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Abstract. In this paper we analyze the problem of learning and updating of uncertainty in Dirichlet models, where
updating refers to determining the conditional distribution of a single variable when some evidence is known. We
first obtain the most general family of prior-posterior distributions which is conjugate to a Dirichlet likelihood and
we identify those hyperparameters that are influenced by data values. Next, we describe some methods to assess the
prior hyperparameters and we give a numerical method to estimate the Dirichlet parameters in a Bayesian context,
based on the posterior mode. We also give formulas for updating uncertainty by determining the conditional
probabilities of single variables when the values of other variables are known. A time series approach is presented
for dealing with the cases in which samples are not identically distributed, that is, the Dirichlet parameters change
from sample to sample. This typically occurs when the population is observed at different times. Finally, two
examples are given that illustrate the learning and updating processes and the time series approach.
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1. Introduction

An important and interesting problem in artificial intelligence and expert systems is to
predict some variables when other related variables have been observed. In this paper we
will consider the special case where variables are proportions. For example, suppose that
the monthly expenditures of a given population of households consist of the following items:

Y1: Food, Y2: Clothing, Y3: Entertainment, Y4: Transportation,
Y5: Traveling, Y6: Insurance, Y7: Housing, Y8: Other.

Consider the random variableX = (X1, . . . , X8), where

Xi =
Yi

8∑
j=1

Yj

, i = 1, . . . , 8, (1)
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are the proportions of the total household expenditures. It is clear thatXi ≥ 0 and that∑8
i=1Xi = 1. Our objective is to predict the variableXj when a subset of other variables

is known. That is, we wish to compute the conditional probabilitiesf(xj |xi1 , . . . , xir ),
wherexi1 , . . . , xir are known evidence values for the variablesXi1 , . . . , Xir .

Note that many other problems lead to the same structure as the household-expenditures
example. Consider an operating system resource that is subject to demands from various
sourcesY1, . . . , Yn and letXi be the ratio of the demand from theith source to the total
demand from all sources. Here we wish to predict the demands from various sources given
other demands. Other examples with similar structure include the percentage of sales ofn
firms sharing the market in an oligopoly, the percentage of goals of different soccer teams,
and the percentage of the total income associated with all regions in a given country.

Multivariate random variables with these characteristics are usually assumed to have
a Dirichlet distribution. This paper focuses on learning Dirichlet models from data and
interactions with an expert. We also show how to exploit Dirichlet models for making
inferences about proportional variables of the type illustrated above. Our work is related to
the problems of learning (e.g., Geiger & Heckerman, 1994; Bouckaert, 1994; Heckerman,
Geiger & Chickering, 1994; Cooper & Herskovits, 1992; Castillo, Guti´errez & Hadi,
1996a) and exploiting Bayesian networks (e.g., Pearl, 1986a,b; Lauritzen & Spiegelhalter,
1988; Cooper, 1990; Heckerman, 1990; Shachter, Andersen & Szolovits, 1994; Castillo &
Alvarez, 1991; Castillo, Guti´errez & Hadi, 1996b).

Different research efforts, particularly those concerned with network learning, differ in
the assumptions they make about the probability distributions (e.g., normal) that define
environmental observations. Again, we will be concerned with Dirichlet models (to be
defined in Section 2). Dirichlet models are a useful tool for dealing with probabilistic
models in artificial intelligence and expert systems. Two research problems in these areas
are those related to learning and updating of uncertainty.

The rest of the paper is organized as follows. Section 2 describes the Dirichlet distribution
and some of its properties. In Section 3 we discuss the problem of learning Dirichlet
models and we present one learning method that is based on the Dirichlet natural conjugate
distribution. We also propose an estimation method that is based on the posterior mode.
Section 4 derives an exact method for updating of uncertainty. Section 5 gives a method
for dealing with Dirichlet time series when the Dirichlet parameters change with time. In
Section 6, two applications illustrate the methodology. The model is evaluated in Section
7. Finally, a summary and concluding remarks are given in Section 8.

2. The Dirichlet Distribution

Let(Y1, . . . , Yk+1) be independent random variables having Gamma distributionsG(θ1), . . . ,
G(θk+1), with probability density function (p.d.f.)

g(y; θ) =
yθ−1e−y

Γ(θ)
, x > 0, (2)

whereΓ(θ) is the gamma function, which for integer values ofθ coincides with(θ − 1)!.
Let
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Xi =
Yi

k+1∑
j=1

Yj

; i = 1, . . . , k. (3)

Then, the continuous random variable(X1, . . . , Xk) has ak-dimensional Dirichlet distri-
butionD(θ1, . . . , θk; θk+1), with associated p.d.f.

f(x1, x2, . . . , xk; θ1, θ2, . . . , θk+1) =
Γ(
k+1∑
j=1

θj)

k+1∏
j=1

Γ(θj)

 k∏
j=1

x
θj−1
j

1−
k∑
j=1

xj

θk+1−1

,

(4)

at any point in the simplex,

Sk =

{
(xi, . . . , xk) : xi ≥ 0, i = 1, . . . , k,

k∑
i=1

xi ≤ 1

}

in IRk and zero outside. Thek-dimensional Dirichlet distribution depends onk + 1 pa-
rametersθ1, . . . , θk+1, which are all real and positive. As we shall see in Theorem 1, the
parametersθ1, . . . , θk are proportional to the mean values ofXi; i = 1, . . . , Xk and the
variances of theXi’s decrease with their sum.

Note that ak-dimensional Dirichlet distribution can be simulated by simulatingk + 1
independent Gamma random variables, and using (3) to obtain the corresponding Dirichlet
random variables.

If (X1, . . . , Xk) is Dirichlet, we define an extra variable

Xk+1 = 1−
k∑
i=1

Xi,

such thatX1 + . . . + Xk+1 = 1 and they can be interpreted as proportions associated
with mutually exclusive and exhaustive classes of events. This fact suggests many possible
applications of the Dirichlet distribution, some of which have been noted in Section 1.

