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Abstract The considerable mathematical knowledge encoded by the Flyspeck project is

combined with external automated theorem provers (ATPs) and machine-learning premise

selection methods trained on the Flyspeck proofs, producing an AI system capable of

proving a wide range of mathematical conjectures automatically. The performance of this

architecture is evaluated in a bootstrapping scenario emulating the development of Flyspeck

from axioms to the last theorem, each time using only the previous theorems and proofs. It

is shown that 39 % of the 14185 theorems could be proved in a push-button mode (without

any high-level advice and user interaction) in 30 seconds of real time on a fourteen-CPU

workstation. The necessary work involves: (i) an implementation of sound translations of

the HOL Light logic to ATP formalisms: untyped first-order, polymorphic typed first-order,

and typed higher-order, (ii) export of the dependency information from HOL Light and ATP

proofs for the machine learners, and (iii) choice of suitable representations and methods for

learning from previous proofs, and their integration as advisors with HOL Light. This work

is described and discussed here, and an initial analysis of the body of proofs that were found

fully automatically is provided.

Keywords Automated reasoning · Interactive theorem proving · HOL light · Flyspeck ·

Artificial intelligence · Machine learning · Formal mathematics

1 Introduction and Motivation

“It is the view of some of us that many people who could have easily contributed

to project QED have been distracted away by the enticing lure of AI or AR.”

– The QED Manifesto
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“So it will take 140 man-years to create a good basic library for formal mathematics.”

– Freek Wiedijk [88]

“We will encourage you to develop the three great virtues of a programmer: laziness,

impatience, and hubris.”

– Larry Wall, Programming Perl [85]

“And in demonstration itself logic is not all. The true mathematical reasoning is a real

induction [...]”

– Henri Poincaré, Science and Method [64]

1.1 Large-Theory Automated Reasoning and HOL Light

Use of external first-order automated theorem provers (ATPs) like Vampire [47], E [68],

SPASS [87], and recently also SMT (satisfiability modulo theories) solvers like Z3 [25] for

(large-theory) formalization has been developed considerably in the recent decade. Particu-

larly in the Isabelle community, the Sledgehammer [14, 16] bridge to such external tools is

getting increasingly popular. This helps to further develop various parts of the technology

involved. ATPs have recently gained the ability to quickly load large theories over large sig-

natures and work with them [39]. Methods for automated selection of relevant knowledge

and for proof guidance are actively developed [78], together with specialized automated

systems targeted at particular mathematical domains [2, 8, 65]. Formats and translation

methods handling more formalization-friendly foundations are being defined [17, 28, 71],

and metasystems that decide which ATP, translation method, strategy, parallelization, and

premises to use to solve a given problem with limited resources are being designed [60,

82]. Cooperation of humans and computers over large corpora of formal knowledge is an

interesting field, allowing exploration of new AI systems and combinations of different AI

techniques that can attempt to encode concepts like analogy and intuition, and rigorously

evaluate their usefulness. Perhaps not only Hilbert and Turing, but also the formality-

opposing and intuition-oriented Poincaré1 [64] would have been interested to learn about

the new “semantic AI paradise” of such large corpora of fully computer-understandable

mathematics (from which we do not intend to be expelled).

The HOL Light [35] system is probably the first among the existing well-known inter-

active theorem provers (ITPs) which has integrated and extensively used a general ATP

procedure, the MESON tactic [37]. Hurd has developed and benchmarked early bridges [40,

41] between HOL and external systems, and his Metis system [42] has also become a sig-

nificant part of the Isabelle/Sledgehammer bridge to ATPs [61]. Using the very detailed

Otter/Ivy [54] proof objects, Harrison also later implemented a bridge from HOL Light to

Prover9 [53]. HOL Light however does not yet have a general bridge to large-theory ATP/AI

(“hammer”)2 methods, similar to Isabelle/Sledgehammer or MizAR [80, 81], which would

attempt to automatically solve a new goal by selecting relevant knowledge from the large

library and running (possibly customized/trained) external ATPs on such premise selec-

tions. HOL Light seems to be a natural candidate for adopting such methods, because of the

amount of work already done in this direction mentioned above, and also thanks to HOL

12012 is not just the year of Turing [33], but also of Poincaré, whose ideas about creativity and invention

involving random, intuition-guided exploration confirmed by critical evaluation quite correspond to what AI

systems like MaLARea [82] try to emulate in large formal theories.

2Larry Paulson is guilty of introducing this “striking” terminology.



Learning-Assisted Automated Reasoning with Flyspeck 175

Light’s foundational closeness to Isabelle/HOL. Also, thanks to the Flyspeck project [32],

HOL Light is becoming less of a “single, very knowledgable formalizer” tool, and is getting

increasingly used as a “tool for interested mathematicians” (such as the Flyspeck team in

Hanoi)3 who may know the large libraries much less and have less experience with craft-

ing their own proof tactics. For such ITP users it is good to provide a small number of

strong methods that allow fast progress, which can perhaps also complement the declarative

modes [89] pioneered by HOL Light [36] in the LCF world.

1.2 Flyspeck as an Interesting Corpus for Semantic AI Methods

The purpose of the Flyspeck project is to produce a formal proof of the Kepler Conjec-

ture [34, 46]. The Flyspeck development (which in this paper always means also the required

parts of the HOL Light library) is an interesting corpus for a number of reasons. First, it

formalizes considerable parts of standard mathematics, and thus exposes a large body of

interconnected mathematical reasoning to all kinds of semantic AI methods and experi-

ments. Second, the formalization is done in a relatively directed way, with the final goal

of the Kepler conjecture in mind. For example, in the Mizar library4 (and even more in

other collections like the Coq contribs)5, articles may be contributed as isolated develop-

ments, and only much later (or never) re-factored into a form that makes them work well

with related developments. Such refactoring is often a nontrivial process [67]. In a directed

development like Flyspeck, such integrity is a concern from the very beginning, and this

concern should result in the theorems working better together to justify new conjectures

that combine the areas covered by the development. Third, the language of HOL Light is in

a certain sense simpler than the language of Mizar and Coq (and to a lesser extent also than

Isabelle/HOL), where one typically first needs to set up the right syntactic/type-automation

environment to be able to formulate new conjectures in advanced areas. This greater sim-

plicity (which may come at a cost) makes it possible to write direct (yet advanced) queries

to the AI/ATP (“hammer”) system in the original language, without much additional need

for specifying the context of the query. This could make such “hammer” more easy to

try for interested mathematicians, and allow them to explore formal mathematics and Fly-

speck. And fourth, Flyspeck is accompanied with an informal (LATEX) text that is often

cross-linked to the formal concepts and theorems developed in HOL Light. With sufficiently

strong automated reasoning over the library, this cross-linking opens the way to experiments

with alignment (and eventual semi-automated translation) between the informal and formal

Flyspeck texts, using corpus-driven methods for language translation, assisted by such an

AI/ATP “hammer” as an additional semantic filter/advisor.

1.3 The Rest of the Paper

The work reported here makes several steps towards the above goals:

1. Sound and efficient translations of the HOL Light formulas to several ATP (TPTP)

formalisms are implemented (Section 2). This includes the untyped first-order (FOF)

format [72], the polymorphic typed first-order (TFF1) format [17], and the typed

higher-order (THF) format [28, 70].

3http://weyl.math.pitt.edu/hanoi2009/Participants/

4www.mizar.org

5http://coq.inria.fr/V8.2pl1/contribs/bycat.html

http://weyl.math.pitt.edu/hanoi2009/Participants/
www.mizar.org
http://coq.inria.fr/V8.2pl1/contribs/bycat.html
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2. Dependency information is exported from the Flyspeck proofs (Section 3). This allows

experiments with re-proving of theorems by 17 different ATPs/SMTs from their HOL

Light dependencies, and provides an initial dataset for machine learning of premise

selection from previous proofs.

3. Several feature representations characterizing HOL Light formulas are proposed, imple-

mented, and used for machine-learning of premise selection. Several preprocessing

methods are developed for the dependency data that are used for learning. The trained

premise-selection systems are integrated as external advisors for HOL Light. A pro-

totype system answering real-time mathematical queries by running various parallel

combinations of the premise selectors and ATPs is built and made available as an online

service. See Section 4.

The methods are evaluated in Section 5, and it is shown that by running in parallel the most

complementary proof-producing methods on a 14-CPU workstation, one now has a 39 %

chance to prove the next Flyspeck theorem within 30 s in a fully automated push-button

mode (without any high-level advice). 50 % of the Flyspeck theorems can be re-proved

within 30 s by a collection of 7 ATP methods (run in parallel) if the HOL Light proof depen-

dencies are used. 56 % of the theorems could be proved by the union of all methods tried in

the evaluation. An initial analysis of these sets of proofs is given in Section 6. It is shown

that the proofs produced by the learning-advised ATPs can occasionally develop ideas that

are very different from the original HOL Light proofs, and that the learning-advised ATPs

can sometimes produce simpler proofs and discover duplications in the library. Section 7

discusses related work and Section 8 suggests future directions.

2 Translation of HOL Light Formulas to ATP formats

The HOL logic differs from the formalisms used by most of the existing ATP and SMT sys-

tems. The main differences to first-order logic are the use of the polymorphic type system,

and higher-order features (guarded by the type system) such as quantification (abstrac-

tion) over higher-order objects and currying. On the other hand, the logic is made classical

and comes with a straightforward intended interpretation in ZFC. Translation of this logic

(and its type-class extension used by Isabelle/HOL) to ATP formalisms has been an active

research topic started already in the 90s. Prominent techniques, such as lambda lifting, suit-

able type system translation methods, etc., have been described several times [13, 37, 40,

41, 57]. Therefore this section assumes familiarity with these techniques, and only briefly

summarizes the logic and the translation approaches considered, and their particular suit-

ability for the experiments over the HOL Light corpora. For a comprehensive recent overview

and discussion of this topic and the issues related to the translation see Blanchette’s the-

sis [13]. In particular, it contains the arguments about the soundness and (in)completeness

of the translation methods that we eventually chose.

2.1 Summary of the HOL Logic

HOL Light uses the HOL logic [63]: an extended variant of Church’s simple type the-

ory [22]. Type variables (implicitly universally quantified) are explicitly added to the

language (providing polymorphism), together with arbitrary type operators (constructors of

compound types like ‘int list’ and ‘a set’). In the HOL logic, the terms and types

are intended to have a standard set-theoretical interpretation in HOL universes. A HOL
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universe U is a set of non-empty sets, such that U is closed under non-empty subsets, finite

products and powersets, an infinite set I ∈ U exists, and a choice function ch over U exists

(i.e., ∀X ∈ U : ch(X) ∈ X) . The subsets, products, and powersets together also yield

function spaces. A frequently considered example of a HOL universe is the set Vω+ω \ {0},6

with ch being its (ZFC-guaranteed) selector, and I = ω. The standard U -interpretation

of a monomorphic (i.e., free of type variables) type σ is a set �σ� ∈ U , a polymorphic

(i.e., containing type variables) type σ with n type variables is interpreted as a function

�σ� : Un → U , and the arrow operator observes the standard function-space behavior

(lifted to appropriate mappings for polymorphic types) on the type interpretations. The stan-

dard interpretation of a closed monomorphic term t : σ is an element of the set �σ� ∈ U , and

a closed polymorphic term (with n type variables) t : σ with �σ� : Un → U is interpreted

as a (dependently typed) function assigning to each n-tuple [X1, . . . , Xn] ∈ Un an element

of �σ�([X1, . . . , Xn]). The HOL logic’s type signature starts with the built-in nullary type

constants ind, interpreted as the infinite set I , and bool (type of propositions), interpreted

as a chosen two-element set in U (its existence follows from the properties of a HOL uni-

verse). The term signature initially contains the polymorphic constants =α→α→bool , and

ǫ(α→bool)→α , interpreted as the equality and selector on each set in U . The inference mech-

anisms start with a set of standard primitive inference rules, later adding the axioms of

functional extensionality, choice (implying the excluded middle in the HOL setting), and

infinity. New type and term constructors can be introduced by simple definitional extension

mechanisms, which are in HOL Light also used to introduce the standard logical connec-

tives and quantifiers. The result is a classical logic system that is in practice quite close to

set theory, differing from it mainly by the built-in type discipline (allowing also complete

automation of abstraction) and by more frequent use of total functions to model mathe-

matical objects. For example, predicates are modelled as total functions to bool on types,

and sets are in HOL Light identified with (unary) predicates. The main issues for transla-

tion are the type system and the automated reification (abstraction) mechanisms that are not

immediately available in first-order logic and may be encoded in more or less efficient and

complete ways.

