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A probabilistic approach based on dynamical

systems to learn and reproduce gestures by imitation

Sylvain Calinon†, Florent D’halluin‡, Eric L. Sauser‡, Darwin G. Caldwell† and Aude G. Billard‡

Abstract—We present a probabilistic approach to learn robust
models of human motion through imitation. The association of
Hidden Markov Model (HMM), Gaussian Mixture Regression
(GMR) and dynamical systems allows us to extract redundancies
across multiple demonstrations and build time-independent mod-
els to reproduce the dynamics of the demonstrated movements.
The approach is first systematically evaluated and compared
with other approaches by using generated trajectories sharing
similarities with human gestures. Three applications on different
types of robots are then presented. An experiment with the iCub
humanoid robot acquiring a bimanual dancing motion is first
presented to show that the system can also handle cyclic motion.
An experiment with a 7 DOFs WAM robotic arm learning the
motion of hitting a ball with a table tennis racket is presented
to highlight the possibility to encode several variations of a
movement in a single model. Finally, an experiment with a
HOAP-3 humanoid robot learning to manipulate a spoon to feed
the Robota humanoid robot is presented to demonstrate the capa-
bility of the system to handle several constraints simultaneously.

Index Terms—Robot programming by demonstration, Learn-
ing by imitation, Dynamical systems, Gaussian mixture regres-
sion, Hidden Markov Model.

I. INTRODUCTION

ROBOT Programming by Demonstration (PbD) covers

methods by which a robot learns new skills through

human guidance. Also referred to as learning by imitation,

lead-through teaching, tutelage or apprenticeship learning,

PbD takes inspiration from the way humans learn new skills

by imitation to develop methods by which new skills can

be transmitted to a robot. PbD covers a broad range of

applications. In industrial robotics, the goal is to reduce the

time and costs required to program the robot. The rationale is

that PbD would allow to modify an existing product, create

several versions of a similar product or assemble new products

in a very rapid way, and this could be done by lay users

without help from an expert in robotics. PbD is perceived as

particularly useful to service robots, i.e. robots deemed to work

in direct collaboration with humans. In this case, methods for

PbD go beyond transferring skills and offer new ways for

the robot to interact with the human, from being capable of

recognizing people’s motion to predicting their intention and

seconding them in the accomplishment of complex tasks. As

the technology improved to provide these robots with more and

more complex hardware, including multiple sensor modalities
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and numerous degrees of freedom, robot control and especially

robot learning became more and more complex too.

Learning control strategies for numerous degrees of freedom

platforms deemed to interact in complex and variable environ-

ments, such as households is faced with two key challenges:

first, the complexity of the tasks to be learned is such that pure

trial and error learning would be too slow. PbD appears thus

a good approach to speed up learning by reducing the search

space, while still allowing the robot to refine its model of the

demonstration through trial and error [1], [2]. Second, there

should be a continuum between learning and control, so that

control strategies can adapt in real time to drastic changes in

the environment. The present work addresses both challenges

in investigating and comparing methods by which PbD is used

to learn the dynamics of demonstrated movements, and, by

doing so, provide the robot with a generic and adaptive model

of control.

A. Related work and motivations

PbD is of interest for different levels of task representation.

A large body of work in PbD follow a symbolic approach

to representing and encoding the tasks, see e.g. [3]–[8]. Such

a symbolic description offers the advantage that it provides

a way to easily tackle sequences or hierarchies of actions.

One major drawback however lies in that they rely on a large

amount of prior knowledge to predefine the important cues

and to segment those efficiently.

Most approaches to trajectory modeling estimate a time-

dependent model of the trajectories, by either exploiting vari-

ants along the concept of spline decomposition [9]–[11] or

through an explicit encoding of the time-space dependencies

[12]. Such modeling methods are effective and precise in

the description of the actual trajectory, and benefit from an

explicit time-precedence across the motion segments to ensure

precise reproduction of the task. However, the explicit time-

dependency of these models require the use of other methods

for realigning and scaling the trajectories to handle spatial and

temporal perturbations. As an alternative, other approaches

have considered modeling the intrinsic dynamics of motion

[13]–[18]. Such approaches are advantageous in that the

system does not depend on an explicit time variable and can

be modulated to produce trajectories with similar dynamics in

areas of the workspace not covered during training.

To embed multivariate data exhibiting temporal coherence

such as human motion, a variety of approaches have been

proposed, ranging from Hidden Markov Model (HMM) [19]

to spatio-temporal Isomap (ST-Isomap) [20]. We use HMM
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in this work, which has previously been reported as a robust

probabilistic method to deal with the spatial and temporal

variabilities of human motion across various demonstrations

[14], [17], [18]. Most of the approaches proposed sofar how-

ever require either a high number of states to reproduce the

motion correctly (i.e. higher than for recognition purposes),

or an additional smoothing process whose drawback is to cut

down important peaks in the motion.

The proposed model also relies on Gaussian Mixture Re-
gression (GMR) [21] to robustly generalize the motion during

reproduction. The approach is contrasted with our previous

work that employed GMR with time being considered as an

explicit input variable [12]. We demonstrated in previous work

that this framework can be used to learn a skill incrementally

(without having to keep each demonstration in memory) [22].

We also showed that it allows simultaneous consideration of

constraints in joint space and task space [23]. Muehlig et al
[24] recently extended the GMR approach to learn bimanual

skills by imitation. In this work, the authors used GMR as

a compact probabilistic representation of the task constraints

which is then used during reproduction by a gradient-based

trajectory optimizer. This demonstrates that the generic for-

mulation of GMR can be efficiently combined with optimal

control methods.

In opposite to other statistical regression methods such as

Locally Weighted Regression (LWR) [25], Locally Weighted
Projection Regression (LWPR) [26], or Gaussian Process
Regression (GPR) [16], [27], GMR does not model the regres-

sion function directly, but models a joint probability density

function of the data and then derives the regression function

from the joint density model [28].

This is an advantage in many robotic applications since the

input and output components are only specified at the very last

step of the algorithm. Density estimation can thus be learned in

an offline phase, while the regression process can be computed

very rapidly. It can also handle different sources of missing

data, as the system is able to consider any combination of

input/output mappings during the retrieval phase.