The Beta distributionB(θ1, θ2), which depends on two positive real parametersθ1 and
θ2, has the following p.d.f.

f(x) =
Γ(θ1 + θ2)
Γ(θ1)Γ(θ2)

xθ1−1(1− x)θ2−1, (5)

for 0 < x < 1, andf(x) = 0, elsewhere. Comparing (5) with (4), we see thatB(θ1, θ2) =
D(θ1; θ2). That is, the Beta distribution is a special case of the Dirichlet distribution. One
may think of the Dirichlet distribution as a generalization tok dimensions of the Beta
distribution.

The Dirichlet distribution has several important properties, some of which are given below
and are proved elsewhere (e.g, Wilks, 1962).
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Theorem 1 The means, variances and covariances of the Dirichlet random variables
are:

E[Xi] =
θi

k+1∑
j=1

θj

, i = 1, . . . , k, (6)

V ar[Xi] =

θi
∑
j 6=i

θj(
k+1∑
j=1

θj

)2(
1 +

k+1∑
j=1

θj

) , i = 1, . . . , k, (7)

and

Cov[Xr, Xs] =
−θrθs(

k+1∑
j=1

θj

)2(
1 +

k+1∑
j=1

θj

) , r 6= s = 1, . . . , k. (8)

Expression (6) shows that the expected value ofXi is the fraction ofθi with respect to the
total sum ofθ’s. If all θ’s are multiplied by the same factor, the means remain unchanged.

Expressions (7) and (8) show also thatV ar[Xi] andCov[Xr, Xs] are proportional toθi
andθrθs, respectively. If allθ’s are multiplied by a large factor, variances and covariances
become very small.

Theorem 2 Let (X1, . . . , Xk) be a vector of random variables whose distribution is
the k-variate Dirichlet distributionD(θ1, . . . , θk; θk+1). The marginal distribution of
(X1, . . . , Xk1), k1 < k, is thek1-variate Dirichlet distributionD(θ1, . . . , θk1 ; θk1+1 +
. . .+ θk+1).

This theorem shows that the Dirichlet family is stable with respect to marginalizations
of any order. In other words, if(X1, . . . , Xk) is Dirichlet then the marginal distribution of
every subset of the variable is also Dirichlet.

The following theorem is used for deriving formulas for updating of uncertainty in Section
4.

Theorem 3 If (x1, . . . , xk) is a vector random variable having the k-variate Dirichlet
distributionD(θ1, . . . , θk; θk+1), the conditional random variablexk/(1 − x1 − . . . −
xk−1)|x1, . . . , xk−1 has the Beta distributionB(θk, θk+1).

The Dirichlet distribution has already been used by many authors in Bayesian networks.

• Klieter (1992) deals with the problem of parameter uncertainty and, instead of fixed
values for the parameters, uses Beta distributions (a special case of Dirichlet) for the
node probabilities and produces, as inferences, Beta distributions, the variances of
which are used to measure their uncertainties.
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• Neapolitan & Kenevan (1991) also deal with parameter uncertainty by assuming a
Dirichlet distribution as a natural conjugate to multinomial models, calculating the
posterior, which is also Dirichlet, and obtaining bounds for the variances.

• Musick (1993) shows how to produce inference distributions rather than simple point
probabilities, to measure the degree of confidence of the result, using Beta distributions
in general Bayesian networks. He also presents a theory that demonstrates how these
distributions can be used for performing exact inference. Musick (1994) integrates this
methodology for learning the probability structure of the network.

• Geiger & Heckerman (1994) use Dirichlet distributions as the natural conjugate to multi-
nomial models and show that, under assumptions made by some authors, a Dirichlet
prior is unavoidable. Thus, they give a characterization of the Dirichlet distribution.
For other examples of Dirichlet as a prior see Good (1976).

The above methods use a multinomial as the parent distribution of the variables in the
Bayesian network and the Dirichlet distribution plays an auxiliary role. In this paper, we
assume that the parent is Dirichlet, that is, we consider a set of variablesX = (X1, . . . , Xk),
which are assumed to be represented by a Dirichlet probability density,D(θ1, . . . , θk; θk+1).

3. Learning Dirichlet Models

In this section we address the problem of learning Dirichlet models. There are two types
of learning in probability models:structural learningandparametric learning. Structural
learning is concerned with building a graphical model (e.g., a Bayesian network) whose
topology can be used to determine the relationships among a set of variables. Bayesian
networks usually contain many conditional independence relationships which lead to a
substantial reduction in the number of parameters of the joint probability distribution of
the variables (parsimony). Parametric learning is concerned with estimating the remaining
parameters.

Note that the domains of the random variablesA|B,C andA|B, whereA,B andC are
disjoint subsets ofX with associatedX-index setsIA, IB andIC , are

1−
∑

j∈IB∪C

xj and 1−
∑
j∈IB

xj ,

respectively. Thus, the domains are different. This implies thatP (A|B,C) 6= P (A|B)
for all disjoint A,B,C ⊂ (X1, . . . , Xn). Therefore, the resulting Bayesian networks
are always complete due to the fact that in a Dirichlet model there are no conditional
independences. In other words, the number of parameters cannot be reduced. Hence, we
shall be concerned only with parametric learning.

To this end, we assume that the parametersθ are random variables and use Bayes’ rule

f(θ; η|x) =
f(x|θ)f(θ; η)∫

θ

f(x|θ)f(θ; η)dθ
, (9)
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wheref(θ; η) is theprior distribution,f(θ; η|x) is theposteriordistribution, andf(x|θ) is
the likelihoodof the data.

