
Learning-Assisted Multi-Step Planning
Kris Hauser, Tim Bretl, Jean-Claude Latombe

Stanford University
Stanford, CA 94307, USA

khauser@cs.stanford.edu, tbretl@stanford.edu, latombe@cs.stanford.edu

Abstract— Probabilistic sampling-based motion planners
are unable to detect when no feasible path exists. A common
heuristic is to declare a query infeasible if a path is not found
in a fixed amount of time. In applications where many queries
must be processed – for instance, robotic manipulation, multi-
limbed locomotion, and contact motion – a critical question
arises: what should this time limit be? This paper presents a
machine-learning approach to deal with this question. In an
off-line learning phase, a classifier is trained to quickly predict
the feasibility of a query. Then, an improved multi-step motion
planning algorithm uses this classifier to avoid wasting time
on infeasible queries. This approach has been successfully
demonstrated in simulation on a four-limbed, free-climbing
robot.

Index Terms— Motion planning, multi-step planning, ma-
chine learning, climbing robot.

I. INTRODUCTION

Probabilistic sampling-based motion planners, such as
the Probabilistic Roadmap (PRM) approach [1], are popular
in robotics because they can handle many degrees of
freedom and diverse feasibility constraints while remaining
fast and easy to implement. Under assumptions that are
usually satisfied in practice, the probability that such a
planner finds a feasible path between two configurations
(whenever one exists) approaches 1 quickly as more time
is allowed [2].

However, these planners are generally unable to detect
when no feasible path exists. A common heuristic is to
declare a query infeasible if a path is not found in a fixed
amount of time – of course, this result may be incorrect.
In applications where many queries must be processed, a
large fraction of which have no solution, a critical question
arises: what should this time limit be? Too low, and some
feasible queries may not be solved; too high, and infeasible
queries dominate total running time.

Multi-step motion planning, which computes paths
traversing multiple configuration spaces, faces this
dilemma [3]. It is encountered in robotic manipulation [4],
[5], multi-limbed locomotion [3], [6], and contact mo-
tion [7]. These applications usually require searching large
graphs where nodes are configuration spaces associated
with different states of contact between the robot and its
environment, and edges are feasible transitions between
spaces. Checking if an edge connects two nodes corre-
sponds to solving a one-step motion planning query, in
a single configuration space. If probabilistic sampling is
used, the importance of the time limit is clear. With a low
limit, some critical transitions may be incorrectly declared

infeasible. With a high limit, most of the time will be spent
attempting infeasible transitions.

If we knew in advance which transitions were infeasible,
we could prune them from the graph. Then, the PRM
planner would be used only to construct feasible one-step
motions, not to test their existence. Since all queries would
be feasible, the time limit for the PRM planner could be set
high. In this paper, we apply a machine-learning approach
to create a classifier that quickly provides this feasibility
information. We present a probabilistic multi-step planner
that uses this classifier but is robust to classification errors.
We demonstrate our planner in simulation for the four-
limbed, free-climbing robot introduced in [8].

Our approach is applicable to other multi-step planning
problems, as long as the structure of the robot’s feasible
space can be captured sufficiently using machine learning
– parameterization and dimensionality are common limita-
tions. For example, the feasible space of the climbing robot
is shaped by constraints that depend on a relatively small
number of parameters. Non-gaited locomotion of humanoid
robots on rough terrain has a similar characteristic.

II. RELATED WORK

The idea of using experimental data to statistically model
problem difficulty has attracted attention in computational
theory. The distribution of hard-vs.-easy instances of the
NP-complete 3-SAT problem was studied in [9]. It was
found that problems whose ratios of clauses to variables
are either high or low are easily solvable with either depth-
first or local search techniques, with exponentially difficult
problems lying in between. In [10], the running time of the
NP-complete combinatorial auction winner determination
problem was predicted using regression on a database of
problem examples, solved by a branch-and-bound search.
In these previous works, the most important issue was
finding the few parameters that best capture algorithm
behavior. Here, we seek to predict whether or not a problem
admits a solution.