2.2 The MESON Translation

An obvious first idea for generating FOL ATP problems from HOL Light problems was to

re-use parts of the already implemented MESON tactic. This tactic tries to justify a given

goal G with a supplied list of premises P1, ..., Pn by calling a customized first-order ATP

implemented in HOL Light, which is based on the model elimination method invented by

Loveland [50], later combined with a Prolog-like search tree [51]. The implementation of

the MESON tactic in HOL Light first applies a number of standard translation techniques

(such as β-reduction followed by lambda lifting, skolemization, introduction of the apply
functor,7 etc.) that transform the HOL goal (together with the supplied premises) to a clausal

FOL goal (or multiple goals). An interesting (and MESON-specific) part of the transforma-

tion is a rather exhaustive and heuristic instantiation of the (often polymorphic) premises

(called POLY ASSUME TAC), described below. The clausal FOL goal is then passed to the

6 Vω+ω is the ω+ω-th set of von Neumann’s (cumulative) hierarchy of sets obtained by iterating the powerset

operation starting with the empty set ω + ω times. This shows that the HOL logic is in general weaker than

ZFC.

7Identity is used by MESON as the apply functor.
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core ATP. If the core ATP succeeds, it returns a proof, which is then translated into HOL

Light proof steps. The transformation from HOL to FOL is heuristic, incomplete, and tuned

for relatively small problems. An interesting feature of MESON is that the core ATP does

not treat equality specially (as is quite common in tableau provers), which in turn allows

using multiple instantiated versions of equality (e.g., on lists and on real numbers) inside

one problem. Such equational separation, when combined with the heuristic instantiation

of other polymorphic constants done by MESON, then prevents the core ATP from doing

ill-typed inferences without the necessity for any additional type guards.

The most interesting part of the translation heuristically instantiates the (possibly poly-

morphic) premises P1, ..., Pn and adds them to the goal G. This is done iteratively, building

a new temporary goal Gi (where G0 = G) from each premise Pi and the previous goal

Gi−1 as follows. All (possibly polymorphic) constants are collected from Pi and Gi−1, and

the set of all their pairs is created. When such a pair {cP , cG} consists of two (symbolically)

equal constants, the type of cP is matched to the type of cG, and if a substitution σ exists

(i.e., TypecP
σ = TypecG

), it is added to the resulting set �i of type substitutions. Each

type substitution from �i is then applied to Pi , and all such resulting instances of Pi are

added as assumptions to Gi−1, yielding Gi . The set of assumptions of the goal Gi is thus

typically greater than that of Gi−1, and the same typically holds for the set of constants in

Gi , which will be in turn used to instantiate Pi+1.

This procedure is quite effective for the small problems that MESON normally handles.

However, for problems with many premises and many polymorphic constants this turns

out to be very inefficient. While re-using MESON allowed the quick initial exploration of

using external ATPs and advisors described in [45], this inefficiency practically excluded

the (seemingly straightforward) use of the unmodified MESON procedure as an (at least

basic) translation method for generating ATP problems with many premises. This is why

the experiments presented here use different translations, described below.

Completeness of the translation from HOL to FOL is in general hard to achieve in an

efficient way. The MESON translation is incomplete in several ways. The goal’s proper

assumptions are not monomorphised, and the free variables of polymorphic types are not

used in the same way as the polymorphic constants. For example, given the premise:

∀P : α → bool.∀x : α.Px

and a goal that does not mention α, the premise will never be instantiated to the type present

in the goal, and thus will not be usable for MESON.

2.3 Translation to the TFF1 and FOF Formats

There is a “simple” solution to the instantiation blow-up experienced with the MESON trans-

lation: avoid heuristic instantiation as a pre-processing step, and instead let the ATPs handle

it as a part of the ATP problems. This technique is used in the Mizar/MPTP translation [74,

75, 77], where the (dependent and undecidable) soft type system cannot be separated from

the core predicate logic. The relevant heuristics can instead be developed (and experimented

with) on the level of ATPs. Indeed, for example the SPASS system includes a number of ATP

techniques for both complete and incomplete work with (auto-detected) types [18, 86]. This

approach has been in the recent years facilitated by developing type-aware TPTP standards

such as TFF0, TFF1, and THF, which – unlike related type-aware efforts like DFG [31]

and KIF [29] – seem to be more successful in being adopted by ATP and tool developers.

In the case of the recent TFF1 standard [17] adding HOL-like polymorphic types to first-
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order logic, a translation tool to the FOF and SMT formats has been developed in 2012 by

Andrei Paskevich as part of the Why3 system [26], simplifying the first experiments with

the non-instantiating translation.

The translation to TFF1 proceeds similarly to the MESON translation, but without

applying the POLY ASSUME TAC. The problem formulas are β-reduced, the remaining

lambda abstractions are again removed using lambda lifting, and the apply functor

is heuristically introduced. The particular heuristic for this is the one used by Meng

and Paulson, i.e., for each higher-order constant c the minimum arity nc with which it

appears in a problem is computed, and the first nc arguments are always passed to c

directly inside the problem. If the constant is also used with more arguments in the prob-

lem, apply is used. Blanchette [13] reports that this optimization works fairly well for

Isabelle/Sledgehammer, and gives a simple example when it introduces incompleteness.

As an example of the translation to the TFF1 format, consider the re-proving problem8

for the theorem Float.REAL EQ INV9 proved as part of the Jordan curve theorem

formalization,10 whose HOL Light proof is as follows:

let REAL EQ INV = prove(‘∀x y. ((x:real = y) ⇐⇒ (inv(x) = inv (y)))‘,
((REPEAT GEN TAC))

THEN (EQ TAC)

THENL [((DISCH TAC THEN (ASM REWRITE TAC[])));
(* branch 2*) ((DISCH TAC))

THEN ((ONCE REWRITE TAC [(GSYM REAL INV INV)]))

THEN ((ASM REWRITE TAC[]))]);;

The dependency tracking (see Section 3.1.2) has found the following dependencies of the

theorem:11

AND_DEF FORALL_DEF IMP_DEF REAL_INV_INV REFL_CLAUSE TRUTH

Tactics_jordan.unify_exists_tac_example

From these dependencies, only REAL INV INV has nontrivial first-order content (a list of

the trivial facts has been collected and is used for such filtering). The problem creation

additionally adds three facts encoding properties of (HOL) booleans, and also the functional

extensionality axiom (EQ EXT). In the original HOL Light syntax the re-proving problem

looks as follows:

% ORIGINAL: Float.REAL_EQ_INV

% Assm: EQ_EXT: !f g. (!x. f x = g x) ==> f = g

% Assm: BOOL_CASES_AX: !t. (t <=> T) \/ (t <=> F)

% Assm: NOT_CLAUSES_WEAK_conjunct1: ˜F <=> T

8By a re-proving problem, we mean the ATP problem consisting of the translatedHOL Light theorem together

with the premises used in its original HOL Light proof.

9http://mws.cs.ru.nl/∼mptp/hh1/OrigDepsProbs/i/p/09895.p

10http://mws.cs.ru.nl/∼mptp/hol-flyspeck/trunk/Jordan/float.html#REAL EQ INV

11Tactics jordan.unify exists tac example is just ‘T=T‘. The name is accidental.

http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/p/09895.p
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Jordan/float.html#REAL_EQ_INV


180 C. Kaliszyk, J. Urban

% Assm: REAL_INV_INV: !x. inv (inv x) = x

% Assm: TRUTH: T

% Goal: !x y. x = y <=> inv x = inv y

After applying β-reduction, lambda lifting (none in the example), and introducing the

apply functor (called here happ), this is transformed (still as HOL terms) into the

following:

% PROCESSED

% Assm: !f g. (!x. happ f x = happ g x) ==> f = g

% Assm: !t. (t <=> T) \/ (t <=> F)

% Assm: ˜F <=> T

% Assm: !x. inv (inv x) = x

% Assm: T

% Goal: !x y. x = y <=> inv x = inv y

The application functor happ was only used for the function variables in the extensionality

axiom (EQ EXT). The function inv is always used with one argument in the problem, so

it is never wrapped with happ. Finally, the TFF1 TPTP export declares the signature of

the symbols and type operators, and adds the corresponding guarded quantifications to the

formulas. The apply functor is called i in the TFF1 export (for concise output in case

of many applications in a goal), and it explicitly takes also the type arguments (A and

B in aEQu EXT). This (making the implicit type variables explicit) is in TFF1 done for

any symbol that remains polymorphic. We reserve the predicate p for translation between

Boolean terms and formulas. This is done in the same way as in [57].

HOL Light allows one identifier to denote several different underlying constants. In the

running example, inv is such an overloaded identifier and denotes the inverse operations

on several different types. To deal with such identifiers different names are used for each

underlying constant separately in the TFF1 export signature, so that the identifiers can be

printed using their non-overloaded names like real inv.

% TYPES

tff(tbool, type, bool:$tType).

tff(tfun, type, fn:($tType * $tType) > $tType).

tff(treal, type, real:$tType).

% CONSTS

tff(cp, type, p : (bool > $o)).

tff(chapp, type, i:!>[A:$tType,B:$tType]: ((fn(A,B) * A) > B)).

tff(cF, type, f:bool).

tff(crealu_inv, type, realu_inv:(real > real)).

tff(cT, type, t:bool).

% AXIOMS

tff(aEQu_EXT, axiom, ![A : $tType,B : $tType]:

![F:fn(A,B),G:fn(A,B)]:(![X:A]:i(A,B,F,X) = i(A,B,G,X)

=> F = G)).

tff(aBOOLu_CASESu_AX, axiom, ![T:bool]:(T = t | T = f)).

tff(aNOTu_CLAUSESu_WEAKu_conjunct1, axiom, (˜ (p(f)) <=> p(t))).

tff(aREALu_INVu_INV, axiom, ![X:real]:realu_inv(realu_inv(X))

= X).
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tff(aTRUTH, axiom, p(t)).

tff(conjecture, conjecture, ![X:real,Y:real]:

(X = Y <=> realu_inv(X) = realu_inv(Y))).

Problems in this format can be already given to the Why3 tool, which can translate

them for various SMT solvers and ATP systems, and call the systems on the trans-

lated form. This was initially used both for ATPs working with the FOF format and

for the SMTs. Currently, we only use Why3 for preparing problems for Yices, CVC3,

and AltErgo. The translation to the FOF format was later implemented independently of

Why3, to avoid an additional translation layer for the strongest tools, and in particular

to be able to run the ATPs with different parameters and in a proof-producing mode.

The procedure is however the same as in Why3, and the resulting FOF form will be as

follows.

% Goal: !x y. x = y <=> inv x = inv y

fof(aEQu_EXT, axiom, ![A,B]: ![F, G]:

(![X]: s(B,i(s(fun(A,B),F),s(A,X))) = s(B,i(s(fun(A,B),G),

s(A,X))) => s(fun(A,B),F) = s(fun(A,B),G))).

fof(aBOOLu_CASESu_AX, axiom,

![T]: (s(bool,T) = s(bool,t) | s(bool,T) = s(bool,f))).

fof(aNOTu_CLAUSESu_WEAKu_conjunct1, axiom,

(˜ (p(s(bool,f))) <=> p(s(bool,t)))).

fof(aREALu_INVu_INV, axiom,

![X]: s(real,realu_inv(s(real,realu_inv(s(real,X)))))

= s(real,X)).

fof(aTRUTH, axiom, p(s(bool,t))).

fof(conjecture, conjecture, ![X, Y]: (s(real,X) = s(real,Y) <=>

s(real,realu_inv(s(real,X))) = s(real,realu_inv(s(real,Y))))).

This translation uses the (possibly quadratic) tagging of terms with their types (with “s” as

the tagging functor), used, e.g., in Hurd’s work.

2.4 Translations to Higher-Order Formats

The recently developed TPTP THF standard can be used to encode problems in monomor-

phic higher-order logic. This allows experimenting with higher-order ATPs like LEO2 [10]

and Satallax [20], in addition to the standard ATPs working in the first-order formalism.

The translation to THF needs to perform only one step: monomorphisation. As explained in

Section 2.2, this is however a nontrivial task, and the MESON tactic approach is already in

practice too exhaustive for problems with many premises.

After developing the TFF1 and FOF translation, some initial experiments were done

to produce a monomorphisation heuristic that behaves reasonably on problems with many

premises. This heuristic is now as follows. The constants that can be used to instantiate the

premises are extracted only once from the goal at the start of the procedure. Every premise

can be instantiated using these goal constants, but the premises themselves are not further

used to grow this set. This means that the procedure is even less complete than MESON,

however the procedure is linear in the number of premises, and it is therefore possible to

use it even with large numbers of advised premises. In practice, it is rarely the case that a

premise can be instantiated in more than one way. A simple example when this happens
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is in the THF problem12 created for the theorem I O ID,13 where the particular goal and

premise (both properties of the identity function) are as follows:

Assm: I_THM: !x. I x = x

Goal: I_O_ID: !f. I o f = f /\ f o I = f

The exact types inferred by the standard HOL (Hindley-Milner [38]) type inference for the

goal are as follows:

∀f : A → B.IB→B o f = f ∧ f o IA→A = f

Since the identity function appears in the goal both with the type A→A and with the

type B→B, the following two instances of the premise I THM are created by the THF

translation:

% TYPES

thf(ta, type, a : $tType).

thf(tb, type, b : $tType).

thf(ci0, type, i0 : (a > a)).

thf(ci, type, i : (b > b)).