Whenf(θ; η|x) can be written asf(θ;h(x, η)), that is, when the families of priors and
posteriors coincide, we say that this family and the likelihoods areconjugate. In this case,
the posterior can be obtained by just using the functionh(x, η), which defines the posterior
parameters in terms of the prior parameters and the sample values. For this reason, it is
common to choose a familyf(θ; η) of conjugate priors. In this way, the above Bayes’ rule
gives posterior distributions of the same family. The Bayesian approach consists of the
following steps:

1. Select the family of priors (normally a conjugate family).

2. Assess the prior distribution on the parameters.

3. Obtain the sample data.

4. Calculate the posterior distribution usingh(x, η).

5. Estimate the parameters by the posterior mean or mode.

3.1. Conjugate of a Dirichlet Distribution

Bayesian statisticians often work with conjugate priors, which are parametric families of
distributions such that their associated posteriors belong to the same families. As mentioned
above, the rationale for choosing conjugate priors is that the posterior distributions can be
easily obtained from the prior distributions and the sample data. The parameters of the
conjugate family are referred to ashyperparameters. In this section we derive the most
general family that is conjugate to the Dirichlet likelihood, give theh(x, η) functions to
obtain the posterior parameters, and discuss how to calculate the posterior mode.

To learn (estimate) the parameters of the joint probability distributionBP , we start by
deriving the most general Dirichlet conjugate family. Suppose we have a random sample
(xs; s = 1, . . . , n), wherexi is the vector(xi1, . . . , xik) for the i-th individual, from a
population that can be represented by a Dirichlet density function which is given in (4).
Then the likelihood of the sample is

L =
n∏
i=1

f(xi; θ) =
n∏
i=1


Γ

(
k+1∑
j=1

θj

)
k+1∏
j=1

Γ(θj)

 k∏
j=1

x
θj−1
ij

1−
k∑
j=1

xij

θk+1−1

 . (10)

The corresponding log-likelihood,logL, is

n log

Γ

(
k+1∑
j=1

θj

)
k+1∏
j=1

Γ(θj)
+

k∑
j=1

(θj − 1)
n∑
i=1

log xij + (θk+1 − 1)
n∑
i=1

log

1−
k∑
j=1

xij

 . (11)
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Arnold, Castillo & Sarabia (1993), and Castillo,et al. (1996a) show that, in addition to
the classical conjugate families given by DeGroot (1986), many others are possible and they
characterize the most general family of conjugate distributions for the exponential families,
which includes the Dirichlet, by means of the following theorem.

Theorem 4 The most general̀-parameter exponential family of prior distributions for
θ = (θ1, . . . , θm) which is conjugate with respect to likelihoods of the exponential family

f(x; θ) = exp

nλ(θ) +
m∑
j=0

gj(θ)Tj(x)

 ;m < `, (12)

where by conventiong0(θ) = 1 and {Tj(x); j = 0, 1, . . . ,m} is a set of linearly indepen-
dent functions, is

q(θ|η) = exp

[
ν(η) + u(θ) +

m∑
i=1

ηigi(η) + ηm+1λ(θ) +
∑̀

i=m+2

ηisi(η)

]
, (13)

wheresm+2(θ), . . . , s`(θ), ν(η) andu(θ) are arbitrary functions andη1, . . . , η` are the
hyperparameters. Finally, the posterior hyperparameter vector is

h(x, η) = (η1 + T1(x), . . . , ηm + Tm(x), ηm+1 + n, ηm+2, . . . , η`). (14)

This theorem gives the most general conjugate exponential family of priors in (13), for
the exponential families of likelihoods in (12). Also, the simple relation in (14) allows
updating the hyperparameters, that is, obtaining the posterior hyperparameters, from the
prior hyperparameters and the observed datax.

Since the Dirichlet distribution belongs to the exponential family, we use it to derive
its most general conjugate family of prior-posterior distributions. According to (11), the
Dirichlet distribution can be written in the form of (12) by letting

m = k + 1,

λ(θ) = log Γ

(
k+1∑
j=1

θj

)
−
k+1∑
j=1

log Γ(θj),

gj(θ) = θj , j = 1, . . . , k,
gk+1(θ) = θk+1,

T0(x) = −
k∑
j=1

n∑
i=1

log xij −
n∑
i=1

log

(
1−

k∑
j=1

xij

)
,

Tj(x) =
n∑
i=1

log xij , j = 1, . . . , k,

Tk+1(x) =
n∑
i=1

log

(
1−

k∑
j=1

xij

)
.

(15)

It follows from (13) that the most general conjugate prior distribution of a Dirichlet family
with parametersθ = {θ1, . . . , θk+1} can be expressed as
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q(θ|η)=̇ exp

ν(η) + u(θ) +
k+1∑
i=1

ηiθi + ηk+2 log

Γ

(
k+1∑
j=1

θj

)
k+1∏
j=1

Γ(θj)
+
∑̀
i=k+3

ηisi(θ)

 ,

(16)

whereν(η), u(θ) and si(θ); i = k + 3, . . . , ` are arbitrary functions. The posterior
hyperparameters become

h(x, η) = (η1 + T1(x), . . . , ηk+1 + Tk+1(x), ηk+2 + n, ηk+3, . . . , η`) . (17)

In the following, for simplicity and due to the fact thatu(θ) and the parametersηi; i =
k + 3, . . . , ` are static (they are not altered by the information), we remove them and take

q(θ|η)=̇ exp

k+1∑
i=1

ηiθi + ηk+2 log Γ

k+1∑
j=1

θj

− ηk+2

k+1∑
j=1

log (Γ(θj))

 . (18)

SinceTj(x)→ −∞, asn→∞, the effect of prior information(η1, . . . , ηk+2) vanishes
asn → ∞. Note also that the sensitivity of the results to the prior can be immediately
analyzed using (17).

Due to its complexity (exponential and gamma functions appear in it), the mean of the
Dirichlet conjugate distribution (18) cannot be obtained in closed form. Poland (1994)
describes the use of posterior modes to propagate evidence in networks. Thus, as an
alternative to the means, we use the mode of (18) to estimate the Dirichlet parameters, i.e.,
we maximize (18), with respect to theθ’s, to estimate theθ-parameters.

