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ABSTRACT

In this paper we review the literature relating to the psychological/educational study of
programming. We identify general trends comparing novice and expert programmers,
programming knowledge and strategies, program generation and comprehension, and object-
oriented versus procedural programming. (We do not cover research relating specifically to
other programming styles.) The main focus of the review is on novice programming and topics
relating to novice teaching and learning. Various problems experienced by novices are
identified, including issues relating to basic program design, to algorithmic complexity in
certain language features, to the ‘‘fragility’’ of novice knowledge, and so on. We summarise this
material and suggest some practical implications for teachers. We suggest that a key issue that
emerges is the distinction between effective and ineffective novices. What characterises
effective novices? Is it possible to identify the specific deficits of ineffective novices and help
them to become effective learners of programming?

1. INTRODUCTION

Programming is a very useful skill and can be a rewarding career. In recent

years the demand for programmers and student interest in programming have

grown rapidly, and introductory programming courses have become increas-

ingly popular. Learning to program is hard however. Novice programmers

suffer from a wide range of difficulties and deficits. Programming courses are

generally regarded as difficult, and often have the highest dropout rates. It is

generally accepted that it takes about 10 years of experience to turn a novice

into an expert programmer (Winslow, 1996).
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What are the properties of expert programmers? What resources and

processes are involved in creating or understanding a program? Since the

1970s there has been an interest in questions such as these, and in

programming as a cognitive process. The literature relating to such topics is

extensive, and was especially active in the late 1980s. A more recent trend

is an emphasis on studies of object-oriented (OO) programming and its

relationship to the traditional procedural approach.

Our interest in this broad field is focused by practical considerations. We

teach a computer science introductory programming course, the kind often

known as ‘‘CS1’’. Our goal is to provide the most effective learning

environment and experience that we can for our students. Consequently, we

are interested in understanding the processes of learning and teaching

programming. Why is programming hard to learn? What are the cognitive

requirements of the task? Are there successful and unsuccessful strategies for

learners? What can we as teachers do to most effectively support novice

programmers? The purpose of this paper is to review research relating to

novices learning a first programming language. While some comparison of the

procedural and OO programming styles is included, we do not cover research

relating specifically to other programming styles (such as, e.g., functional or

logic programming). We briefly explore issues relating to teaching, and a main

goal of this review is to identify practical implications for teachers.

We begin with an overview (Section 2) of research into programming,

identifying several significant trends. We then focus (Section 3) on novice

programmers, exploring their capabilities and typical problems, their char-

acteristic behaviours, and (Section 4) factors relating to course design and

teaching. In the concluding discussion (Section 5) we summarise this material

and suggest some practical implications for teachers. We also propose a

framework which makes explicit some of the relationships between important

topics explored in the literature, and highlight the significance of the

distinction between effective and ineffective novices, in particular focusing on

the strategies that they employ.

2. OVERVIEW

Studies of programming can be generally divided into two main categories,

those with a software engineering perspective, and those with a psychological/

educational perspective. Software engineering based studies typically focus
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on experienced or professional programmers, often working in teams, and

how to develop software projects effectively (see, e.g., Boehm, 1981; Brooks,

1995; Humphrey, 1999; Mills, 1993; Perlis, Sayward, & Shaw, 1981). Our

interest is in novices and the initial development of individual programming

skills. Although early learning should of course include the basics of good

software engineering practice, learning to program is usually addressed from a

psychological/educational perspective, and it is this literature that is the focus

of the current review. Research has focused on topics such as program

comprehension and generation, mental models, and the knowledge and skills

required to program.

Two early books (Sackman, 1970; Weinberg, 1971) were significant in

identifying programming as an area of psychological interest and stimulating

research in the field. Sheil (1981) is an often cited early review, which very

clearly sets out and discusses a range of methodological issues (see also

Gilmore, 1990a). More recent books include Soloway and Spohrer (1989),

which is explicitly focused on the novice programmer, and Hoc, Green,

Samurçay, and Gillmore (1990). Drawing on these and other sources, we can

identify the following general trends and topics.

2.1. Experts Versus Novices
It is generally agreed (Winslow, 1996) that it takes roughly 10 years to turn a

novice into an expert programmer. There are several breakdowns of this

continuum into stages, the most commonly cited being the five stages

proposed by Dreyfus and Dreyfus (1986): novice, advanced beginner,

competence, proficiency, and expert.

There are many studies of ‘‘expert’’ programmers (although some of these

are based on graduate students who are probably only competent or proficient

on the scale noted above). Studies of experts focus in particular on the

sophisticated knowledge representations and problem solving strategies that

they can employ (see, e.g., D�eetienne, 1990; Gilmore, 1990b; Visser & Hoc,

1990). In a survey of program understanding, von Mayrhauser and Vans

(1994) summarise studies (in particular Guindon, 1990) noting that experts:

have efficiently organised and specialised knowledge schemas; organise their

knowledge according to functional characteristics such as the nature of the

underlying algorithm (rather than superficial details such as language syntax);

use both general problem solving strategies (such as divide-and-conquer) and

specialised strategies; use specialised schemas and a top-down, breadth-first

approach to efficiently decompose and understand programs; and are flexible

LEARNING AND TEACHING PROGRAMMING 139



in their approach to program comprehension and their willingness to abandon

questionable hypotheses. Expert knowledge schemas also have associated

testing and debugging strategies (Linn & Dalbey, 1989). Rist summarises

many of the advantages of the expert programmer as follows:

Expertise in programming should reduce variability in three ways: by

defining the best way to approach the design task, by supplying a standard

set of schemas to answer a question, and by constraining the choices about

execution structure to the ‘best’ solutions. (Rist, 1995, p. 552)

Many of the characteristics of expert programmers are also characteristics of

experts in general, as explored, for example, in other fields such as chess or

mathematics. Experts are good at recognising, using and adapting patterns or

schemas (and thus obviating the need for much explicit work or computation).

They are faster, more accurate, and able to draw on a wide range of examples,

sources of knowledge, and effective strategies.

By definition novices do not have many of the strengths of experts. Studies

reviewed by Winslow (1996), for example, have concluded that novices are

limited to surface and superficially organised knowledge, lack detailed mental

models, fail to apply relevant knowledge, and approach programming ‘‘line by

line’’ rather than using meaningful program ‘‘chunks’’ or structures. Studies

collected in Soloway and Spohrer (1989) outline deficits in novices’ under-

standing of various specific programming language constructs (such as vari-

ables, loops, arrays and recursion), note shortcomings in their planning and

testing of code, explore more general issues relating to the use of program

plans, show how prior knowledge can be a source of errors, and more. Novices

are ‘‘very local and concrete in their comprehension of programs’’

(Wiedenbeck, Ramalingam, Sarasamma, & Corritore, 1999, p. 278). Since

our main interest is in novices and the early stages of learning, we return to

this topic in more detail in Section 3.

2.2. Knowledge Versus Strategies
Davies (1993) distinguishes between programming knowledge (of a declar-

ative nature, e.g., being able to state how a ‘‘for’’ loop works) and pro-

gramming strategies (the way knowledge is used and applied, e.g., using a

‘‘for’’ loop appropriately in a program).

Obviously, programming ability must rest on a foundation of knowledge

about computers, a programming language or languages, programming tools

and resources, and ideally theory and formal methods. Typical introductory
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programming textbooks devote most of their content to presenting knowledge

about a particular language (elaborated with examples and exercises), and in our

experience typical introductory programming courses are also ‘‘knowledge

driven’’.

The majority of studies of programming have likewise focused on the

content and structure of programming knowledge, see, for example, Brooks

(1990) introducing a special issue of International Journal of Man-Machine

Studies (Vol. 33, No. 3) devoted to this topic. One kind of representation is

usually identified as central, namely a structured ‘‘chunk’’ of related

knowledge, typically called a schema or plan.1 For example, most program-

mers will have a schema for finding the average of the values stored in single

dimensional array. Ormerod (1990) suggests that ‘‘A schema [. . .] consists of a

set of propositions that are organised by their semantic content’’, and goes on

to further distinguish plans, frames and scripts (see also Anderson, 2000).