In the context of robot learning by imitation, the principal

advantages of combining HMM and GMR are thus: (1) it

allows us to deal with recognition and reproduction issues

in a common probabilistic framework; and (2) the learning

process is distinct from the retrieval process, where a standard

Expectation-Maximization (EM) algorithm is first used to learn

the demonstrated skill during the phases of the interaction that

do not require real-time computation (i.e. after the demon-

strations), and where a faster regression process is then used

for controlling the robot in an online manner during the

reproduction phases.

The remainder of the paper is organized as follows. Sec.

II presents the probabilistic approach. Sec. III evaluates and

discusses the proposed approach with respect to 4 state-of-

the-art approaches in robot learning by imitation. Sec. IV

presents an experiment where the iCub humanoid robot learns

a periodic bimanual gesture through the use of motion sensors.

Sec. V presents an experiment where the WAM robotic arm

learns two different ways of striking a ball in table tennis

through kinesthetic teaching. Sec. VI finally presents an ex-
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Fig. 1. Example of motion encoding and reproduction using the basic control
model.

periment where the HOAP-3 humanoid robot learns a feeding

task requiring to consider several constraints and landmarks.

II. PROPOSED PROBABILISTIC APPROACH

Multiple examples of a skill are demonstrated to the robot

in slightly different situations, where a set of positions x ∈
ℝ

(D×M×T ) and velocities ẋ ∈ ℝ
(D×M×T ) are collected dur-

ing the demonstrations (D is the dimensionality of the variable

x, M is the number of demonstrations, and T is the length of a

demonstration). The dataset is composed of a set of datapoints

{x, ẋ}, where the joint distribution P(x, ẋ) is encoded in a

continuous Hidden Markov Model (HMM) of K states. The

output distribution of each state is represented by a Gaussian

locally encoding variation and correlation information. The

parameters of the HMM are defined by {Π, a, �,Σ} and

learned through Baum-Welch algorithm [19], which is a variant

of Expectation-Maximization (EM) algorithm. Πi is the initial

probability of being in state i, aij is the transitional probability

from state i to state j. �i and Σi represent the center and

the covariance matrix of the i-th Gaussian distribution of the

HMM. Input and output components in each state of the HMM

are defined as

�i =

[
�x
i

�ẋ
i

]

and Σi =

[
Σx

i Σxẋ
i

Σẋx
i Σẋ

i

]

,

where the indices x and ẋ refer respectively to position and

velocity components.
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A. Control model - Basic version

In the basic control model, a desired velocity ˆ̇x is estimated

through Gaussian Mixture Regression (GMR) as

ˆ̇x =

K∑

i=1

ℎi

[
�ẋ
i +Σẋx

i (Σx
i )

−1(x− �x
i )
]
, (1)

which is used to control the system by estimating at each

iteration a new velocity given the current position, see [29]

for details.

In the GMR framework, the influence of the different

Gaussians is represented by weights ℎi ∈ [0, 1], originally

defined as the probabilities of an observed input to belong to

each of the Gaussians [21]

ℎi(x) = N (x; �x
i ,Σ

x
i ),

and normalized such that
∑K

i ℎi = 1.

A direct extension of this estimation is to recursively

compute a likelihood through the HMM representation, thus

taking into consideration not only the spatial information but

also the sequential information probabilistically encapsulated

in the HMM

ℎi,t(x) =

⎛

⎝

K∑

j=1

ℎj,t−1 aji

⎞

⎠N (x; �x
i ,Σ

x
i ),

and normalizing such that
∑K

i ℎi,t = 1. Here, ℎi,t represents

the forward variable [19], which corresponds to the probability

of observing the partial sequence {x1, x2, . . . , xt} and of being

in state i at time t.
At a given instant, the regression process described in (1)

can be rewritten as a mixture of linear systems1

ẋ =

K∑

i=1

ℎi(A
′
ix+ b′i) with

A′
i = Σẋx

i (Σx
i )

−1,
b′i = �ẋ

i − Σẋx
i (Σx

i )
−1�x

i .
(2)

Fig. 1 presents an example of encoding and reproduction

using this basic control scheme, where the number of states in

the HMM has been deliberately fixed to a low value. The first

four graphs show the dynamic behavior of the system when

using each Gaussian separately, where the circles represent

the equilibrium points defined by −A′−1
i b′i. The bottom-left

graph shows results for two reproduction attempts represented

by blue and red thick lines, where the initial positions are

represented by points. The last graph shows the poles of the

system, given by the eigenvalues of matrices Ai in (2). We

observe in the first four graphs that each Gaussian representing

the local distribution of {x, ẋ} can retrieve curved trajectories

(rotational fields induced by the poles).2 The last graph shows

that for the first two states, the poles have a real positive

part, which may lead to unstable systems in some situations

(i.e., the first two equilibrium points are unstable). By using

the basic control method, the motion is correctly reproduced

when starting in regions that have been covered during the

1Note that this representation is also similar to the Takagi-Sugeno fuzzy
modeling technique [30].

2A condition for asymptotic stability is that the poles lie strictly in the
closed left half of the complex plane (i.e. the real part of all the poles must
be negative).
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Fig. 2. Example of motion encoding and reproduction using the extended
control model.

demonstrations (trajectory represented by blue lines). The first

two states of the system are unstable but bring the robot to

asymptotically stable states after a few iterations. Note that the

system in this basic version may provide poor solution when

initiating the motion in a region that has not been covered yet

(trajectory represented by red lines).

B. Control model - Extended version

For the reason mentioned above, we extended the basic

control model with an acceleration-based controller similar to

a mass-spring-damper system, where the model of the demon-

strated trajectories acts as an attractor.3 A target velocity ˆ̇x and

target position x̂ are first estimated at each time step through

GMR. Tracking of the desired velocity ˆ̇x and desired position

x̂ is then insured by the proportional-derivative controller. The

acceleration command is determined by4

ẍ =

ẍV

︷ ︸︸ ︷

(ˆ̇x − ẋ)�V +

ẍP

︷ ︸︸ ︷

(x̂− x)�P , (3)

where �V and �P are gain parameters similar to damping and

stiffness factors.

In the above equation, ẍV allows the robot to follow the

demonstrated velocity profile.5 ẍP prevents the robot to depart

from a known situation, and forces it to come back to this

observed subspace if a perturbation occurs. By using both

terms concurrently, the robot follows the learned non-linear

dynamics while tracking the movement. Similarly to (2), (3)

can be formulated as a mixture of linear systems, see Appendix

A.

