
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Learning and the Unknown: Surveying Steps toward Open World Recognition

T. E. Boult,1 S. Cruz,1 A.R. Dhamija,1 M. Gunther,1 J. Henrydoss,1 W.J. Scheirer2

1University of Colorado Colorado Springs, Colorado Springs, CO 80918
2University of Notre Dame, Notre Dame, IN 46556

Abstract

As science attempts to close the gap between man and machine
by building systems capable of learning, we must embrace
the importance of the unknown. The ability to differentiate
between known and unknown can be considered a critical
element of any intelligent self-learning system. The ability
to reject uncertain inputs has a very long history in machine
learning, as does including a background or garbage class
to account for inputs that are not of interest. This paper ex-
plains why neither of these is genuinely sufficient for handling
unknown inputs – uncertain is not unknown, and unknowns
need not appear to be uncertain to a learning system. The
past decade has seen the formalization and development of
many open set algorithms, which provably bound the risk
from unknown classes. We summarize the state of the art, core
ideas, and results and explain why, despite the efforts to date,
the current techniques are genuinely insufficient for handling
unknown inputs, especially for deep networks.

1 Introduction

“Intelligence comes with hard work and curiosity for
the unknown.” - Roberto Llamas

With the advent of rich classification models and high
computational power, recognition systems are finding many
operational applications. Recognition in the real world poses
multiple challenges that are not apparent in controlled lab
environments. At prediction time, an operating system has
to deal with myriad unseen categories. Consider the goal of
“A.I.” for autonomous driving. While we might train such
a system with terabytes of data, it is impossible to antic-
ipate and train with all possible inputs. However, with a
critical safety system, even a small fraction of errors on un-
known inputs could be, quite literally, deadly. Most real data
is inherently dynamic, and the world unpredictable; novel
inputs/categories must be handled by designing systems that
can ignore/reject them or designing systems that continuously
detect novel inputs and do something with unknown inputs.
Ideally, the system needs to label and add novel detected
objects as a new item to be learned.

Early A.I. systems and papers often involved the “closed
world assumption,” i.e. the system model was complete, and
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(a) Example four-class model
from closed set point of view.

(b) Zooming out to show
some open space.

Figure 1: The issue of open space can be seen by zooming
out from around the training data. Open space is the region
far from training samples. A traditional classifier, e.g., NCM
shown here, will label everything including the unknown “?”
inputs. Even points infinitely far away are labeled.

the system could reason using what was observed as well as
what was not. Even back in the early 80s (Hewitt and Jong
1983) noted, “At first glance, it might seem that the closed
world assumption, almost universal in the A.I. and database
literature, is smart because it provides a ready default answer
for any query. Unfortunately, the default answers provided
become less realistic as the Open System increases in size.”
The closed world assumption led to fragile systems that failed,
and so fell out of favor as researchers tried to move out of the
lab and into the open world.

To help visualize the key issue of open set recognition
(OSR), consider the four-class problem shown in Fig. 1a,
with a Nearest Class Mean (NCM) model (Mensink et al.
2012), where the star is the NCM. Then consider what is
labeled when zoomed out (Fig.1b).

By the turn of the century, most A.I. systems stopped
explicitly exploiting the closed world assumptions, many
moving to probabilistic Bayesian reasoning. More recently
systems have turned to using learning-based models. Un-
fortunately, almost all machine-learning-based system have
implicitly continued to make that assumption because they
classify all inputs into one of their training classes. Similarly,
Bayesian reasoning implicitly retains the closed world as-
sumption. Research often seek closed set classifiers, that
approximate the Bayesian optimal posterior probability,
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P (Cl|x
′; C1, . . . , CM ), l ∈ {1, . . . ,M}, for a fixed set of

classes, where x′ is an input sample, l is the index of
class Cl (a particular known class), and M is the num-
ber of known classes. When Ω unknown classes appear at
query time, however, the Bayesian optimal posterior becomes
P (Cl̃|x

′; C1, . . . , CM , UM+1, . . . , UM+Ω), which cannot be
computed/modeled because classes UM+1 through UΩ are
unknown. Even the core law of total probability, essential in
Bayes theorem, cannot be applied unless one presumes the
probability of all unknown inputs is known. In other words,
using Bayes theorem requires implicitly making a closed
world assumption. For classifiers that assess confidence in
terms of signed distance from a decision boundary, or some
calibration thereof, this misclassification will occur with high
confidence if the unknown is far from any known data — a
result that is very misleading.

