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Abstract. When Newell introduced the concept of the knowledge level as a useful level of description for 

computer systems, he focused on the representation of knowledge. This paper applies the knowledge 

level notion to the problem of knowledge acquisition. Two interesting issues arise. First, some existing 

machine learning programs appear to be completely static when viewed at the knowledge level. These 

programs improve their performance without changing their 'knowledge.' Second, the behavior of some 

other machine learning programs cannot be predicted or described at the knowledge level. These 

programs take unjustified inductive leaps. The first programs are called symbol level learning (SLL) 

programs; the second, nondeductive knowledge level learning (NKLL) programs. The paper analyzes 

both of these classes of learning programs and speculates on the possibility of developing coherent 

theories of each. A theory of symbol level learning is sketched, and some reasons are presented for 

believing that a theory of NKLL will be difficult to obtain. 

1. Introduction 

In his AAAI President's Address, Allen Newell (1981) defined a level of computer 

system description called the 'knowledge level.' As with other levels of description 

(e.g., the register-transfer level, the circuit level), the purpose of introducing the 

knowledge level is to provide a succinct and efficient means of describing and 

predicting the behavior of a computer system. In particular, Newell was attempting 

to systematize and justify the everyday use that AI researchers make of notions 
such as 'knowledge' and 'knowledge representation.' 

One topic that Newell did not discuss was knowledge change - -  that is, learning 

and knowledge acquisition. In this paper, we explore the issues that arise when one 

attempts to employ the knowledge level to describe the behavior of machine 
learning programs. 

The paper is organized as follows. In Section 2, we present a review of the 

knowledge level idea as described by Newell. Then, in Section 3, we consider some 

well-known learning programs and attempt to describe these programs at the 
knowledge level. Several issues arise, and these are formalized and analyzed in 

Section 4. In Section 5, working from this analysis, we speculate on the possibilities 
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for developing a coherent theory of machine learning. Section 6 presents some 

concluding remarks. 

2. The knowledge level 

The knowledge level is a level of description for computer systems (and other 

systems as well). There are many important reasons for introducing levels of 

description: specification, design, verification, prediction, explanation, and so on. 

In the discussion that follows, we will focus on using the knowledge level to predict 
the behavior of computer systems. 

Every level of description is incomplete. It suppresses many details of the system 

in order to focus on the aspects of the system that are important. Hence, it is also an 

approximation. It is incapable of making certain kinds of predictions, because the 

specific information needed for such predictions has been suppressed. 

The key abstraction underlying the knowledge level is the notion of an idealized 
rational agent. To describe a computer system, we begin by viewing it as an 

idealized rational agent. Then, to explain its behavior, we attribute to that agent 

goals and beliefs such that its behavior is rational. These goals and beliefs make up 

the knowledge of the agent. Thus, in order to understand the knowledge level, we 

must explain what we mean by an idealized rational agent. An idealized rational 

agent has the following attributes: 

The agent has 'knowledge.' 

Some of this knowledge constitutes the 'goals' of the agent. 

The agent has the ability to perform some set of actions. 

The agent chooses which actions to perform based on the principle of 

rationality, namely: 

If an agent has knowledge that one of its actions will lead to one of its 

goals, then the agent will select that action [as one of the possible actions 

tO perform next]. 

From this description of the idealized agent, we can see that, by applying the 

principle of rationality, we can predict the future actions of the agent - -  provided 

that we are given its goals and knowledge. Obtaining these is sometimes difficult. If 

the agent is a computer program that we built ourselves, then we may know what 

goals and knowledge were built into the system. 1 However, if the agent is another 

person (or even another program not written by us), then we are faced with a 

theory formation problem. We must form a theory of the goals and knowledge of 

the agent that is consistent with the view of the agent as being perfectly rational. 

Or at least what goals and knowledge we meant to build into the program. Often other facts get 
incorporated into programs accidentally. 
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Newell pursues this latter case and defines knowledge as 

Whatever can be ascribed to an agent such that its behavior can be computed 

according to the principle of rationality. 

Let us illustrate the above points by considering the famous monkey-and-bananas 

problem. Suppose we place a monkey in a room containing a chair and a bunch of 
bananas. The bananas are suspended from the ceiling so that, without climbing on 

the chair, the monkey cannot reach them. We can predict the monkey's behavior 

by the following argument. 

1. Suppose the monkey is perfectly rational. 
2. Suppose the monkey has the goal of eating bananas. 

3. Suppose the monkey is capable of performing the following actions: pushing 
a chair to any point in a room, climbing on a chair, grasping bananas, and 

eating bananas. 
4. Suppose the monkey knows that he is capable of these actions. 

5. Suppose that the monkey knows that the bananas are hanging from the 
ceiling, that there is a chair in the room, and that if he were standing on the 

chair, then he could grasp the bananas~ 
6. Then, the monkey knows that the sequence of actions 'push chair under 

bananas, climb on chair, grasp bananas, eat bananas' will achieve his goal of 

eating bananas. 
7. Therefore, according to the principle of rationality, this sequence of actions 

is one of the possible sequences of rational actions that the monkey might 

perform. 

There are several things to note about this example. First, notice how weak the 

final prediction is. We can not prove conclusively that the monkey will perform the 

indicated sequence of actions, because we cannot prove that this is the only 
sequence of actions that will achieve his goal. If we are willing to circumscribe the 
example, then we could make such a solid prediction. 