Fig. 2 presents reproduction results with the extended

control scheme, where the same dataset and HMM encoding

as in Fig. 1 has been utilized. The left graph shows the

two reproduction attempts where the robot smoothly comes

back to the demonstrated movement when starting from a

different initial situation. The right graph shows the poles of

the corresponding linear systems (see Appendix A), consisting

of four poles per Gaussian instead of two, as the system is now

based on an acceleration command.

Here, we suggest to define the velocity gain �V in (3) such

that, for low values of �P , the model follows the motion with

the same velocity profiles as the ones demonstrated in similar

3Sourcecode of the algorithm is available online [31].
4In the experiments presented here, velocity and position are updated at

each iteration through Euler numerical integration.
5By setting �V =

1

Δt
and �P = 0, the controller is similar to (1).
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situations. The position gain �P can be modulated such that

it acts as an attractor to the trajectory, which depends on the

strength of the perturbation (or if the system needs to start

from locations that have not been demonstrated yet). It should

also not be too high to avoid that the system, acting only as

an attractor, comes back to the trajectory and stops instead of

following the remainder of the motion. We thus define �P as

an adaptive gain that rapidly grows as the system departs from

the area covered by the demonstrations, and is null when the

system is close to the demonstrations. We define �V and �P

as

�V =
1

Δt
, �P(x) = �P

max

ℒmax − ℒ(x)

ℒmax − ℒmin
, (4)

where ℒmax = max
i∈{1,K}

log
(
N (�x

i ;�
x
i ,Σ

x
i )
)
,

ℒmin = min
i∈{1,K}

x∈W

log
(
N (x;�x

i ,Σ
x
i )
)
.

In the above equation, ℒ represents a log-likelihood.6 �P

max

is the maximum gain allowed to attain a target position.7 W
defines the robot’s workspace or a predetermined range of

situations fixed a priori for the reproduction attempts. Δt is the

duration of an iteration step. At each iteration, �P(x) is thus

close to zero if x is close to the Gaussian distributions. In this

situation, the controller reproduces a motion with velocities

similar to those in the demonstration sequences. On the other

hand, if x is far from the areas of demonstrations, the system

comes back towards the closest Gaussians (in a likelihood

sense) with a maximum gain of �P

max, still following the

pattern of motion in this region (determined by ˆ̇x).

Parts of the movement where a strong inconsistency has

been observed (i.e., where the variations in the demonstrations

are high) indicate that the position does not need to be tracked

very precisely. This allows the controller to focus on the other

constraints of the task, such as following a desired velocity.

On the other hand, parts of the movement exhibiting strong

position invariance across the multiple demonstrations will be

tracked more precisely, i.e. the gain controlling the error on

position will automatically be increased.

III. EVALUATION THROUGH GENERATED DATA

A. Generation of human-like motion data

To analyze systematically the proposed system, several sets

of natural trajectories are created. First, a set of keypoints X of

D dimensions is randomly generated (each variable {Xi}Di=1

is generated with a uniform random distribution U(0, 1)).
A Vector Integration To Endpoint (VITE) system, which has

been suggested as a biologically plausible model of human

reaching movement [32], is then used to generate trajectories

by starting from a first keypoint and recursively defining the

next keypoint as the target. It is defined here as a critically

damped mass-spring-damper controller ẍ = (X−x)�P − ẋ�V

with parameters �V = 25, �P = (�V)2/4, and integration

6Note that here, the log-likelihood measures corresponds to weighted
distance measures.

7�P

max = 2000 has been fixed empirically in the experiments presented
here.
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Fig. 3. Left: Example of a dataset of 3 dimensions randomly generated. The
four plus signs represent the keypoints used to generate the continuous motion.
Right: Reproductions by using the various methods proposed for comparison.

time step Δt = 0.003 sec. Every 50 iterations, the target

is switched to the next keypoint. For the last keypoint, 50

additional iterations are used to let the system converge to

the last keypoint. To simulate motion variability, each dataset

consists of 3 trajectories produced by slightly varying the

positions of the keypoints with a Gaussian noise N (0, 0.1).
An example of generated motion is presented in Fig. 3 left.
The resulting trajectories present natural looking motion that

share similarities with those of humans. The automatization

of the generation process allows us to flexibly evaluate the

imitation performance of our algorithm with respect to several

datasets of different dimensionalities.

B. Comparison with other approaches

The approach that we propose in this paper will be further

denoted as HMM, as its core representation is based on

Hidden Markov Model. We compare this approach with four

alternative methods that have shown good performance in

robotics experiments.

TGMR: Time-dependent Gaussian Mixture Regression [12]

is based on our previous work, where time is used as an

explicit input variable. The demonstrations are first aligned

in time through Dynamic Time Warping (DTW), see [12] for

details. Then, the distribution of temporal and spatial variables

{t, x, ẋ} is encoded in a Gaussian Mixture Model (GMM).

At each time step during the reproduction process, a desired

position x̂ and a desired velocity ˆ̇x are then retrieved through

GMR by estimating P (x, ẋ∣t). The controller used by the

robot to reproduce the skill is the mass-spring damper system

defined in (3).

LWR: Locally Weighted Regression [25] is a memory-

based probabilistic approach. It is used here to estimate at

each time step a desired position x̂ and a desired velocity ˆ̇x.

Each datapoint of the dataset participates in the estimation of

the solution by using a Gaussian kernel with fixed diagonal

covariance matrix centered at the current position to weight

the influence of each datapoint. The controller used by the

robot is the mass-spring damper system defined in (3).

LWPR: Locally Weighted Projection Regression is an in-

cremental regression algorithm that performs piecewise linear

function approximation [26]. The algorithm does not require

to store the training data and has been proved to be efficient
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in a variety of robot learning tasks including high dimensional

data. We use here an implementation of LWPR with the input

space defined by a set of receptive fields with full covariance

matrices. By detecting locally redundant or irrelevant input di-

mensions, the method locally reduces the dimensionality of the

input data by finding local projections through Partial Least
Squares (PLS) regression [33]. The learning parameters are

fixed based on the recommendations provided in [26]. During

reproduction, LWPR is used at each iteration to estimate a

desired velocity ˆ̇x given the current position x. The receptive

fields are then used to determine a desired position x̂ similarly

as in the methods above. The controller used by the robot is

the mass-spring damper system defined in (3).

