that is, the co-occurrences during 

p/ ia~o '  could be computed and the baseline subtracred before each per- 

manent weight change. Thus ,  an alternative but equivalenr proposal for- 

the function of dream sleep is to recalibrate the baseline for- 

plasticity-the break-even point which determines whether a synaptic 

weight is incremented or  decremented. This would be safer than mak- 

ing permanent weight decrements to synaptic weights during sleep and 

solves the problem of deciding how much "unlearning" to do. 

Our  learning algorithm refines Crick and Mitchison's interpretation 

of why two phases a re  needed. Consider a hidden unit deep within the 

network: How should its connections with other units be changed to 

best capture regularity present in the  environment? If i t  'does not 

receive direct input f rom the  environment,  the hidden unit has no  way 

to  determine whether t he  information it receives from neighboring 

units is ultimately caused by structure in the environment or is entirely 

a result of the  other weights. This can lead to a "folie a deux" where 

two parts of t he  network each construct a model of the other and 

ignore the  external environment.  T h e  contribution of internal and 

external sources can be  separated by comparing the co-occurrences in 

phasef with similar information that is collected in the absence of 

environmental input. phase- thus  acts as a control condition. Because 

of the special properties of equilibrium it  is possible to subtract off this 



purely internal contribution and use the difference to update the 

weights. 'Thus, the role of the two phases is to make the system maxi- -- 
mally responsive to regularities present in the environment and to 

prevent the system from using its capacity to model internally- 

generated regularities. 

Ways  in Which  t h e  Learning Algor i thm C a n  Fail 

The  ability to discover the partial derivative of 6 by observing /I,; 

and p; does not completely determine the learning algorithm. I t  is still 
necessary to  decide how much to change each weight, how long to col- 

lect co-occurrence statistics before changing the weight, how many 

weights to change at a time, and what temperature schedule to use dur- 
ing the  annealing searches. For very simple networks in very simple 

environments, i t  is possible to discover reasonable values for these 
parameters by trial and error. For more complex and interesting cases, 

serious difficulties arise because it is very easy to violate the assump- 

tions on which the mathematical results are based (Derthick, 1984). 
The  first difficulty is that there is nothing to prevent the learning 

algorithm from generating very large weights which create such high 

energy barriers that the network cannot reach equilibrium in the allot- 
ted time. Once this happens, the statistics that are collected will not be 

the equilibrium statistics required for Equation 7 to hold and so all bets 

are off. We have observed this happening for a number of different 
networks. They start off learning quite well and then the weights 

become too large and the network "goes souru-its performance 

deteriorates dramatically. 

One way to ensure that the network gets close to equilibrium is to 

keep the  weights small. Pearlmutter (personal communication) has 
shown that the learning works much better if, in addition to the weight 

changes caused by the  learning, every weight continually decays towards 
a value of zero, with the speed of the decay being proportional to the 
absolute magnitude of the  weight. This keeps the weights small and 

eventually leads to  a relatively stable situation in which the decay rate 

of a weight is balanced by the partial derivative of G with respect to the 
weight. This has the satisfactory property that the absolute magnitude 

of a weight shows how important it is for modeling the environmental 
structure. 

T h e  use of weight-decay has several other consequences which are 
not s o  desirable. Because the weights stay small, the network cannot 

construct very deep minima in the energy landscape and so  it cannot 

make the  probability ratios for similar global states be very different. 



This means  that i t  is bound to give a significant number of errors in 
modeling environments  where very similar vectors have very different 
probabilities. Better pe~forrnance can be achieved by annealing the net- 
work t o  a lower final temperature (which is equivalent to making all the  
weights larger), but this will make the learning worse for two separate 
reasons. First, with less errors there is less to drive the learning 
because it relies o n  the difference between the phase' and phase- 
statistics. Second, i t  will be harder to reach thermal equilibrium at this 
lower temperature and so  the co-occurrence statistics will be unreliable. 
O n e  way of getting good statistics to  drive the learning and also getting 
very few overt errors is to  measure the co-occurrence statistics at a 
temperature higher than the final one.  

Another  way of ensuring that the network approaches equilibrium is 
to eliminate deep,  narrow minima that are  often not found by the 
annealing process. Derthick (1984) has shown that this can be done  
using a longer gentler annealing schedule in phase-. This means that 
the  network is more  likely to occupy the hard-to-find minima in phase- 
than in phase', and s o  these minima will get filled in because the learn- 
ing rule raises the  energies of states that are occupied more in phase- 
than in phase+. 