Closer to our work, models of problem difficulty have
been used to speed up multi-step planning. For example,
the “fuzzy PRM” approach assigns probabilities of success
to the edges of the graph searched by a multi-step manipu-
lation planner [5]. Each probability depends on the amount
of time spent so far by a PRM planner on the corresponding
query. If a path has been found, the probability of the edge
is set to 1; otherwise, it decreases toward 0 as more time
is spent. One-step planning time is adaptively allocated to
edges with higher probability. However, this method has



several drawbacks. First, lowering the probability of an
edge requires spending time trying to solve the correspond-
ing one-step query. If the query is actually infeasible, that
much time is still wasted. Second, solving some feasible
one-step queries might take a long time – either by “bad
luck” in PRM sampling or because they are difficult (e.g.,
involve a “narrow passage” [2]). Such a query might be
critical to connect a multi-step path. In this case, many
other infeasible queries will be tried before more time is
allocated to solve the critical one.

Alternatively, a method of “disconnection proof” has
been proposed to directly check edge infeasibility [3]. This
technique uses computational real algebra and semidefinite
programming to construct a disconnection manifold – an
explicit proof of infeasibility – if it exists. However, the
computational cost of this technique is prohibitive. It is
only practical to search for “simple” disconnection mani-
folds (i.e., those defined by low-order polynomials).

Our classifier also checks edge infeasibility directly, but
is faster to compute (at the expense of a lengthy learning
phase). We borrow from [5] the idea of labeling edges of
the multi-step planning graph by probabilities and using
these probabilities to invest PRM planning time. However,
since our classifier predicts infeasibility rather than diffi-
culty, our method does not suffer from the drawbacks of
this prior work.

III. MULTI-STEP PLANNING

A. Model and Problem

We consider the multi-step planning problem for a free-
climbing robot, LEMUR IIB, shown in Fig. 1. This robot
climbs an artificial rock surface by making contact at its
limb endpoints, which we call hands. It moves on the
terrain much like a human rock climber, by moving one
hand at a time, from one contact to another, only using
friction to maintain equilibrium. We model each contact as
a single point, called a hold, parameterized by its position,
normal, and Coulomb friction coefficient. In this paper,
holds are presurveyed; in a practical setting, they would be
extracted along protrusions, holes, cracks, or ledges, using
visual and tactile sensors.

Each limb of LEMUR IIB has three revolute joints,
providing two in-plane and one out-of-plane degrees of
freedom (DOF). The in-plane DOF move the links of each
limb parallel to the terrain. The out-of-plane DOF are
used only to make or break contact with holds. Ignoring
the out-of-plane joints, the dimensionality of the robot’s
configuration space C is 11 (including three parameters
defining the planar position and orientation of the chassis).

We refer to each set of hand-terrain contacts used by
the robot as a stance. We consider stances in which three
or four limbs are contacting holds (in a 3-hold stance,
the fourth limb is said to be free). For simplicity, we
ignore 1- and 2-hold stances, which are rarely useful in
practice. The closed-chain kinematic constraints imposed
by these contacts at a 4-hold (resp., 3-hold) stance σ

Fig. 1. The LEMUR IIB climbing robot [8].

restrict the set of configurations to a 3-D (resp., 5-D) sub-
manifold Cσ of the original configuration space C. Several
parameterizations of this manifold are possible; a simple
one is specified by the planar position and orientation of
the chassis and the joint angles of the free limb [3].

A configuration in Cσ is feasible if it is not in collision,
and if forces can be applied to the contact holds, without
slip, that exactly compensate for the gravity force. These
conditions are described in detail in [11]. We denote by Fσ

the subset of feasible configurations in Cσ , and call it the
feasible space at σ.

If a 3-hold stance σ and a 4-hold stance σ′ share three
contacts, then it is possible for a configuration to be feasible
at both. Such configurations qt ∈ Fσ ∩ Fσ′ are critical
to multi-step motion, since they represent points at which
the robot can switch between two different contact states.
We say that σ and σ′ are adjacent and call Fσ ∩ Fσ′ the
transition between them.

To reach a distant hold, LEMUR IIB must traverse a
number of feasible spaces at 3- and 4-hold adjacent stances.
Its motion within each feasible space Fσ′ is a continuous
path between points qt ∈ Fσ ∩ Fσ′ and qt′ ∈ Fσ′ ∩ Fσ′′

in consecutive transitions. We call this continuous path a
one-step motion through σ′.