Until recently, almost all evaluations of machine-learning-
based recognition algorithms have implicitly been “closed
set” whereby the system is only tested on classes known
at training time. A more realistic scenario for applications
is accepting that the world is an open set of objects, that
our knowledge is always incomplete, and thus that unknown
classes should be submitted to an algorithm during testing.
This paper reviews and extends the formalizations of open
set recognition (Scheirer et al. 2013; Scheirer, Jain, and
Boult 2014) and open world recognition (Bendale and Boult
2015), collectively open recognition.

Related, but formally separate from open recognition, are
the approaches that use classifiers with rejection (Chow 1970;
Matan et al. 1990; Fumera and Roli 2002; Rong and Metaxas
2006; Bartlett and Wegkamp 2008; Grandvalet et al. 2008),
novelty, anomaly or outlier detection (Hodge and Austin
2004; Markou and Singh 2003). These can help with rejecting
unknown inputs but lack the formal properties of provably
bounded open space risk. This paper briefly reviews these
areas, recent results, and explains the difference between
them and open recognition.

As highlighted in a recent AI Magazine piece (Dietterich
2017), OSR is a growing subfield that that is critical for robust
systems. In the five years following our formalization of OSR
(Scheirer et al. 2013), the problem has received significant
attention. The work in this area has received hundreds of
citations from a wide range of application areas that need, or
are using, OSR including:
• Audio analysis (Battaglino, Lepauloux, and Evans 2016;

Krstulović 2018),
• Automatic Target Recognition (Scherreik and Rigling 2016b;

2016a; Roos and Shaw 2017),
• Autonomous Navigation/Mobile Robitcs (Zamora and Yu 2016;

Sünderhauf et al. 2016),
• Biomtrics (Chiachia et al. 2014; Pinto et al. 2015; Rattani,

Scheirer, and Ross 2015; Juefei-Xu and Savvides 2016; Günther
et al. 2017; Perera and Patel 2017; Bao et al. 2018),

• Cyber Intrusion/Malware Detection (Henrydoss et al. 2017; Cruz
et al. 2017; Rudd et al. 2017),

• Data Fusion (Neira et al. 2018),
• Domain Adaption (Gopalan et al. 2015; Busto and Gall 2017),
• Forensics (Costa et al. 2014; Rocha et al. 2017; Navarro et al.

2018),
• Lifelong Learning (Chen and Liu 2016; Rebuffi et al. 2017),
• Natural Language (Prakhya, Venkataram, and Kalita 2017; Doan

and Kalita 2017; Grave, Cisse, and Joulin 2017),
• Novelty Detection (Bodesheim et al. 2015; Lazzaretti et al. 2016;

Schultheiss et al. 2017),
• Package Authentication (Schraml et al. 2017),
• Unmanned Aerial Systems and Aerial Imagery (Poitevin, Pel-

letier, and Lamontagne 2017; Bapst et al. 2017), and
• Zero-shot learning (Lampert, Nickisch, and Harmeling 2014;

Chao et al. 2016; Xian, Schiele, and Akata 2017; Fu et al. 2018;
Xian et al. 2018)

There have also been papers developing their own mod-
els/algorithms for OSR: (Cardoso, França, and Gama 2015;
Liu et al. 2016a; Ferreira and Giraldi 2017; Zhang and Pa-
tel 2017; Mu, Ting, and Zhou 2017; Günther et al. 2017;
Neal et al. 2018; Bansal and Weld 2018).

When using classic “explainable” features for a problem,
the problem of open recognition can be well formulated in
either image or feature space. With the shift to deep networks,
which combines learning features and learning the classifier,
the problem becomes more difficult and is still largely un-
solved. The paper ends with a discussion of some of the
issues that make open set deep learning so tricky, and so vital
as we move toward intelligent systems.