A N  EXAMPLE OF HARD LEARNING 

A simple example which can only be solved by capturing the higher 
order statistical structure in the ensemble of input vectors is the 
"shifter" problem. T h e  visible units are divided into three groups. 
Group  V 1  is a one-dimensional array of 8 units, each of which is 
clamped o n  or  off at random with a probability of 0.3 of being on .  
Group  V, also contains 8 units and their states are determined by shift- 
ing and copying the  states of the units in group V,. T h e  only shifts 
allowed are  o n e  to  the  left, one  to  the right, or  no  shift. Wrap-around 
is used s o  that when there is a right shift, the  state of the right-most 
unit in V ,  determines the state of the left-most unit in V2. The  three 
possible shifts a re  chosen at random with equal probabilities. Group V 3  

contains three units to  represent the  three possible shifts, so  at any o n e  
t ime o n e  of t hem is clamped on  and the others are clamped off. 

T h e  problem is t o  learn the structure that relates the states of the  
three groups. O n e  facet of this problem is to "recognize" the shift- 
i.e., to  complete a partial input vector in which the states of V, and V2 
are  clamped but t he  units in V3 are left free. It is fairly easy to  see why 
this problem cannot possibly be solved by just adding together a lot of 
pairwise interactions between units in V,, V,, and V3 .  If you know 



that a particular unit in V1 is on ,  it tells you nothing whatsoever about 

what t hesh i f t  is. It is only by finding combinations of active units in V1 

and V2 that it is possible to  predict the shift, so  the information 
required is of at least third-order. This  means that extra hidden units 

are  required to perform the  task. 

T h e  obvious way to  recognize the  shift is to have extra units which 
detect informative features such as an  active unit in Vl and an active 
unit o n e  place to the right in V2 and then support the unit V3 that 

represents a right shift. T h e  empirical question is whether the learning 

algorithm is capable of turning some  hidden units into feature detectors 

of this kind, and  whether it will generate a set of detectors that work 
well together rather than duplicating the same detector. T h e  set of 

weights that minimizes G defines t he  optimal set of detectors but i t  is 

not at all obvious what these detectors are, nor is i t  obvious that the 

learning algorithm is capable of finding a good set. 

Figure 3 shows the  result of running a version of the Boltzniann 
machine learning procedure. Of the  24 hidden units, 5 seem to be 

doing very little but the  remainder a re  sensible looking detectors and 
most of them have become spatially localized. One  type of detector 

which occurs several times consists of two large negative weights, one  

above the other,  flanked by smaller excitatory weights on each side. 

This is a more  discriminating detector of no-shift than simply having 
two positive weights, one  above the  other.  It interesting to note that 

the various instances of this feature type all have different locations in 
V, and V2, even though the hidden units are not connected to each 

other.  T h e  pressure for the feature detectors to be different from each 

other comes from the gradient of G ,  rather than from the kind of 

lateral inhibition among the feature detectors that is used in "competi- 

tive learning" paradigms (Fukushima, 1980; Rumelhart & Zipser, 

1985). 

The Training Procedure 

T h e  training procedure alternated between two phases. In phase', all 

the  units in V,, V2, and V3 were clamped into states representing a pair 
of 8-bit vectors and their relative shift. T h e  hidden units were then 

allowed to change their states until the  system approached thermal 

equilibrium at a temperature of 10. T h e  annealing schedule is 

described below. After annealing, t he  network was assumed to  be close 
to  thermal equilibrium and it was then  run for a further 10 iterations 

during which t ime the  frequency with which each pair of connected 

units were both o n  was measured. This  was repeated 20 times with 



F I G U R E  3.  'The w e i g h ~ ~  ol'thc 24 hidden units In the jh~l'tcr ni . l \ r .c~r l \  1:ach large region 

corresponds to a unit. Within this region the black rectangle, ri.prc\ent ncgatiw weight\ 

iind the white rectangles represent positive ones. The .;i/e 01' ;I sc~,tangle represents the 

magnitude of the weight. The two rows of weights at the t>ottonl of' e;~cli unit are its con- 

nections to the two groups 01' input units, I", and  C'2. T-he\c wc~ght\  t h e r c l ' o ~ ~ ~  represe~it 

the "receptive lield" of the hidden unit. The three we~ghls In the middle 01' the top row 

01' each unit are its connections to the three output units that ~reprcsent shift-left. n o -  

shil't, k~nd shift-right. The solitary weight at the top Icl't 01' ~ ~ c h  u n i ~  ij its threshold. 