As used in the literature, however, there is considerable flexibility and

overlap in the interpretation of these terms. In an observation which captures

both the central role of the schema/plan, and the vagueness of the definition

and terminology, Rist notes:

There is considerable evidence in the empirical study of programming that

the plan is the basic cognitive chunk used in program design and

understanding. Exactly what is meant by a program plan, however, has

varied considerably between authors. (Rist, 1995, p. 514)

We will follow the usage adopted by each author when discussing the work of

others, and ourselves use the term schema to refer to this general kind of

representation.

As various authors, and in particular Davies (1993) have pointed out,

however, knowledge is only part of the picture:

Much of the literature concerned with understanding the nature of

programming skill has focused explicitly on the declarative aspects of

programmers’ knowledge. This literature has sought to describe the nature

of stereotypical programming knowledge structures and their organization.

However, one major limitation of many of these knowledge-based theories

1‘‘Plan’’ is often used to emphasize an ‘‘action oriented’’ rather that static interpretation. In
other words, the term ‘‘schema’’ implies a ‘‘program as text’’ perspective, while the term
‘‘plan’’ implies a ‘‘programming as activity’’ perspective (Rogalski & Samurçay, 1990).
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is that they often fail to consider the way in which knowledge is used or

applied. Another strand of literature is less well represented. This literature

deals with the strategic aspects of programming skill and is directed

towards an analysis of the strategies commonly employed by programmers

in the generation and comprehension of programs. (Davies, 1993, p. 237)

For example, Widowski and Eyferth (1986) compared novice and expert

programmers as they worked to understand programs which were either

conventionally or unusually structured. Subjects could view the code one line

at a time, and a ‘‘run’’ was defined as a sequential pass over a section of

code. Experts tended to read conventional programs in long but infrequent

runs (Widowski & Eyferth suggest they are employing a top-down concep-

tually driven strategy), and read unusual programs in short frequent runs

(suggesting a bottom-up heuristic strategy). Novices tended to read both

conventional and unconventional programs in the same way. The authors

suggest that experts (even without relevant knowledge structures or plans) had

more flexible strategies, and were better able to recognise and respond to

novel situations.

Davies suggests that research should go beyond attempts to simply

characterise the strategies employed by different kinds of programmer, and

focus on why these strategies emerge, i.e. on ‘‘exploring the relationship

between the development of structured representations of programming

knowledge and the adoption of specific forms of strategy’’ (Davies, 1993,

p. 238). In his subsequent review, Davies identifies as significant strategies

relating to the general problem domain, the specific programming task, the

programming language, and the ‘‘interaction media’’ (programming tools).

We cover much of the material reviewed in the discussion of program

comprehension and generation below.

2.3. Comprehension Versus Generation
Another significant distinction in the literature is between studies that explore

program comprehension (where given the text of a program subjects have to

demonstrate an understanding of how it works), and those that focus on

program generation (where subjects have to create a part of or a whole

program to perform some task/solve some problem).

Brooks (1977, 1983) was among the first to propose a model of program

comprehension. The model is set in the context of various knowledge domains,

such as the original problem domain (e.g., a ‘‘cargo-routing’’ problem), which
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is transformed and represented as values and structures in intermediate

domains, and finally instantiated in the data structures and algorithms of a

program in the programming domain.2 Brooks suggests that programming

involves formulating mappings from the problem domain (via intermediate

domains) into the programming domain – a process which requires knowledge

of both the structure of the domains and of the mappings between them.

Brooks describes program comprehension as a ‘‘top-down’’ and

‘‘hypothesis-driven’’ process. Brooks suggested that rather than studying

programs line by line, subjects (assumed to be ‘‘expert’’ programmers) form

hypotheses based on high-level domain and programming knowledge. These

hypotheses are verified or falsified by searching the program for markers/

‘‘beacons’’ which indicate the presence of specific structures or functions.

Subjects may vary with respect to their domain knowledge, programming

knowledge, and comprehension strategies. This fairly detailed model is able to

account, Brooks claims, for observed variation in comprehension performance

arising from such factors as the nature of the problem domain, variations in the

program text, the effects of different comprehension tasks (e.g., modification

vs. debugging) and the effects of individual differences. Davies (1993)

reviews a range of studies that support Brooks’ model. Other models of

program comprehension are reviewed in von Mayrhauser and Vans (1994),

including those proposed by Shneiderman and Mayer (1979), Soloway and

Ehrlich (1984), Soloway et al. (1988), Letovsky (1986) and Pennington

(1987a, b). Wiedenbeck et al. (1999) note that subjects’ models of a program

can be influenced by different task requirements, for example, modifying a

program rather than simply answering questions about it.

Rist (1995) presents a comprehensive model of program generation (see also

Rist, 1986a, 1986b, 1989, 1990). Knowledge is represented using nodes in

internal memory (working, episodic, and semantic) or external memory (the

program specification, notes, or the program itself). A node encodes an ‘‘action’’

that may range from a line of code, to chunks such as loops, to one or more

routines of arbitrary size. Nodes are indexed using a tuple of the form hrole, goal,

objecti, for example, a read loop could be indexed as hread, stream, –i. Nodes

also have four ‘‘ports’’, :use, :make, :obey and :control, which allow them to be

linked with respect to control flow and data flow. A program is built by starting

2The same domains are identified by Pennington (1987a, 1987b), based on the text
comprehension model of van Dijk and Kintsch (1983).
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with a search cue such as hfind, average, rainfalli, and retrieving from memory

any matching node. Nodes can contain cues, so cues within the newly linked

node are then expanded and linked in the same way. Linked systems of code that

produce a specific output called plans, and common/useful plans are assumed to

be stored by experts as schema-like knowledge structures.

Using these underlying knowledge representations a number of different

design strategies can be implemented. A design strategy (in this specific

definition) consists of a starting cue, a direction, a level, and a type of link to

explore next (all design decisions are local, with no ‘‘supervising controller’’).

By varying these conditions within the model a range of different programmer

strategies (in the general sense of word as discussed above) can be

implemented, including typical novice and expert strategies. Experts can

typically retrieve relevant plans from memory, and then generate code from

the plan in linear order (from initialisation, to calculation, to output). Novices

must typically create plans. This involves ‘‘focal expansion’’ – reasoning

‘‘backwards’’ from the goal to the focus (critical calculation/step/transaction),

and then to the other necessary elements. Code generation begins with the

central calculation, and builds the initialisations and other elements around it.

Rist notes that a realistic design process will involve ‘‘the interaction

between a search [design] strategy and opportunistic design, plan creation and

retrieval, working memory limitations, and the structure of the specification

and the program’’ (Rist, 1995, p. 508). (Such practical considerations,

especially the limited capacity of working memory, are also addressed in the

‘‘parsing-ginsarp’’ model of program generation (Green, Bellamy, & Parker,

1987).) Rist’s model has been implemented in a program which generates

Pascal programs from English descriptions.

Studies and models of comprehension are more numerous than studies and

models of generation, possibly because comprehension is a more constrained

task and subject’s behaviour is therefore easier to interpret and describe. Clearly

the topics are related, not least because during generation the development,

debugging (and in the long term maintenance) of code necessarily involves

reviewing and understanding it. Although we might therefore expect that these

abilities will always be highly correlated, the situation may in fact be more

complex:

Studies have shown that there is very little correspondence between the

ability to write a program and the ability to read one. Both need to be taught

along with some basic test and debugging strategies. (Winslow, 1996, p. 21)
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2.4. Procedural Versus Object-Oriented
A number of recent studies explore issues relating to the object-oriented (OO)

programming paradigm (e.g., Cþþ, Java), particularly in contrast to the most

common procedural paradigm (e.g., Pascal, C). In general such studies should

be seen in the context that there is not likely to be any universally ‘‘best’’

programming notation for comprehension, but that a given notation may assist

the comprehension of certain kinds of information by highlighting it in some

way in the program code (Gilmore & Green, 1984).