The multi-step planning problem for LEMUR IIB is to
construct a sequence of feasible one-step motions con-
necting given start and goal configurations qs ∈ Fσs

and
qg ∈ Fσg at initial and final stances σs and σg .

B. Basic Algorithm

We view multi-step planning as the search through a
graph, in which nodes are transitions and edges are one-
step motions. It is convenient to index each node by a
specific configuration qt in the corresponding transition.

At each step of the search, we select a node



qt ∈ Fσ ∩ Fσ′ to expand. We would like to determine
whether a one-step motion is possible from qt through σ′ to
each adjacent stance σ′′. Two conditions must be satisfied
for this one-step motion to exist. First, the transition
Fσ′ ∩ Fσ′′ between stances σ′ and σ′′ must be nonempty.
Second, both qt and some configuration qt′ ∈ Fσ′ ∩ Fσ′′

must be in the same connected component of Fσ′ . The
resulting node, indexed by qt′ , corresponds to the transition
Fσ′ ∩ Fσ′′ .

It is computationally impractical to test each of these
conditions exactly. Instead, we use probabilistic sampling.
The transition Fσ′ ∩ Fσ′′ is declared nonempty if a single
feasible configuration qt′ is sampled from Cσ′ ∩ Cσ′′

(as described in [11]). Likewise, qt and qt′ are in the
same connected component of Fσ′ if a continuous path
is constructed between them by the PRM planner described
in [8].

However, this approach raises the dilemma discussed in
Section I. Since probabilistic sampling can not prove the
emptiness of a space, nor can a PRM planner demonstrate
that two configurations are disconnected, how much time
should be spent checking each condition before it is as-
sumed to be unsatisfied? Too little, and critical one-step
motions may be missed; too much, and testing infeasible
conditions dominates computation time.

One way to alleviate this problem is to use a “lazy”
search technique that postpones costly computations [12].
Our algorithm proceeds in two stages. First, we construct a
multi-step path via breadth-first search, assuming that each
one-step motion from a transition Fσ ∩ Fσ′ to a transition
Fσ′∩Fσ′′ is feasible only if we can sample a configuration
qt′ in Fσ′ ∩Fσ′′ (disregarding the second condition). Then,
we use our PRM planner to compute one-step motions
between each consecutive qt, qt′ . If at any stage the time
limit is exceeded, we discard the corresponding edge and
search for another multi-step path. Henceforth, we refer to
this algorithm as Basic-MSP.

There are several details of our implementation that we
do not discuss here. In particular, since transitions may
have multiple components, our algorithm may introduce
several nodes in the search graph corresponding to the same
transition.

Basic-MSP gives reasonably good results for the LEMUR
IIB robot. However, experiments reported in [3] show that
total planning time still increases quickly with the time
limit allocated to the probabilistic sampler, indicating that
much time is wasted trying to sample empty feasible
spaces.

IV. LEARNING A CLASSIFIER

A. Overview

Our goal is to construct a classifier that quickly rejects
empty transitions, so they do not have to be sampled during
multi-step search. Our approach is to learn this classifier
offline, using training data from many runs of Basic-MSP
in randomly generated terrain. We call the classifier Θ, and
define it as a function on adjacent stances:

Θ : σ, σ′ 7→
{

0 if Fσ ∩ Fσ′ is empty,
1 otherwise.

In the following sections, we describe supervised learn-
ing of machine learning models to represent Θ. Some
commonly used techniques are least-squares regression,
k-nearest neighbors, Bayesian networks, neural networks
[13], and support vector machines [14], [15]. For this
problem we have experimented with several, and have had
the best results with the latter two. Critical issues in the
design of our models are the parameterization and sampling
of training data; these issues are discussed below.

It may also be useful to learn a path classifier to avoid
calling the PRM planner on infeasible queries. But, learning
this classifier seems much more difficult than learning
Θ. Moreover, as will be shown later, calculating one-step
queries does not dominate the computation time of Basic-
MSP. So, we leave the construction of this classifier for
future research, if needed.