Each hidden unit is directly connected to all 16 input units and all 3 output units. In this 

example, the hidden units are not connected to each other. The top-left unit has weights 

that are easy to understand: Its optimal stimulus is activity in tho I'ourth unit of I / ,  and 

the fifih unit of V 2 ,  and i t  votes for shift-right. I t  has negative u ~ l g h t s  to rnake i t  less 

likely to come on when there is an alternative explanation for wh! its two favorite input 

units are active. 

different clamped vectors and the co-occurrence stat~stics were averaged 

over all 20 runs to  yield an estimate, for each connection, of p,f in 
Equation 7. In phase-, none of the units were clamped and the net- 

work was annealed in the same way. T h e  network was then run for a 

further 10 iterations and the  co-occurrence statistics were collected for 

all connected pairs of units. This was repeated 20 times and the co- 

occurrence statistics were averaged to yield an estimate of p,;. 
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T h e  entire set of 40  annealings that were used to  estimate p,; and p,; 

was called a sweep. After each sweep, every weight was incremented 

by 5(p,: - p,;). In addition, every weight had its absolute magnitude 
decreased by 0.0005 times its absolute magnitude. This weight decay 

prevented the  weights from becoming too large and it also helped to 

resuscitate hidden units which had predominantly negative or predom- 
inantly positive weights. Such units spend all their t ime in the same 

state and therefore convey no  information. T h e  phase' and phase- 

statistics are  identical for these units, and so  the weight decay gradually 

erodes their weights until they come back to life (units with all zero 
weights come on  half the t ime).  

The Annealing Schedule 

T h e  annealing schedule spent the following number of iterations at 

the following temperatures: 2 at 40, 2 at 35, 2 at 30, 2 at 25, 2 at 20, 2 
at 15, 2 at 12, 2 at 10. One  iteration is defined as the number of ran- 

dom probes required so  that each unit is probed one  time on average. 

When it is probed, a unit uses its energy gap to decide which of its two 

states to  adopt using the stochastic decision rule in Equation 3. Since 
each unit gets to see  the most recent states of all the other units. an  

iteration cannot be regarded as a single parallel step. An truly parallel 

asynchronous system must tolerate t ime delays. Units must decide on 
their new states without being aware of very recent changes in the 

states of other units. It can be shown (Sejnowski, Hinton, Kienker, & 
Schumacher,  1985) that first-order time delays act like added tempera- 

ture and can therefore be tolerated by networks of this kind. 

The Performance of the Shifter Network 

T h e  shifter network is encouraging because it is a clear example of 

the kind of learning of higher order structure that was beyond the capa- 

bility of perceptrons, but it also illustrates several weaknesses in the 
current approach. 

T h e  learning was very slow. 1t required 9000 learning sweeps, 

each of which involved reaching equilibrium 20 times in phasef 

with vectors clamped o n  V1, V Z ,  and V3, and 20 times in 

phase- with n o  units clamped. Even for low-level perceptual 
learning, this seems excessively slow. 



T h e  weights are fairly clearly not optimal because of the 5 hid- 

den  units that app'ear to d o  nothing useful. Also, the  
performance is far from perfect. When the states of the units 

in V ,  and V2 are clamped and the network is annealed gently to  

half the final temperature used during learning, the units in V 3  
quite frequently adopt the wrong states. If the number of  on 

units in V ,  is 1,2,3,4,5,6,7, the percentage of correctly recog- 
nized shifts is 50°/o, 719'0, 81°h, 86%, 89%, 82%, anti 66% 

respectively. The  wide variation in the number of active units 

in V ,  naturally makes the task harder to  learn than if a constant 

proportion of the units were active. Also, some of the input 

patterns are  ambiguous. When all the units in V ,  and V 2  are  

off, the  network can do  no  better than chance. 

ACHIEVING RELIABLE COMPUTATION WITH 
UNRELIABLE HARDWARE 

Conventional computers only work if all their individual components 

work perfectly, so  as systems become larger they become more and 

more unreliable. Current computer technology uses extremely reliable 

components  and error-correcting memories to achieve overall reliability. 

T h e  brain appears to have much less reliable components, and so i t  

must use much more error-correction. I t  is conceivable that the brain 

uses the  kinds of representations that would be appropriate given reli- 

able hardware and then superimposes redundancy to compensate for its 

unreliable hardware. 