D�eetienne (1997) reviews claims regarding the ‘‘naturalness, ease of use,

and power’’ of the OO approach. Such claims are based on the argument that

objects are natural features of problem domains, and are represented as

explicit entities in the programming domain, so the mapping between domains

is simple and should support and facilitate OO design/programming. The

papers reviewed do not support this position.3 They show that identifying

objects is not an easy process, that objects identified in the problem domain

are not necessarily useful in the program domain, that the mapping between

domains is not straightforward, and that novices need to construct a model of

the procedural aspects of a solution in order to properly design objects/classes.

While the literature on expert programmers is more supportive of the

naturalness and ease of OO design it also shows that expert OO programmers

use both OO and procedural views of the programming domain, and switch

between them as necessary (D�eetienne, 1997). Similarly Rist (1995) describes

the relationship between plans (a fundamental unit of program design, as

discussed above) and objects as ‘‘orthogonal’’.

Plans and objects are orthogonal, because one plan can use many objects

and one object can take part in many plans. (Rist, 1995, pp. 555–556)

Rist (1996) suggests that OO programming is not different, ‘‘it is more’’, be-

cause OO design adds the overheads of class structure to a procedural system.

Two recent studies have explored the problems encountered by novices in

detail. Wiedenbeck et al. (1999) studied the comprehension of procedural and

OO programs in subjects in their second semester of study at university.

Subjects were learning either Pascal or Cþþ, and were tested on programs

written in the language they were learning (but carefully designed so that

3Note that in all studies reviewed by D�eetienne the novice OO programmers had previous
experience in procedural programming, and are therefore not necessarily equivalent to
completely novice programmers.
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versions in each language were equivalent). For short programs (one class in

Cþþ) there was no significant difference in overall comprehension between

languages, though the OO subjects were better specifically at understanding

the function of the program. Results were completely different when longer

programs (multiple classes) were used, with procedural programmers doing

better than OO programmers on all measures. The authors conclude that:

The distributed nature of control flow and function in an OO program may

make it more difficult for novices to form a mental representation of the

function and control flow of an OO program than of a corresponding

procedural program . . . (Wiedenbeck et al., 1999, p. 276)

We tend to believe that the comprehension difficulties that novices

experienced with a longer OO program are attributable partly to a longer

learning curve of OO programming and partly to the nature of larger OO

programs themselves. (Wiedenbeck et al., 1999, p. 277)

This view does not support the claim that the OO paradigm is a ‘‘natural’’ way

of conceptualising and modelling real world situations:

These results suggest that the OO novices were focusing on program model

information, in opposition to claims that he OO paradigm focuses the

programmer on the problem domain by modeling it explicitly in the

program text. (Wiedenbeck et al., 1999, p. 274)

Similar conclusions are reached by Wiedenbeck and Ramalingam (1999) in

a study of Cþþ students comprehending small programs in C and Cþþ. Once

again no difference in overall measures of comprehension were found.

Comparing specific measures, however, suggested that subjects tend to

develop representations of (small) OO programs that are strong with respect to

program function, but weaker with respect to control flow and other program

related knowledge. In contrast subjects’ representations of procedural

programs were stronger in program related knowledge. Results for the better

performing half of subjects were then compared to those of the worse

performing half. For the better performing group no difference was found. All

differences between the OO and procedural conditions were attributable to the

worse performing subjects. Burkhardt, D�eetienne, and Wiedenbeck (1997)

proposed a theory of OO program comprehension (including the models

constructed by programmers and the effect of expertise on the construction of

models) within which many of these factors can be explored.
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2.5. Other
A range of other topics have been addressed. Early studies in particular

explored particular kinds of language structure or notation (such as the use

of GOTOs vs. nested if-then-else structures), various elements of program-

ming practice (such as flow charting and code formatting), and common

tasks such as debugging and testing – see, for example, the review in Sheil

(1981).

Bishop-Clark (1995) reviews studies of the effects of cognitive style and

personality on programming. While no clear trends emerge Bishop-Clark

suggests that the common use of a single ‘‘unitary’’ measure of programming

success (such as a score or grade) may obscure more subtle effects which

could be revealed by studies that relate style and personality to ‘‘four stages of

computer programming’’, namely problem representation, design, coding and

debugging.

3. NOVICE PROGRAMMERS

From our perspective as teachers we are most interested in the question of how

novices learn to program. This area of interest is set in the general context of

cognitive psychology, and topics such as knowledge representation, problem

solving, working memory, and so on.

[Our review] highlights the approaches to understanding human cognition

which are of special relevance to programming research. Concepts that

recur in many cognitive theories include schemas, production systems,

limited resources, automation of skills with practice, working memory,

semantic networks and mental models. Most employ propositional

representations of one form or another, in which information is represented

at a symbolic level. (Ormerod, 1990, p. 77)

Readers unfamiliar with this background can find an introduction in texts such

as Anderson (2000).

We now explore topics relating to novice programming in more depth,

particularly with respect to program generation. In the context of the literature

reviewed above studies of novices and of program generation are in the

minority. Even so they form a sizeable body of work, in particular the papers

collected in Soloway and Spohrer (1989) Studying the novice programmer are

a major resource.
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3.1. The Task
Learning to program is not easy. In a good overview of what is involved du

Boulay (1989) describes five overlapping domains and potential sources of

difficulty that must be mastered. These are: (1) general orientation, what

programs are for and what can be done with them; (2) the notional machine, a

model of the computer as it relates to executing programs; (3) notation, the

syntax and semantics of a particular programming language; (4) structures,

that is, schemas/plans as discussed above; (5) pragmatics, that is, the skills of

planning, developing, testing, debugging, and so on.

None of these issues are entirely separable from the others, and much of the

‘shock’ [. . .] of the first few encounters between the learner and the system

are compounded by the student’s attempt to deal with all these different

kinds of difficulty at once. (du Boulay, 1989, p. 284)

Rogalski and Samurçay summarise the task as follows:

Acquiring and developing knowledge about programming is a highly

complex process. It involves a variety of cognitive activities, and mental

representations related to program design, program understanding, mod-

ifying, debugging (and documenting). Even at the level of computer

literacy, it requires construction of conceptual knowledge, and the

structuring of basic operations (such as loops, conditional statements,

etc.) into schemas and plans. It requires developing strategies flexible

enough to derive benefits from programming aids (programming environ-

ment, programming methods). (Rogalski & Samurçay, 1990, p. 170)

Green (1990, p. 117) suggests that programming is best regarded not as

‘‘transcription from an internally held representation’’, or in the context of

‘‘the pseudo-psychological theory of ‘structured programming’’’, but as an

exploratory process where programs are created ‘‘opportunistically and

incrementally’’. A similar conclusion is reached by Visser (1990) and by

Davies:

. . . emerging models of programming behavior suggest an incremental

problem-solving process where strategy is determined by localized

problem-solving episodes and frequent problem re-evaluation. (Davies,

1993, p. 265)

An emphasis on opportunistic exploration seems particularly appropriate

when considering novice programming.
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3.2. Mental Models and Processes
Writing a program involves maintaining many different kinds of ‘‘mental

model’’ (see, e.g., Johnson-Laird, 1983), quite apart from a model/knowledge

of the programming language itself.

Programs are usually written for a purpose – with respect to some task,

problem, or specification. Clearly an understanding/mental model of this

problem domain must precede any attempt to write an appropriate

program, see, for example, Brooks (1977, 1983), Spohrer, Soloway, and

Pope (1989), Davies (1993), Rist (1995). Taking this point to its logical

conclusion Deek, Kimmel, and McHugh (1998) describe a first year computer

science course based on a problem solving model, where language features

are introduced only in the context of the students’ solutions to specific

problems.