B. Parameterization

Parameterizing the domain of Θ is straightforward. The
function Θ classifies the transition Fσ∩Fσ′ between a pair
of adjacent 3-hold and 4-hold stances, σ and σ′, which
have three holds in common. This transition is uniquely
defined by the four holds in σ′. Each hold is defined by four
parameters: two coordinates, the normal orientation, and
the Coulomb friction coefficient. Since the feasibility of a
stance is translation-invariant, we factor out two position
parameters. Also, the current one-step planner assumes
constant friction (set conservatively to a low value), so we
eliminate friction from the parameter space. Finally, the
normal orientation of the hold that σ and σ′ do not have
in common is irrelevant to the shape of the feasible space,
since the force exerted at this hold during transition must be
zero. Consequently, the domain of Θ has a 9-dimensional
parameterization.

Symmetries exist in this parameterization, since the
robot’s limbs are identical and evenly distributed around a
circular chassis. We use these symmetries to further reduce
the volume (but not the dimensionality) of the domain.

C. Sampling

We create a set of labeled training examples as follows:
first, we generate points (σ, σ′) in the domain of Θ by pick-
ing values of the parameters at random; then, we run the
probabilistic sampler used in Basic-MSP to determine the
desired value of Θ at each point. That is, if a configuration
is successfully sampled in Fσ ∩ Fσ′ , the point is labeled
1; otherwise it is labeled 0. We reduce labeling errors by
allowing much more time for the sampler than is permitted
in Basic-MSP.

Unfortunately, the set of points that are feasible is
typically a small fraction of the domain (about 2-5% for
the LEMUR IIB robot). In particular, it is difficult to sample
points that are close to the “decision boundary” separating
nonempty transitions from empty ones. Consequently, a
very large number of sampled points would be necessary



to fully characterize Θ if they were generated entirely at
random.

Therefore, we use an alternative two-step approach.
First, we generate a number of points in the domain
of Θ uniformly at random, retaining only those that are
labeled 1. Then, we select several of these with probability
inversely proportional to the density of surrounding points,
and generate a number of additional samples through
perturbation. By iterating, we produce a database of points
densely sampled near the decision boundary, about 35-65%
of which are labeled 1.

D. Training

Using the methods above, we generated a database of
100,000 labelled examples, taking 1-2 days of computation
on a dual 1 GHz Pentium II computer. From these we create
an SVM classifier ΘSV M and a neural network ΘNN .

For SVM training, we used the package SVMlight
(http://svmlight.joachims.org/) [16], [17]. We optimized
SVM parameters using a pattern search technique [18]
on 10,000 randomly chosen examples from the database,
taking 7 hours. Using the optimal parameters, we then
trained ΘSV M from a set of 20,000 randomly picked
examples, taking 4 hours.

ΘNN was created by training a three layer backpropaga-
tion neural network with 9 input nodes, 100 hidden nodes,
and one output node [13]. Training was performed on
50,000 examples. This process took 3 days of computation
to achieve sufficient convergence. When complete, we
composed the network with a threshold to map the output
to {0, 1}.

We measured classifier accuracy with cross-validation,
designating accuracy on feasible and infeasible examples
as ε+ and ε−. We found that ΘSV M has accuracy ε+ =
84.62% and ε− = 83.98%, and can be evaluated in 1.40ms.
ΘNN has accuracy ε+ = 78.34% and ε− = 76.94%, and
can be evaluated in 0.003ms.

V. PLANNING WITH CLASSIFIERS

A. Graph Pruning

The simplest way to use Θ is to help Basic-MSP prune
its search graph faster. Recall that the main drawback
of Basic-MSP is the use of costly probabilistic sampling
to test whether transitions are empty (Section III-B). We
change Basic-MSP in two respects.