DMP: The Dynamic Movement Primitives approach was

originally proposed by Ijspeert et al [13], and further extended

in [34], [35]. The method allows to reach a target by modulat-

ing a set of mass-spring-damper systems. This allows to follow

a particular path with the guarantee that the velocity vanishes

at the end of the movement. A phase variable acts as a decay

term to ensure that the system asymptotically converges to a

reaching point. A formulation of DMP similar to the one used

for the HMM approach is detailed in Appendix B.

C. Metrics of imitation performance

Five metrics are used to evaluate a reproduction attempt

x′ ∈ ℝ
(D×T ) with respect to the set of demonstrations x ∈

ℝ
(D×M×T ).

ℳ1: This metric evaluates the generalization capability

by measuring how well the reproduced trajectory matches

the different demonstrations. It evaluates the accuracy of the

reproduction in terms of spatial and temporal information,

where a root-mean-square (RMS) error on position (with

respect to the M = 3 demonstrations of the dataset) is

computed along the reproduced motion

ℳ1 =
1

MT

M∑

m=1

T∑

t=1

∣∣x′
t − xm,t∣∣.

ℳ2: For this metric, the reproduced motion is first tem-

porally aligned with the demonstrations through Dynamic
Time Warping (DTW) [12], and a RMS error on position

similar to ℳ1 is then computed. In contrast with ℳ1, spatial

information is prioritized here (i.e., the metric compares the

path followed by the robot instead of the exact trajectory

along time). Depending on the skill that should be learned,

metrics ℳ1 and ℳ2 have different importance. To reproduce

a demonstrated motion from a distant initial position, it is

sometimes desirable to first come back to the motion path,

and then follow the motion (e.g., drawing an alphabet letter

on a board requires ℳ2 to be low). Other skills require to

take into consideration the timing, although this may have a

detrimental effect on the precision with which the path can be

followed (e.g., intercepting a falling object requires ℳ1 to be

low). Indeed, the importance of the metric highly depends on

the skill that one wants to transfer to the robot [36].

ℳ3: This metric evaluates the smoothness of the reproduc-

tion based on RMS jerk quantification. This measure, based

HMM TGMR LWR DMPLWPR
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Fig. 4. Influence of the number of states K on the metrics, for D = 7

dimensions. The dashed line in ℳ3 represents the mean RMS jerk of the
demonstrations.

on the derivative of acceleration, has been shown to be a good

candidate to evaluate smoothness of human motion [37]

ℳ3 =
1

T

T∑

t=1

∣∣
...
x ′
t∣∣.

ℳ4: Computation time (in seconds) of the learning process.

ℳ5: Computation time (in seconds) of the retrieval process

for one iteration.

ℳ4 and ℳ5 are evaluated through non-optimized Matlab

implementations of the algorithms running on a 2.5GHz Pen-

tium processor. The aim here is to provide information on the

range of values and scaling properties that one can expect from

the various learning and reproduction processes.8

We also evaluate the capability to handle external pertur-

bations by generating a random force along the motion and

superposing it with the acceleration computed in (3). Metrics

ℳ1, ℳ2 and ℳ3 are then used to evaluate the reproduction

attempts when faced with these perturbations. A continuous

force is created by first generating a set of keypoints along

the motion (with random time of occurrence and amplitude),

and interpolating between these keypoints through a third-

order spline fit. This process is similar to the Perlin noise

originally proposed to generate naturally looking textures [38],

and further extended to naturally looking perturbations in robot

motion [39].

D. Evaluation results

Three different sets of movements are generated with the

approach presented in Sec. III-A. For each set of movements,

three reproduction attempts are performed. This process is then

repeated for various number of states, dimensionalities and

ranges of perturbation. Examples of reproduced trajectories are

presented in Fig. 3 right. The quantitative results are presented

in Figs 4-6.

8The standard versions of the algorithms have been used, but it would be
possible to adapt each algorithm to make it run faster.
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Fig. 4 shows the influence of the number of states K in

the model (or basis functions), for the different methods (see

Sec. III-B) and metrics (see Sec. III-C). As LWPR is an online

incremental learning method, the threshold that determines the

minimum activation before a new basis function is created

(parameter wgen in [26]) has been gradually increased until

the number of receptive fields matches the desired number of

states.9 We see with ℳ1 and ℳ2 in Fig. 4 that all methods

perform very well, accurately following the demonstrated

movements in terms of RMS errors. By encapsulating cor-

relation information across input and output variables, HMM

performs well with a very small number of states. DMP also

shows a low RMS error but requires at least 4 primitives acting

as attractors.

We see with ℳ3 in Fig. 4 that DMP reproduces the

smoothest movement (actually smoother than the original

demonstrations with RMS jerk depicted in dashed line). It is

noticeable that smoothness is not much affected by the number

of states in general. For ℳ4, DMP and LWR show the best

performance in terms of the computation time used by the

learning process (LWR is zero as it is a data-driven approach

without learning), while HMM and TGMR (both trained by

Expectation-Maximization) show a bit worse performance. To

cope with the online learning nature of LWPR, 10 passes have

been performed on the dataset shuffled randomly. It should

9For LWPR, the ℳ4 computation time is evaluated by taking only the last
learning step into consideration.

thus be noted that by using a single pass, the computation

time can be reduced by an order of magnitude.

In this experiment, we concentrated on a case where the

learning process is separated from the retrieval process. In this

context, both a batch learning process and an online learning

process can be employed. The computation time needed for

learning also has less importance than the one required for

real-time reproduction of a skill. The most important aspect

here is that the user should not wait too long for the robot

to update its model of the skill after arrival of each new

demonstration. In Fig. 4, as all the methods learned in less

than 2 sec., the computation time remains acceptable for an

efficient teaching interaction. For ℳ4, the computation time

used by LWR for reproduction is not competitive and is thus

not depicted here (it goes over 7×10−2 sec. as in the proposed

implementation, each datapoint contributes to the estimation).

The other approaches show a linear dependency on the number

of states and are all suitable for online application in robotics

(less than 1 millisecond per iteration for the considered number

of states).