Other important mental models can be identified. Many studies have noted

the central role played by a model of (an abstraction of) the computer, often

called a ‘‘notional machine’’ (Ca~nnas, Bajo, & Gonzalvo, 1994; du Boulay,

1989; du Boulay, O’Shea, & Monk, 1989; Hoc & Nguyen-Xuan, 1990; Mayer,

1989; Mendelsohn, Green, & Brna, 1990).

The notional machine an idealized, conceptual computer whose properties

are implied by the constructs in the programming language employed.

(du Boulay et al., 1989, p. 431)

That the notional machine is defined with respect to the language is an

important point, the notional machine underlying Pascal is very different from

the one underlying Prolog.

The purpose of the notional machine is to provide a foundation for

understanding the behaviour of running programs.

[a major issue] is the need to present the beginner with some model or

description of the machine she or he is learning to operate via the given

programming language. It is then possible to relate some of the troublesome

hidden side-effects to events happening in the model, as it is these hidden,

and visually unmarked, actions which often cause problems for beginners.

However, inventing a consistent story that describes events at the right level

of detail is not easy. (du Boulay, 1989, pp. 297–298)

du Boulay et al. (1989) suggest that to be useful the notional machine should

be simple, and supported with some kind of concrete tool which allows the

model to be observed. In short, a ‘‘glass box’’ instead of a ‘‘black box’’.
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The programmer must also develop a design/model of the program itself

and how it will run.

A running program is a kind of mechanism and it takes quite a long time to

learn the relation between a program on the page and the mechanism it

describes. (du Boulay, 1989, p. 285)

du Boulay likes building a model of a program based on the program text

trying to understand how a car engine works based on a diagram of the engine.

The task is much complicated by the many different ways of viewing

a program, such as linear order, control flow, data flow, modular structure,

or possibly object based structure (see, e.g., Rist, 1995). Corritore and

Wiedenbeck (1991) showed that novices (comprehending short Pascal

segments) had more difficulty with data flow and function/purpose questions

than with control flow, and had least problems with ‘‘elementary operations’’

such as assignment to a variable. Wiedenbeck, Fix, and Scholtz (1993)

describe expert mental models of computer programs as founded on the

recognition of basic patterns/schemas which are hierarchical and multi-

layered, with explicit mappings between layers, well connected internally, and

well founded in the program text. Novice representations generally lacked

these characteristics, but in some cases were working towards them.

Complicating this picture still further, we suggest, is the distinction

between the model of the program as it was intended, and the model of the

program as it actually is. Designs can be incorrect, unpredicted interactions

can occur, bugs happen. Consequently, programmers are frequently faced with

the need to understand a program that is running in an unexpected way. This

requires the ability to track or ‘‘hand trace’’ code to build a model of the

program an predict its behaviour (which Perkins, Hancock, Hobbs, Martin,

and Simmons (1989) call ‘‘close tracking’’ and describe as ‘‘taking the

computer’s point of view’’). The process of building such a model (which

itself supposes models of both the features of the language and the behaviour

of the machine) is a central part of program comprehension, and of the

planning, testing and debugging involved in program generation.

Some bugs are minor and can be fixed without change to the program

model. In situations where diagnosing a bug exposes a flaw in the underlying

model, however, debugging the code may result in major conceptual changes.

Pennington and Grabowski (1990) state that diagnosis is the most difficult

aspect of debugging, with subsequent corrections being (at least in the case of

simple programs where a large re-design is not required) comparatively easier.
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Gray and Anderson (1987) call alterations to program code ‘‘change

episodes’’, and suggest that they are rich in information, helping to reveal

the programmers models, goals and planning activities.

3.3. Novice Capabilities and Behaviour
Novices lack the specific knowledge and skills of experts, and this perspective

pervades much of the literature. Various studies as reviewed by Winslow

(1996) concluded that novices are: limited to surface knowledge (and organise

knowledge based on superficial similarities); lack detailed mental models; fail

to apply relevant knowledge; use general problem solving strategies (rather

than problem specific or programming specific strategies); and approach

programming ‘‘line by line’’ rather than at the level of meaningful program

‘‘chunks’’ or structures. In contrast to experts, novices spend very little time

planning. They also spend little time testing code, and tend to attempt small

‘‘local’’ fixes rather than significantly reformulating programs (Linn &

Dalbey, 1989). They are frequently poor at tracing/tracking code (Perkins

et al., 1989). Novices can have a poor grasp of the basic sequential nature of

program execution: ‘‘What sometimes gets forgotten is that each instruction

operates in the environment created by the previous instructions’’ (du Boulay,

1989, p. 294). Their knowledge tends to be context specific rather than general

(Kurland, Pea, Clement, & Mawby, 1989). There is no evidence that learning

programming fosters an improvement in general problem solving skills,

although it may improve (or in turn be improved by prior experience with)

very closely related skills such as translating word problems into equations

(Mayer, Dyck, & Vilberg, 1989).

Some of this rather alarming list relates to aspects of knowledge, and some

to strategies. Perkins and Martin (1986) note that ‘‘knowing’’ is not

necessarily clear cut, and novices that appear to be lacking in certain

knowledge may in fact have learned the required information (e.g., it can be

elicited with hints). They characterise knowledge that a student has but fails to

use as ‘‘fragile’’. Fragile knowledge may take a number of forms: missing

(forgotten), inert (learned but not used), or misplaced (learned but used

inappropriately). Strategies can also be fragile, with students failing to trace/

track code even when aware of the process (see also Davies, 1993; Gilmore,

1990b).

Several studies that focus on novices’ understanding and use of specific

kinds of language feature are presented in Soloway and Spohrer (1989).

Samurçay (1989) explores the concept of a variable, showing that initialisation
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is a complex cognitive operation with reading (external input) better

understood than assignment (see also du Boulay, 1989). Updating and testing

variables seemed to be of roughly equivalent complexity, and were better

understood than initialisation. Hoc (1989) showed that certain kinds of

abstractions can lead to errors in the use of conditional tests. In a study of bugs

in simple Pascal programs (which read some data and perform some

processing in the mainline) Spohrer et al. (1989) found that bugs associated

with loops and conditionals were much more common that those associated

with input, output, initialisation, update, syntax/block structure, and overall

planning. Soloway, Bonar, and Ehrlich (1989) studied the use of loops, noting

that novices preferred a ‘‘read then process’’ rather than a ‘‘process then read’’

strategy. du Boulay (1989) notes that ‘‘for’’ loops are problematic because

novices often fail to understand that ‘‘behind the scenes’’ the loop control

variable is being updated. ‘‘This is another example of the ubiquitous problem

of hidden, internal changes causing problems’’ (du Boulay, 1989, p. 295). du

Boulay also notes problems that can arise with the use of arrays, such as

confusing an array subscript with the value stored. Kahney (1989) showed that

users have a variety of (mostly incorrect) approximate models of recursion.

Similarly, Kessler and Anderson (1989) found that novices were more

successful at writing recursive functions after learning about iterative

functions, but not vice versa. Issues relating to flow of control were found

to be more difficult than other kinds of processing. Many of the points

summarised here are also addressed by Rogalski and Samurçay (1990).

D�eetienne (1997) summarises some problems that are specific to OO

programmers, including a tendency to think that instance objects are created

automatically, and misconceptions about inheritance.

As well as these language feature specific problems there are more general

misconceptions. ‘‘The notion of the system making sense of the program

according to its own very rigid rules is a crucial idea for learner to grasp’’ (du

Boulay, 1989, p. 287). In this respect anthropomorphism (‘‘it was trying

to . . .’’, ‘‘it thought you meant . . .’’) can be misleading. Similarly, novices

know how they intend a given piece of code to be interpreted, so they tend to

assume that the computer will interpret it in the same way (Spohrer &

Soloway, 1989). Although prior knowledge is of course an essential starting

point, there are times when analogies applied to the new task of programming

can also be misleading. Bonar and Soloway (1989) develop this point,

exploring the role of existing knowledge (e.g., of step-by-step processes),

natural language, and analogies based on these domains as a source of error.
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For example, some novices expect, based on a natural language interpretation,

that the condition in a ‘‘while’’ loop applies continuously rather than being

tested once per iteration.