The maximization can be done using any standard numerical nonlinear optimization pro-
cedure. We have used procedurepowellof Numerical Recipes (Press, Teukolsky, Vetterling
& Flannery, 1992) and we have obtained a very good and fast convergence. Powell is a
standard nonlinear optimization procedure, which inputs the function to be minimized, the
negative of the logarithm of (18), and an initial estimate, and outputs the coordinates of the
point where the minimum value is attained.

To avoid precision problems we do the following:

• Maximize the logarithm of (18) instead of (18) itself (note that the gamma function can
take very large values).

• Use a numerical procedure for the direct evaluation of the logarithm of the gamma
function instead of evaluating the gamma function and taking the logarithm.

• Use parametersλ2
i = θi to guarantee non-negativity of the parameters.

• For the initialθ-estimates, which are required by any nonlinear maximization procedure,
we use the following moment estimators:

θ̂j = sµ̂j ; j = 1, . . . , k + 1, (19)
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where

s =
1

k + 1

k+1∑
i=1

µ̂i(1− µ̂i)
σ̂2
i

− 1, (20)

is an estimate of
∑k+1
i=1 θj , µ̂i is an estimate of the mean ofXi obtained from the sample,

andσ̂2
i is an estimate of the variance ofXi. These estimators are obtained from (6) and

(7) by solving, in terms ofs andθi, the system of equations

µi =
θi

k+1∑
i=1

θi

=
θi
s
,

σ2
i =

θi
∑
j 6=i

θj(
k+1∑
j=1

θj

)2(
1 +

k+1∑
j=1

θj

) ,
for eachi = 1, . . . , k and using the mean estimator fors. For an example see Section
6.

3.2. Convenient Posterior Distributions

When selecting a family of prior distributions to be combined with a given likelihood, the
prime consideration is that the resulting posteriors should be members of tractable families
of distributions, which are referred to asConvenientposterior distributions. Thus, the prior
and posterior distributions do not have to belong to the same family. It is enough for them
to belong to known and tractable families. However, in the case of the Dirichlet distribution
we shall see that no better choice exists than its conjugate family.

Arnold, Castillo & Sarabia (1994) identify the family of priors that leads to convenient
posteriors in the sense that they belong to specified, not necessarily identical, exponential
families. In addition they have found that this problem only has a solution in exponential
families.

Theorem 5 Convenient posteriors(Arnold, et al., 1994)Consider data sets consisting
ofn observationsx(1), . . . ,x(n) (possibly vector valued) from anm-parameter exponential
family of the form

f(x; θ) = exp

λ(θ) +
m∑
j=0

θjTj(x)

 , (21)

whereθ0 = 1. Then,

f(θ; c) = exp

[
c00 − λ(θ) + g0(θ) +

t∑
i=1

ci0gi(θ)

]
, (22)
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is the form of the most general class of priors onΘ that will lead to posterior densities for
θ that belong to thet-parameter exponential family of the form

f(θ, η) = exp

[
θ(η) +

t∑
s=0

ηsgs(θ)

]
, t ≤ m (23)

whereη0 = 1 and
θ1

θ2

...
θm

 =


c01 c11 . . . ct1
c02 c12 . . . ct2
...

...
...

...
c0m c1m . . . ctm



g0(θ)
g1(θ)

...
gt(θ)

 . (24)

The hyperparameters become
η1(x)
η2(x)

...
ηt(x)

 =


c10 c11 . . . c1m
c20 c21 . . . c2m
...

...
...

...
ct0 ct1 · · · ctm



T0(x)
T1(x)

...
Tm(x)

 , (25)

and the mixed distribution is

h(x; c) = exp

c00 + T0(x)− θ(x) +
m∑
j=1

c0jTj(x)

 , (26)

where the coefficients{cij ; i = 0, . . . t; j = 0, . . . ,m} must make the function (22) inte-
grable.

From (24) and without loss of generality, we conclude thatgr(θ) = θr+1; r = 0, . . . ,m−
1, and then our only freedom consists of choosing the arbitrary functionsgr+1(θ), . . . , gt(θ).
However, these are static hyperparameters and, consequently, they are not affected by the
sample values, i.e., they are not interesting. Thus, we conclude that relaxing the condition
of prior and posterior to belong to the same exponential family does not lead to an extension
of the family (18). Consequently, based on Theorems 4 and 5 we use family (18).

3.3. Prior Assessment

For the prior assessment we suggest the following methods:

1. Following Klieter (1992), by means of an imaginary sample, i.e., we ask a human expert
to guess a sample of sizem as the most representative of his/her knowledge. Once this
sample is known, we use (17) to get the prior hyperparameters:

ηj0 = Tj(x); j = 1, . . . , k + 1 and ηk+2 = m. (27)
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Note that according to (17), a sample modifies theη-parameters by addingTj(x) or
m to the previous values. The prior values have negligible effect for largem, thus, it
seems reasonable assumingηj = 0; j = 1, . . . , k + 2 to get (27).

2. An alternative to the imaginary sample approach is obtained by observing that the mean
of logX, whereX has a Beta distribution, is

E[logX] =

1∫
0

log uur−1(1− u)t−1du =
Γ(r)Γ(t) (ψ(r)− ψ(r + t))

Γ(r + t)
, (28)

whereψ(z) is the digamma function. Then, based on (17), we choose as the prior
hyperparameters

ηj0 = T̂j(x) = mE[logXj ] = m
Γ(θ̂j)Γ(γ̂j)

(
ψ(θ̂j)− ψ(θ̂j + γ̂j)

)
Γ(θ̂j + γ̂j)

, (29)

wherej = 1, . . . , k+ 1,, θ̂j is a guess (a human expert assessment) forθj , γ̂j =
∑
k 6=j

θ̂k

andηk+2 = m.