Fig. 5 shows the influence of the dimensionality D on the

metrics for the different approaches (see legend in Fig. 4),

when considering K = 4 states in the model. We see with

ℳ1 and ℳ2 that the methods perform similarly well in terms

of RMS errors.

When the dimensionality is low, the difficulty is to deal

with the redundancy in position that can appear when ran-

domly generating trajectories (i.e., when passing through the

same point several times during a demonstration). When the

dimensionality is high, these crossings are less likely to occur.

However, the difficulty is in this case to efficiently handle

the sparsity of the data (curse of dimensionality). This fact is

reflected by the data, and is especially noticeable for LWR.

The performance of LWPR is a bit worse, which can be

explained by the online nature of the learning process, that

cannot determine in advance whether loops in the motion will

be encountered, while a batch learning process can cluster

these crossings more easily.

For ℳ4 in Fig. 5, we see that the computation time of

Expectation-Maximization (EM) used by HMM and TGMR

produces very variable results. Indeed, EM is a local search

procedure that starts randomly (with k-means initialization)

and stops once a local maximum likelihood is reached.

Depending on the initialization, a very different number of

iterations may be required to reach the local optimum. For

example, in low dimensions, the local optimum may not be

trivial to find as crossings are more likely to occur in the

motion. Here, a single initialization for the search has been

fixed, and no constraint has been fixed on the number of

iterations, which may explain the high computation time of

nearly 5 sec. required by EM to learn the dataset generated for

D = 5. For reproduction,ℳ5 shows that the different methods

remain competitive in terms of online retrieval of data (less

than 1 millisecond, and quasi linear trend for dimensionalities

below D = 12).

Fig. 6 evaluates the robustness to external perturbations,

for K = 4 states and D = 7 dimensions. Perlin noise is

generated by selecting randomly 4 keypoints along the motion
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Fig. 7. Left: X-Sens motion sensors used to record the user’s gesture
by collecting joint angle trajectories of the two arms (14 DOFs). Right:
Demonstration of the skill with simultaneous reproduction on the robot.

and generating a force through a random uniform distribution

with standard deviation �. A continuous force signal is then

retrieved by interpolating between the keypoints. We see that

HMM, TGMR, LWR and LWPR are robust to perturbations,

but that the performance of DMP decreases when � increases.

This difference can however be explained by the fact that DMP

uses a fixed value for �P , while the other approaches have

been implemented with an adaptive gain as defined in (4).

For all approaches, smoothness is nearly not affected by the

perturbation for the values of � considered, principally due to

the proportional-derivative controller.

We can conclude from this evaluation that HMM remains

competitive with respect to the other approaches considered.

The next sections present three robot learning applications

that are aimed at demonstrating the strengths of the proposed

approach in contexts where the other approaches would not

handle the transfer of the skill efficiently.

IV. EXPERIMENT WITH ICUB HUMANOID ROBOT

The aims of this experiment are to show that: (1) the

proposed approach can be used to learn periodic motion

containing crossings (e.g. such as in a “8” figure); and (2)

the algorithm can efficiently handle bimanual movements in

joint angle space.

A. Experimental setup

The iCub robot is used in the experiment, which is an open-

source humanoid robot resulting from the European project

RobotCub [40]. 14 DOFs out of the 53 degrees-of-freedom

(DOFs) are used to control the two arms of the robot.

A set of motion sensors are used to record the user’s gestures

by collecting joint angle trajectories of the upper-body torso,

see Fig. 7. 6 X-Sens motion sensors are attached to the upper-

arms, lower-arms, and at the back of the hands of the user.

The data are sent to the robot either by wireless Bluetooth
communication or by USB connection.

Each sensor provides the 3D absolute orientation of each

segment by integrating the 3D rate-of-turn, acceleration and

earth-magnetic field at a rate of 50 Hz and with a precision of

1.5 degrees. For each joint, a rotation matrix is defined as the

orientation of a distal limb segment expressed in the frame of

reference of its proximal limb segment. The kinematics motion
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Fig. 8. Demonstration (top-left), model (top-right), reproductions (bottom-
left) and evaluation (bottom-right) of the dancing motion. For visualization
purpose, the 14 DOFs periodic trajectories and associated HMM have been
projected into a latent space of 3 dimensions {�1, �2, �3} through Principal
Component Analysis (PCA). The reproductions with the HMM and DMP
processes are respectively represented with black and yellow lines. For ℳ3

in the last graph, the dotted line depicts the RMS jerk value for the training
data.

of each joint is then computed by decomposing the rotation

matrix into joint angles, see [22] for details. The upper torso

is defined here as a kinematic chain where the shoulder joint
connects the girdle and the upper arm (3 DOFs), the elbow
connects the upper arm and the forearm (1 DOF), the wrist
connects the forearm and the hand (3 DOFs).

A simple rhythmic movement is demonstrated through the

motion sensors and simultaneously reproduced on the iCub.

After having observed 3-4 periods of the movement, the robot

learns a model of the cyclic motion. The motion is reproduced

by the HMM approach presented in Section II, and compared

to DMP. For DMP, the version of the algorithm for periodic

motion is employed, see Appendix B.10

B. Experimental results

Fig. 8 presents the encoding, reproduction and evaluation

results. The 14 DOFs motion contains a crossing in joint space,

which is also observed in the PCA projection of the data. At a

given iteration, the robot must thus move differently depending

on the precedent postures along the motion. We see that the

high-dimensional periodic movement with crossing is correctly

handled by DMP and HMM (8 states have been used in both

cases). DMP shows the best score in terms of accuracy and

smoothness. The drawback is that the cyclic form must be

set beforehand (discrete and periodic signals use a different

10For DMP, the period of the movement has been defined explicitly here.
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Fig. 9. Left: Experimental setup for the experiment of teaching the Barrett
WAM robotic arm to hit a ball. Center: Reproduction of a drive stroke. Right:
Reproduction of a topspin stroke.

representation in DMP), and an external method is required to

estimate the period of the motion.