% AXIOMS

thf(aIu_THMu_monomorphized0, axiom, ![X:a]:((i0 @ X) = X)).

thf(aIu_THMu_monomorphized1, axiom, ![X:b]:((i @ X) = X)).

Finally, while there is no TPTP standard yet for the polymorphic HOL logic, this logic is

shared by a number of systems in the HOL family of ITPs. For the experiments described

in Section 5.1 Isabelle is used in its CASC 2012 THF mode, but it should be possible to

pass the problems to Isabelle directly in some (not necessarily TPTP) polymorphic HOL

encoding. This is has been tried only to a small extent, and is still future work.

3 Exporting Theorem Problems for Re-proving with ATPs

In our earlier initial experiments [45], it was found that the ATP problems created from the

calls to the MESON tactic in the HOL Light and Flyspeck libraries are very easy for the state-

of-the-art ATPs. Some of this easiness might have been caused by the (generally unsound)

merging of different polymorphic versions of equality used by MESON into just one stan-

dard first-order equality.14 However, after a manual random inspection it still seemed that

the ratio of such unsound proofs is low, and the MESON problems are just too easy. That

is why only the set of problems on the theorem level is considered for experiments here.

The theorem level seems to be quite similar in the major ITPs: theorem is typically not cor-

responding to what mathematicians call a theorem, but it is rather a self-sufficient lemma

with a formal proof of several to dozens (exceptionally hundreds) lines that can be useful

in other formal proofs and hence should be named and exported. Since the ITP proofs can

be longer (i.e., they can contain a number of MESON and other subproblems), proving such

12http://mws.cs.ru.nl/∼mptp/hh1/OrigDepsProbs/i/h/00119.p

13http://mws.cs.ru.nl/∼mptp/hol-flyspeck/trunk/trivia.html#I O ID

14Note that the typed translation that we use here prevents deriving ill-typed equalities [13].

http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/i/h/00119.p
http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/trivia.html#I_O_ID
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theorems fully automatically is typically a challenge, which makes such problems suitable

for ATP benchmarks, challenges, and competitions.

3.1 Collecting Theorems and their Dependency Tracking

In Mizar/MPTP and in Isabelle (done by Blanchette in so far unpublished work) the ATP

problems corresponding to theorems can be produced by collecting the dependencies

(premises) from the proofs (by suitable tracking mechanisms), and then translating the

Premises ⊢ T heorem problem using the methods described in Section 2. The recent work

by Adams in exporting HOL Light to HOL Zero [1] (with cross-verification as the main

motivation) was initially used to obtain the theorem dependencies for the first experiments

with HOL Light in [45], and after that custom theorem-exporting and dependency-tracking

mechanisms were implemented as described below.

3.1.1 Collecting and Naming of Theorems

The first issue in implementing such mechanism is to decide what is considered to be a rel-

evant theorem, and what should be its canonical name. In some ITPs, important statements

have labels like lemma, theorem, corollary, etc. This is not the case in HOL Light,

which is implemented in the OCaml toplevel. This means that every theorem or tactic is just

an OCaml value. Some of those values are assigned names, while some are only created on

the fly and immediately forgotten. In the relevant exporting work of Obua [58], every occur-

rence of the HOL Light command prove is replaced with a command that additionally

records the name of the stored object. This strategy was used first, and extended to work

with the whole Flyspeck library by also recording the names for the following commands:

prove by refinement, new definition, new recursive definition,

new specification, new inductive definition, define type, and

lift theorem. This purely syntactic replacement method however turned out to be

insufficient for a number of reasons. First, this method does not provide information about

the scope of names with respect to the OCaml modules. Second, it does not provide the

information whether a name given to a theorem has been declared on the top level, or inline

inside a function (which makes such theorem unusable for proving other theorems on the

toplevel), or even within a function called multiple times with different arguments (in

which case the same name would be assigned to a number of different theorems). Finally,

certain theorems accessible on the top level are created using other OCaml mechanisms,

for example mapping a decision procedure over a list of terms. Recognizing syntactically

theorems created in this way turned out to be impractical.

That is why a more robust method has been eventually used, based on the

update database15 recording functionality by Harrison and Zumkeller. This code

accesses the basic OCaml data structures and makes it possible to record the name-value

pairs for allOCaml values of the type theorem in a givenOCaml state. Thus, it is sufficient

to load the whole Flyspeck development, and then invoke this recording functionality.

After some initial experiments with ATP re-proving of the translated problems, this

method was however further modified to be able to keep finer track of the use of theorems

that are conjunctions of multiple facts. Such (often large) conjunctive theorems are used

quite frequently in HOL Light, typically to package together facts that are likely to jointly

15http://mws.cs.ru.nl/∼mptp/hol-flyspeck/trunk/Examples/update database.html

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Examples/update_database.html
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provide a useful method for dealing with certain concepts or certain kinds of problems.

For example the theorem ARITH EQ16 packages together ten facts about the equality of

numerals as follows:

let ARITH_EQ = prove
(‘(∀m n. (NUMERAL m = NUMERAL n) ⇐⇒ (m = n)) ∧

((_0 = _0) ⇐⇒ T) ∧

(∀n. (BIT0 n = _0) ⇐⇒ (n = _0)) ∧

(∀n. (BIT1 n = _0) ⇐⇒ F) ∧

(∀n. (_0 = BIT0 n) ⇐⇒ (_0 = n)) ∧

(∀n. (_0 = BIT1 n) ⇐⇒ F) ∧

(∀m n. (BIT0 m = BIT0 n) ⇐⇒ (m = n)) ∧

(∀m n. (BIT0 m = BIT1 n) ⇐⇒ F) ∧

(∀m n. (BIT1 m = BIT0 n) ⇐⇒ F) ∧

(∀m n. (BIT1 m = BIT1 n) ⇐⇒ (m = n))‘,
REWRITE_TAC[NUMERAL; GSYM LE_ANTISYM; ARITH_LE] THEN
REWRITE_TAC[LET_ANTISYM; LTE_ANTISYM; DENUMERAL LE_0]);;

An even more extreme example is the ARITH theorem which conjoins together all

the basic arithmetic facts (there are 108 of them in the current version of HOL Light).

The conjuncts of such theorems are now also named (using a serial numbering of the

form ARITH EQ conjunctN), so that the dependency tracking can later precisely record

which of the conjuncts were used in a particular proof. This significantly prunes the search

space for ATP re-proving of the theorems that previously depended on the large conjunc-

tive dependencies, and also makes the learning data extracted from dependencies of such

theorems more precise.

This method can however result in the introduction of multiple names for a single the-

orem (which is just a HOL Light term of type theorem). If that happens (for this or other

reasons), the first name that was associated with the theorem during the Flyspeck processing

is always consistently used, and the other alternative names are never used. Such consistency

is important for the performance of the machine learning on the recorded proof data.17 The

list of all theorems and their names obtained in this way is saved in a file, and subsequently

used in the dependency extraction and problem creation passes.

3.1.2 Dependency Recording

After the detection and naming of theorems, the recording of proof dependencies is per-

formed, by processing the whole library again with a patched version of the HOL Light

kernel. This patched version is the proof-recording component of the new HOL-Import [44],

a mechanism designed to transfer proofs from HOL Light to Isabelle/HOL in an efficient way

allowing the export of big repositories like Flyspeck. The code for every HOL inference step

is patched, to record the newly created theorems. Each theorem is assigned a unique inte-

ger counter, and for every new theorem its dependencies on other theorems (integers) are

recorded and exported to a file. For every processed theorem it is also checked if it is one

of the theorems named in the previous theorem-naming pass. If so, the association of this

theorem’s name to its number is recorded, and again exported to a file.

16http://mws.cs.ru.nl/∼mptp/hol-flyspeck/trunk/calc num.html#ARITH EQ

17For example, the MaLARea system does such de-duplication as a useful preprocessing step before learning

and theorem-proving is started on a large number of related problems.

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/calc_num.html#ARITH_EQ
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After this dependency-recording pass, the recorded information is further processed by

an offline program to eliminate all unnamed dependencies (originating for example from

having multiple names for a single theorem). For every named theorem its dependencies are

inspected, and if a dependency D does not have a name, it is replaced by its own depen-

dencies (there is no unnamed dependency that could not be further expanded). This is done

recursively, until all unnamed dependencies are removed. This produces for each named

theorem T a minimal (wrt. the original HOL Light proof) list of named theorems that are

sufficient to prove T .

The numbering of theorems respects the order in which the theorems are processed

in the Flyspeck development. This total ordering is compatible with (extends) the par-

tial ordering induced by proof dependencies, and for the experiments conducted here it is

assumed to be the chronological order in which the library was developed. The depen-

dency information given in this chronological order for all 16082 named theorems (of

which 1897 are (type) definitions, axioms, or their parts, and their dependencies are not

exported) obtained by processing the Flyspeck library18 (and its HOL Light pre-requisites)

is available online.19 Together with suitably chosen characterizations of the theorems (see

Section 4.1), this constitutes an interesting new dataset for machine-learning techniques that

attempt to predict the most useful premises from the formal library for proving the next

conjecture.

3.2 The Data Set of ATP Re-proving Problems

Analogously to Mizar and Isabelle, the re-proving ATP problems for the collected named

theorems are finally produced by translating the Dependencies ⊢ T heorem problem to

the ATP formalisms using the methods described in Section 2, together with basic filtering

of dependencies that have trivial first-order content. 1897 of the 16082 named theorems do

not have a proof (those are definitions and axioms). For all the remaining 14185 named the-

orems the corresponding re-proving ATP problems were created, and are available online20

in the FOF, THF, and TFF1 formats. These problems are used for the ATP re-proving exper-

iments described in Section 5.1. Smaller meaningful datasets will likely be created from

this large dataset for ATP/AI competitions such as CASC LTB and Mizar@Turing21, anal-

ogously to the smaller MPTP207822 [4] ATP benchmark created from the ATP-translated

Mizar library (MML), and the Judgement Day benchmark [19] created by ATP translation of

a subset of the Isabelle/HOL library.

The average, minimum, and maximum sizes of problems in these datasets are shown in

Table 1, together with the corresponding statistics for the problems expressed in the original

HOL formalism.

It can be seen that the number of formulas in the translated problems is typically at

most twice the number of the original HOL formulas, i.e., the translations are indeed effi-

cient for all the problems. This was not the case (and became a bottleneck) in the initial

18Flyspeck SVN revision 2887 from 2012-06-26 and HOL Light SVN revision 146 from 2012-06-02 are used

for all experiments.

19http://mws.cs.ru.nl/∼mptp/hh1/deps.all

20http://mws.cs.ru.nl/∼mptp/hh1/OrigDepsProbs/co i f p h.tgz

21http://www.cs.miami.edu/∼tptp/CASC/J6/Design.html#CompetitionDivisions

22http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078

http://mws.cs.ru.nl/~mptp/hh1/deps.all
http://mws.cs.ru.nl/~mptp/hh1/OrigDepsProbs/co_i_f_p_h.tgz
http://www.cs.miami.edu/~tptp/CASC/J6/Design.html#CompetitionDivisions
http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078
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Table 1 Sizes of the re-proving ATP problems (in numbers of formulas)

Format Problems Average size Minimum size Maximum size

HOL 14185 42.7 4 510

FOF 14185 42.7 4 510

TFF1 14185 71.9 10 693

THF 14185 78.8 5 1436

experiments using the more prolific MESON translation. There is no increase in the num-

ber of formulas when translating from the original HOL-formulated problem to the FOF

translation. For the TFF1 and THF translation, formulas declaring the types of the sym-

bols appearing in the problems are added, and for the THF translation multiple instances of

the premises can additionally appear. Table 2 shows the total times needed for the various

exporting phases run over the whole Flyspeck as explained above. For completeness, the

time needed to export characterizations of the theorems for external (e.g., machine-learning)

tools is also included (see Section 4.1 for the description of the characterizations that

are used).

4 Premise Selection

Given a large library like Flyspeck, the interesting ATP/AI task is to prove new theorems

without having to manually select the relevant premises. In the past decade, a number of

premise selection methods have been developed and experimented with over large theories

like Mizar/MML, Isabelle/HOL, SUMO, and Cyc. See [49, 78] for recent overviews of such

methods.