T h e  reliability issue is typically treated as a tedious residual problem 

to be dealt with after the main decisions about the form of the compu- 

tation have been made. A more direct approach is to treat reliability as 
a serious design constraint from the outset and to choose a basic style 

of computation that does not require reliable components. Ideally, we 

want a system in which none of the individual components are critical 

to  the  ability of the whole system to  meet its requirements. In other 

words, we  want s o m e  high-level description of the behavior of the sys- 

tem to  remain valid even when the low-level descriptions of the  

behavior of s o m e  of the individual components change. This is only 

possible if the  high-level description is related to  the low level descrip- 

tions in a particular way: Every robust high-level property must be 

implemented by the combined effect of many local components, and n o  

single component  must be crucial for the  realization of the high-level 

property. This  makes distributed representations (see Chapter 3) a 

natural choice when designing a damage-resistant system. 



Distributed representations tend to behave robustly because they 

have an  internal coherence which leads to an automatic "clean-up" 

effect. This effect can be seen in the patterns of activity that occur 

within a group of units and also in the interactions between groups. If 

a group of units, A, has a number of distinct and well-defined energy 

minima then these minima will remain even if a few units are  removed 

or  a little noise is added to  many of the connections within A. T h e  

damage may distort the  minima slightly and i t  may also change their 

relative probabilities, but minor damage will not alter the gross topogra- 

phy of the  energy landscape, so  it will not affect higher level descrip- 

tions that depend only on  this gross topography. 
Even if the  patterns of activity in A are slightly changed, this will 

often have no effect on  the patterns caused in other groups of units. If 
the  weights between groups of units have been fixed so  that a particular 
pattern in A regularly causes a particular pattern in B, a small variation 

in the  input coming from A will typically make no difference to  the pat- 

tern that gets selected in B, because this pattern has its own internal 

coherence, and if the input from A is sufficiently accurate to select 

approximately the  right pattern, the interactions among the elements in 

B will ensure  that the details are right. 

Damage resistance can be achieved by using a simple kind of 

representation in which there are many identical copies of each type of 

unit and each macroscopic item is encoded by activity in all the units of 

one  type, In the undamaged system all these copies behave identically 

and a lot of capacity is therefore wasted. If we use distributed 

representations in which each unit may be used for representing many 

different i tems we can achieve comparable resistance to damage without 

wasting capacity. Because all the units behave differently from each 
other ,  t he  undamaged system can implement many fine distinctions in 

the fine detail of the energy landscape. At the macroscopic level, these 
fine distinctions will appear as  somewhat unreliable probabilistic ten- 

dencies and  will be very sensitive to minor damage. 

T h e  fine details in the current energy landscape may contain the  

seeds of future changes in the gross topography. If learning novel dis- 

tinctions involves the progressive strengthening of regularities that a re  

initially tentative and unreliable, then it follows that learning may well 

suffer considerably when physical damage washes out these minor 

regularities. However, the simulations described below d o  not bear on  
this interesting issue. 

AN EXAMPLE OF THE EFFECTS OF DAMAGE 

T o  show the  effects of damage o n  a network, it is necessary to 
choose a task for the network to  perform. Since we are  mainly 



concerned with properties that are fairly domain-independent, the  
details of the  task are n@ especially relevant here. For reasons 
described in Chapter 3, we were interested in networks that can learn 
a n  arbitrary mapping between items in two different domains,  and we 
use that network to  investigate the effects of damage. As we shall see,  
t he  fact that the task involves purely arbitrary associations makes i t  

easier to  interpret some  of the interesting transfer effects that occur 
when a network relearns after sustaining major damage. 

The Network 

T h e  network consisted of three groups or  layers of units. T h e  gra- 

pheme group was used to represent the letters in a three-letter word. It 
contained 30 units and was subdivided into three groups of 10 units 
each. Each subgroup was dedicated to  o n e  of the  three letter positions 
within a word, and it represented one  of the 10 possible letters in that 
position by having a single active unit for that letter. T h e  three-letter 
grapheme strings were not English words. They were chosen randomly, 
subject to  t he  constraint that each of the 10 possible graphemes in each 
position had to  be used at least once. T h e  sen~eme group was used to  
encode the  semantic features of the "word."' I t  contained 30 units, one  
for each possible semantic feature The  semantic features to  be associ- 
ated with a word were chosen randomly, with each feature having a 
probability of 0.2 of being chosen for each word. There were connec- 
t ions between all pairs of units in the sememe  group to allow the net- 
work to  learn familiar combinations of semantic features. There were 
n o  direct connections between the grapheme and sememe  groups. 
Instead, there was an intermediate layer of 20 units, each of which was 
connected to  all the  units in both the grapheme and the  semenie 
groups. Figure 4 is an artist's impression of the  network. It uses 
English letters and words to convey the functions of the  units in t he  
various layers. Most of the connections are missing. 