Note that, in both methods,m measures the relative weight of the human expert infor-
mation with respect to the information contained in a real sample of sizen. For example,
if m = n, they have the same associated information.

4. Updating of Uncertainty

We now derive exact updating formulas for Dirichlet models symbolically, in the sense that
the parameters of the marginal and conditional distributions are explicit expressions of the
Dirichlet parameters. Thus, a sensitivity analysis of the influence of these parameters on
the probabilities of the nodes can be readily performed.

In Dirichlet models the initial probability distribution of every nodeXi follows a Dirichlet
distributionXi ∼ D(θi;

∑
j 6=i θj). Note that this is equivalent to assuming thatXi ∼

B(θi,
∑
j 6=i θj). Thus, every nodeXi has a Beta distribution with mean and variance given

by (6) and (7), respectively.
For the purpose of uncertainty updating, assume that we have the following evidence set

E = {Xk; k ∈ IE ⊂ {1, . . . , k}}. Then, from Theorems 2 and 3, every non-evidential
node has a scaled Beta distribution, i.e.,

Xi|E ∼

1−
∑
j∈IE

xj

D

θi; ∑
j 6=i,j /∈IE

θj

 , (30)

with mean
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E[Xi|E] =

1−
∑
j∈IE

xj

 θi∑
j /∈IE

θj
, (31)

and variance

V ar[Xi|E] =

1−
∑
j∈IE

xj

2 θi
∑

j 6=i,j 6=IE
θj( ∑

j /∈IE
θj

)2(
1 +

∑
j /∈IE

θj

) . (32)

Expressions (31) and (32) show that the conditional mean and variance of a non-evidential
node given the evidence are rational functions of the parameters and the values of evidential
nodes. For the mean, the polynomials involved are all first degree in each of the parameters
and the evidence values. For the variance, the polynomials are first degree in the parameters
and second degree in the evidence values in the numerator and third degree in the parameters
in the denominator.

In Section 6, we give an example illustrating the use of the above formulas in the updating
of uncertainty in Dirichlet models.

5. Dirichlet Time Series

In some cases, data are sampled over time. In these cases the sample cannot be assumed
independent and identically distributed (iid). In these cases it seems more appropriate to use
a time series model for theθ parameters, so that these parameters at timet can be forecasted
from the observations at previous times using a time series model, and variables at time
t can be predicted after other variables are observed at the same time, using the Dirichlet
model.

Assume thatXjt is the observation of thej-th variable at timet. We make a time series
assumption for the parametersθjt. Thus, we assume the auto-regressiveAR(`) model

θjt =
∑̀
m=1

αjt−mxjt−m + εjt, (33)

where theεjt are assumed iid with zero mean.
The least squares estimates of theαjt parameters are obtained by minimizing the error

MSE = [(k + 1)(n− `)]−1
n∑

t=`+1

k+1∑
j=1


∑̀
m=1

αjt−mxjt−m

k+1∑
r=1

∑̀
m=1

αrt−mxrt−m

− xjt


2

, (34)

where the expression in brackets is the error inxjt andMSE is the mean square error, since
we have divided by the number of fitted values. Since the error in (34) remains the same
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if we multiply all αjt parameters by a constant, we can assume, without loss of generality,
that ∀ j, αjt−` = 1. Note that the first̀ samples cannot be predicted from (33), since
predictions are based on` previous samples.

6. Examples of Applications

In this section we illustrate the above methods using the household expenditures domain
and data on unemployment in Spain.

6.1. The Household Expenditures Data

6.1.1. Parametric Learning

A random sample representing 20 households is shown in Table 1. Assume thatX ∼
D(θ1, . . . θ7; θ8). The following are the steps of the proposed learning method:

• Step 1: The human expert is required to guess a representative sample, whose sizem
measures the expert’s relative knowledge. We assume that this sample is given in Table
2.

• Step 2: A prior of type (18) is assessed using (27) to get the prior hyperparameters,
that is,

ηj0 = Tj(x) =
n∑
i=1

log xij , j = 1, . . . , 8,

wherex0
ij are the fictitious sample values in Table 2 andη90 = 10 is the fictitious

sample size. With this we get

(η10, . . . , η90) = (−22.7,−19.8,−26.8,−20.4,−18.6,−32.8,−14.9,−32.2, 10).

• Step 3: Using the updating formulas (17) for the posterior hyperparametersηi; i =
1, . . . , 9, we calculateTj(x); j = 1, . . . , 8, with the real sample of Table 1, and we get

(η1, . . . , η9) = (−33,−50,−68,−57,−66,−66,−21,−51, 30).

• Step 4: We now use the real sample and (19)-(20) to obtain the initial estimate of the
parametersθ1, . . . , θ8 to be used in the powell numerical procedure.

• Step 5: We maximize (18) by this procedure and obtain the following parameter esti-
mates for the Dirichlet parameters:

(3.68, 2.47, 1.32, 2.02, 1.68, 1.20, 6.62, 1.72).