The underlying cause of the problems faced by novices is their lack of (or

fragile) programming specific knowledge and strategies. While the specific

problems noted above are significant, some have suggested that this lack

manifests itself primarily as problems with basic planning and design.

Spohrer and Soloway (1989), for example, collected data in a semester

long introductory Pascal programming course (taught at Yale University).

Discussing two ‘‘common perceptions’’ of bugs, the authors claim that:

Our empirical study leads us to argue that (1) yes, a few bug types account

for a large percentage of program bugs, and (2) no, misconceptions about

language constructs do not seem to be as widespread or as troublesome as is

generally believed. Rather, many bugs arise as a result of plan composition

problems – difficulties in putting the pieces of the program together [. . .] –

and not as a result of construct-based problems, which are misconceptions

about language constructs. (Spohrer & Soloway, 1989, p. 401)

Spohrer and Soloway describe nine kinds of plan composition problem (some

of which we have already touched on above):

(a) Summarisation problem. Only the primary function of a plan is consid-

ered, implications and secondary aspects may be ignored.

(b) Optimisation problem. Optimisation may be attempted inappropriately.

(c) Previous-experience problem. Prior experience may be applied inappro-

priately.

(d) Specialisation problem. Abstract plans may not be adapted to specific

situations.

(e) Natural-language problem. Inappropriate analogies may be drawn from

natural language.

(f) Interpretation problem. ‘‘Implicit specifications’’ can be left out, or

‘‘filled in’’ only when appropriate plans can be easily retrieved.

(g) Boundary problem. When adapting a plan to specific situations boundary

points may be set inappropriately.

(h) Unexpected cases problem. Uncommon, unlikely, and boundary cases

may not be considered.

(i) Cognitive load problem. Minor but significant parts of plans may be

omitted, or plan interactions overlooked.
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Spohrer et al. (1989) found a common source of error was ‘‘merged plans’’,

where the same piece of code is intended by the programmer to implement

two plans/processes which should have been implemented separately. Often

one crucial subplan or step is omitted.

While specific problem taxonomies could be debated (and are likely

influenced by language, task, and context) the underlying claim is important –

basic program planning rather than specific language features is the main

source of difficulty. A similar conclusion is reached by Winslow (1996):

[An important point] is the large number of studies concluding that novice

programmers know the syntax and semantics of individual statements, but

they do not know how to combine these features into valid programs. Even

when they know how to solve the problems by hand, they have trouble

translating the hand solution into an equivalent computer program.

(Winslow, 1996, p. 17)

Winslow focuses specifically on the creation of a program rather than the

underlying problem solving, noting, for example, that most undergraduates can

average a list of numbers, but less than half of them can write a loop to do the

same operations. Rist (1995) makes the same point in a different way,

summarising the concept of a ‘‘focus’’ (also known as a key or beacon). A focus

is the single step (or line) which is the core operation in a plan (or program).

Focal design [. . .] occurs when a problem is decomposed into the simplest

and most basic action and object that defines the focus of the solution, and

then the rest of the solution is built around the focus. Essentially, the focus

is where you break out of theory into action, out of the abstract into the

concrete level of design. (Rist, 1995, p. 537)

To restate the above discussion in these terms, the most basic manifestation of

novices’ lack of relevant knowledge and strategies is evident in problems with

focal design.

Finally, Rogalski and Samurçay (1990) make an interesting claim (which

we have not seen repeated elsewhere).

Studies in the field and pedagogical work both indicate that the processing

dimension involved in programming acquisition is mastered best. The

representation dimension related to data structuring and problem modeling

is the ‘poor relation’ of programming tasks. (Rogalski & Samurçay, 1990,

p. 171)
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This would be an interesting topic to pursue further. It may not be the case that

the ‘‘processing dimension’’ is any easier to master, but rather that problem

modelling and representation are logically prior, so that novices who are

experiencing problems manifest them at that early stage, while those who are

working successfully progress through both representation and processing

tasks.

3.4. Kinds of Novice
While much attention has been paid to the study of novices versus experts, it is

clear that it is also useful to explore the topic of novices versus novices. A

group of novices learning to program will typically contain a huge range of

backgrounds, abilities, and levels of motivation, and also typically result in a

huge range of unsuccessful to successful outcomes. As we might expect,

measures of general intelligence are related to success at learning to program

(Mayer et al., 1989). As noted above (Section 2.5), however, Bishop-Clark

(1995) found no clear trends emerging from a review of studies of the effects

of cognitive style and personality on programming. Rountree, Rountree, and

Robins (2002) found that from a survey (covering factors such as background,

intended major, expected workload and so on) of students in an introductory

programming paper, the most reliable predictor of success was the grade that

the student expected to achieve. This and other results showed that students in

general have a reasonably accurate sense of how they are likely to do within

the first 2 weeks of the course.

Despite the fact that it is apparently not measured by or significant in the

cognitive style and personality tests used so far, different kinds of char-

acteristic behaviour are certainly evident when observing novices in the

process of writing programs. Perkins et al. (1989) distinguish between two

main kinds, ‘‘stoppers’’ and ‘‘movers’’. When confronted with a problem or a

lack of a clear direction to proceed, stoppers (as the name implies) simply

stop. ‘‘They appear to abandon all hope of solving the problem on their own’’

(Perkins et al., 1989, p. 265). Student’s attitudes to mistakes/errors are

important. Those who are frustrated by or have a negative emotional reaction

to errors are likely to become stoppers. Movers are students who keep trying,

experimenting, modifying their code. Movers can use feedback about errors

effectively, and have the potential to solve the current problem and progress.

However, extreme movers, ‘‘tinkerers’’, who are not able to trace/track their

program, can be making changes more or less at random, and like stoppers

have little effective chance of progressing.
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4. NOVICE LEARNING AND TEACHING IN CS1

4.1. Goals and Progress
Most novices learn to program via formal instruction such as a computer science

introductory course (‘‘CS1’’). This sets the topic of novice learning and teaching

in the context of an extensive educational literature. Current theory suggests a

focus not on the instructor teaching, but on the student learning, and effective

communication between teacher and student. The goal is to foster ‘‘deep’’

learning of principles and skills, and to create independent, reflective, life-long

learners. The methods involve clearly stated course goals and objectives,

stimulating the students’ interest and involvement with the course, actively

engaging students with the course material, and appropriate assessment and

feedback. For a good introduction see, for example, Ramsden (1992).

Teaching standards clearly influence the outcomes of courses that teach

programming (Linn & Dalbey, 1989). Linn and Dalbey propose a ‘‘chain of

cognitive accomplishments’’ that should arise from ideal computer program-

ming instruction. This chain starts with the features of the language being

taught. The second link is design skills, including templates (schemas/plans),

and the procedural skills of planning, testing and reformulating code. The

third link is problem-solving skills, knowledge and strategies (including the

use of the procedural skills) abstracted from the specific language taught that

can be applied to new languages and situations. This chain of accomplish-

ments forms a good summary of what could be meant by deep learning in

introductory programming.