The Training Procedure 

T h e  network was trained to associate each of 20 patterns of activity 
in t he  grapheme units with an arbitrarily related pattern in the  sememe  

7 The  representation of meaning 1s clearly more complicated than just a set of features, 

so the  use of the word "semantic" here should not be taken too literally. 



FIGURE 4. Part of the network used for associating three-letter words with sets of 

semantic features. English words are used in this figure to help convey the functional 

roles of the units. In the actual simulation, the letter-strings and semantic features were 

chosen randomly. 

units. As before, the training procedure alternated between two phases. 
In phase+ all the grapheme and sememe  units were clamped in states 
that represented the  physical form and the  meaning of a single word, 
and the  intermediate units were allowed to change their states until the 
system approached thermal equilibrium at a temperature of 10. The  
annealing schedule was: 2 at 30, 2 at 26, 2 at 22, 2 at 20, 2 at 18, 2 at 
16, 2 at 15, 2 at 14, 2 at 13, 4 at 12, 4 at 11, 8 at 10. After annealing, 
the network was assumed to be close to thermal equilibrium and it was 
then run for a further 5 iterations during which t ime the frequency with 
which each pair of connected units were both o n  was measured. This 
was repeated twice for each of the 20 possible graphemelsememe asso- 
ciations and the  co-occurrence statistics were averaged over all 40 
annealings to yield an estimate, for each connection, of p;. In phase-, 

only the grapheme units were clamped and the  network settled to  
equilibrium (using the  same  schedule as  before) and  thus decided for 
itself what s ememe  units should be active. T h e  network was then run 
for a further 5 iterations and the  co-occurrence statistics were collected 
for all connected pairs of units. This was repeated twice for each of the 
20 grapheme strings and the  co-occurrence statistics were averaged to  
yield an  estimate of p i .  Each learning sweep thus involved a total of 
80 annealings. 

After each sweep, every weight was either incremented or  decre- 
mented by 1, with the sign of the  change being determined by the sign 

of p: - p .  In addition, some  of the  weights had their absolute 

8 See Hinton, Sejnowski, and Ackley (1984) for a discussion of the advantages of 

discrete weight increments over the more obvious steepest descent technique in which 

the weight increment is proportional to p g  - pi,-. 



magnitude decreased by 1. For each weight, the probability of this hap- 
pening was 0.0005 times the absolute magnitude of the weight. 

We found that the network performed better if there was a 
preliminary learning stage which just involved the sememe units. In 

this stage, the intermediate units were not yet connected. During 
phasef the required patterns were clamped on the senieme units and p,: 

was measured (annealing was not required because all the units 
involved were clamped). During phase- no units were clamped and the 
network was allowed to reach equilibrium 20 times using the annealing 
schedule given above. After annealing, p,; was estimated from the co- 
occurrences as before, except that only 20 phase- annealings were used 
instead of 40. There were 300 sweeps of this learning stage and they 
resulted in weights between pairs of sememe units that were sufficient 
to give the sememe group an energy landscape with 20 strong minima 
corresponding to the 20 possible "word meanings." This helped subse- 
quent learning considerably, because it reduced the tendency for the 
intermediate units to be recruited for the job of modeling the structure 
among the sememe units. They were therefore free to model the struc- 
ture between the grapheme units and the sememe units.9 The results 
described here were obtained using the preliminary learning stage and 
so they correspond to learning to associate grapheme strings with 
"meanings" that are already familiar. 

The Performance of the Network 

Using the same annealing schedule as was used during learning, the 
network can be tested by clamping a grapheme string and looking at the 
resulting activities of the sememe units. After 5000 learning sweeps, it 

gets the semantic features exactly correct 99.3% of the time. A 
performance level of 99.9% can be achieved by using a "careful" 
annealing schedule that spends twice as long at each temperature and 
goes down to half the final temperature. 

The Effect of Local Damage 

T h e  learning procedure generates weights which cause each of the 
units in the intermediate layer to be used for many different words. 

9 There was no need to have a similar stage for learning the structure among the gra- 

pheme units because in the main stage of learning the grapheme units are always clamped 

and so there is no tendency for the network to try to model the structure among them. 