First, when considering a new transition Fσ ∩ Fσ′ , we
replace the sampler with Θ. If Θ(σ, σ′) = 0 (predicting
empty Fσ ∩Fσ′ ), then the transition is pruned. Otherwise,
Fσ ∩ Fσ′ is added as a node of the graph. Second, after
the search yields a multi-step path to the goal, we call the
probabilistic sampler to find a feasible configuration qt in
each transition Fσ ∩ Fσ′ along the path. Since Fσ ∩ Fσ′

is likely to be feasible, the sampler can be allowed a
high time limit. If no configuration is found, Fσ ∩ Fσ′

is removed from the graph and the search resumes. If
all transitions have been successfully sampled, one-step
PRM planning proceeds as in Basic-MSP. We call this new
planner Pruned-MSP.

Unfortunately, Θ is not perfect and occasionally does
misclassify transitions. These errors affect Pruned-MSP
differently depending on whether or not the transitions are
actually empty. For example, it is more or less harmless to
misclassify an empty transition as nonempty. If this transi-
tion lies on a candidate path to the goal, then probabilistic
sampling will later reject it. Thus, the error will merely
slow down the planner. On the other hand, misclassifying
a nonempty transition as empty is critical, and might cause
Pruned-MSP to fail. If many different feasible multi-step
paths exist, a few such errors may not hurt the search.
Some feasible path will likely still exist in the pruned
graph and be found. But if some transitions are critical
(e.g., if all feasible multi-step paths eventually pass through
them) then a small number of classification errors could
disconnect the start and goal node.

One method to reduce errors on feasible transitions is
to bias the classifier to have higher accuracy ε+. This
is accompanied by a drop in ε−, causing more harmless
errors, but hence a slower planner. In addition, unless 100%
feasible accuracy is obtained, Pruned-MSP may still fail in
the presence of critical transitions.

B. Fuzzy Search

The above shortcomings led us to develop a fuzzy
search algorithm, inspired by [5] (Section II). We call this
planner Fuzzy-MSP. It operates very much like Basic-MSP,
but rather than breadth-first search, it performs uniform-
cost [13] search prioritized by probability of feasibility.

When a new transition T = Fσ∩Fσ′ is encountered, it is
added to the nodes of the graph. It is then assigned a prob-
ability of feasibility P (T ) given the result of classification
Θ(σ, σ′), using the posterior probabilities

P (T |Θ(σ, σ′) = 1) =
P+ε+

P+ε+ + P−(1− ε−)
(1)

P (T |Θ(σ, σ′) = 0) =
P+(1− ε+)

P−ε− + P+(1− ε+)
(2)

where P+ is the prior probability of encountering a feasible
transition, P− = 1− P+, and ε+ and ε− are the classifier
accuracies as measured above.

We define the cost of a path in the search graph as
−

∑
T ln(P (T )), where the sum is taken over all the nodes

in the path. Uniform-cost search always expands the node
that has the lowest path cost from the start node.

Like Pruned-MSP, once Fuzzy-MSP finds a multi-step
path, probabilistic sampling is used to pick a configuration
in each transition along this path. If such a configuration
is found, the probability of the corresponding node is
set to 1. On failure, the corresponding node is removed
from the graph, and graph search resumes. As in the
other planners, once all transitions have been successfully
sampled, the PRM planner is queried to connect consecutive
configurations. Failure causes an edge to be removed from
the graph. During all graph changes, the lowest-cost path



0

50

100

150

200

1300

1350

1400

1450

Sampling

Classifier

Planning

Other

Problem 1 Problem 2 Problem 3 Problem 4

B
a
s
ic

S
V
M

N
N

B
a
s
ic

S
V
M

N
N

B
a
s
ic

S
V
M

N
N

B
a
s
ic

S
V
M

N
N

Fig. 2. Comparison of planning times of different algorithms on four
test problems. Times are in seconds. Columns indicate average times,
extended lines indicate minimum and maximum.

of each node from the start node is dynamically maintained
by updating the shortest-path predecessor of each node.

Fuzzy-MSP is as robust as Basic-MSP, since the classi-
fications of Θ are never completely trusted. But it is much
faster, because Θ is both correct most of the time and
very fast. On the other hand, Fuzzy-MSP is more robust
than Pruned-MSP, but only slightly slower, as it creates
more nodes and maintains lowest-cost paths. We therefore
suggest Fuzzy-MSP should be used for any imperfect
classifier.