           

56 E. CASTILLO, A.S. HADI, AND C. SOLARES

Table 1.Sample values obtained from20 individuals.

s X1 X2 X3 X4 X5 X6 X7 X8

1 0.23 0.10 0.02 0.08 0.04 0.11 0.39 0.03
2 0.30 0.09 0.05 0.07 0.04 0.02 0.28 0.14
3 0.18 0.08 0.01 0.04 0.01 0.01 0.48 0.19
4 0.17 0.09 0.03 0.07 0.03 0.04 0.42 0.15
5 0.27 0.15 0.01 0.21 0.03 0.06 0.23 0.04
6 0.30 0.11 0.11 0.07 0.01 0.09 0.30 0.01
7 0.26 0.08 0.02 0.03 0.08 0.04 0.42 0.05
8 0.16 0.17 0.06 0.12 0.02 0.02 0.33 0.12
9 0.19 0.07 0.05 0.04 0.03 0.03 0.52 0.07
10 0.18 0.14 0.11 0.04 0.07 0.01 0.25 0.21
11 0.20 0.11 0.07 0.09 0.04 0.05 0.35 0.09
12 0.13 0.04 0.01 0.01 0.14 0.01 0.39 0.26
13 0.23 0.09 0.01 0.13 0.14 0.04 0.27 0.10
14 0.08 0.17 0.03 0.04 0.06 0.06 0.44 0.12
15 0.08 0.10 0.05 0.11 0.07 0.17 0.28 0.15
16 0.21 0.01 0.06 0.06 0.09 0.01 0.43 0.13
17 0.44 0.02 0.04 0.10 0.01 0.01 0.37 0.02
18 0.09 0.16 0.11 0.03 0.03 0.24 0.29 0.04
19 0.29 0.11 0.02 0.10 0.06 0.05 0.30 0.07
20 0.25 0.07 0.03 0.03 0.01 0.05 0.49 0.05

Table 2.Fictitious sample values given by the human expert to assess the Dirichlet prior.

s X1 X2 X3 X4 X5 X6 X7 X8

1 0.16 0.12 0.10 0.24 0.13 0.03 0.18 0.05
2 0.11 0.06 0.04 0.12 0.25 0.05 0.35 0.02
3 0.16 0.18 0.04 0.13 0.16 0.07 0.16 0.11
4 0.13 0.23 0.12 0.12 0.23 0.02 0.15 0.01
5 0.22 0.17 0.06 0.10 0.16 0.02 0.20 0.06
6 0.05 0.24 0.13 0.09 0.06 0.08 0.33 0.02
7 0.14 0.06 0.03 0.17 0.13 0.08 0.25 0.14
8 0.15 0.15 0.06 0.19 0.10 0.01 0.24 0.10
9 0.12 0.21 0.11 0.11 0.20 0.04 0.19 0.03
10 0.01 0.11 0.09 0.10 0.29 0.05 0.32 0.03

These parameter estimates are not actually far from the real ones because the sample was
in fact simulated from a DirichletD(4, 2, 1, 1, 1, 1, 8; 2).

To illustrate the asymptotic behavior of the estimation method, Tables 3 and 4 show the
posterior hyperparameters and the estimated Dirichlet parameters, respectively, for sample
sizes0, 20, 100, 1000, 10000 and∞. The convergence of the estimated Dirichlet parameters
to the real ones is apparent from Table 4. We have included the sample sizen = 0 to allow
a comparison with the prior.
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Table 3.Posterior hyperparameters for sample sizes20, 100, 1000, and10000.

n η1 η2 η3 η4 η5 η6 η7 η8 η9

0 -22.7 -19.8 -26.8 -20.4 -18.6 -32.8 -14.9 -32.2 10
20 -33 -50 -68 -57 -66 -66 -21 -51 30
100 -170 -246 -381 -322 -339 -341 -101 -254 110
1000 -1719 -2562 -3580 -3524 -3468 -3522 -957 -2551 1010
10000 -17190 -25539 -35458 -35383 -35557 -35679 -9534 -25437 10010

Table 4.Estimated Dirichlet parameters and errors for various sample sizesn.

n θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 θ̂6 θ̂7 θ̂8 AE SSE

0 4.75 5.77 3.07 5.30 6.39 1.92 9.04 1.96 0.575 0.06
20 3.68 2.47 1.32 2.02 1.68 1.20 6.62 1.72 0.239 0.011
100 3.71 2.14 0.89 1.28 1.17 1.07 7.01 1.85 0.092 1.76×10−3

1000 3.94 1.98 0.98 1.02 1.06 1.01 7.89 1.97 0.011 2.39×10−5

10000 3.97 1.98 1.00 1.01 1.00 0.99 7.98 2.00 0.004 1.98×10−6

∞ 4.00 2.00 1.00 1.00 1.00 1.00 8.00 2.00 0.00 0.00

To evaluate the behavior of the error as a function of the sample size, we use the following
two error measures

AE =
k+1∑
i=1

|E[Xi]− µ̂i|, (35)

SSE =
k+1∑
i=1

(E[Xi]− µ̂i)2. (36)

whereµ̂i; i = 1, . . . , k+1 are the estimated means of theXi’s from the actual sample (e.g.,
Table 1). These errors are shown in the last two columns in Table 4, where it can be seen
that error decreases as the sample size increases.

6.1.2. Updating of Uncertainty

To illustrate the uncertainty updating procedure of Section 4, assume thatX1 −X7 have a
DirichletD(4, 2, 1, 1, 1, 1, 8; 2) and consider the evidence set

E = {x1 = 0.3, x2 = 0.05, x3 = 0.03, x4 = 0.06, x5 = 0.06, x6 = 0.04, x7 = 0.35},

which is assumed to become available sequentially in7 steps. By using Expressions (6),
(7), (31) and (32), we calculate the initial probabilities of the nodes and its associated
conditionals at different steps. Figure 1 shows a Mathematica program to propagate this
evidence. Table 5 shows the evolution of the means and standard deviations of all nodes
from the initial to the final step. Note that the variances decrease when new information is
available and that this decrease is larger for variables2 and7 because they have the largest
θ parameter values.
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theta= {4,2,1,1,1,1,8,2 }
evidencenode= {1,2,3,4,5,6,7 };
evidencevalue= {0.3,0.05,0.03,0.06,0.06,0.04,0.35 };
n=Length[theta];

ss=Sum[theta[[j]], {j,1,n }];
Print["Initial Step "];

Do[a=theta[[i]];mean1[i]=a/ss;

var1[i]=a*(ss-a)/(ss ∧2*(ss+1));

Print["i=",i," mean = ",N[mean1[i]]," std = ",

N[Sqrt[var1[i]]]],

{i,1,n }]
fact=1;ss1=ss;

Do[Print["Step ", j];

ss1-=theta[[evidencenode[[j]]]];

fact-=evidencevalue[[j]];

Do[If[i==evidencenode[[j]],

mean1[i]=evidencevalue[[j]];var1[i]=0,

If[var1[i]==0,,mean1[i]=fact*theta[[i]]/ss1;

var1[i]=fact ∧2*theta[[i]]*(ss1-theta[[i]])/

(ss1 ∧2*(ss1+1))]];

Print["i=",i," mean = ",mean1[i]," std =",

N[Sqrt[var1[i]]]],

{i,1,n }],
{j,1,Length[evidencenode] }]

Figure 1. Mathematica statements for propagation of evidence.