This kind of distributed representation should be more tolerant of local 
damage than the  more obvious method of using one intermediate unit 
per word. W e  were particularly interested in the pattern of errors pro- 
duced by local damage. If the connections between sememe units are 
left intact, they should be able to "clean up" patterns of activity that are 
close to familiar ones. So the network should still produce perfect out- 
put even if the  input to the sememe units is slightly disrupted. I f  the 
disruption is more severe, the clean-up effect may actually produce a 
d@erent familiar meaning that happens to share the few semantic 
features that were correctly activated by the intermediate layer. 

T o  test these predictions we removed each of the intermediate units 
in turn, leaving the other 19 intact. We tested the network 25 times on 
each of the 20 words with each of the 20 units removed. In all 10,000 
tests, using the  careful annealing schedule, i t  made 140 errors (98.6% 
correct). Many errors consisted of the correct set of semantic features 
with one  or  two extra or missing features, but 83 of the errors consisted 
of the  precise meaning of some other grapheme string. An analysis of 
these 83 errors showed that the hamming distance between the correct 
meanings and the erroneous ones had a mean of 9.34 and a standard 
deviation of 1.27 which is significantly lower ( p  < .01) than the com- 
plete set of hamming distances which had a mean of 10.30 and a stan- 
dard deviation of 2.41. We also looked at the hamming distances 
between the grapheme strings that the network was given as input and 
the grapheme strings that corresponded to the erroneous familiar mean- 
ings. T h e  mean was 3.95 and the standard deviation was 0.62 which is 
significantly lower ( p  < .01) than the complete set which had mean 
5.53 and standard deviation 0.87. (A hamming distance of 4 means 
that the  strings have one  letter in common.) 

In summary, when a single unit is removed from the intermediate 
layer, the  network still performs well. The majority of its errors consist 
of producing exactly the meaning of some other grapheme string, and 
the  erroneous meanings tend to be similar to the correct one and to be 
associated with a grapheme string that has one letter in common with 
the string used as input. 

The  Speed of Relearning 

T h e  original learning was very slow. Each item had to be presented 
5000 times to  eliminate almost all the errors. One reason for the slow- 
ness is the  shape of the G-surface in weight-space. It tends to have 
long diagonal ravines which can be characterized in the  following way: 
In the  direction of steepest descent, the  surface slopes steeply down for 
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a short distance and then steeply up again (like the  cross-section of a 
ravine).I0 l n  most other directions the surface slopes gently upwards. In 

a relatively narrow cone of directions, the surface slopes gently down 

with very low curvature. This narrow cone corresponds to the floor of 

the ravine and to  get a low value of G (which is the  definition of good 

performance) the  learning must follow the floor of the ravine without 

going u p  the  sides. This is particularly hard in a high-dimensional 

space. Unless t he  gradient of the surface is measured very accurately, a 

s tep in t he  direction of the estimated gradient will have a component 

along the  floor of the ravine and a component up one  of the many 

sides of t he  ravine. Because the sides a re  much steeper than the floor, 

t he  result of the  step will be to raise the value of G which makes 

performance worse. Once out of the bottom of the ravine, almost all 

the  measurable gradient will be down towards the floor of the ravine 

instead of along the ravine. As a result, the path followed in weight 

space tends to  consist of an irregular sloshing across the  ravine with 

only a small amount  of forward progress. W e  are investigating ways of 

ameliorating this difficulty, but i t  is a well-known problem of gradient 

descent techniques in high-dimensional spaces, and i t  niay be 

unavoidable. 

T h e  ravine problem leads to a very interesting prediction about 

relearning when random noise is added to the weights. T h e  original 

learning takes the weights a considerable distance along a ravine which 

is slow and difficult because most directions in weight space are up the 

sides of t he  ravine. When a lot of random noise is added, there will 

typically be a small component along the ravine and a large component 

up  the  sides. Performance will therefore get much worse (because 

height in this space means poor performance), but relearning will be 

fast because the  network can get back most of its performance by sim- 

ply descending to the  floor of the ravine (which is easy) without niak- 

ing progress along the  ravine (which is hard). 