VI. RESULTS

We now provide experimental results that empirically
validate our approach. These results were obtained on four
example problems for LEMUR IIB. We denote a problem
as “m-step” if the shortest multi-step path from start to
goal requires m one-step motions (m corresponds to the
minimum depth of the multi-step search graph). Likewise,
we denote a problem as “n-hold” if it occurs in a terrain
containing n holds (n is roughly correlated to the branching
factor of the graph). Problem 1 (see Fig. 3) is a 34-hold,
10-step problem. Problem 2 is a 14-hold, 24-step problem.
Problem 3 is a 34-hold, 20-step problem. Problem 4 is a
17-hold, 10-step problem.

A. Planning Time

In Fig. 2 we compare the performance of Basic-MSP,
Fuzzy-MSP using ΘSV M , and Fuzzy-MSP using ΘNN .
The algorithms are labeled as Basic, SVM, and NN,
respectively. Each algorithm was run 10 times on each
example problem. The average planning times are plotted
in seconds as solid columns, with the minimum/maximum
planning time plotted as extending lines. The average times
are broken into transition configuration sampling (Sam-
pling), running the classifier ΘSV M or ΘNN (Classifier),

TABLE I
CHARACTERISTICS OF BASIC-MSP

Transitions feasible / total sampled 423 / 2865
PRM failures 4.3
Path length 15.2

TABLE II
CHARACTERISTICS OF FUZZY-MSP USING ΘSV M

Transitions predicted feasible / total classified 1353 / 5892
Sampling failures / total 219 / 316
PRM failures 3.7
Path length 26.0

PRM planning (Planning), and other calculations such as
initialization and graph operations (Other).

Clearly, the bulk of computation time of Basic-MSP
is spent in the configuration sampler during graph explo-
ration. Fuzzy-MSP is several times faster than Basic-MSP
in each problem, primarily because our method reduces the
number of transitions sampled.

In these four tests, neural networks have a slight ad-
vantage over support vector machines, although we have
encountered problems where the reverse is true. We note
that the choice of classifier is fairly unimportant; a signif-
icant benefit is achieved by any reasonably efficient and
accurate classifier.

B. Search Characteristics

Table I and Table II compare other characteristics of
Basic-MSP and Fuzzy-MSP using ΘSV M , averaged over
the same 10 runs of Problem 1. For simplicity we omit the
neural-network algorithm.

Table I lists the number of transitions in which the
probabilistic sampler has been run. The great majority
of transitions are infeasible, causing Basic-MSP to waste
much time attempting to sample infeasible transitions.
Table II lists the number of transitions classified by Θ.
Even though Θ is executed for many more transitions than
the number sampled in Basic-MSP, this operation is done
at a small fraction of the time. Below that, Table II lists
the number of transitions for which Fuzzy-MSP calls the
configuration sampler. Recall that sampling occurs once
Fuzzy-MSP finds a candidate multi-step path to the goal.
Since transitions along the paths produced by Fuzzy-MSP
are likely to be feasible, probabilistic sampling is reduced
to about a tenth of the number of transitions as Basic-MSP.

For both algorithms, ‘PRM failures’ lists the number of
times the PRM planner failed to connect two transitions
along a candidate multi-step path. These numbers are quite
low, and are characteristic of all problems that we have
encountered. This justifies our decision to omit a path
classifier.

Finally, ‘Path length’ lists the number of one-step mo-
tions in the resulting motion plan. On average, Fuzzy-
MSP returns a path through 26 stances, rather than the
minimum 10 stances. In fact, in our trials, it never finds the
shortest path. This occurs because Fuzzy-MSP misclassifies



Fig. 3. Terrain of Problem 1. The LEMUR IIB robot is schematically
depicted in grey at the start stance. The trapezoidal “ledge” icons depict
the holds. Hold positions are at the center of the long end of each icon.
Normals point outward from the ledges. The goal hold is circled and
colored in red. The climbing plane is inclined at 60 degrees.

one or more feasible transitions along the shortest path.
This causes the search to explore higher probability paths
before returning to examine the misclassified transitions.
Misclassifications happen most often near the decision
boundary between feasible and infeasible transitions, where
“difficult” transitions are hard to distinguish from infeasible
ones. One might speculate that because of this, the paths
returned by Fuzzy-MSP could be easier to plan than
the shortest path. Whether this is true or not should be
investigated in future research.