At the core of intelligence is the ability to recognize when
we do not know something, analyze the need to learn about it,
and then, when needed, to adapt and learn it – a process we
call open world learning. As research moves towards building
intelligent systems and deploying machine-learning-based
systems, this is a critical but understudied area of research.
The fundamental research question addressed in this paper
is how to formally address the unknown in machine learning
systems. This paper reviews formal approaches for handling
those issues, but the problem is far from solved. In our ever-
changing world, we recommend you do not trust a claim of
intelligence that does not admit when it does not know or
does not continue to learn.

2 Formalizing Open Set Recognition

We introduced the first formalization of open recognition in
(Scheirer et al. 2013) with essential properties: bounding the
open space risk and ideally balancing it with empirical risk.
Empirical risk, measured on training data, is easy to define
and practical to optimize, but how to extend the model to
capture the risk from unknown inputs is the critical issue
for OSR. That paper argued the essential element of OSR
is minimizing the volume of space representing the learned
recognition function f , outside the reasonable support of the
positive samples, because clusters of unknown samples in
initially unlabeled regions are more likely to be negatives and
increase the recognition error. Note, this is entirely different
from the classic binary classifier approach, which tries to
label everything, and often generalization to infinite space in
some directions. Let’s proceed to formalize this idea. Let f
be a measurable recognition function over input space X , for

known valid class V̂ . Let S
V̂

be a union of balls of radius ro
that includes all of the training examples for all known x ∈ V̂ ,
let O be the open space with O ⊂= X −S

V̂
. Open space risk

RO(f) for class V̂ can be defined as RO(f) =
∫
O

f
V̂
(x)dx∫

S
V̂

f
V̂
(x)dx

,

where open space risk is considered to be the relative measure
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Figure 2: Compact Abating Probability (CAP) model which,
when thresholded, can bound open space risk. CAP models
are often used in novelty, anomaly, or outlier detectors.

of positively labeled open space compared to the overall
measure of positively labeled space. Following (Scheirer et
al. 2013) we can formally define the OSR problem as follows:

Definition 1. The Open Set Recognition (OSR) Problem:

Using training data with positive samples vi ∈ V̂ , and other

known class samples kj ∈ K̂, and an empirical data er-
ror/accuracy measure E , find a measurable recognition func-
tion f ∈ H, where f(x) > 0 implies positive recognition for

class V̂ , and f is defined as minimizing the OSR error:

argmin
f∈H

{RO(f) + λrE(f(vi); f(kj))} (1)

subject to

mα ≤

m
∑

i=1

φ(f(vi)) and nβ ≥

n
∑

j=1

φ(f(kj)) (2)

where λr specifies the regularization tradeoff between open
space risk and empirical risk, where α ≥ 0 and β ≥ 0
allow a prescribed limit on true positive and/or false positive
rates, and φ(z) is a given loss function, e.g. the classic soft
margins hinge loss φ(z) = max(0, 1− z) or squared hinge
loss φ(z) = max(0, 1− z)2 functions.

The full regularized optimization for OSR error can be
difficult. However, since empirical risk is always bounded,
it is straightforward to see that if f(x) > 0 for a infinite
amount of space, then RO(f) = ∞ and such an f cannot
even be an approximately optimal solution because its open
set risk is unbounded while the function f(x) = 0 always has
bounded OSR error. For that reason we consider a minimal
requirement for an algorithm to be called a formal OSR algo-
rithm to be RO(f) < B for a finite bound B. Any function
that realizes such a finite OSR error will be within some con-
stant of the optimal error. In our various papers on the topic,
(Scheirer, Jain, and Boult 2014; Bendale and Boult 2015;
Júnior et al. 2016; Rudd et al. 2018), we show multiple ways
to find algorithms with bounded open space error.

3 Extensions: CAP and Open World

Recognition

In (Scheirer, Jain, and Boult 2014), we introduced the idea of
a Compact Abating Probability or CAP model, and showed
that such models always have a bounded OSR error. The
basic idea of a CAP model, see Fig. 2, is that if the region of
support for the classifier is decreasing in all directions away

from the training samples, then thresholding it will bound
the open space risk. With the theorems in that paper, we
showed that some models already in the literature, such as a
thresholded RBF one-class Support Vector Machine (SVM),
formally bound open-space risk. That paper also introduced
the WSVM, which was far more accurate than any prior OSR
algorithm. The WSVM uses Extreme Value Theory (EVT)
to calibrate and combine multiple kernel-SVMs with a CAP
model.