Given the goals of deep learning an observation that recurs with depressing

regularity, both anecdotally and in the literature, is that the average student does

not make much progress in an introductory programming course. Exploring

roughly semester long courses in middle schools, Linn and Dalbey note that few

students get beyond the language features link of the chain, and conclude that

‘‘the majority of students made very limited progress in programming’’ (Linn &

Dalbey, 1989, p. 74). A study of students with 2 years of programming

instruction (Kurland et al., 1989) concludes on a similar note, that ‘‘many

students had only a rudimentary understanding of programming’’. Winslow

observes that ‘‘One wonders [. . .] about teaching sophisticated material to CS1

students when study after study has shown that they do not understand basic

loops . . .’’ (Winslow, 1996, p. 21). Soloway, Ehrlich, Bonar, and Greenspan

(1983), for example, studied students who had completed a single semester

programming course. When asked to write a loop which calculated an average

156 A. ROBINS ET AL.



(excluding a sentinel value signalling the end of input) only 38% were able to

complete the task correctly (even when syntax errors were ignored).

4.2. Course Design and Teaching Methods
For the moment we will assume a conventionally structured course based on

lectures and practical laboratory work, and a conventional curriculum focused

largely on knowledge – particularly relating to the features of the language

being taught and how to use them. Why is it that most introductory

programming courses and textbooks adopt this approach? Obvious reasons

include the important role of such knowledge in programming and the sheer

volume and detail of language related features that can be covered. More

subtly, as Brooks (1990) points out, while the use of strategies strongly

impacts on the final program that is produced, the strategies themselves cannot

(in most cases) be deduced from the final form of the program. Finished

example programs are rich sources of information about the language which

can be presented, analysed and discussed. The strategies that created those

programs, however, are much harder to make explicit.

Ideally course design and teaching would take place in the context of

familiarity with the key issues that have been identified in the literature. The

most basic factor, especially given the observations regarding the limited

progress made by novices in introductory courses, is that a CS1 course should be

realistic in its expectations and systematic in its development: ‘‘Good pedagogy

requires the instructor to keep initial facts, models and rules simple, and only

expand and refine them as the student gains experience’’ (Winslow, 1996, p. 21).

du Boulay et al. (1989) make a case for the use of simple, specially designed

teaching languages. In many cases the role of the course in the broader teaching

curriculum may rule this out as an option, and complex ‘‘real’’ languages are

typically used.

A major recommendation to emerge from the literature is that instruction

should focus not only on the learning of new language features, but also on the

combination and use of those features, especially the underlying issue of basic

program design.

From our experience [. . .] we conclude that students are not given sufficient

instruction in how to ‘‘put the pieces together.’’ Focusing explicitly on

specific strategies for carrying out the coordination and integration of the

goals and plans that underlie program code may help to reverse this trend.

(Spohrer & Soloway, 1989, pp. 412–413)
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A further important suggestion is to address the kinds of mental models which

underlie programming:

Models are crucial to building understanding. Models of control, data

structures and data representation, program design and problem domain are

all important. If the instructor omits them, the students will make up their

own models of dubious quality. (Winslow, 1996, p. 21)

Two specific points have been tested by Mayer (1989). Mayer showed that

students supplied with a notional machine model (which Mayer called a

‘‘concrete model’’) were better at solving some kinds of problem than students

without the model. Mayer also showed, as we would predict from the general

educational literature, that students who are encouraged to actively engage

and explore programming related information (by paraphrasing/restating it in

their own words) performed better at problem solving and creative transfer

(see also Hoc & Nguyen-Xuan, 1990).

With particular reference to OO programming Wiedenbeck and

Ramalingam (1999, p. 84) summarise the pedagogical implications of their

study. The authors suggest that the OO style aids the understanding of

program function for small programs, but that – especially as programs grow

in size – particular attention should be paid to control flow and data flow in

teaching, and the use of aids to comprehension.

The laboratory based programming tasks that are part of a typical CS1 course

have some pedagogically useful features. Each one can form a ‘‘case based’’

problem solving session. The feedback supplied by compilers and other tools is

immediate, consistent, and (ideally) detailed and informative. The reinforce-

ment and encouragement derived from creating a working program can be very

powerful. In this context students can work and learn on their own and at their

own pace, and ‘‘programming can be a rich source of problem-solving

experience’’ (Linn & Dalbey, 1989, p. 78). Working on easily accessible tasks,

especially programs with graphical and animated output, can be stimulating and

motivating for students. However such tasks should still be based on and

emphasise the programming principles that underlie the effects (Kurland et al.,

1989). Especially in the context of practical tasks, paired or collaborative work

and ‘‘peer learning’’ has also been shown to be beneficial (Van Gorp & Grissom,

2001; Williams, Wiebe, Yang, Ferzli, & Miller, 2002; Wills, Deremer,

McCauley, & Null, 1999).

Soloway and Spohrer (1989, p. 417) summarise several suggestions relating

to the design of development environments/programming tools that support
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novices. These include: the use of ‘‘graphical languages’’ to make control flow

explicit; a simple underlying machine model; short, simple and consistent

naming conventions; graphical animation of program states (with no

‘‘hidden’’ actions or states); design principles based on spatial metaphors;

and the gradual withdrawal of initial supports and restrictions. Anderson and

colleagues (Anderson, Boyle, Corbett, & Lewis, 1990; Anderson, Boyle,

Farrell, & Reiser, 1987; Anderson, Conrad, & Corbett, 1989) have developed

an extensive and effective intelligent tutoring system for LISP within the

ACT� model of learning and cognition (Anderson, 1983, 1990).

Finally for a broad perspective, offered in respect to teaching Java but

which could equally apply to any kind of educational situation, Burton

suggests that teachers keep in mind the distinctions between ‘‘what actually

gets taught; what we think is getting taught; what we feel we’d like to teach;

what would actually make a difference’’ (Burton, 1998, p. 54).

4.3. Alternative Methods and Curricula
Some recommendations regarding the teaching of programming suggest a

fundamental change in the focus of CS1 teaching, to the extent that if fully

implemented they would represent alternative kinds of curricula.

An important recommendation noted above is that instruction should

address the underlying issue of basic program design, in particular the

use of the schemas/plans which are the central feature of program-

ming knowledge representation. Such an emphasis could be accommodated

within a conventional curriculum, or could form the basis of an alternative

approach.

Explicit naming and teaching of basic schemata [. . .] may become part of

computer programming curricula. (Mayer, 1989, p. 156)

. . . students should be made aware of such concepts as goals and plans, and

such composition statements as abutment and merging [. . .]. We are

suggesting that students be given a whole new vocabulary for learning how

to construct programs. (Spohrer & Soloway, 1989, p. 413)

Soloway and Ehrlich (1984) explored this approach as a basis for teaching

Pascal. Similar ideas regarding the identification and teaching of solutions to

particular classes of programming problems can be found in the OO

‘‘patterns’’ literature, see, for example, Gamma, Helm, Johnson, and Vlissides

(1994). For an analysis and overview of the use of pattern languages for
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teaching see Fincher (1999a), and for two recent descriptions of courses based

on patterns see Reed (1998) and Proulx (2000).

Is it effective to teach schemas directly to novices, rather than expect them

to emerge from examples and experience? Some general support is provided

from a review of mechanisms of skill transfer (see, e.g. Robins, 1996), but

transfer and analogical mechanisms are complex. Deep, structural similarities

are often not identified and exploited. While supporting the idea of teaching

schemas Perkins et al. (1989) also suggest that alternative methods may be

more generally effective:

Instruction designed to foster bootstrap learning but not providing an explicit

schematic repertoire might produce competent and flexible programmers,

and might yield the broad cognitive ripple effects some advocates of

programming instruction have hoped for. (Perkins et al., 1989, p. 277)

From a theoretical perspective, in some accounts of learning and knowledge

consolidation such as Anderson’s influential ACT family of models

(Anderson, 1976, 1983, 1993), abstract representations of knowledge cannot

be learned directly. They can be only learned ‘‘by doing’’, that is, by practicing

the operations on which they are based.