In contrast to HMM, LWR and LWPR have problems to

correctly handle the crossing point during the movement. From

an algorithmic point of view, passing through the same point

several times along the motion (or along the cycle in the

case of periodic movement) can not be handled by LWR and

LWPR. This is confirmed practically by running the algorithms

on the dancing dataset. When reaching the crossing point,

the two methods provide inadequate motion behaviors. The

controller can produce an undesired average of the different

motion behaviors learned at this point. The system can also

follow indefinitely only a single part of the periodic movement

(e.g., by circularly following only the upper part of a “8”

figure).

For this reason, LWR and LWPR have not been quantita-

tively evaluated here. Similarly, TGMR has not been evaluated

as it cannot efficiently encode periodic motion due to the ex-

plicit encoding of time in the model. A video of the experiment

accompanies the submission, and is available online [31].

V. EXPERIMENT WITH WAM ROBOTIC ARM

This experiment aims at demonstrating that the framework

can be used in an unsupervised learning manner. By that we

mean that several movements can be encoded in a single

HMM, without specifying the number of movements, and

without associating the different demonstrations with a class

or label.

A. Experimental setup

The experiment consists of learning and reproducing the

motion of hitting a ball with a table tennis racket by using

a Barrett WAM 7 DOFs robotic arm, see Fig. 9 left. One

objective is to demonstrate that such movements can be trans-

ferred using the proposed approach, where the skill requires

that the target be reached with a given velocity, direction and

amplitude. In the experiment presented here, we extend the

difficulty of the tennis task described in [13], [34] by assuming

that the robot must hit the ball with a desired velocity retrieved

from the demonstrations. The robot thus hits the ball, continues

its motion and stops, which is more natural than reaching it

with zero velocity.

In table tennis, topspin occurs when the top of the ball is

going in the same direction as the ball is moving. Topspin

causes the ball to drop faster than by gravity alone, and
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Fig. 10. Encoding and reproduction results of the table tennis experiment
(in position space). Left: Demonstrated movements and associated Hidden
Markov Model, where 8 Gaussians are used to encode the two categories of
movements (the learned transitions are represented in Fig. 11). The position of
the ball is depicted by a plus sign, and the initial points of the trajectories are
depicted by points. The trajectories corresponding to topspin and drive strokes
are respectively represented in blue and red for visualization purposes, but the
robot does not have this information and is also not aware of the number of
categories that has been demonstrated. Right: 10 reproduction attempts by
starting from new random positions in the areas where either topspin and
drive strokes have been demonstrated.

is used by players to allow the ball to be hit harder but

still land on the table. The stroke with no spin (or with a

small amount of topspin) is referred to as drive. The motion

and orientation of the racket at the impact thus differ when

performing a topspin or a drive stroke. Training was done

by an intermediate-level player demonstrating several topspin
and drive strokes to the robot by putting it in an active gravity

compensation control mode, which allows the user to move

the robot manually. Through this kinesthetic teaching process,

the user molds the robot behavior by putting it through the task

of hitting the ball with a desired spin. The ball is fixed on a

stick during demonstration, and its initial position is tracked

by a stereoscopic vision system.

The recordings are performed in Cartesian space by consid-

ering the position x and orientation q of the racket with respect

to the ball, with associated velocities ẋ and q̇. A quaternion

representation of the orientation is used, where three of the

four quaternion components are used (the fourth quaternion

component is reconstructed afterwards). The user demonstrates

in total 4 topspin strokes and 4 drive strokes in random order.

The categories of strokes are not provided to the robot, and

the number of states in the HMM is selected through Bayesian
Information Criterion (BIC) [41].

A damped least square inverse kinematics solution with

optimization in the null space of the Jacobian matrix is used

to reproduce the task, see [23] for details.

B. Experimental results

Figs 9 and 10 present the encoding and reproduction results.

We see that the HMM approach reproduces an appropriate

motion in the two situations. Fig. 11 left, presents the states

transitions learned by the HMM. We see that the model

has correctly learned that two different dynamics can be

Aude
Sticky Note
This is a bit debatable as with HMM you provide transition prob, hence more information than that used to train LWR andLWPR> 
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Fig. 11. Left: HMM representation of the transitions and initial state
probabilities (the corresponding state output distributions are represented in
Fig. 10). The states of the HMM are spatially organized around a circle
for representation purposes. The possible transitions are depicted inside the
circle by arrows, while the probabilities of starting from an initial state
are represented outside the circle by arrows. Probabilities above 0.1 are
represented by black lines (self transitions probabilities are not represented
here). From this representation, two different sequences defined by states
transitions 2-3-1-7 and 4-6-5-8 appear, initiated by 2 for the first one, and
by 4 or 6 for the second one. Right: Position and velocity of the racket at the
time of the impact for the 8 demonstrations (top) and for the 10 reproduction
attempts (bottom).

TABLE I
POSITION AND VELOCITY OF THE RACKET AT THE TIME OF THE IMPACT

FOR DEMONSTRATIONS AND REPRODUCTIONS.

Demonstrations Reproductions

position [m] velocity [m/s] position [m] velocity [m/s]
x -0.43± 0.01 -2.19± 0.04 -0.41± 0.01 -2.37± 0.12

Drive y 0.17± 0.01 0.27± 0.30 0.17± 0.06 0.20± 0.27

z 0.43± 0.01 -1.19± 0.31 0.39± 0.02 -1.24± 0.32

x -0.43± 0.01 -2.12± 0.38 -0.44± 0.01 -1.66± 0.12

Topspin y 0.13± 0.02 -0.03± 0.19 0.12± 0.04 0.17± 0.18

z 0.44± 0.02 0.73± 0.38 0.43± 0.03 0.73± 0.16

achieved here, depending on the initial position of the robot.

It is thus possible to encode several motion alternatives in

a single model, without having to provide the number and

labels of alternatives during the demonstration phase. The

alternatives are then automatically retrieved depending on the

initial situation.

Fig. 11 right, and Table I present the results of the strokes

at the time of the impact with the ball. We see that the

system correctly attains the ball at a velocity similar to the

one demonstrated (in terms of both amplitude and direction).

A video of the experiment accompanies the submission, and

is available online [31].

VI. EXPERIMENT WITH HOAP-3 AND ROBOTA

This experiment aims at demonstrating that the framework

can be used to learn a controller by taking simultaneously into

account several constraints. Here, we consider the case where

a set of movements relative to a set of landmarks must be

considered for a correct reproduction of the skill (i.e., where

several actions on objects are relevant for the task).