In an attempt to reduce the computational cost compared
to the WSVM, we developed another variant, the Pi-SVM
(Jain, Scheirer, and Boult 2014). While it was generally as
accurate and sometimes more accurate than the WSVM, at
a small fraction of the cost, we could not prove that the
algorithm always had bounded open space risk. Examining
why, we recognized that the same issue occurred for a regular
SVM, and proved that an RBF-SVM with a CAP consistent
kernel has bounded open space risk if and only if, all its bias
terms are negative. The negative bias property might also be
why some SVM-based systems do not have a problem with
unknown inputs – if the data happens to result in kernels with
negative bias terms, then the SVMs will have bounded open
space risk for that data. We developed an SVM variant, the
specialized SVM (Júnior et al. 2016), which ensures negative
bias and hence OSR. While any decreasing function can
be a CAP model, and many existing novelty, anomaly, or
outlier detectors use them, the modeling of the tails of the
distribution, the extreme values, is very critical to balancing
open set risk and classification accuracy. That is why most of
our work turned to EVT.

In the follow-on work (Bendale and Boult 2015) we for-
mally defined and extended the OSR problem to open world
recognition. An effective open world recognition system
must efficiently perform four tasks: detect unknowns, choose
which points to label for addition to the model, label the
points, and update the model. While something like the
WSVM could formally be used for incremental learning,
since there are incremental SVM tools (Caragea, Silvescu,
and Honavar 2000), those algorithms do not scale well. A sim-
ple and more efficient algorithm, nearest non-outlier (NNO),
was proposed as part our open world recognition approach.
The proofs of (Scheirer, Jain, and Boult 2014) were extended
to handle transformations of CAP models, e.g., combinations
of multiple cap models also bound open space risk, and thus
NNO offered a formal solution to open world recognition.
Those proofs also allowed us to show that thresholding many
widely used density-based models such as Guassian Mixture
models (GMMs) or Kernel-Density Estimator (KDE), are
also provably OSR algorithms. Unfortunately, NNO was not
very accurate, as the algorithm used thresholded distances
from the nearest class mean and otherwise ignored distribu-
tional information. Weak classifiers are a persistent problem
for incremental learning: it is not immediately obvious how
one might extend class boundary models from classical ma-
chine learning theory, e.g., kernel machines, to incorporate
both incremental learning and open set constraints.

In (Rudd et al. 2018), we developed the Extreme Value
Machine (EVM), a new non-linear radial basis function ap-
proach that supports both high-quality non-linear decision
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boundaries and efficient incremental learning. We proved
that the EVM has bounded open space risk, and showed it
was significantly more accurate than NNO on large-scale
Image-Net testing using deep features.

4 Approaches that sometimes solve OSR
In this section, we discuss approaches some people argue
address OSR and explain why these algorithms generally
have an infinite open set risk.

A common question is why a pure detection system with
a binary output, e.g., a face detector, is not a solution, and
why it does not already limit its open set risk. It turns out
that for some detection systems, in particular, those that use
GMMs, kernel density estimators, RBF-SVMs or Support
Data Descriptors (SDD), may sometimes have bounded open
space risk. However, any detector that uses linear classifiers,
HAAR cascades, or Softmax-based classifiers, will almost
always have an unbounded open set risk, and hence does not
solve OSR.