Problem solving has also been identified as a possible foundation for

teaching programming. Fincher (1999b) argues in favour of problem solving

based teaching, and categorises and briefly reviews the related ‘‘syntax free’’,

‘‘literacy’’ and ‘‘computation-as-interaction’’ approaches. Deek et al. (1998)

describe a first year computer science course based on a problem solving

model, where language features are introduced only in the context of the

students’ solutions to specific problems. In this environment students in the

problem solving stream generally rated their own abilities and confidence

slightly more highly than did students in the control stream (receiving

traditional instruction). Students in the problem solving stream also achieved a

significantly better grade for the course (with e.g. an increase from 5% to over

25% of the students attaining ‘‘A’’ grades). An extensive discussion of the

practical issues involved in problem based learning, a description of problem

based learning courses, and a 3-year longitudinal follow-up of students is

described in Kay et al. (2000).

Like schema/pattern based methods the problem solving based approaches

clearly have promise. However as noted (Section 3.3) by for example Winslow

(1996) and Rist (1995), problem solving is necessary, but not sufficient, for

programming. The main difficulty faced by novices is expressing problem
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solutions as programs. Thus the coverage of language features and how to use

and combine them must remain an important focus.

For an influential and completely different perspective on the art of teaching

programming Dijkstra (1989), in the evocatively titled ‘‘On the cruelty of

really teaching computer science’’, argues that anthropomorphic metaphors,

graphical programming environments and the like are misleading and represent

an unacceptable ‘‘dumbing down’’ of the process. Dijkstra proposes a

very different kind of curriculum based on mathematical foundations such

as predicate calculus and Boolean algebra, and establishing formal proofs

of program correctness. (A lively debate ensues in the subsequent peer

commentary.)

While it is clear that alternatives to conventional curricula show promise, it

is also the case that none of them has come to dominate the theory or practice

of programming pedagogy. Most textbooks, for example, are still based on a

conventional curriculum model. In future work we intend to review and assess

the literature on these alternative methods and their effectiveness.

5. DISCUSSION

5.1. Summary and Implications
In this section we briefly summarise the material reviewed above, and

highlight some of the most important points and practical implications for

teachers. The summary follows the structure of the paper (hence e.g. ‘‘2.3:’’

refers to Section 2.3) and the implications noted here can be directly supported

by the literature reviewed in the relevant section.

The psychological/educational literature relating to programming is large

and complex. A number of trends can be identified. 2.1: The first is a

distinction between novices and experts, with an emphasis on the many

deficits of novices. 2.2: The second trend is the distinction between knowledge

and strategies. An important though ill-defined concept is the schema/plan as

the most important building block of programming knowledge. An important

but open question is why and how different strategies emerge, and how these

are related to underlying knowledge. 2.3: The third trend is the distinction

between program comprehension and generation, with models of the former

being particularly numerous. When generating programs novices must create

their program plans (experts can often retrieve them), hence explicit atten-

tion (in course design and teaching) to planning and problem solving may
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be beneficial. Clearly these aspects of programming are related, with

comprehension playing an important role in supporting generation, but there

is some suggestion that individuals’ abilities with respect to these tasks may

not be well correlated. This has implications for course design and assessment –

comprehension based assessment tasks may not be a good measure of the

ability to write programs. 2.4: The fourth, recent trend, is a comparison of OO

and procedural programming styles. There is little support for the claim that

the OO approach allows for significantly easier modelling of problem

domains, with both OO design and traditional procedural factors identified as

significant. Hence even in OO based courses it may be necessary, particularly

for weaker students, to devote particular attention to procedural concepts, flow

of control, flow of data, and design (see also 4.2).

In this literature the majority of studies focus on program comprehension,

often in experts, and typically based on experimental studies. Our focus on this

paper has been on novices, particularly novice program generation, and in the

process by which this is taught and learned. 3.1: It is clear that novice

programmers face a very difficult task. Learning to program involves

acquiring complex new knowledge and related strategies and practical skills.

Hence initial course material should be simple, and this should be expanded

on systematically as the students gain experience (see also 4.2). 3.2: Novice

programmers must learn to develop models of the problem domain, the

notional machine, and the desired program, and also develop tracking and

debugging skills so as to model and correct their programs. Explicitly

identifying and addressing each of these topics may be beneficial. In practical/

laboratory based work it may be useful for instructors to particularly attend to

change episodes (where students alter their code), as these may be rich in

information about the students’ models, plans and goals. 3.3: Novices

typically have many deficits in both knowledge and strategies. Familiarity

with the specific issues identified in the literature may aid course design.

Loops, conditionals, arrays and recursion have all been identified as language

features that are especially problematic, and could benefit from particular

attention. Several authors have suggested, however, that the most important

deficits relate to the underlying issues of problem solving, design, and

expressing a solution/design as an actual program. The frequent practical

programming exercises that are a feature of most programming courses are

almost certainly central in addressing this issue, and it may also help to

encourage in practical work (e.g., in the design of laboratory workbooks and

the like) the use of an explicit software development method to give some
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structure to the process.4 Novice’s problems exacerbated by the fact that

where knowledge and strategies are learned, they are often fragile (not

applied, or misapplied). Further research may be useful here to ascertain

whether this is a deficit in accessing learned material, recognising the

situations in which it is appropriate, or having the confidence to use it/

experiment. 3.4: Different kinds of characteristic novice behaviour can be

identified, including movers, stoppers, and tinkerers. Where such distinctions

are thought to apply to a given student, this may help to effectively target the

assistance given.

With respect to teaching novices in CS1 type courses the goal is to foster

deep learning in students. 4.1: Many students make very little progress in a

first programming course. 4.2: Various suggestions regarding course design

and delivery have been made in the literature. Most of these, such as paying

particular attention to issues of basic design, have already arisen/been noted in

the summary above. Other suggestions relate to the design of development

environments/programming tools for teaching novices. It may be helpful to

make aspects of control flow and data flow explicit, and avoid ‘‘hidden’’

actions or states. 4.3: Finally, course designs based on explicitly teaching

schemas, problem solving, and mathematical foundations have been

proposed.

5.2. A Programming Framework
One summary of topics relating to novice programming makes explicit the

implied relationships between many of the issues. This structural summary is

outlined in the ‘‘programming framework’’ shown in Figure 1.

The framework highlights as one dimension the individual attributes of the

programmer, namely their knowledge, strategies, and mental models. The

fundamental role of knowledge and strategies was discussed in Section 2.2.

The importance of various mental models (e.g., of the notional machine, and

of the program) was noted in Section 3.2. The second dimension of the

framework separates the phases of designing, generating and evaluating a

program. Issues relating to design/planning were reviewed in Section 3.3. The

process of program generation is of course central, as described in Sections

2.3 and 3.3. The important role of evaluation (comprehension, tracking,

debugging) was noted in Sections 2.3 and 3.2. Combining the dimensions, the

4See Koffman and Wolz (2002) for a good example of a textbook which consistently uses such a
method.
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overall framework emphasises the fact that the different kinds of individual

attributes are not single ‘‘undifferentiated’’ constructs, but are brought to bear

(perhaps with varying efficacy) at different stages of the programming

process.

Ideally, teaching and learning would take place in the context of familiarity

with the main issues that have been identified in the literature. We suggest that

any compact summary, such as for example the framework proposed above,

could have a variety of uses. For example, it may be helpful during the process

of course design to highlight factors which might be incorporated into the

course content, delivery and assessment. It may be useful to make it available

to students, both as an aid to identifying the learning objectives of the course

(which has many advantages, see, e.g., Ramsden, 1992) and as an aid to

‘‘metalearning’’ or ‘‘learning about learning’’ (see, e.g., Vilalta & Drissi,

2002). A summary may also be useful to teachers/teaching assistants involved

in practical/laboratory work, as an aid to diagnosing the problems of and

assisting individual students. For example, it may be helpful to identify the

fact that a given student has a good knowledge of design principles but poor

strategies for applying them, or perhaps good strategies for design but poor

strategies for debugging/testing. For this latter purpose in particular, any

diagnostic tool to be used in an actual laboratory situation will need to be rich

enough to be useful, but simple enough to be manageable.