ATP problems of this kind are created for Mizar/MML by consistent transla-

tion of the whole MML to TPTP, and then letting external premise selection algo-

rithms find the most relevant premises for a given theorem t from the large set

of t-allowed premises (typically those theorems and definitions that were already

available when t was being proved, expressed, e.g., as TPTP include files). For

Isabelle/Sledgehammer, the default premise selection algorithm is implemented inside

Table 2 Times of the exporting phases (total, for the whole Flyspeck)

Phase Time (minutes)

Standard Flyspeck loading/verification 180

Detection and naming of theorems 1

Exporting theorem characterizations 5

Dependency recording using patched kernel 540

Offline post-processing of dependencies 10

Creating re-proving ATP problems in FOF 34

Creating re-proving ATP problems in TFF1 53

Creating re-proving ATP problems in THF 32

Total 855
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Isabelle, i.e., it is working on the native Isabelle symbols. Only after the Sledgeham-

mer premise selection chooses the suitable set of premises, the problem is translated

to a given ATP formalism using one of the several implemented translation meth-

ods. In general, the symbol naming is in Isabelle consistent only before the transla-

tion is applied, and a particular symbol in two translated problems can have different

meanings.

Both theMizar and the Isabelle approach have some advantages and disadvantages. Opti-

mizing the translation (or using multiple translations) as done in Isabelle can improve the

ultimate ATP performance once the premises have been selected. On the other hand, if

the whole library is not translated in a consistent manner to a common ATP format such

as TPTP, ATP-oriented external premise selection tools like SInE cannot be directly used

on the whole library. It could be argued that the SInE algorithm is relatively close to the

Sledgehammer premise selection algorithm, and can be easily implemented inside Isabelle.

However there are useful premise selection methods for which this is not so straightfor-

ward. For example in the MaLARea system, evaluation of premises in a large common

pool of finite first-order models is an additional semantic premise-characterization method

that improves the overall precision quite significantly [82].23 For such a pool of first-

order models to be useful, the premises have to use symbols consistently also after the

translation to first-order logic. Although various techniques can again be developed to lift

this method to the current Sledgehammer translation setting, they seem less straightfor-

ward than for example a direct Isabelle implementation of SInE. This discussion currently

applies also to the HOL Light ATP translations described in Section 2. For example, the

problem-specific optimization of the arity of symbols described in Section 2.3 will in gen-

eral cause inconsistency on the symbol level between the FOF translations of two different

HOL Light problems.

The procedure implemented for HOL Light is currently a combination of the external,

internal, learning, and non-learning premise-selection approaches. This procedure assumes

the common ITP situation of a large library of (also definitional) theorems Ti and their

proofs Pi (for definitions the proof is empty), over which a new conjecture has to be

proved. The proofs refer to other theorems, giving rise to a partial dependency ordering

of the theorems extended into their total chronological ordering as described for Flyspeck

in Section 3.1.2. For the experiments it will be assumed that the library was developed in

this order. An overview of the procedure is as follows, and its details are explained in the

following subsections.

1. Suitable characterizations (see Section 4.1) of the theorems and their proof dependen-

cies are exported from HOL Light in a simple format.

2. Additional dependency data are obtained by running ATPs on the ATP problems created

from the HOL Light proof dependencies, i.e., the ATPs are run in the re-proving mode.

Such data are often smaller and preferable [48]. These data are again exported using

the same format as in (1).

3. The (global, first-stage) external premise selectors preprocess (typically train on) the

theorem characterizations and the proof dependencies. Multiple characterizations and

proof dependencies may be used.

23Recent evidence for the usefulness of model-based selection methods is the difference (64 % vs. 50 %

problems solved) between the (otherwise quite similar) systems MaLARea and PS-E (http://www.cs.ru.nl/
∼kuehlwein/CASC/PS-E.html) in the 2012 Mizar@Turing competition.

http://www.cs.ru.nl/~kuehlwein/CASC/PS-E.html
http://www.cs.ru.nl/~kuehlwein/CASC/PS-E.html
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4. When a new conjecture is stated in HOL Light, its characterization is extracted and sent

to the (pre-trained) first-stage premise selectors.

5. The first-stage premise selectors work as rankers. For a given conjecture characteri-

zation they produce a ranking of the available theorems (premises) according to their

(assumed) relevance for the conjecture.

6. The best-ranked premises are used inside HOL Light to produce ATP (FOF, TFF1, THF)

problems. Typically several thresholds (8, 32, 128, 512, etc.) on the number of included

premises are used, resulting in multiple versions of the ATP problems.

7. The ATPs are called on the problems. Some of the best ATPs run in a strategy-

scheduling mode combining multiple strategies. Some of the strategies always use the

SInE (i.e., local, second-stage) premise selection (with different parameters), and some

other strategies may decide to use SInE when the ATP problem is sufficiently large.

Loop to improve (2) and (3): It is not an uncommon phenomenon that in the data-

improving step (2) (ATP re-proving from the HOL Light proof dependencies) an ATP

proof could not be found for some theorem Ti , but an alternative proof of Ti can be

found from some other theorems preceding Ti in the chronological order (which guards

such alternative proofs against cycles). To achieve this, the trained premise selectors

can be used also on all theorems that are already in the library, and the whole ATP/-

training process can be iterated several times to obtain as many ATP proofs as possible,

and better (and differently) trained premise selectors for step (3). This is the same loop

as in MaLARea.

4.1 Formula Characterizations Used for Learning

Given a new conjecture C, how do mathematicians decide that certain previous knowledge

will be relevant for proving C? The approach taken in practically all existing premise-

selection methods is to extract from such C a number of suitably defined features, and

use them as the input to the premise selection for C. The most obvious characterization

that already works well in large libraries is the (multi)set of symbols appearing in the

conjecture. This can be further extended in many interesting ways, using various methods

developed, e.g., in statistical machine translation and web search, but also by methods spe-

cific to the formal mathematical domain. In this work, characterization of HOL formulas

by all their subterms (found useful in MaLARea) was used, and adapted to the typed HOL

logic. For example, the latest version of the characterization algorithm would describe the

HOL theorem DISCRETE IMP CLOSED:24

∀s:realˆN→bool e.
&0 < e ∧ (∀x y. x IN s ∧ y IN s ∧ norm(y − x) < e =⇒ y = x)

=⇒ closed s

by the following set of strings:

"real", "num", "fun", "cart", "bool", "vector_sub", "vector_norm",
"real_of_num", "real_lt", "closed", "_0", "NUMERAL", "IN", "=", "&0",
"&0 < Areal", "0", "Areal", "ArealˆA", "ArealˆA - ArealˆA",
"ArealˆA IN ArealˆA->bool", " ArealˆA->bool", "_0",
"closed ArealˆA->bool",
"norm (ArealˆA - ArealˆA)", "norm (ArealˆA - ArealˆA) < Areal"

24http://mws.cs.ru.nl/∼mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE IMP CLOSED

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/Multivariate/topology.html#DISCRETE_IMP_CLOSED
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This characterization is obtained by:

1. Normalizing all type variables to just one variable A.

2. Replacing (normalizing) all term variables with their normalized type.

3. Collecting all (normalized) types and their component types recursively.

4. Collecting all (normalized) atomic formulas and their component terms recursively.

5. Including all “proper” term and type constructors (logic symbols like conjunction are

filtered out).

In the above example, real is a type constant, IN is a term constructor, ArealˆA->bool
is a normalized type, ArealˆA its component type, norm (ArealˆA - ArealˆA) <
Areal is an atomic formula, and ArealˆA - ArealˆA is its normalized subterm.

The normalization of variable names is an interesting topic. It is good if the premise

selectors can notice some similarity between two terms with variables,25 which is hard

(when using strings) if the variables have different names. On the other hand, total normal-

ization to just one generic variable name removes also the information that the variables in a

particular subterm were (not) equal. Also, terms with differently typed variables should be

more distant from each other than those with the same variable types. In total, four versions

of variable normalization were tested:

syms0: All free and bound variables are given the same name A0. This encoding is the

most liberal, i.e., the resulting equality relation on the features is the coarsest

one, allowing the premise selectors to see many similarities.

syms: First the free variables are numbered consecutively (A0, A1, etc). Then the

bound variables are named with the subsequent numbers. This results in a finer

notion of similarity than in syms0.

symst: Every variable is renamed to a textual representation of its type, for example

Anum or Areal. This is again finer than syms0, but different from syms. This

normalization is used in the above example, and also for most of the premise

selection trainings.

symsd: In one symst implementation, the internal HOL Light type variable numbering

was accidentally used, thus making most of such term features disjoint between

different theorems. The performance was lower, but the method produces some

unique solutions and is included in the evaluation.

In addition to that, several feature exports included also logic symbols. Various feature

characterizations can have different performance on different datasets, and such character-

izations can be also combined together in interesting ways. This is a rather large research

topic that is left as future work for this newly developed dataset, along with other large-

theory datasets. Just including the features encoding the validity in finite models will be

interesting.

4.2 Machine Learning of Premise Selection

All the currently used first-stage premise selectors are machine learning algorithms trained

in various ways on previous proofs. A number of machine learning algorithms can be exper-

imented with today, and in particular kernel-based methods [4] and ensemble methods [49]

25One could require the similarity to also handle matching, etc. A simple way how to do it is to generate even

more features. This is again left to further general research in this area.
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have recently shown quite good performance on smaller datasets such as MPTP2078.

However, scaling and tuning such methods to a large corpus like Flyspeck and to quite

a large number of incremental training and testing experiments is not straightforward.26

That is why this work so far uses mostly the sparse implementation of a multiclass naive

Bayes classifier provided by the SNoW system [21]. SNoW can incrementally train and

produce predictions on the whole Flyspeck library presented in the chronological order

in an hour (and often considerably faster on minimized data). I.e., one new prediction

takes a fraction of a second. In addition to that, several other fast incremental (online)

learning algorithms were briefly tried: the Perceptron and Winnow algorithms provided

also by SNoW, and a custom implementation of the k-nearest neighbor (k-NN) algo-

rithm. Only k-NN however produced enough additional prediction power. As already

mentioned, the first-stage algorithms are often complemented by SInE as a second-stage

premise selector when the ATP problem is written, and that is why some (in particu-

lar SInE-like) algorithms might look mostly redundant (in the overall ATP evaluation)

when used at the first stage. This is obviously a consequence of the particular setup

used here.

Two kinds of evaluation are possible in this setting and have been used several times

for the Mizar data: a pure machine-learning evaluation comparing the predicted premises

with the set of known sufficient premises, and an evaluation that actually runs an ATP on

the predicted premises. While data are available also for the former, in this paper only the

second evaluation is presented, see Section 5.2. The main reason for this is that alternative

proofs are quite common in large libraries, and they often obfuscate the link between the

pure machine-learning performance and the final ATP performance. Measuring the final

ATP performance is more costly, however it practically stopped being a problem with the

recent arrival of low-cost workstations with dozens of CPUs.

At a given point during the library development, the training data available to the

machine learners are the proofs of the previously proved theorems in the library. A fre-

quently used approach to training premise selection is to characterize each proof Pi of

theorem Ti as a (multi)set of theorems {Ti1 , ..., Tim |Tij used in Pi}. The training exam-

ple will then consist of the input characterization (features) of Ti (see Section 4.1), and the

output characterization (called also output targets, classes, or labels) will be the (multi)set

{Ti} ∪ {Ti1, ..., Tim |Tij used in Pi}. Such training examples can be tuned in various ways.

For example the output theorems may be further recursively expanded with their own depen-

dencies, the input features could be expanded with the features of their definitions, various

weighting schemes and similarity clusterings can be tried, etc. This is also mostly left to

future general research in premise-selection learning. Once the machine learner is trained

on a particular development state of the library, it is tested on the next theorem T in the

chronological order. The input features are extracted from T and given to the trained learner

which then answers with a ranking of the available theorems. This ranking is given to HOL

Light, which uses it to produce ATP problems for T with varied numbers of the best-ranked

premises.

4.3 Proof Data Used for Learning

An interesting problem is getting the most useful proof dependencies for learning. Many of

the original Flyspeck dependencies are clearly unnecessary for first-order theorem provers.

26Such scaling up for the large Mizar library is work in progress at the time of writing this article.
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For example the definition of the ∧ connective (AND DEF) is a dependency of 14122

theorems. Another example are proofs done by decision procedures, which typically first

apply some normalization steps justified by some lemmas, and then may perform some

standard algorithm, again based on a number of lemmas. Often only a few of such depen-

dencies are needed (i.e., the proofs found by decision procedures are often unnecessarily

“complicated”).

Some obviously unhelpful dependencies were filtered manually, and this was com-

plemented by using also the data obtained from ATP re-proving (see Section 5.1).