“What about classifier with rejection?” you might ask.
“Doesn’t that solve the OSR problem?” The problem of re-
jecting some inputs in learning is more than 60 years old,
(Chow 1957). Since its earliest days, the focus of rejecting
has been the ambiguity between classes, not for addressing
unknown inputs. As (Chow 1970) put it “The option to reject
is introduced to safeguard against excessive misrecognition;
it converts potential misrecognition into rejection.” Chow’s
paper derives optimal thresholds for that multi-class recog-
nition, assuming probabilities of classes are given over the
whole feature space. The paper’s thresholds were for optimiz-
ing the ambiguous regions between classes – it had the infinite
regions of acceptance and infinite regions of rejection. Uncer-
tainty is high near the decision boundary and most classifiers
increase confidence with distance from the decision bound-
ary. Thus, an unknown far from the boundary is not only
incorrectly labeled but will be incorrectly classified with very
high confidence. Even the majority of recent classifiers with
reject-options (Fumera and Roli 2002; Rong and Metaxas
2006; Grandvalet et al. 2008; Bartlett and Wegkamp 2008;
Wegkamp and Yuan 2011), all have the same issues and for-
mally don’t solve OSR problems because they can and gener-
ally have infinite positively labeled open space, hence infinite
open space risk. The only classification with rejection options
that do solve OSR are those that also satisfy the CAP criterion
discussed above, e.g., a K-nearest neighbor with a threshold
on an appropriate measure (Li and Wechsler 2005) or thresh-
old on one or more one-class classifiers (Tax and Duin 2008;
Liu et al. 2016a), in which cases there exists a threshold that
will produce finite open space risk.

Novelty and anomaly detection algorithms (Bodesheim
et al. 2015; Lazzaretti et al. 2016; Schultheiss et al. 2017;
Bansal and Weld 2018) are solving different but related prob-
lems. Most such techniques apply a distributional model
that is thresholded to detect the anomaly. They bound open
space risk; they inspired our CAP model. However, their for-
mulations do not balance open space risk with multi-class
recognition risk as in Eq 1. They are only OSR for one-class
problems. We can summarize the relationship informally as:

OSR ≈ Novelty-detection + multi-class recognition.

5 Open Set Deep Networks

The problem of open recognition is well formulated in either
image or feature space, but people normally think of the
world in image space. The above formal work on OSR was
all done in “explainable” feature spaces, i.e., there existed a
well-behaved mapping between input and the feature spaces.
Due to the large complexity and the black box nature of deep
networks, this mapping is not well-behaved. Moreover, their
increased applications in the real world open them to a vast
majority of unknown inputs, hence addressing OSR for deep
networks is essential. We follow the OSR definition and just
deal with the problem of OSR in testing, leaving for future
work that this ignores the potential problem of unknowns
showing up in the training data.

While rejecting unknown inputs by thresholding the net-
work score is common(Matan et al. 1990; De Stefano, San-
sone, and Vento 2000), thresholding softmax is problematic.
Almost since its inception (Bridle 1989), softmax has been
known to bias the probabilities towards a particular class even
though the difference between the logit values of the winning
class and other classes is minimal. This was highlighted by
(Matan et al. 1990) who note that softmax would increase
scores for a particular class even though they may have very
limited activation on the logit level. In order to train the net-
work to provide better logit values, they include an additional
parameter α in the softmax loss by modifying the loss func-

tion as: Sc = log elc/
(

eα +
∑C

c′=1 e
l
c′

)

. During training,

this forces a higher loss when the logit values, l, are smaller
than α , and decrease the softmax scores when all logit values
were smaller than α. This additional parameter can be inter-
preted as an additional node in the output layer that is not
updated during back-propagation. Note, however, that like
the other rejection approaches, this carves out a small region
around the origin, and potentially between two classes as
“none of the above,” and still leaves infinite open space risk
and hence does not solve OSR. In addition, there is also active
research in network uncertainty estimation (Gal and Ghahra-
mani 2016; Lakshminarayanan, Pritzel, and Blundell 2017;
Mor and Wolf 2018). The authors of such claim thresholding
their uncertainity can reject outliers. While more advanced
than (Matan et al. 1990), these still suffer from infinite open
space risk and hence do not solve OSR.

Another decades-old rejection approach used in neural net-
works is to add a “garbage” class (Linden and Kindermann
1989) or “background” class (Chang and Lippmann 1994).
The “background” class is more effective than just thresh-
olding uncertainty and hence is part of almost all modern
multi-class detector such as (Liu et al. 2016b; Girshick 2015;
Ren et al. 2015; Zhang et al. 2018). It must be noted that
this background classifier just adds another class to reject in-
stances not belonging to any of the known classes, but leaves
infinite open space beyond each of the known classes. For
different Bayesian Neural Networks (Ghosh, Delle Fave, and
Yedidia 2016), like any Bayesian-based approach, makes a
closed world assumption for all probability computations and
is not suitable for OSR.