Fig. 1. A programming framework. This framework summarises the relationships between a
number of issues relating to programming. It should be read mainly by columns, that is,
knowledge of planning methods (required to design a program), knowledge of a
language (required to generate a program), knowledge of debugging tools (required to
evaluate a program), and so on. In many cases we would interpret the ‘‘cells’’ of the
framework as ‘‘fuzzy’’, rather than making very sharp distinctions.
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5.3. Comments and Future Work
In this final section we make some more speculative observations, and note

possible topics for future work. These comments are based on our experience

of the review presented above, and of our own teaching and recent study of the

programming course that we teach (Rountree et al., 2002).

From our point of view as teachers there is a distinction which is much

more important than the one between novices and experts which has received

so much attention in the literature. This is the distinction between effective and

ineffective novices. Effective novices are those that learn, without excessive

effort or assistance, to program. Ineffective novices are those that do not learn,

or do so only after inordinate effort and personal attention. It may be

productive, in an introductory programming course, to explicitly focus on

trying to create and foster effective novices. In other words, rather than

focusing exclusively on the difficult end product of programming knowledge,

it may be useful to focus at least in part on the enabling step of functioning as

an effective novice.

What underlying properties make a novice effective? How can we best turn

ineffective novices into effective ones? A deeper understanding of both kinds

of novices is required. The range of potentially relevant factors includes

motivation, confidence or emotional responses, and aspects of general or

specific knowledge, strategies, or mental models.

As a first step towards addressing these questions, we further suggest that

the most significant differences between effective and ineffective novices

relate to strategies rather than knowledge. Language related knowledge is

available from many sources, and courses and textbooks are typically

designed to introduce this knowledge in a structured way. The strategies for

accessing this knowledge and applying it to program comprehension and

generation, however, are crucial to the learning outcome, but typically receive

much less attention. What are the strategies employed by effective novices,

how do they relate to their knowledge and their relevant mental models, and

can these strategies be taught to ineffective novices?
Others have also suggested that strategies are central. Perkins et al. note

that ‘‘certain broad attitudes and conducts’’ characterise unsuccessful

novices:

. . . behaviors such as stopping, neglect of close tracking, casual tinkering,

and neglect of or systematic errors in breaking problems down. (Perkins

et al., 1989, p. 277)
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These are all deficits in strategy. Davies states that:

Even in the case of novice programmers we have seen that the strategic

elements of programming skill may, in some cases, be of greater

significance than knowledge-based components. (Davies, 1993, p. 265)

We would go so far as to say especially in the case of novice programmers, and

in most rather than some cases. Given that knowledge is (assumed to be)

uniformly low, it is their preexisting strategies that initially distinguish

effective and ineffective novices.

As novices do not have the specialised knowledge and skills of the expert,

one might expect their performance to be largely function of how well they

can bring their skills from other areas to bear. (Sheil, 1981, p. 119)

. . . youngsters vary widely in their progress, succeeding only to the extent

that they happen to bring with them the characteristics that make them

good bootstrap learners in the programming context. (Perkins et al., 1989,

pp. 277–278)

Differences in initial strategies will interact with other factors, such as

motivation and the capacity to acquire language related knowledge, to rapidly

separate novices along the effective-ineffective continuum.

What are the implications of this view? We suggest that programming

strategies should receive more and more explicit attention in introductory

programming courses. One way to address this would be to introduce many

examples of programs as they are being developed (perhaps ‘‘live’’ in

lectures), discussing the strategies used as part of this process.5 As well as

needing to know more about effective an ineffective novice, we need to know

how to foster effective strategies in all novices through course design and

delivery. We need to motivate students, engage them in the process, and make

them want to learn to be effective programmers.

In future work we intend to further explore these issues and to focus on the

topic of novice strategies. Why do many novices, even when aware of the

techniques and encouraged to use them, fail to plan their programs? What are

the main reasons why many students become so consistently stuck, and can

these be diagnosed and addressed? What is the relationship between the

5As noted above (Section 4.2), example programs are sources of programming knowledge, but
the strategies that go into creating a program are not usually visible in the final product.
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ability to generate and the ability to comprehend a program? Are strategy

deficits generic or related to an inability to construct or maintain a mental

model of the program? What kind of support will best address the needs of

each kind of novice? How can we present language related knowledge so as to

best develop and foster appropriate strategies and models? Perhaps one of the

most important aspects to be explored is why relevant knowledge and

strategies are often known but not applied. Finally, of course, the underlying

issue is how best to use the answers to such questions to better teach and foster

the learning of novice programmers.

ACKNOWLEDGMENTS

This work has been supported by internal University of Otago Research into Teaching grants.
We are also grateful for the support and suggestions of our many colleagues. Special thanks to
Richard O’Keefe, and to other members of the COMP103 teaching and support team including
Natalie Adams, Michael Atkinson, Tracey Cuthbertson, Sandy Garner, Parviz Najafi and many
other committed and enthusiastic lab demonstrators.

REFERENCES

Anderson, J.R. (1976). Language, memory and thought. Hillsdale, NJ: Erlbaum Associates.
Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard University

Press.
Anderson, J.R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J.R. (2000). Cognitive psychology and its implications (5th ed.). New York: Worth

Publishing.
Anderson, J.R., Boyle, C., Corbett, A., & Lewis, M.W. (1990). Cognitive modeling and

intelligent tutoring. Artificial Intelligence, 42, 7–49.
Anderson, J.R., Boyle, C., Farrell, R., & Reiser, B. (1987). Cognitive principles in the design of

computer tutors. In P. Morris (Ed.), Modeling cognition (pp. 93–134). NY: Wiley.
Anderson, J.R., Conrad, F.G., & Corbett, A.T. (1989). Skill acquisition and the LISP tutor.

Cognitive Science, 13, 467–505.
Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming. Computers

in Human Behavior, 11, 241–260.
Boehm, B.W. (1981). Software Engineering Economics. Englewood Cliffs, NJ: Prentice-Hall.
Bonar, J., & Soloway, E. (1989). Preprogramming knowledge: A major source of misconcep-

tions in novice programmers. In E. Soloway & J.C. Spohrer (Eds.), Studying the novice
programmer (pp. 324–353). Hillsdale, NJ: Lawrence Erlbaum.

Brooks, F.P., Jr. (1995). The mythical man-month: Essays on software engineering anniversary
edition. Reading, MA: Addison-Wesley.

Brooks, R.E. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9, 737–751.

LEARNING AND TEACHING PROGRAMMING 167



Brooks, R.E. (1983). Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies, 18, 543–554.

Brooks, R.E. (1990). Categories of programming knowledge and their application. Interna-
tional Journal of Man-Machine Studies, 33, 241–246.

Burkhardt, J., D�eetienne, F., & Wiedenbeck, S. (1997). Mental representations constructed by
experts and novices in object-oriented program comprehension. In S. Howard,
J. Hammond, & G. Lindgaard (Eds.), Human-computer interaction: INTERACT’97
(pp. 339–346). London: Chapman & Hall.

Burton, P. (1998). Kinds of language, kinds of learning. ACM SIGPLAN Notices, 33, 53–61.
Ca~nnas, J.J., Bajo, T., & Gonzalvo, P. (1994). Mental models and computer programming.

International Journal of Human-Computer Studies, 40, 795–811.
Corritore, C.L., & Wiedenbeck, S. (1991). What do novices learn during program

comprehension? International Journal of Human-Computer Interaction, 3, 199–222.
Davies, S.P. (1993). Models and theories of programming strategy. International Journal of

Man-Machine Studies, 39, 237–267.
Deek, F.P., Kimmel, H., & McHugh, J.A. (1998). Pedagogical changes in the delivery of the

first-course in computer science: Problem solving, then programming. Journal of
Engineering Education, 87, 313–320.

D�eetienne, F. (1990). Expert programming knowledge: A schema based approach. In J.M. Hoc,
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