Vampire, E, and Z3 can together re-prove 43.2 % of the Flyspeck theorems (see

Table 5), which is quite a high number, useful for trying to post-process automati-

cally the remaining dependency data or even to completely disregard them. The fol-

lowing approaches to combining such ATP and HOL Light dependencies were ini-

tially tried, and combined with the various characterization methods to get the training

data:

minweight (default): Always prefer the minimal ATP proof if available. On the ATP

re-proved theorems collect the statistics about how likely a dependency in the HOL Light

proof is really going to be used by the ATP proof, and use this likelihood as a weight

when ATP proof is not available. When the weight is 0, use (cautiously) a minimal weight

(0.001 or 0.000001) instead.

nominweight: As minweight, but without a minimal weight. Totally ignore ATP-

irrelevant HOL Light dependencies.

v pref (e pref, z pref): Instead of using the minimal ATP proof, always prefer the

Vampire (E, Z3) proof. Can be combined with both weighting methods.

symsonly: Ignore all proofs. Learn only on examples saying that a theorem is good for

proving itself, i.e., for its feature characterization. The trained system will thus

recommend theorems similar to the conjecture, but not the dependencies of such

theorems.

atponly: Use only the (minimal) ATP proofs for learning. Ignore the HOL Light proofs

completely, and construct only the symsonly training examples for theorems that have

no ATP proof. Can be combined with v pref, e pref, z pref.

At some point, a pseudo-minimization procedure started to be applied first to the ATP

proofs: each proof is re-run only with the premises needed for the proof, and if the num-

ber of needed premises decreases, this is repeated until the premise count stabilizes. Often

this further removes unnecessary premises that appeared in the ATP proof, e.g., by per-

forming unnecessary rewriting steps. This was later followed by adding cross-minimization:

Each proof is re-run (pseudo-minimized) not just by the ATP that found the proof, but by

all ATPs. This can further improve the training data, and also raise the number of proofs

found by a particular ATP quite considerably, which in turn helps when proofs by a par-

ticular ATP are preferable for learning (see the v pref approach above). Finally, the

learning and proving can boost each other’s performance: the proofs obtained by using the

advice of the first-generation premise selectors can be added to the training data obtained

from re-proving, and used to train the second generation of premise selectors. This pro-

cess can be iterated, but only one iteration was done so far (using two different prediction

methods).

The summary of the training data obtained by these procedures from the proofs is given

in Table 3. Each of the ATP-obtained dependency sets (2–6 in Table 3) could be comple-

mented by the HOL Light dependencies (1) as described above, producing differently trained
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Table 3 Improving the dependency data used for training premise selection

E Vampire Z3 Union

Nr Method thm dep ø thm dep ø thm dep ø thm dep ø

1 HOL deps 14185 61.87

2 ATP on (1), 300s 5393 4.42 4700 5.15 4328 3.55 5837 3.93

3 ATP on (1), 600s∗ 5655 5.80 5697 5.90 4374 3.59 6161 5.00

4 (3) minimized 5646 4.52 5682 4.49 4211 3.47 6104 4.35

5 (4) ∪ 1. advised 6404 4.29 6308 4.17 5216 3.67 6605 4.18

6 (5) ∪ 2. advised 6848 3.90 6833 3.89 5698 3.48 6998 3.81

thm: Number of theorems proved by the given prover

dep ø: The average number of proof dependencies in the proofs found by the prover

(1) - HOL deps: Dependencies exported from HOL Light

(2),(3): Dependencies obtained from proofs by ATPs run on HOL deps

(4): Cross-minimization of (3)

(5): Added dependencies from new proofs advised by the best learning method (using (4))

(5): Added dependencies from new proofs advised by the best complementary learning method (trained on

(2) combined with (1))

(*): The 6161 count in (3) is higher than in the final 900s experiments shown in Table 5. This is due to a

incorrect (cyclic) dependency export for about 60 early HOL Light theorems used for (2)–(4). For training

premise selection the effect of this error is negligible

advisors. For example, the best advising method based on (4) was only using the ATP proofs

for training (no adding of HOL Light dependencies when the ATP proof was missing), prefer-

ring proofs by E (e pref), using the symst (types instead of variables) characterizations,

and choosing the best 128 premises. The new ATP proofs found using this method were

added to (4), resulting in the dataset (5). The next most complementary advising method to

that (measured before (5) became available) was combining the ATP dependencies from (2)

with the HOL Light dependencies (1) using the nominweight and v pref techniques,

also using the symst features, and choosing the best 512 premises. The new ATP proofs

found using this method were added to (5), resulting in (6). The performance of various

premise selection methods is discussed in Section 5.

4.4 Communication with the Premise Advisors

There are several modes in which external premise selectors can be used. The main mode

used here for experiments is the offline (batch) mode. In this mode, the premise selectors are

incrementally trained and tested on the whole library dependencies presented as one file in

the chronological order. Incremental training/testing means that the learning system reads

the examples from the file one by one, for each theorem first producing an advice (ranking of

previous theorems) based only on its features, and only after that learning on the theorem’s

dependencies and proceeding to the next example. The rankings are then used in HOL Light

to produce all ATP problems in batch mode. This mode is good for experiments, because

the learning data can be analyzed and pre-processed in various ways described above. All

communication is fully file-based.
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Another mode is used for static online advice. In this mode an (offline) pre-trained

premise selector receives conjecture characterizations from HOL Light over a TCP socket,

replies in real time with a ranking of theorems from which HOL Light produces the

ATP problems and calls the ATPs to solve them. This mode has been initially imple-

mented as a simple online service and can already be experimented with by interested

readers.27

Finally, in a dynamic online mode the premise selector receives also training data in real

time, and updates itself. The currently used learning systems support this dynamic mode,

however, in an online service this mode of interaction requires some implementation of

access rights, user limits, cloning of developments and services, etc. This is still future work,

close to the recent work on formal mathematical editors and wikis [3, 43].

5 Experiments

The main testing set in all scenarios is constructed from the 14185 Flyspeck theorems. To be

able to explore as many approaches as possible, a smaller subset of 1419 theorems is often

used. This subset is stable for all such experiments, and it is constructed by taking every

tenth theorem (starting with 0-th) in the chronological ordering.

A number of first- and higher-order ATPs and SMT solvers were tried on the problems.

The most extensively used are Vampire 2.6 (called also V below), modified E 1.6, and Z3

4.0. Proofs are important in the ITP/learning scenarios, so Z3 and E are (unless otherwise

noted) run in a proof-producing mode. In particular for Z3 this costs some performance. E

1.6 is not run in its standard auto-mode, but in a strategy-scheduling wrapper28 used by the

MaLARea system in the Mizar@Turing large-theory competition.

This wrapper (called either Epar or just E in the tables below) subsequently tries 14

strategies provided by the second author. These strategies were developed on the 1000

problems allowed for training large-theory AI/ATP systems before the Mizar@Turing com-

petition [79]. Some of these strategies have become available in E 1.6 when it was released

after CASC 2012, but E’s auto mode is still tuned for the TPTP library, and by default it

always uses only one “best” (heuristically chosen) strategy on a problem, shunning so far

the temptations of strategy scheduling. Epar outperforms the old auto-mode of E 1.4 by

over 20 % on the Mizar@Turing training problems, and seems to be competitive with Vam-

pire 2.6. Fifteen more systems (or their versions) were tried to a lesser extent (typically on

the 1419-problem subset) in the experiments. Some of these systems perform very well,

and might be used more extensively later. Sometimes an additional effort is needed to make

systems really useful; for example, proof/premise output might be missing, or additional

mapping to a system’s constructs needs to be done to take full advantage of the system’s fea-

tures. In this work such customizations are avoided. All the systems used are alphabetically

listed in Table 4.

27The service runs at colo12-c703.uibk.ac.at on port 8080, example queries are:

echo "CARD {3,4} = 2" | nc colo12-c703.uibk.ac.at 8080 ,

echo "(A DIFF B) INTER C = EMPTY <=> (A INTER C) SUBSET B" | nc
colo12-c703.uibk.ac.at 8080.
28https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl

https://github.com/JUrban/MPTP2/blob/master/MaLARea/bin/runepar.pl
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Table 4 Names and descriptions of the systems used in the evaluation

System (short) Format Description

AltErgo TFF1 AltErgo version 0.94

CVC3 TFF1 CVC3 version 2.2

E 1.6 FOF E version 1.6pre011 Tiger Hill

Epar (E) FOF E version 1.6pre011 with the Mizar@Turing strategies

iProver FOF iProver version 0.99 (CASC-J6 2012)

Isabelle THF Isabelle 2012 used in CASC 2012 (without LEO2 and Satallax)

leanCoP FOF leanCoP version 2.2 (using eclipse prolog)

LEO2-po2 THF LEO2 version v1.4.2 in the “po 2” proof mode29 (OCaml-3.11.2)

LEO2-po1 THF LEO2 in the standard “po 1” mode (faster)

Metis FOF Metis version 2.3 (release 20101019)

Paradox FOF Paradox version 4.0, 2010-06-29.

Prover9 FOF Prover9 (32) version 2009-11A, November 2009.

SPASS FOF SPASS version 3.5

Satallax THF Satallax version 2.6

Vampire (V) FOF Vampire version 2.6 (revision 1649)

Yices TFF1 Yices version 1.0.34

Z3 FOF Z3 version 4.0

Unless specified otherwise, all systems are run with 30s time limit on a 48-core server

with AMD Opteron 6174 2.2 GHz CPUs, 320 GB RAM, and 0.5 MB L2 cache per CPU.

Each problem is always assigned one CPU. In the tables below, basic statistics are often

computed about the population of the methods used: Unique solutions found by each

method, and its State of the art contribution (SOTAC) as defined by CASC.30 A system’s

CASC-defined SOTAC will be highest even if the system solved only one problem (which

no other system solved). That is why also the �-SOTAC value is used: the sum of a sys-

tem’s SOTAC over all problems attempted. These metrics often indicate how productive it is

to add a particular system or its version to a population of systems. Often it is interesting to

know the best joint performance when running N methods in parallel. Finding such a best

combination is however an instance of the classical NP-hard Maximum Coverage problem.

While it is often possible to use SAT solvers to get an optimal solution, a greedy algorithm

is always consistently used to avoid problems when scaling to larger datasets. This also

allows us to present this joint performance as a simple greedy (covering) sequence, i.e., a

sequence that starts with the best system, and each next system in such sequence is the sys-

tem that greedily adds most solutions to the union of solutions of the previous systems in

the sequence.

29For the experiments that produce proof dependencies (useful, e.g., for learning), we have used the (so far

experimental) version of LEO2 that fully reconstructs the original dependencies (the “po 2” option). For the

rest of the experiments (where proofs are not needed), the standard version of LEO2 is used. This version is

also proof-producing, but some additional work is still needed to extract the original proof dependencies. This

work is currently being done by the LEO2 developers. The “po 1” version outperforms the “po 2” version.

30For each problem solved by a system, its SOTAC for the problem is the inverse of the number of systems

that solved the problem. A system’s overall SOTAC is the average SOTAC over the problems it solves.
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Table 5 Epar, V, Z3 re-proving with 900s and Paradox with 30s (14185 problems)

Prover Theorem (%) Unique SOTAC �-SOTAC CounterSat (%) Greedy (%)

Vampire 5641 (39.7) 218 0.403 2273.58 0 (0.0) 5641 (39.7)

Epar 5595 (39.4) 194 0.400 2238.58 0 (0.0) 5949 (41.9)

Z3 4375 (30.8) 193 0.372 1629.08 2 (0.0) 6142 (43.2)

Paradox 5 (0.0) 0 0.998 2612.75 2614 (18.4) 6142 (43.2)

any 6142 (43.2) 2614 (18.4)

Theorem (%): Number and percentage of theorems proved by a system

Unique: Number of theorems proved only by this system

SOTAC, �-SOTAC: See the explanatory text for these metrics

CounterSat: Number of problems found counter-satisfiable (unprovable) by this system

Greedy (%): The joint coverage of all the previous systems and this one ordered in a greedy sequence (see

the text)

5.1 Using External ATPs to Prove Theorems from their HOL Light Dependencies

Table 5 shows the results of running Vampire, Epar, Z3, and Paradox on the 14185 FOF

problems constructed from the HOL Light proof dependencies. The ATP success rate mea-

sured on such problems is useful as an upper estimate for the ATP success rate on the

(potentially much larger) problems where all premises from the whole previous library are

allowed to be used. This success rate can be used later to evaluate the performance of the

algorithms that select a smaller number of the most relevant premises. The time limit for

Vampire,Epar and Z3was relatively high (900s), because particularly Vampire benefits from

higher time limits (compare with Table 7) and the ATP proofs found by re-proving turn out

to be more useful for training premise selectors than the original HOL Light dependencies

(see Section 5.2). Paradox was run for 30 seconds to get some measure of the incomplete-

ness of the FOF translation. The systems in Table 5 are already ordered using the greedy

covering sequence, i.e., the joint performance of the top two systems is 41.9 %, etc. The

counter-satisfiability detected by Paradox is not by default included in the greedy sequence,

since its goal is to find the strongest combination of proof-finding systems. The Paradox

results are however included in the SOTAC and Unique columns.

Table 6 shows these results restricted to the 1419-problem subset. This provides some

measure of the statistical error encountered when testing systems on the smaller problem

set, and also a comparison of the systems’ performance under high and low time limits used

in Table 7.