Background-class-based approaches capture some of the
“known unknowns.” However, background approaches do not
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limit the space to have finite positively labeled open space,
and hence they are formally not OSR. Background class
modeling can work pretty well for self-consistent datasets
like PASCAL (Everingham et al. 2010) and MS-COCO (Lin
et al. 2014), where algorithms are often evaluated. However,
the non-OSR property is a likely source of “negative” dataset
bias (Tommasi et al. 2017) and limits application in the real
world where the negative space has near infinite variety of
inputs that should be rejected.

The OpenMax approach (Bendale and Boult 2016) is the
first deep network approach to solve OSR formally. Open-
Max uses EVT to define a per-class CAP model around the
deep features of each class and then thresholds that probabil-
ity to reject unknown inputs. The paper uses the penultimate
layer, the logits, as a high-dimensional deep feature vector.
However, the OpenMax approach could be used with any
deep feature layer. Using the EVT model built from the pos-
itive instances training samples, it builds a per-class EVT
probabilistic model of the input not belonging to that class,
combining these in the OpenMax estimate of each class prob-
ability including the probability of it being unknown. Though
this approach provides the first steps to formally address the
open set issue for deep networks, it is an offline solution after
the network had already been trained. Our more recent EVM
model (Rudd et al. 2018), also provides a non-linear radial
basis function approach based on EVT, but it provides a more
flexible and more powerful representation model for Open-
Max than the single class mean used in the original OpenMax
paper. Neither of these models, however, are used in training
the deep features.

One can see that a few networks with distance-based loss
functions, such as center loss (Wen et al. 2016) and its vari-
ants, can be converted into an OSR network by simple thresh-
olding on Euclidean distance from each class center as well
as by applying an OpenMax layer.

More recent work (Dhamija, Günther, and Boult 2018)
seeks to train deep networks that handle unknowns by com-
bining softmax with a new loss function which forces known
unknown samples, i.e., background classes, to have a small
feature magnitude. While empirically the approach is consid-
erably better than either using a background class or Open-
Max, it formally has an unbounded open space risk.

The final OSR issue related to deep networks is related
to the question of what one means by being far from train-
ing data. For traditional features, it was generally fine to
think about it in either input space or feature space. How-
ever, for deep networks, adversarial examples (Szegedy et
al. 2014) and fooling images (Nguyen, Yosinski, and Clune
2015) clearly break that parallelism. Both of these approaches
produce images that are close in one space and far in the other.
Moreover, while OpenMax was able to detect and mitigate
most of the fooling images and simple adversarial examples,
using an attack that goes after deep features rather than the
end-to-end network we can manipulate just about any image
so that it matches the features of a target and were easily
able to defeat OpenMax (Rozsa, Günther, and Boult 2017).
As of this writing, we are unaware of any defense against
this attack. Thus, for deep networks, while we can develop
OSR in feature space, it is not clear how to make them robust

in image space, which is, of course, where the real world
projects.

6 Conclusion

While machine learning and deep networks are providing
great advances, and many application areas are awash with
data, no amount of training will prepare the system for all
unknown inputs. Rejecting uncertain inputs is not enough —
uncertain is not unknown, and unknowns are often labeled
with confidence. Novelty, anomaly or outlier detection alone
is not sufficient because the proper handling of unknowns
involves balancing the risk of the unknown with the risk from
recognition errors. With almost all deep networks, unknowns
map into the same space as knowns and are not easily rejected
as outliers.

While significant progress has been made, as the astute
reader who was checking references while reading may have
noted, more than a dozen of the references have titles like
“Towards...”; this is an emerging area with more unknowns
than knowns. Open set problems are often challenging be-
cause they must balance maintaining accuracy on the core
problem with handling the unknown unknowns. However,
dealing with the unknown is essential, and we need systems
explicitly designed to handle the unknown. Do not fear the
unknown — join us in taming it.

“For any scientist, the real challenge is not to stay within
the secure garden of the known but to venture out into
the wilds of the unknown.” – (Du Sautoy 2017)
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