T h e  s a m e  phenomenon can be understood by considering the  energy 
. landscape rather than the weight-space (recall that o n e  point in weight- 

space constitutes a whole energy landscape). Good performance 

requires a rather precise balance between the  relative depths of the 20 
energy minima and it also requires that all the  20 minima have consid- 
erably lower energy than other parts of the  energy landscape. T h e  bal- 
ance between the  minima in energy-space is the  cross-section of t he  

ravine in weight-space (see Figure 5 )  and the  depth of all t he  minima 

compared with the  rest of the energy landscape corresponds to the  

direction along the ravine. Random noise upsets the  precise balance 

l o  The surface is never very steep. Its gradient parallel to any weight axis must always 
lie between 1 and - 1 because i t  is the difference of two probabilities. 
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increase weights that help B -b 

FIGURE 5 .  One  cross-section of a ravine in weight-space. Each point in weight space 

corresponds to a whole energy landscape. T o  indicale (his, we show how a very simple 

landscape changes as the  weights a re  changed. Movement to the right along the x-axis 

corresponds to  increasing the  weights between pairs of units that are both on  in state B 
and not both o n  in state A. This increases the  depth of A. If the task requires that A 

and B have about the same depth, an imbalance between them will lower the 

performance and thus raise G. 

between the various minima without significantly affecting the gross 
topography of the energy landscape. Relearning can then restore most 
of the performance by restoring the balance between the existing 
minima. 

The  simulation behaved as predicted. The mean absolute value of 
the weights connecting the intermediate units to the other two groups 
was 21.5. These weights were first perturbed by adding uniform ran- 
dom noise in the range -2 to +2. This had surprisingly little effect, 
reducing the performance using the normal annealing schedule from 
99.3% to  98.0%. This shows that the network is robust against slight 
noise in the weights. To  cause significant deterioration, uniform ran- 
dom noise between -22 and +22 was added. On average, this perturbs 
each weight by about half its magnitude which was enough to reduce 
normal performance to 64.3% correct. Figure 6 shows the course of the 
relearning and compares it with the speed of the original learning when 
performance was at this level. It also shows that other kinds of damage 
produce very similar relearning curves. 
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Learning sweeps 

FIGURE 6. The recovery of performance after various types of damage. Each data- 
point represents 500 tests (25 with each word). The heavy line is a section of the original 
learning curve after a considerable number of learning sweeps. I t  shows that in the origi- 

nal learning, performance increases by less than 10°/o in 30 learning sweeps. All the other 
lines show recovery after damaging a net that had very good performance (99.3% 
correct). The lines with open circles show the rapid recovery after 20% or 50% of the 
weights to the hidden units have been set to zero (but allowed to relearn). The dashed 

line shows recovery after 5 of the 20 hidden units have been permanently ablated. The 
remaining line is the case when uniform random noise between -22 and f 2 2  is added to 

all the connections to the hidden units. In all cases, a successful trial was defined as one 

in which the network produced exactly the correct semantic features when given the gra- 
phemic input. 

Spontaneous Recovery of Unrehearsed Items 

When it learns the associations, the network uses distributed 
representations among the intermediate units. This means that many 
of the weights are involved in encoding several different associations, 
and each association is encoded in many weights. If a weight is 
changed, it will affect several different energy minima and all of them 
will require the same change in the weight to restore them to their 
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previous depths.  So, in relearning any one  of the associations, there 

should be a positive transfer effect which tends to restore the others. 

This effect is actually rather weak and is easily masked so  i t  can only be 
seen clearly if we retrain the network on most of the original associa- 
tions and  watch what happens to the remaining few. As predicted, 

these showed a marked improvement even though they were only ran- 

domly related to  the  associations on  which the network was retrained. 

W e  took exactly the  same perturbed network as before (uniform ran- 

dom noise between +22 and -22 added to the connections to and from 

the intermediate units) and retrained it on  18 of the associations for 30 

learning sweeps. T h e  two associations that were not retrained were 
selected to be ones  where the network made frequent minor errors 
even when the careful annealing schedule was used. As a result of the 

retraining, the  performance on these two items rose from 301100 

correct to  90/100 correct with the careful schedule, but the few errors 

that remained tended to  be completely wrong answers rather than 
minor perturbations of the correct answer. We repeated the experiment 

selecting two associations for which the error rate was high and the 

errors were typically large. Retraining on the other 18 associations 

caused a n  improvement from 17/100 correct to 981100 correct. 

Despite these impressive improvements, the effect disappeared when 
we retrained o n  only 15 of the associations. The  remaining 5 actually 
got slightly worse. I t  is clear that the fraction of the associations which 

needs to  be retrained to cause improvement in the remainder depends 

o n  how distributed the  representations are, but more analys~s is 

required to characterize this relationship properly. 