Table 7 shows all tested systems on the 1419-problem subset, ordered by their absolute

performance, and Table 8 shows the corresponding greedy ordering. The tested systems

include also SMT solvers that use the TFF1 encoding and higher-order provers using the

THF encoding. This is why it is no longer possible to aggregate the counter-satisfiability

results (particularly found by Paradox) with the theoremhood results, and all the derived

Table 6 ATP re-proving with 900s time limit on 10 % (1419) problems

Prover Theorem (%) Unique SOTAC �-SOTAC CounterSat (%) Greedy (%)

Vampire 577 (40.6) 19 0.403 232.25 0 (0.0) 577 (40.6)

Epar 572 (40.3) 23 0.405 231.75 0 (0.0) 608 (42.8)

Z3 436 (30.7) 17 0.369 160.75 0 (0.0) 625 (44.0)

Paradox 1 (0.0) 0 0.997 257.25 257 (18.1) 625 (44.0)

any 625 (44.0) 257 (18.1)
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Table 7 All ATP re-proving with 30s time limit on 10 % of problems

Prover Theorem (%) Unique SOTAC �-SOTAC CounterSat (%) Processed

Isabelle 587 (41.3) 39 0.201 118.09 0 (0.0) 1419

Epar 545 (38.4) 9 0.131 71.18 0 (0.0) 1419

Z3 513 (36.1) 17 0.149 76.49 0 (0.0) 1419

E 1.6 463 (32.6) 0 0.101 46.69 0 (0.0) 1419

LEO2-po1 441 (31.0) 1 0.106 46.85 0 (0.0) 1419

Vampire 434 (30.5) 3 0.107 46.44 0 (0.0) 1419

CVC3 411 (28.9) 4 0.111 45.76 0 (0.0) 1419

Satallax 383 (26.9) 7 0.130 49.69 1 (0.0) 1419

Yices 360 (25.3) 0 0.097 35.06 0 (0.0) 1419

iProver 348 (24.5) 0 0.088 30.50 9 (0.6) 1419

Prover9 345 (24.3) 0 0.087 30.07 0 (0.0) 1419

Metis 331 (23.3) 0 0.085 28.23 0 (0.0) 1419

SPASS 326 (22.9) 0 0.081 26.46 0 (0.0) 1419

leanCoP 305 (21.4) 1 0.092 27.96 0 (0.0) 1419

AltErgo 281 (19.8) 1 0.100 28.14 0 (0.0) 1419

LEO2-po2 53 (3.7) 0 0.082 4.34 0 (0.0) 1419

Paradox 1 (0.0) 0 0.059 0.06 259 (18.2) 1419

any 712 (50.1) 259 (18.2) 1419

statistics are only computed using the Theorem column. While Vampire does well with high

time limits in Table 5, it is outperformed by Z3 and E-based systems (Epar, E 1.6, LEO2-

po1) when using only 30 seconds (which seem more appropriate for interactive tools than

300 or even 900 seconds). This suggests that the strategy scheduling in Vampiremight ben-

efit from further tuning on the Flyspeck data. Z3 is not run in the proof-producing mode in

this experiment, which improves its performance considerably. It is not very surprising (but

still evidence of solid integration work) that Isabelle performs best, as it already combines

a number of other systems; see its CASC 2012 description31 for details. An initial glimpse

at Isabelle’s unique solutions also shows that 75 % of them are found by the recent Isabelle-

specific additions (such as hard sorts) to SPASS [18] and its tighter integration with Isabelle.

This is an evidence that pushing such domain knowledge inside ATPs (as done recently also

with the MaLeCoP prototype [84]) might be quite rewarding. The joint performance of all

systems tested is 50.2 % when Isabelle is included, and 47.4 % when only the base systems

are allowed. This is quite encouraging, and for example the counter-satisfiability results

suggest that additional performance could be gained by further (possibly heuristic/learning)

work on alternative translations. Pragmatically, the joint re-proving performance also tells

us that when used in the MESON-tactic mode with premises explicitly provided by the users,

a parallel 9-CPU machine running the nine systems from Table 8 will within 30 seconds (of

real time) prove half of the Flyspeck theorems without any further interaction.

31www.cs.miami.edu/∼tptp/CASC/J6/SystemDescriptions.html#Isabelle---2012

www.cs.miami.edu/~tptp/CASC/J6/SystemDescriptions.html#Isabelle---2012
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Table 8 Greedy sequence for Table 7 (with and without Isabelle)

Prover Isabelle Z3 Epar Satallax CVC3 Vampire LEO2-po1 leanCoP AltErgo

Sum % 41.3 46.9 48.8 49.3 49.6 49.9 50.0 50.1 50.1

Sum 587 666 693 700 705 709 710 711 712

Prover Epar Z3 Satallax Vampire LEO2-po1 CVC3 AltErgo Yices leanCoP

Sum % 38.4 42.7 45.3 46.0 46.6 47.1 47.2 47.3 47.4

Sum 545 607 644 654 662 669 671 672 673

5.2 Using External ATPs to Prove Theorems with Premise Selection

As described in Section 4, there are a number of various approaches and parameters influ-

encing the training of the premise selectors. These parameters were gradually (but not

exhaustively) explored, typically on the 1419-problem subset. Several times the underlying

training data changed quite significantly as a result of the data-improving passes described

in Section 4.3. Some of these passes were evaluating the best prediction methods developed

so far on all 14185 problems. All the experiments were limited to Vampire, Epar, and Z3.

For most of the experiments (and unless otherwise noted) the first-stage premise selection

is used to create problems with 8, 32, 128, and 512 premises. This slicing (i.e., taking the

first N premises) can be later fine-tuned, as done below in Section 5.2.2 for the best premise

selection method.

Table 9 16 premise selection methods trained on ATP proofs complemented with HOL proofs

Method Theorem (%) Unique SOTAC �-SOTAC Processed

B+symst+v pref+nominweight 418 (29.4) 2 0.093 38.98 1419

B+symst 410 (28.8) 0 0.089 36.65 1419

B+syms0 406 (28.6) 0 0.084 33.99 1419

B+symst+triv 405 (28.5) 3 0.094 37.98 1419

B+syms 402 (28.3) 0 0.083 33.48 1419

B+syms+triv+nominweight 397 (27.9) 1 0.083 32.98 1419

B+syms0+triv 397 (27.9) 0 0.078 30.82 1419

B+syms+triv+v pref 396 (27.9) 0 0.081 31.99 1419

B+syms+triv 393 (27.6) 0 0.077 30.13 1419

B+syms+triv+z pref 392 (27.6) 1 0.082 32.09 1419

B+syms+triv+e pref 392 (27.6) 0 0.078 30.45 1419

B+symsd 382 (26.9) 3 0.097 37.08 1419

B+syms+old+000001 376 (26.4) 14 0.129 48.34 1419

B+symst+symsonly 302 (21.2) 17 0.141 42.55 1419

W+symst 251 (17.6) 9 0.141 35.37 1419

P+symst 195 (13.7) 6 0.144 28.13 1419

any 561 (39.5) 1419

B,W,P: Naive Bayes, Winnow, Perceptron

triv: Logical (trivial) symbols like conjunction are included

old+000001: Using older 30-second ATP data, and a minimal weight of 0.000001 for irrelevant HOL

dependencies (the default weight was 0.001)
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Table 9 shows an initial evaluation of 16 different learning combinations trained on ATP

proofs obtained in 300s, complemented by the HOL Light proof dependencies (the second

and first pass in Table 3). The two exceptions are the symst+symsonly combination,

which ignores all proofs, and the syms+old+000001 combination, which uses older

ATP-re-proving data obtained by running each ATP only for 30s (about 700 ATP proofs

less). Each row in Table 9 is a union of twelve 30s ATP runs: Vampire, Epar, and Z3 used

on the 8, 32, 128, and 512 slices. After this initial evaluation, the symst (types instead of

variables) characterization was preferred, trivial symbols were always pruned out, and Win-

now and Perceptron were left behind. It is of course possible that some of these methods

are useful as a complement of better methods. Preferring Vampire proofs helps the learning

a bit, for reasons that are not yet understood. To get the joint 39.5 % performance, in gen-

eral 192-fold (= 16 × 12) parallelization is needed. This number could be reduced, but first

better training methods were considered.

5.2.1 Further Premise Selection Improvements

Complementing the ATP dependency data with the (possibly discounted) HOL Light depen-

dencies seems to be a plausible method. Even if the HOL Light dependencies are very

redundant, the redundancies should be weighted down by the information learned from the

large number of ATP proofs, and the remaining HOL Light dependencies should be in gen-

eral more useful than no information at all. A possible explanation of why this approach

might still be quite suboptimal (in the ATP setting) is that the HOL Light proofs are often not

a good guidance for the ATP proofs, and may push the machine learners in a direction that

is ATP-infeasible. A small hint that this might be the case is the good performance of the

nominweight method in Table 9. This method completely ignores all HOL Light depen-

dencies that were never used in previous ATP proofs. This suggested to test the more radical

atponly approach, in which only the ATP proofs are used for training. This approach

improved the best method from 29.4 % to 31.9 %, and added 25 newly solved problems

(1.8 %) to those solved by the 16 methods in Table 9. These results motivated further work

on getting as many (and as minimal) ATP proofs as possible, producing the methods tagged

as m10, m10u and m10u2 in the tables below. These methods were trained on the proofs

obtained by 10-minute (hence m10) ATP runs that were further upgraded by the advised

proofs as described in Section 4.3. The best m10u2 method raised the performance by fur-

ther 0.5 %, and the learning on the advised proofs in different ways made these methods

again quite orthogonal to the previous ones.

Even though Winnow and Perceptron performed poorly (as expected from earlier unpub-

lished experiments with MML), they added some new solutions. This motivated one simple

additional experiment with the classic k-nearest neighbor (k-NN) learner, which computes

for a new example (conjecture) the k nearest (in a given feature distance) previous examples

Table 10 Three instances of k-nearest neighbor on the 1419-problem subset

Method Theorem (%) Unique SOTAC �-SOTAC Processed

KNN160+m10u+atponly 391 (27.5) 84 0.512 200.33 1419

KNN40+m10u+atponly 330 (23.2) 10 0.403 132.83 1419

KNN10+m10u+atponly 244 (17.1) 6 0.360 87.83 1419

any 421 (29.6) 1419
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Table 11 Greedy sequence using k-NN-based premise selectors

and ranks premises by their frequency in these examples. This is a fast (“lazy” and trivially

incremental) learning method that can be easily parameterized and might for some param-

eters behave quite differently from naive Bayes. For large datasets a basic implementation

gets slow in the evaluation phase, but on the Flyspeck dataset this was not yet a problem and

full training/evaluation processing took about the same time as naive Bayes. Table 10 shows

the performance of three differently parameterized k-NN instances, and Table 11 shows 8

different k-NN-based methods that together prove 29 % of the problems. As expected, k-

NN performs worse than naive Bayes, but much better than Winnow and Perceptron. The

160-NN and 40-NN methods indeed produce somewhat different solutions, and they are

sufficiently orthogonal to the previous methods and both contribute to the performance of

the final best mix of 14 prediction/ATP methods.

5.2.2 Performance of Different Premise Slices

Figure 1 shows how the ATP performance changes when using different numbers of the

best-ranked premises. This is again evaluated in 30 seconds on the 1419-problem sub-

set, i.e., Vampire’s performance is likely to be better (compared to Epar) if a higher time

limit was used. To a certain extent this graph serves also as a comparison of the first-

stage premise selection (in this case naive Bayes trained on the minimized proofs) with

Fig. 1 Performance of different premise slices (in % of the 1419 problems)
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Table 12 Greedy covering sequence for m10u2 slices (joining ATPs)

the second-stage premise selection (various SInE strategies tried by the ATPs). Z3 has no

second-stage premise selection, and after 250 premises the performance drops quite quickly

(12.4 % with 256 premises vs. 6.2 % with 740 premises). For Vampire this drop is more

moderate (18.1 % vs. 12.9 %). Epar stays over 20 % with 512 premises, and drops only to

15.6 % with 2048 premises. Thus, 512 premises seems to be the current “margin of error”

for the first-stage premise selection that can be (at least to some extent) offset by using SInE

at the second stage.

Table 12 shows for this premise selection method the joint performance (in greedy steps)

of all premise slicings, when for each slice the union of all ATPs’ solutions is taken. Only

17 slices are necessary (when using the greedy approach); the remaining 8 slices do not

contribute more solutions. In general, this union would take 3 ∗ 17 = 51 ATP runs, however

only 28 ATP runs are actually required to achieve the maximum 36.4 % performance. These

runs are not shown in full here, and instead only the first 14 runs that yield 35 % are shown

in Table 13. Assuming a 14-CPU server, 35 % is thus the 30-second performance when

using only one (the best) premise selection method.