A. Experimental setup

In the previous experiment, we learned trajectories in the

frame of reference of a single object (the ball). This experiment

Experimental setup Model for landmark 1

Model for landmark 2 Reproduction in new situation

Fig. 12. Top-left: Experimental setup to teach the HOAP-3 humanoid robot to
feed a Robota robotic doll. Top-right, bottom-left: Trajectories relative to the
two landmarks are encoded in two HMMs of 4 states. Each Gaussian encodes
position and velocity information along the task. Generated trajectories using
the corresponding models are represented with dashed lines, where the dots
show the initial positions. The position of the landmarks are represented with
a triangle for the plate and with a square for Robota’s mouth. Bottom-right:
The final reproduction is represented by a solid line. The reproduction shows
that the robot tends to satisfy the first constraint first (to reach for the plate)
and then switches smoothly to the second constraint (to reach for Robota’s
mouth).

with a humanoid robot extends this approach by considering

trajectories with respect to multiple landmarks. A HOAP-3
humanoid robot from Fujitsu is used in the experiment. It has

in total 28 DOFs, of which the 8 DOFs of the upper torso

are used in the experiment (4 DOFs per arm). A kinesthetic
teaching process is used for demonstration. The selected

motors are set to passive mode, which allows the user to move

freely the corresponding degrees of freedom while the robot

executes the task. The kinematics of each joint motion are

recorded at a rate of 1 kHz.

The experiment consists of feeding a Robota robotic doll

[42], where HOAP-3 first brings a spoon to a plate of mashed

potatoes and then moves it towards Robota’s mouth, see Fig.

12. Four kinesthetic demonstrations are provided by changing

the initial positions of the landmarks from one demonstration

to the other. The experimenter explicitly signals the start and

the end of the recording to the robot.

The set of landmarks (or objects) tracked by the robot is

pre-defined. The position of the plate is recorded through a

patch attached to it, which is tracked by an external vision

system placed to the side of the robot. The position of Robota’s

mouth is tracked by proprioception through the robot’s motor

encoders. HOAP-3’s left arm is rigidly attached to Robota and

HOAP-3 is connected to Robota’s head encoders. Robota’s

head is thus considered as an additional link to the kinematic

model of the robot. This allows to precisely track the position

of the mouth during demonstration and reproduction, without

the use of a visual marker that would easily be occluded by

the spoon moving around the mouth.

In the demonstration phase, the position x of the end-
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effector is collected in the frame of reference of the robot’s

torso (fixed frame of reference as the robot is seated during

the experiment). This trajectory is expressed in the frames

of reference of the different landmarks (moving frames of

references) defined for each landmark n by position o(n) and

orientation matrix R(n)

x(n) =
(

R(n)
)
⊤
[

x− o(n)
]

, ẋ(n) =
(

R(n)
)
⊤

ẋ.

Encoding in a Hidden Markov Model is computed for each

landmark as described in Section II. During the reproduction

phase, for new position o′(n) and orientation R′(n) of the land-

marks, the generalized position x̂ and velocity ˆ̇x of the end-

effector with respect to the different landmarks is projected

back to the frame of reference attached to the torso

x̂′(n) = R′(n)x̂(n) + o′(n) , ˆ̇x′(n) = R′(n) ˆ̇x(n).

The associated covariances matrices are transformed

through the linear transformation property of Gaussian dis-

tributions

Σ̂′x(n) = R′(n) Σ̂x(n) (R′(n))
⊤

,

Σ̂′ẋ(n) = R′(n) Σ̂ẋ(n) (R′(n))
⊤

.

At each time step, the command defined in (3) is used

to retrieve the desired velocity ˆ̇x′ and desired position x̂′,

where the resulting distributions N (ˆ̇x′, Σ̂′ẋ) and N (x̂′, Σ̂′x)
are respectively computed through the Gaussian products
∏N

n=1 N (ˆ̇x′(n), Σ̂′ẋ(n)) and
∏N

n=1 N (x̂′(n), Σ̂′x(n)). This al-

lows the system to combine automatically the different con-

straints associated with the landmarks.

B. Experimental results

Fig. 12 presents the encoding results. The top-right graph

highlights through the forms of the Gaussian distributions

that parts of the motion are more constraints than others.

With respect to landmark 1, strong consistency among the

demonstrations have been observed at the beginning of the

gesture (motion of the spoon in the mashed potatoes), which is

reflected by the narrower form of the ellipses at the beginning

of the motion.

With respect to landmark 2 (bottom-left graph), strong

consistency among the demonstrations have been observed at

the end of the gesture (when reaching for Robota’s mouth).

Fig. 12 bottom-right, presents the reproduction results. We see

that the robot automatically combines the two sets of con-

straints (associated with the plate and with Robota’s mouth)

to find a trade-off satisfying probabilistically the constraints

observed during the demonstrations. A video of the experiment

accompanies the submission, and is available online [31].

VII. DISCUSSION

We presented an evaluation experiment based on randomly

generated data and three applications highlighting different

capabilities of the model. The aim of the experiment presented

in Section III was to conduct a systematic evaluation for

various dimensionalities, for models of various complexity and

for perturbations of varying amplitudes. It however remains

valid only for a specific case, that is, in the context where

an acceleration command is recursively evaluated after having

observed a set of position and velocity data.

The proposed HMM approach shares many characteris-

tics with the DMP approach, but has some advantages that

have been highlighted through the experiments. In DMP, the

weights are determined through a decay term, which allows

the system to guarantee convergence to the last attractor �x
K .

In contrast, the HMM method has the disadvantage that its

stability lies on proper choice of the gains in (3). An improper

choice would directly affect the stability of the system. These

gains must be set by estimating in advance the perturbations

that are expected during reproduction and/or the range of novel

initial positions that the system is expected to handle.

On the other hand, the HMM approach has the advantage of

being able to encode several motion alternatives in the same

model (see the table tennis experiment in Sec. V). Partial

demonstrations can be provided, which is a clear advantage

for the teaching interaction (e.g. to refine one part of the

movement without having to demonstrate the whole task

again). Compared to DMP that must explicitly embed the

cyclic or discrete form of the motion, the HMM approach

allows periodic and reaching movements to be handled in a

unified way (and simultaneously), without having to specify

the representation beforehand (see the dance learning exper-

iment in Sec. IV). It is also not necessary to specify the

frequency of the movement in contrast with DMP that requires

to first use an external system to estimate the fundamental

frequency of the system [43], [44].