6.2. Unemployment Data in Spain

Table 6 shows the unemployment proportions produced in the17 autonomies of Spain
during the decade 1982–1991. As described in Section 5, we have assumed a Dirichlet
random variableXt = (X1t, . . . , X17t) and we have fittedAR(`) time series models for
the θ-parameters of the Dirichlet model, for` = 2, . . . , 6. The results are illustrated in
Tables 7 and 8. Table 7 shows theMSE in (34) and the corresponding sum of squares of
the error for the predicted values for the yeart = 1991

TSE =
k+1∑
j=1


∑̀
m=1

αjt−mxjt−m

k+1∑
r=1

∑̀
m=1

αrt−mxrt−m

− xjt


2

. (37)
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Table 5.Means and standard deviations of nodes at different steps of the evidence process.

Variable Initial Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3
(0.087) (0) (0) (0) (0) (0) (0) (0)

2 0.1 0.088 0.05 0.05 0.05 0.05 0.05 0.05
(0.065) (0.56) (0) (0) (0) (0) (0) (0)

3 0.05 0.044 0.046 0.03 0.03 0.03 0.03 0.03
(0.048) (0.041) (0.043) (0) (0) (0) (0) (0)

4 0.05 0.044 0.046 0.048 0.06 0.06 0.06 0.06
(0.048) (0.041) (0.043) (0.044) (0) (0) (0) (0)

5 0.05 0.044 0.046 0.048 0.047 0.06 0.06 0.06
(0.048) (0.041) (0.043) (0.044) (0.043) (0) (0) (0)

6 0.05 0.044 0.046 0.048 0.047 0.045 0.04 0.04
(0.048) (0.041) (0.043) (0.044) (0.043) (0.041) (0) (0)

7 0.4 0.35 0.37 0.38 0.37 0.36 0.37 0.35
(0.107) (0.085) (0.083) (0.081) (0.073) (0.064) (0.055) (0)

8 0.1 0.088 0.093 0.095 0.093 0.091 0.092 0.11
(0.065) (0.056) (0.059) (0.060) (0.058) (0.056) (0.055) (0)

Table 8 shows the unemployment predictions fort = 1991 usingAR(`) models for
` = 2, . . . , 6. Note the improvement as̀increases, wherè is the number of previous
samples.

An additional evaluation of the model can be performed as follows. We use6 years of
data to fit the parameters and then use the fitted model to predict the remaining years. More
precisely, we estimated the time series for theθ parameters with data from the period 1982–
1987 and then we used these values to predict theθ parameters for the years 1988–1991,
based on their corresponding previous periods of6 years. Once theθ parameters were
known for each year, we used Expression (6) for the predictions. The predicted values are
shown in Table 9. The total square errorTSE for each year is given in the last row of
Table 9. These errors and a comparison with the observed values in Table 6 shows a good
agreement.

7. Evaluation of the Proposed Method

The proposed method has been tested for Dirichlet populations up ton = 200 variables
and the method converged very rapidly on a PowerMac computer (less than three minutes),
though the computer time increased substantially with the numberk of parameters to be
estimated. The method, however, showed some problems with the evaluation of the gamma
function for large values of its argument, which were solved by evaluating its logarithm
instead. Some problems were also observed in the maximization procedure, when theθ
parameters were used, since the powell method enters the negative region; however, using
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Table 6.Unemployment data in Spain.

Autonomy 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Andalucia 0.192 0.195 0.217 0.211 0.222 0.240 0.243 0.256 0.258 0.260
Aragón 0.025 0.026 0.024 0.026 0.024 0.021 0.022 0.022 0.018 0.019
Asturias 0.026 0.024 0.023 0.026 0.027 0.030 0.030 0.030 0.031 0.027
Baleares 0.013 0.014 0.013 0.011 0.012 0.012 0.011 0.012 0.012 0.011
Canarias 0.040 0.040 0.042 0.045 0.046 0.044 0.044 0.049 0.054 0.059
Cantabria 0.010 0.010 0.011 0.010 0.011 0.012 0.014 0.014 0.014 0.013
León 0.052 0.053 0.053 0.056 0.057 0.056 0.060 0.064 0.063 0.060
La Mancha 0.036 0.034 0.033 0.032 0.030 0.030 0.032 0.034 0.032 0.032
Cataluña 0.205 0.203 0.179 0.171 0.167 0.170 0.164 0.138 0.131 0.126
Valencia 0.106 0.100 0.097 0.096 0.091 0.092 0.088 0.089 0.088 0.097
Extremad. 0.027 0.025 0.035 0.033 0.034 0.035 0.036 0.040 0.040 0.039
Galicia 0.040 0.050 0.050 0.052 0.053 0.051 0.051 0.056 0.058 0.058
Madrid 0.119 0.122 0.124 0.126 0.120 0.104 0.104 0.094 0.096 0.092
Murcia 0.023 0.022 0.020 0.023 0.022 0.024 0.023 0.024 0.025 0.029
Navarra 0.012 0.012 0.011 0.012 0.012 0.011 0.010 0.010 0.010 0.009
Pais Vasco 0.069 0.068 0.065 0.064 0.066 0.065 0.064 0.065 0.067 0.066
La Rioja 0.005 0.004 0.004 0.005 0.005 0.004 0.005 0.004 0.003 0.004

Table 7. Mean square errors,MSE, and total square errors,TSE, in predicting series att = 10 for different
AR(`) models based on the unemployment data in Spain.