5.2.3 The Final Combination and Higher Time Limits

It is clear that the whole learning/ATP AI system can (and will) be (self-)improved in various

interesting ways and for long time.32 When the number of small-scale evaluations reached

several hundred and the main initial issues seemed corrected, an overall evaluation of the

(greedily) best combination of 14 methods was done on the whole set of 14185 Flyspeck

problems using a 300s time limit. These 14 methods together prove 39 % of the theorems

when given 30 seconds in parallel (see Table 14), which is also how they are run in the

online service. The large scale evaluation is shown in Tables 15 and 16. Table 15 sorts

the methods by their 300s performance, and Table 16 computes the corresponding greedy

covering sequence. Comparison with Table 14 shows that raising the CPU time to 300s

helps the individual methods (2.7 % for the best one), but not so much the final combination

(only 0.3 % improvement).

5.3 Union of Everything

Tables 17 shows the “union of everything”, i.e., the union of problems (limited to the 1419-

problem subset) that could either be proved by an ATP from the HOL Light dependencies or

by the premise selection methods. Together with Tables 7 and 8 this also shows how much

the ATP proofs obtained by premise selection methods complement the ATP proofs based

32In 2008, new proofs were still discovered after a month of runningMaLARea on the wholeMML. Analyzing

the proofs and improving such AI over an interesting corpus gets addictive.
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Table 13 Greedy covering sequence for m10u2 limited to 14 slicing/ATP methods

only on the HOL Light dependencies. The methods’ running times are not comparable: the

re-proving used 30s for each system, while the data for advised methods are aggregated

across E, Vampire and Z3, and across the four premise slicing methods. This means that

they in general run in 12 × 30 seconds (although typically only one or two slices are needed

for the final joint performance). The number of Flyspeck theorems that were proved by any

of the many experiments conducted is thus 56.5 % when Isabelle is considered, and54.7 %

otherwise.

6 Initial Comparison of the Advised and Original Proofs

There are 6162 theorems that can be proved by either Vampire, Z3 or E from the origi-

nal HOL dependencies. Their collection is denoted as Original. There are 5580 theorems

(denoted as Advised) that can be proved by these ATPs from the premises advised auto-

matically. It is interesting to see how these two sets of ATP proofs compare. In this section,

a basic comparison in terms of the number of premises used for the ATP proofs is pro-

vided. A more involved comparison and research of the proofs using the proof-complexity

metrics developed for MML in [5] is left as an interesting future work. The intersection of

Original and Advised contains 4694 theorems. Both sets of proofs are already minimized

Table 14 The top 14 methods in the greedy sequence for 30s small-scale runs

Prover Sum % Sum

B+symst+m10u2+atponly+154e 24.1 343

KN40+symst+m10u+atponly+32e 28.6 407

B+symst+m10u2+atponly+1024e 31.2 443

B+v pref+triv+128e 33.1 471

B+symst+m10u2+atponly+92v 34.4 489

W+symst+128e 35.3 501

B+symst+m10u+atponly+32z 35.9 510

B+syms0+triv+512e 36.5 519

B+all000001+old+triv+128v 37.2 528

KN160+symst+m10u+atponly+512z 37.6 534

W+symst+32z 37.9 539

B+symst+m10u2+atponly+128e 38.3 544

B+symst+m10+vs+pref+atponly+128z 38.6 549

B+symst+32z 39.0 554
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Table 15 The top 14 methods from Table 14 evaluated in 300s on all 14185 problems

Prover Theorem (%) Unique SOTAC �-SOTAC

B+symst+m10u2+atponly+154e 3810 (26.8) 33 0.157 597.89

B+symst+m10u2+atponly+128e 3799 (26.7) 25 0.153 580.70

B+symst+m10u2+atponly+92v 3740 (26.3) 95 0.167 623.03

B+symst+m10u2+atponly+1024e 3280 (23.1) 206 0.198 649.52

B+syms0+triv+512e 3239 (22.8) 101 0.170 551.90

B+v pref+triv+128e 2814 (19.8) 36 0.143 401.27

B+all000001+old+triv+128v 2475 (17.4) 50 0.149 367.86

KN40+symst+m10u+atponly+32e 2417 (17.0) 78 0.160 386.90

B+symst+m10+v pref+atponly+128z 2257 (15.9) 33 0.138 311.74

B+symst+m10u+atponly+32z 2191 (15.4) 43 0.139 304.77

KN160+symst+m10u+atponly+512z 1872 (13.1) 37 0.145 270.58

W+symst+128e 1704 (12.0) 56 0.164 279.34

B+symst+32z 1408 (9.9) 16 0.118 166.09

W+symst+32z 711 (5.0) 9 0.124 88.40

any 5580 (39.3)

as described in Section 4.3. The proof dependencies were extracted33 and the number of

dependencies was compared. The complete results of this comparison are available online,34

sorted by the difference between the length of the Original proof and the Advised proof.

To make it easier to explore the differences described in the next subsections, the Flyspeck

and HOL Light Subversion repositories were merged into one (git) repository, and (quite

imperfectly) HTML-ized35 by a simple heuristic Perl script. A simple CGI script36 can be

used to compare the dependencies needed for the (minimized) advised ATP proof with the

dependencies needed for the ATP proof from the original HOL Light premises, and also with

the actual HOL Light proof.

6.1 Theorems Proved Only with Advice

The list of 885 theorems proved only with advice is available online37 sorted by the number

of necessary premises. The last theorem in this order (CROSS BASIS NONZERO)38 used

34 premises for the advised ATP proof, while its HOL Light proof is just a single invocation

33See http://mws.cs.ru.nl/∼mptp/hh1/ATPdeps/deps of atp proofs from hol deps.txt and http://mws.cs.ru.

nl/∼mptp/hh1/ATPdeps/deps from advised atp proofs.txt.

34http://mws.cs.ru.nl/∼mptp/hh1/ATPdeps/deps comparison.txt

35http://mws.cs.ru.nl/∼mptp/hol-flyspeck/index.html

36e.g., http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX MUL CNJ

37http://mws.cs.ru.nl/∼mptp/hh1/ATPdeps/aonly by length.txt

38http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=CROSS BASIS NONZERO

http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_of_atp_proofs_from_hol_deps.txt
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_from_advised_atp_proofs.txt
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_from_advised_atp_proofs.txt
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/deps_comparison.txt
http://mws.cs.ru.nl/~mptp/hol-flyspeck/index.html
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ
http://mws.cs.ru.nl/~mptp/hh1/ATPdeps/aonly_by_length.txt
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=CROSS_BASIS_NONZERO
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Table 16 The greedy sequence for Table 15 (300s runs on all problems)

Prover Sum % Sum

B+symst+m10u2+atponly+154e 26.8 3810

B+symst+m10u2+atponly+1024e 30.1 4273

B+symst+m10u2+atponly+92v 33.0 4686

KN40+symst+m10u+atponly+32e 34.8 4938

B+syms0+triv+512e 36.2 5148

B+all000001+old+triv+128v 36.9 5247

B+symst+m10u+atponly+32z 37.5 5332

W+symst+128e 38.1 5411

KN160+symst+m10u+atponly+512z 38.4 5454

B+v pref+triv+128e 38.7 5492

B+symst+m10+v pref+atponly+128z 38.9 5528

B+symst+m10u2+atponly+128e 39.1 5553

B+symst+32z 39.2 5571

W+symst+32z 39.3 5580

of the VEC3 TAC tactic39 (which however brings in 121 HOL Light dependencies, making

re-proving difficult). The following two short examples show how the advice can sometimes

get simpler proofs.

1. Theorem FACE OF POLYHEDRON POLYHEDRON states that a face of a polyhedron

(defined in HOL Light generally as a finite intersection of half-spaces) is again a

polyhedron:

∀s:realˆN→bool c. polyhedron s ∧ c face_of s =⇒ polyhedron c

The HOL Light proof40 takes 23 lines and could not be re-played by ATPs, but a

much simpler proof was found by the AI/ATP automation, based on (a part of) the

FACE OF STILLCONVEX theorem: a face t of any convex set s is equal to the inter-

section of s with the affine hull of t . To finish the proof, one needs just three “obvious”

facts: Every polyhedron is convex (POLYHEDRON IMP CONVEX), the intersection of

two polyhedra is again a polyhedron (POLYHEDRON INTER), and affine hull is always

a polyhedron (POLYHEDRON AFFINE HULL):

FACE_OF_STILLCONVEX:
∀s t:realˆN→bool. convex s =⇒

(t face_of s ⇐⇒ t SUBSET s ∧ convex(s DIFF t) ∧

t = (affine hull t) INTER s) POLYHEDRON_IMP_CONVEX: ∀s:realˆN→

bool. polyhedron s =⇒ convex s POLYHEDRON_INTER:
∀s t:realˆN→bool. polyhedron s ∧ polyhedron t =⇒

polyhedron (s INTER t) POLYHEDRON_AFFINE_HULL:
∀s. polyhedron(affine hull s)

2. Theorem FACE OF AFFINE TRIVIAL states that faces of affine sets are trivial:

39An interesting future work is to integrate calls to such tactics into the learning/ATP framework, or even to

learn their construction (from similar sequences of lemmas used on similar inputs). The former task is similar

to optimizing SMT solvers and tools like MetiTarski.
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Table 17 Covering sequence (without and with Isabelle) for all methods used

∀s f:realˆN→bool. affine s ∧ f face_of s =⇒ f = ∅ ∨ f = s

The HOL Light proof41 takes 19 lines and could not be re-played by ATPs.

The advised proof finds a simple path via previous theorem FACE OF
DISJOINT RELATIVE INTERIOR saying that nontrivial faces are disjoint with the

relative interior, and theorem RELATIVE INTERIOR UNIV saying that any affine

hull is equal to its relative interior. The rest is again just use of several “basic facts”

about the topic (skipped here):

FACE_OF_DISJOINT_RELATIVE_INTERIOR:
∀f s:realˆN→bool. f face_of s∧ ¬(f = s)

=⇒ f INTER relative interior s = ∅

RELATIVE_INTERIOR_UNIV: ∀s. relative_interior(affine hull s)

= affine hull s

6.2 Examples of Different Proofs

Finally, several examples are shown where the advised ATP proof differs from the ATP

proof reconstructed from the original HOL Light dependencies.

1. Theorems COMPLEX MUL CNJ42 and COMPLEX NORM POW 2 stating the equal-

ity of squared norm to multiplication with a complex conjugate follow eas-

ily from each other (together with the commutativity of complex multiplication

COMPLEX MUL SYM). The proof of COMPLEX MUL CNJ in HOL Light (below) re-

uses the longer proof of COMPLEX NORM POW 2. The advised ATP proof directly uses

COMPLEX NORM POW 2, but (likely because COMPLEX MUL SYM was never used

40http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=FACE OF POLYHEDRON POLYHEDRON

41http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=FACE OF AFFINE TRIVIAL

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_POLYHEDRON_POLYHEDRON
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=FACE_OF_AFFINE_TRIVIAL
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before) first unfolds the definition of complex conjugate and then applies commutativity

of real multiplication.

let COMPLEX_MUL_CNJ = prove
(‘∀z. cnj z * z = Cx(norm(z)) pow 2 ∧ z * cnj z = Cx(norm(z)) pow 2‘,
GEN_TAC THEN REWRITE_TAC[COMPLEX_MUL_SYM] THEN
REWRITE_TAC[cnj; complex_mul; RE; IM; GSYM CX_POW; COMPLEX_SQNORM]
THEN

REWRITE_TAC[CX_DEF] THEN AP_TERM_TAC THEN BINOP_TAC THEN
CONV_TAC REAL_RING);;

COMPLEX_NORM_POW_2: ∀z. Cx(norm z) pow 2 = z * cnj z COMPLEX_MUL_SYM:
∀x y. x * y = y * x

2 Theorem disjoint line interval43 states that the left endpoints of two unit-

long integer-ended intervals on the real line have to coincide if the intervals share a

point strictly inside them. This suggests case analysis, which is what the longer HOL

Light proof (omitted here) seems to do. The advisor instead gets the proof in a single

stroke by noticing a previous theorem saying that the left endpoint is the f loor function

which is constant for the points inside such intervals:

disjoint_line_interval:
∀(x:real) (y:real). integer x ∧ integer y ∧

(∃ (z:real). x < z ∧ z < x + &1 ∧ y < z ∧ z < y + &1) =⇒ x = y

FLOOR_UNIQUE: ∀x a. integer(a) ∧ a ≤ x ∧ x < a + &1
⇐⇒ (floor x = a)

3 Theorem NEGLIGIBLE CONVEX HULL 344 states that the convex hull of three points

in R
3 is a negligible set. In HOL Light this is proved from the general theorem

NEGLIGIBLE CONVEX HULL stating this property for any finite set of points in R
n

with cardinality less or equal to n. Instead of justifying this precondition, a shorter

proof is found by the advised ATP that saw an analogous theorem about the affine hull,

the inclusion of the convex hull in the affine hull, and the preservation of negligibility

under inclusion.