Another drawback of DMP is that a heuristic must be

explicitly defined to let the system recompute the value of

the canonical variable s in case of a strong perturbation or

when one wants to reproduce only a subpart of the motion.

Indeed, DMP is robust to spatial perturbation but requires

some heuristics to handle temporal perturbations such as delay

and pauses in the motion (the perturbation needs to be detected

in order to re-estimate the value of the decay term s). For

example, if the robot needs to reproduce only one part of the

motion, or if the target is moving, s must be re-evaluated in

consequence. Handling this type of perturbation is in contrast

inherently encapsulated in the proposed model, which then

does not need the explicit parametrization of a temporal decay.

Spatial and temporal distortions are handled very flexibly

through the HMM representation.

The proposed HMM approach is not constrained to move-

ments with a unique zero-velocity attractor point. As high-

lighted in Sec. V, several points of interest to be attained with

a desired velocity can be automatically extracted along the

motion. A single model is used to encode multivariate data,

which allows automatic learning of the correlations between

the different variables and the use of this information for

reproduction. To handle multivariate data, DMP considers the

different variables as separate processes synchronized by the

phase variable, while HMM encapsulates the complete correla-

tion information. The covariance matrices in (1) provide local

information on the spread of each center �i. This therefore

allows building an efficient regression estimate, even if a low

number of Gaussians is considered.

Aude
Sticky Note
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We plan in future work to extend the framework to skills

requiring more complex dynamics. Of particular interest is

the consideration of force signals in the learning by imitation

framework. This would allow the transfer of tasks requiring

specific compliance to the robot, such as handling manipula-

tion skills collaboratively with a human user. Current work

also investigates how the proposed approach can be combined

with Reinforcement Learning techniques, which would allow

the robot to reuse its knowledge for the exploration of new

solutions [2].

VIII. CONCLUSION

We presented and evaluated a probabilistic approach com-

bined with dynamical systems to allow robots to acquire new

skills by imitation. The use of HMM allowed us to get rid

of the explicit time dependency that was considered in our

previous work [12], by still encapsulating precedence infor-

mation within the statistical representation. For the context

of separated learning and reproduction processes, this novel

formulation was systematically evaluated with respect to our

previous approach, Locally Weighted Regression (LWR) [25],

Locally Weighted Projection Regression (LWPR) [26], and

Dynamic Movement Primitives (DMP) [13], [35]. We finally

presented three applications to highlight the strengths of the

proposed approach.

APPENDIX A

REFORMULATION AS MIXTURE OF LINEAR SYSTEMS

By rewriting ˆ̇x and x̂ in (3) as a mixture of linear systems

ˆ̇x =
∑K

i=1 ℎi(Mi x+ vi)

x̂ =
∑K

i=1 ℎi(M
′
i ẋ+ v′i)

with

Mi = Σẋx
i (Σx

i )
−1,

M ′
i = Σxẋ

i (Σẋ
i )

−1,
vi = �ẋ

i − Σẋx
i (Σx

i )
−1�x

i ,
v′i = �x

i − Σxẋ
i (Σẋ

i )
−1�ẋ

i ,

and knowing that
∑K

i=1 ℎi = 1, (3) can be rewritten as

ẍ =

K∑

i=1

ℎi (Ci ẋ+ C′
i x+ C′′

i )with
Ci = �PM ′

i − �VI,
C′

i = �VMi − �PI,
C′′

i = �Vvi + �Pv′i.

The corresponding state-space representation for each sub-

system i can then be written as

Ẋ
︷ ︸︸ ︷

1

dt

[
x
ẋ

]

=

Ai

︷ ︸︸ ︷
[

0 I
C′

i Ci

]

X
︷ ︸︸ ︷
[

x
ẋ

]

+

bi
︷ ︸︸ ︷
[

0
C′′

i

]

,

where I is the identity matrix, and 0 represents a null matrix

or vector.

APPENDIX B

DMP REFORMULATION

By using a formulation similar to the one used in Sec. II (see

also the reformulation in [35]), Dynamic Movement Primitives
is computed as

ẍ = (x̂− x) �P − ẋ �V , with x̂ =

K∑

i=1

ℎi�
x
i , (5)

where gains �P and �V have been fixed to obtain a critically

damped system. The weights ℎi are defined by Gaussian

distributions

ℎi(s) = N (s; �s
i ,Σ

s
i ),

and normalized such that
∑K

i ℎi = 1. s ∈ [0, 1] is a decay

term initialized with s = 1 and converging to zero through

a canonical system11 ṡ = −�s. Centers �s
i are equally

distributed between 1 and 0, and variance parameters Σs
i are

set to a constant value depending on the number of kernels

(here, � = 0.1, �P = (�V)2/4 and Σs
i =

3
2�V ).

Centers �x
i are learned through regression from the observed

data.12 For each datapoint {xi, ẋi, ẍi}Ni=1 of the training set

(N = MT ), and following (5), a set of attractors x̂i are defined

as

x̂i = ẍi/�
P + ẋi�

V/�P + xi ∀i ∈ {1, . . . , N}.

By rewriting (5) in a matrix form, we define X̂ = HΦ with

X̂ = (x̂1, . . . , x̂N ), H = (ℎ̂0, . . . , ℎ̂N) and Φ = (�x
1 , . . . , �

x
K)

(X̂ ∈ ℝ
N×D, H ∈ ℝ

N×K and Φ ∈ ℝ
K×D). The set of ℎ̂i

is determined for each datapoint by numerically integrating

the canonical system ṡ = −�s. Centers �x
i are then estimated

through least-square regression

Φ = (HTH)−1HT X̂,

where (HTH)−1HT is the pseudoinverse of H .

DMP can be also used to model periodic motion. In this

case, the canonical system is defined as ṡ = 2�/T where T is

the period of the motion. The weights of the Gaussian kernels

are then defined as

ℎi(s) = N
(
s[2�]; �

s
i ,Σ

s
i

)
,

and normalized such that
∑K

i ℎi = 1. s[2�] is the value of

s modulus 2�. Centers �s
i are distributed equally around the

circle.
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