` MSE TSE

2 1.47× 10−5 2.24× 10−4

3 9.93× 10−6 2.22× 10−4

4 6.46× 10−6 1.12× 10−4

5 7.75× 10−7 8.21× 10−6

6 8.76× 10−10 2.50× 10−8

λ2
i parameters was a good solution. The prior assessment using the fictitious sample or the

alternative method described in Section 3.3 gave no numerical or convergence problems,
though the convergence speed was sensitive to the quality of the prior assessment.

Since we can consider an extra variableXk+1 = 1 −
∑k
i=1Xi, the proposed method

is applicable primarily when domain variables represent proportions which sum to1 over
all variables. However, if we work only with the initialk variables, the only constraint
is
∑k
i=1Xi ≤ 1, which can be transformed to

∑k
i=1Xi ≤ s by multiplying the random

variable by a constants, as suggested by the gamma variables in expression (3).

The presented Dirichlet model assumes that we have an iid sample. Thus, the model
is only applicable when the assumptions of independent and identical distributed data are
reasonable. In some cases where data occur over time this assumption must be carefully
checked, since in the majority of cases the parameters can change with time, so that the
identically distributed part of iid is violated, and if samples close in time are dependent,
the independently distributed part is violated too. If this happens, the time series model
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Table 8.Predicted values for1991 of unemployment in Spain using differentAR(`) models.

Predicted values fort = 1991
Autonomy ` = 2 ` = 3 ` = 4 ` = 5 ` = 6 Observed

Andalucia 0.2670 0.2670 0.2655 0.2606 0.2600 0.260
Aragón 0.0179 0.0181 0.0181 0.0179 0.0185 0.019
Asturias 0.0308 0.0308 0.0300 0.0277 0.0270 0.027
Baleares 0.0114 0.0108 0.0113 0.0099 0.0114 0.011
Canarias 0.0561 0.0584 0.0573 0.0584 0.0590 0.059
Cantabria 0.0145 0.0147 0.0136 0.0130 0.0126 0.013
C.- León 0.0638 0.0618 0.0602 0.0603 0.0602 0.060
C.- La Mancha 0.0323 0.0305 0.0318 0.0317 0.0321 0.032
Cataluña 0.1223 0.1282 0.1311 0.1268 0.1260 0.126
Valencia 0.0870 0.0855 0.0951 0.0973 0.0969 0.097
Extremadura 0.0423 0.0407 0.0399 0.0390 0.0387 0.039
Galicia 0.0590 0.0577 0.0550 0.0568 0.0575 0.058
Madrid 0.0909 0.0922 0.0873 0.0920 0.0923 0.092
Murcia 0.0261 0.0256 0.0273 0.0282 0.0286 0.029
Navarra 0.0093 0.0093 0.0089 0.0105 0.0090 0.009
Pais Vasco 0.0656 0.0652 0.0632 0.0660 0.0657 0.066
La Rioja 0.0034 0.0035 0.0045 0.0040 0.0040 0.004

TSE error 2.2× 10−4 2.2× 10−4 1.1× 10−4 8.2× 10−6 2.5× 10−8 0.0

Table 9.Predictions for the period 1988–1991 based on the period 1982–1987.

Autonomy 1988 1989 1990 1991

Andalucia 0.25106 0.25240 0.26991 0.26815
Aragón 0.02142 0.02253 0.02101 0.01596
Asturias 0.03342 0.03118 0.03338 0.03245
Baleares 0.01146 0.01075 0.01076 0.01017
Canarias 0.03387 0.04024 0.05654 0.05984
Cantabria 0.01261 0.01223 0.01589 0.01574
C.- León 0.05779 0.06325 0.06732 0.05867
C.- La Mancha 0.03174 0.03068 0.03311 0.02975
Cataluña 0.17830 0.15579 0.13276 0.13171
Valencia 0.09481 0.08397 0.08846 0.08265
Extremadura 0.03805 0.03663 0.04076 0.04018
Galicia 0.05690 0.05330 0.05721 0.05646
Madrid 0.06867 0.10437 0.06828 0.09773
Murcia 0.02565 0.02356 0.02548 0.02496
Navarra 0.01250 0.01102 0.01077 0.00981
Pais Vasco 0.06741 0.06296 0.06522 0.06268
La Rioja 0.00434 0.00516 0.00314 0.00309

TSE 1.76× 10−3 5.8× 10−4 9.53× 10−4 4.15× 10−4

in Section 5 must be used. However, if there is no change in time or it is small and the
independence assumption is reasonable, the method can be applied.
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8. Summary and Conclusions

We have presented some methods for dealing with the problems of learning and propagation
of uncertainty in Dirichlet models. A Bayesian method with its most general conjugate
family of prior-posterior distributions has been developed for learning Dirichlet models.
The difficulties in calculating the posterior is avoided by considering the posterior mode,
which can be easily calculated by standard numerical procedures. The conditional means
and variances of the variables in the network are found to be rational functions of the
parameters and evidence values. This gives rise to updating formulas for the exact updating
of uncertainty. The simplicity of these formulas also allows for studying the sensitivity
of the results to changes in the parameter values. If the Dirichlet parameters change with
time, a time series approach, as described in Section 5, can be used. In this manner, the
time series are used for predicting Dirichlet parameters and the Dirichlet model is used to
predict variables when some other variables are known. Finally, the methods performed
satisfactorily when applied to examples of up to200 variables. In conclusion, Dirichlet
models can be easily implemented with the extra advantage that updating formulas are
explicit; thus, allowing for a direct numeric as well as symbolic manipulation.
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