T h e  spontaneous recovery of unrehearsed items seems paradoxical 

because the  set of 20 associations was randomly generated and so there 
is n o  way of generalizing from the 18 associations on which the net- 

work is retrained to  the remaining two. During the original learning, 

however, t he  weights capture regularities in the whole set of associa- 

tions. In this example, t he  regularities are  spurious but the network 

doesn't know that-it just finds whatever regularities i t  can and 

expresses the  associations in terms of them. Now, consider two dif- 

ferent regularities that a re  equally strong among 18 of the associations. 

If o n e  regularity also holds for the remaining two associations and the  

other doesn't, t he  first regularity is more likely to be captured by the 

weights. During retraining, the learning procedure restores the weights 

to  the  values needed t o  express the  -regularities it originally chose to 

capture and  it therefore tends to restore the  remaining associations. 

It would be  interesting to  see if any of the neuro-psychological data 

on  the  effects of brain damage could be interpreted in terms of the 
kinds of qualitative effects exhibited by the simulation when it is 



damaged and relearns. However, we have not made any serious 
attempt t o  fit the  simulatiofl to particular data. 

CONCLUSION 

W e  have presented three ideas: 

Networks of symmetrically connected, binary units can escape 

from local minima during a relaxation search by using a sto- . . 
chastic decision rule. 

T h e  process of reaching thermal equilibrium in a network of 

stochastic units propagates exactly the information needed to d o  
credit assignment. This makes possible a local learning rule 
which can modify the weights so  as to  create new and useful 
feature detectors. The learning rule only needs to observe how 
often two units are both active (at thermal equilibrium) in two 
different phases. I t  can then change the weight between the 
units to  make the spontaneous behavior of the network in one 
phase mimic the behavior that is forced on i t  in the other 
phase. 

T h e  learning rule tends to construct distributed representations 

which are resistant to minor damage and exhibit rapid relearn- 
ing after major damage. The relearning process can bring back 
associations that are not practiced during the relearning and are 
only randomly related to the associations that are practiced. 

These three ideas can be assessed separately. In particular, resistance 
to  damage, rapid relearning, and spontaneous recovery of unrehearsed 
items can be  exhibited by other kinds of parallel network that use 
distributed representations. The use of stochastic units, annealing 
search, and the  two-phase learning algorithm are not crucial for these 
properties, though they are a convenient testbed in which to investigate 
them. Hogg and Huberman (1984) have demonstrated self-repair 
effects in nonstochastic, layered networks similar to those used by 
Fukushima (1980). 

W e  have left many loose ends, some of which are discussed else- 
where. Sejnowski and Hinton (in press) give a detailed example of a 

search problem where annealing helps, and they also discuss the rela- 
tionship between between these networks and the mammalian cortex. 
Ackley, Hinton, and Sejnowski (1985) give a different example of 



learning in which the network constructs efficient internal codes for 
communicating information across narrow bandwidth channels. At 
present, the learning algorithm is too slow to be tested properly on 
large networks and future progress hinges on being able to speed i t  up. 
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APPENDIX: 
DERIVATION OF THE, LEARNING ALGORITHM 

When a network is free-running at equilibrium the probability distrib- 

ution over the visible units is given by 

xp- Emil 1 ( 8 )  

P - (  v ) = C P - (  V,,A H@) = 
P 

LY 

@ x $ /  
A l* 

where V,, is a vector of the states of the visible units, Ha is a vector of 

states of the hidden units, and E,, is the energy of the system in state 

V,Y Hp 

E,,, = - x w, s , "hs ; '@.  
[ < I  

Hence, 

Differentiating ( 8 )  then yields 

This derivative is used to compute the gradient of the G-measure 

where p + ( V a )  is the clamped probability distribution over the visible 

units and is independent of w U .  So 



Now, 

P + ( V , A  H,,) = p + ( H p I  

P-(v ,AH, , )  = p-(HpI 

and 

Equation 9 holds because the probability of a hidden state given some 
visible state must be the same in equilibrium whether the visible units 
were clamped in that state or arrived there by free-running. Hence, 

Also, 

Therefore, 

where 

and 

The Boltzmann machine learning algorithm can also be formulated as 
an input-output model. The visible units are divided into an input set I 
and an output set 0, and an environment specifies a set of conditional 
probabilities of the form P + (Og I I,). During phasef the environment 
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clamps both the input and output units, and the p,Ts are estimated. 

During phase- the inputsunits are clamped and the  output units and 

hidden units free-run, and the p,;s are estimated. The  appropriate G 
measure in this case is 

P+(O,  I I,) 
G = ~ P + ( I , A  O,)ln 

cx P P - ( O p  1 IJ - 

Similar mathematics apply in this formulation and aG/a  wi, is the same 

as before. 