let NEGLIGIBLE_CONVEX_HULL_3 = prove
(‘∀a b c:realˆ3. negligible (convex hull a,b,c)‘,
REPEAT GEN_TAC THEN MATCH_MP_TAC NEGLIGIBLE_CONVEX_HULL THEN
SIMP_TAC[FINITE_INSERT; CARD_CLAUSES; FINITE_EMPTY; DIMINDEX_3]
THEN
ARITH_TAC);;

NEGLIGIBLE_CONVEX_HULL:
∀s:realˆN→bool. FINITE s ∧ CARD(s) ≤ dimindex(:N) =⇒

negligible(convex hull s)

NEGLIGIBLE_AFFINE_HULL_3: ∀a b c:realˆ3. negligible
(affine hull a,b,c) CONVEX_HULL_SUBSET_AFFINE_HULL:
∀s. (convex hull s) SUBSET (affine hull s) NEGLIGIBLE_SUBSET:
∀s:realˆN→bool t:realˆN→bool. negligible s ∧ t SUBSET s =⇒

negligible t

42http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX MUL CNJ

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=COMPLEX_MUL_CNJ
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4 Theorem BARV CIRCUMCENTER EXISTS45 says that under certain assumptions, a

particular point (circumcenter) lies in a particular set (affine hull). The HOL Light

proof unfolds some of the assumptions and takes 14 lines. The advisor just found a

related theorem MHFTTZN3 which under the same assumptions states that the singleton

containing the circumcenter is equal to the intersection of the affine hull with another

set. The rest are two “obvious” facts about elements of intersections (IN INTER) and

elements of singletons (IN SING):

BARV_CIRCUMCENTER_EXISTS: ∀V ul k. packing V ∧ barV V k ul =⇒

circumcenter (set_of_list ul) IN affine hull (set_of_list ul)

MHFTTZN3: ∀V ul k. packing V ∧ barV V k ul =⇒

((affine hull (voronoi_list V ul)) INTER
(affine hull (set_of_list ul)) = circumcenter (set_of_list ul) )

IN_SING: ∀x y. x IN y:A ⇐⇒ (x = y)

IN_INTER: ∀s t (x:A). x IN (s INTER t) ⇐⇒ x IN s ∧ x IN t

5 An example of the reverse phenomenon (i.e., the advised proof is more compli-

cated than the original) is theorem BOUNDED CLOSURE EQ46 saying that a set in Rn

is bounded iff its closure is bounded. The harder direction of the equivalence was

already available as theorem BOUNDED CLOSURE, and was used both by the HOL

Light and the advised proof. The easier direction was in HOL Light proved by theo-

rems CLOSURE SUBSET and BOUNDED SUBSET saying that any set is a subset of its

closure and any subset of a bounded set is bounded. The advised proof instead went

through a longer path based on theorems CLOSURE APPROACHABLE, IN BALL and

CENTRE IN BALL to show that every element in a set is also in its closure, and then

unfolded the definition of bounded and showed that the bound on the norms of closure

elements can be used also for the original set.

let BOUNDED_CLOSURE_EQ = prove
(‘∀s:realˆN→bool. bounded(closure s) ⇐⇒ bounded s‘,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BOUNDED_CLOSURE] THEN
MESON_TAC[BOUNDED_SUBSET; CLOSURE_SUBSET]);;

BOUNDED_CLOSURE: ∀s:realˆN→bool. bounded s =⇒

bounded(closure s) BOUNDED_SUBSET: ∀s t. bounded t ∧ s SUBSET t =⇒

bounded s CLOSURE_SUBSET: ∀s. s SUBSET (closure s)

CLOSURE_APPROACHABLE:
∀x s. x IN closure(s) ⇐⇒ ∀e. &0 < e =⇒ ∃y. y IN s ∧

dist(y,x) < e IN_BALL: ∀x y e. y IN ball(x,e) ⇐⇒

dist(x,y) < e CENTRE_IN_BALL: ∀x e. x IN ball(x,e) ⇐⇒

&0 < e bounded: bounded s ⇐⇒ ∃a. ∀x:realˆN. x IN s =⇒ norm(x) ≤ a

43http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=Vol1.disjoint line interval

44http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=NEGLIGIBLE CONVEX HULL 3

45http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=Rogers.BARV CIRCUMCENTER EXISTS

46http://mws.cs.ru.nl/∼mptp/cgi-bin/browseproofs.cgi?refs=BOUNDED CLOSURE EQ

http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Vol1.disjoint_line_interval
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=NEGLIGIBLE_CONVEX_HULL_3
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=Rogers.BARV_CIRCUMCENTER_EXISTS
http://mws.cs.ru.nl/~mptp/cgi-bin/browseproofs.cgi?refs=BOUNDED_CLOSURE_EQ
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6.3 Remarks

The average number of HOL Light proof dependencies restricted to the set of theorems re-

proved by ATPs is 34.54, i.e., there are on average about nine times more dependencies in a

HOL Light proof than in the corresponding ATP proof (see Table 3). This perhaps casts some

light on how learning-assisted ATP currently achieves its performance. A large human-

constructed library like Flyspeck is often dense/redundant enough47 to allow short proofs

under the assumption of perfect (and thus inhuman) premise selection. Such short proofs

can be found even by the quite exhaustive methods employed by most of the existing ATPs.

The smarter the premise selection and the stronger the search inside the ATPs, the greater

the chance that such proofs will end up inside the ATP’s time-limited search envelope. The

outcome of using such advisors extensively could be “better-informed” mathematics that

has shorter proofs which use a variety of lemmas much more than the basic definitions and

theorems. Whether such mathematics is easier for human consumption is not clear. Already

now mathematical texts sometimes optimize proof length by lemma re-use to an extent that

may make the underlying ideas less visible. Perhaps this is just another case where the

strong automation tools will eventually help to understand how human cognition works.

The ATP search is quite unlike the much less exhaustive search done by decision proce-

dures, and also unlike the human proofs, where the global economy of dependencies is not

so crucial once a fuzzy high-level path to the goal gets some credibility. Both the human

and the decision-procedure proofs result in more redundant (“sloppier”) proofs, which can

however be more involved (complicated) than what the ATPs can achieve even with optimal

premise selection. Learning such (precise or fuzzy) high-level pathfinding is an interest-

ing next challenge for large-theory AI/ATP systems. With the number of proofs and theory

developments to learn from available now in the HOL/Flyspeck, Mizar/MML, and Isabelle

corpora, and the already relatively strong performance of the “basic” AI/ATP methods that

are presented in this paper, these next steps seem to be worth a try.

7 Related Work and Contributions

Related work has been mentioned throughout the paper, and some of the papers cited pro-

vide recent overviews of various aspects of our work. In particular, Blanchette’s PhD thesis

and [15] give a detailed overview of the translation methods for the (extended) HOL logic

used in Isabelle. See [49, 78] for recent overviews of large-theory ATP methods, and [83]

for a summary of the work done over MML and its AI aspects.

Automated theorem proving over large theories goes back at least to Quaife’s large

developments [66] with Otter [55]48 (continued to some extent by Belinfante [9]). Most of

the ATP/ITP combinations developed in 1990s used ATPs on user-restricted search space.

Examples include the ATPs for HOL (Light) by Harrison and Hurd mentioned above, simi-

lar work for Isabelle by Paulson [59], integration of CLAM with HOL [69] and integration

of ATPs with the Omega proof assistant [56]. Dahn, Wernhard and Byliński exported

47As long as such libraries are human-constructed, they will remain imperfectly organized and redundant.

No “software engineering” or other approach can prevent new shortcuts to be found in mathematics, unless

an exhaustive (and infeasible) proof minimization is applied.

48An interesting case is McAllester’s Ontic [52]. The whole library is searched automatically, but the

automation is fast and intentionally incomplete.
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Mizar/MML into the ILF format [24], created (small) ATP problems from several Mizar arti-

cles, and researched ATP-friendly encodings of Mizar’s dependent and order-sorted type

system [23]. Large-theory ATP reappeared in 2002 with Voronkov’s and Riazanov’s cus-

tomized Vampire answering queries over the whole SUMO ontology [62], and Urban’s

MoMM (modified E) authoring tool [76] using all MML lemmas for dependently-typed sub-

sumption of new Mizar goals. Since 2003, experiments with (unmodified) ATPs over large

libraries have been carried out for MML [75] (using machine learning for premise selec-

tion) and for Isabelle/HOL (using the symbol-based Sledgehammer heuristic for premise

selection). A number of large-theory ATP methods and systems (e.g., SInE, MaLARea,

goal-oriented heuristics inside ATPs) have been developed recently and evaluated over

large-theory benchmarks and competitions like CASC LTB and Mizar@Turing. A compre-

hensive comparison of ATP and Mizar proofs was recently done in [5]. As here, the average

number of Mizar proof dependencies is higher than the number of ATP dependencies, how-

ever, the difference is not as striking as for HOL Light (a very different method is used to get

the Mizar dependencies).

The work described here adds HOL Light and Flyspeck to the pool of systems and cor-

pora accessible to large-theory AI/ATP methods and experiments. A number of large-theory

techniques are re-used, sometimes the Mizar, Isabelle and CASC LTB approaches are com-

bined and adapted to the HOL Light setting, and some of the techniques are taken further.

The theorem naming, dependency export, problem creation, and advising required newly

implemented HOL Light functions. The machine learning adds k-nearest neighbor, and the

feature characterization was improved by replacing variables in terms with their HOL types.

A MaLARea-like pass interleaving ATP with learning was used to obtain as many ATP

proofs as possible, and the proofs were postprocessed by pseudo- and cross-minimization.

Unlike in MaLARea, this was done in a scenario that emulates the growth of the library,

i.e., no information about the proofs of later theorems was used to train premise selection

for earlier theorems. Motivated by the recent experiments over the MPTP2078 benchmark,

the machine learning was complemented by various SInE strategies used by E and Vampire.

The strategy-scheduling version of E using the strategies developed for Mizar@Turing was

tested for the first time in such large evaluation. A significant effort was spent to find the

most orthogonal ingredients of the final mix of premise selectors and ATPs: in total 435

different combinations were tested. The resulting 39 % chance of proving the next theo-

rem without any user advice is a landmark for a library of this size. While a similar number

was achieved in [49] on the much smaller MPTP2078 benchmark with a lower time limit,

only 18 % success rate was recently reported in [5] for the whole MML in this fully push-

button mode.49 None of those evaluations however combined so many methods as here.

The improvement over the best method (proving 24.1 % theorems in 30s and 26.8 % in

300s) shows that such combinations significantly improve the usability of large-theory ATP

methods for the end users.

8 Future Work

Stronger machine learning (kernel/ensemble, etc.) methods and more suitable characteriza-

tions (e.g., addition of model-evaluation features and more abstract features) are likely to

49A similar large-scale evaluation for Isabelle would be interesting. It is not clear whether the current

“Judgement Day” benchmark contains goals on the same (theorem) level of granularity.
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further improve the performance. The prototype online service could be made customiz-

able by learning from users’ own proofs. So far only three ATPs are used by the service,

but many other systems can eventually be added, possibly with various custom mappings

to their logics. The translation methods can be further experimented with: either to get a

symbol-consistent first-order translation (to allow, e.g., the model-evaluation features), or to

get less incomplete translations. Proof reconstruction is currently work in progress. A sim-

ple and obvious approach is to try MESON with the minimized set of dependencies. When it

is ready, unsound translations can be added to the pool of methods as was originally done

in Isabelle Isabelle [57]. Training ATP-internal guidance on the corpus for prototype learn-

ing/ATP systems like MaLeCoP will be interesting, and perhaps also further tuning of ATP

strategies for systems like E.

The power of the combined system probably already now makes it interesting as a

complementary semantic aid/filter for first experiments with statistical translation methods

between the informal Flyspeck text and the Flyspeck formalization. The cases of machine

translation (as in Google Translate) and natural-language query answering (as in IBM

Watson) have recently demonstrated the power of large-corpus-driven methods to auto-

matically learn such translation/understanding layers from uncurated imperfect resources

such as Wikipedia. In other words, large bodies of mathematics (and exact science) such

as arXiv.org are unlikely to become computer-understandable by the current painstaking

human encoding efforts and additions of further and further logic complexity layers that

increase the formalization barrier both for humans and AI systems. Large-scale (world-

knowledge-scale) formalization for (mathematical) masses is hard to imagine as one large

“perfectly engineered” knowledge base in which everyone will know perfectly well where

their knowledge fits. Such attempts seem to be as doomed as the initial attempts (in the

Stone Age of Internet) to manually organize the World Wide Web in one concise directory.

Gradual world-scale formalization seems more likely to happen through simpler logics that

can be reasonably crowd-sourced (e.g., as Wikipedia was), assisted by AI (learning/ATP)

methods continuously training and self-improving on cross-linked formal/semiformal/in-

formal corpora expressed in simple formalisms that can be reasonably explained to such

automated/AI methods.
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