VII. CONCLUSION

Using machine-learned classifiers, we have modeled the
feasibility of transitions between stances of a four-limbed
rock-climbing robot. We demonstrated that this classifier
can be combined with a fuzzy search algorithm to greatly
increase the efficiency of multi-step planning, with no
sacrifice in robustness. Eventually, climbing robots will
have to perform multi-step planning on-line, along with
sensing and motion control. Learning-assisted planning
gets us closer to this goal.

Future work should investigate the effects of classifi-
cation accuracy and speed on multi-step planning. We are
also investigating the use of machine learning to solve other
problems faced in motion planning for a rock-climbing

robot. One important problem currently being tackled is
how to recognize holds from geometric terrain information.
Since learned classifiers are quite fast, it might be possible
to test thousands of random candidate holds quickly, pick-
ing only feasible ones for motion planning. Furthermore,
learning a quality measure, such as tolerance to hold
measurement error, could prioritize choices that yield safe
motions.

ACKNOWLEDGMENT

K. Hauser is supported by a Stanford Graduate Fellow-
ship. The authors would also like to thank the Mechanical
and Robotic Technologies Group at JPL and Prof. S. Rock
for their continued support of the LEMUR IIB project.

REFERENCES

[1] L. Kavraki and J. Latombe, “Probabilistic roadmaps for robot
path planning,” Practical Motion Planning in Robotics: Current
Approaches and Future Directions, pp. 33–53, 1998.

[2] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Int. J. of Computational Geometry and
Applications, 1999, pp. 495–512.

[3] T. Bretl, S. Lall, J. Latombe, and S. Rock, “Multi-step motion
planning for free-climbing robots,” in Sixth International Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2004.

[4] R. Alami, J.-P. Laumond, and T. Simeon, “Two manipulation plan-
ning algorithms,” Algorithmic Foundations of Robotics, pp. 109–125,
1995.

[5] C. Nielsen and L. E. Kavraki, “A two-level fuzzy prm for manip-
ulation planning,” in Proceedings of The IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE Press
(Refereed), November 2000, pp. 1716–1722.

[6] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue,
“Motion planning for humanoid robots,” in International Symposium
on Robotics Research, Sienna, Italy, 2003.

[7] J. Xiao and X. Ji, “A divide-and-merge approach to automatic
generation of contact states and planning of contact motion,” in
IEEE International Conference on Robotics and Automation, 2000.

[8] T. Bretl, S. Rock, J. Latombe, B. Kennedy, and H. Aghazarian,
“Free-climbing with a multi-use robot,” in 9th Int. Symp. on Exper-
imental Robotics, Singapore, June 2004.

[9] D. Mitchell, B. Selman, and H. Levesque, “Hard and easy dis-
tributions of sat problems,” in Proceedings of the Tenth National
Conference on Artificial Intelligence, 1992.

[10] K. Leyton-Brown, E. Nudelman, and Y. Shoham, “Learning the em-
pirical hardness of optimization problems: the case of combinatorial
auctions,” in Constraint Programming, 2002.

[11] T. Bretl, J. Latombe, and S. Rock, “Toward autonomous free-
climbing robots,” in International Symposium on Robotics Research,
Sienna, Italy, 2003.

[12] G. Sánchez-Ante and J. Latombe, “On delaying collision checking
in prm planning - application to multi-robot coordination,” in Int. J.
of Robotics Research, January 2002, pp. 5–26.

[13] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Second edition. Prentice Hall, 2003.

[14] B. Schölkopf, “Support vector learning,” Ph.D. dissertation, Infor-
matik der Technischen Univeritat Berlin, 1997.

[15] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, pp. 121–167,
1998.

[16] T. Joachims, “Making large-scale svm learning practical,” Advances
in Kernel Methods - Support Vector Learning, 1999.

[17] ——, SVMlight manual. [Online]. Available:
http://svmlight.joachims.org/

[18] M. Momma and K. P. Bennett, “A pattern search method for
model selection of support vector regression,” in Second SIAM
International Conference of Data Mining, 2002.