The second thing to notice is that we could have made many other predictions 

by altering the assumptions. If the monkey does not like bananas (i.e., the goal is 
changed), then he might not perform this action sequence. However, if the monkey 
has a friend who likes bananas and the monkey has the goal of pleasing that friend, 

then he might still fetch the bananas. What if the monkey does not see the bananas 

(i.e., the knowledge is changed)? Again, the monkey will probably not perform the 
indicated actions. 

The third point to notice about the monkey-and-bananas example is that to make 
our predictions, we have constructed a logical argument. The premises of the 
argument are the goals and knowledge that we have attributed to the monkey along 
"with the principle of rationality. Furthermore, we have also employed the following 

axiom: 
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Axiom I Knowledge closure. I f  an agent knows a body of  facts, F, then the agent 

also knows any facts that are deductive consequences of F. In other words, an 

agent knows the deductive closure of  his knowledge. 

In step 6 of our proof, for example, we applied this axiom to conclude that, since 

the monkey knows how each step of his plan works, the monkey must also know 

what the entire plan does. 

The fourth point to note is that our knowledge level prediction does not depend 

on how the monkey is 'implemented' as long as the implementation causes the 

monkey to perform the 'rationally correct' action that we predict. In particular, 

the monkey may know facts 1-6 because they are explicitly stored in his memory, 

or he may be applying some inference procedure to infer item 6 from the others. 

Indeed, the monkey may have no internal structure that corresponds to any of 

these items. The chair-pushing/chair-climbing/banana-grasping behavior may be 

some automatic behavior that is executed as a preprogramed chunk. This in no way 

invalidates our knowledge level description of the monkey - -  as far as this behavior 

is concerned, the monkey is behaving rationally. The exact computational process 

by which the actions are selected and performed is an (invisible) implementation 

detail. 

This is the main point: the knowledge level abstracts away from all issues of 

implementation. This is one of its primary virtues. It permits us to predict the 

behavior of systems about which we know very little. We can even predict the 

behavior of systems that have not been implemented. Another way of saying this is 

that the knowledge level provides an excellent level for specifying the desired 

behavior of computer systems. 

But alas, most knowledge level specifications are unimplementabte. It is step 6 

that causes the problem. No matter how we implement step 6 (either by inference 

or by providing the knowledge in advance), we must consume some computational 

resources (i.e., space or time). For large problems, these resources make the 

implementation infeasible. Consider another example: the ideal chess player. 
The perfectly rational chess player has the goal of winning every game he plays. 

His knowledge includes the rules of the game: the starting position and the legal 

moves. Unimpeded by implementation constraints, this ideal player also knows 

how his actions connect to his goals. In other words, for every position, he knows 

what moves will cause him to win the game. In every game that he plays, he will 

play perfectly. He knows the outcome of every possible game. Few computations 

are as infeasible! 
One way of summarizing the notion of an ideal rational agent is to imagine 

providing McCarthy's Advice Taker program (McCarthy, 1958) with infinite 

resources of time and space. We would give this system some starting knowledge 
and goals, and it would choose actions based on the "principle of rationality. The 

infinite computational resources would allow it to compute the deductive closure of 

its beliefs, thus making them explicit in its (infinite) memory. We can summarize 

the knowledge level by saying that, at the knowledge level, every computer 
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program is treated as if it were 'implemented' in this way. 

There is a minor error with this particular formulation. Any system of logic, such 

a-s that employed in the Advice Taker, makes use of some specific vocabulary of 

predicates and functions to represent its knowledge. These are symbol level entities 

(Newell & Simon, 1976), and hence, they too are ignored at the knowledge level. 

To circumvent this problem, we can take a model-theoretic approach. In model 

theory, any set of logical sentences is taken as being a shorthand for a set of models 

(or interpretations). Hence, we can reverse perspectives and take the set of models 

as primary. The knowledge of the agent corresponds to a set of possible 

worlds - -  worlds that are all consistent with the agent's knowledge (see Hintikka, 

1962; Halpern & Moses, 1985; etc.). A n y  set of logical symbols that captures 

exactly the same set of possible worlds can be said to represent the same body of 

knowledge. Instead of talking about the deductive closure of the set of beliefs of the 

agent, we can instead talk of those sentences that are true of every possible world. 

We get the same results in both cases (because of the completeness and soundness 

of first-order logic), but the model-theoretic approach allows us to completely 

avoid symbol level entities. 

Based on these observations concerning the close relationship of logic and 

knowledge level descriptions, we will employ logic throughout the rest of this 

paper. We will consider a logical description of a system to be equivalent to a 

knowledge level description. As long as our logical description does not mention 

the internal symbol structures of the system, this approach will succeed. 

Furthermore, we will assert that, if it is not possible to construct a logical 

description of a system, then the system cannot be successfully described at the 

knowledge level. 

Let us conclude this description of the knowledge level by noting that, as with 

other levels of computer system description, the knowledge level is an approxima- 

tion - -  it suppresses some details and hence cannot make complete predictions. 

Unlike the other system levels, however, the knowledge level is a 'radical 

approximation' - -  even the predictions that it does make cannot be satisfied all of 

the time. It is a useful approximation nonetheless, because it provides a normative 

model of the ideal intelligent agent against which we can measure various attempts 

within AI to construct physically realizable intelligent agents. 

3. Describing learning systems at the knowledge level 

Now that we have reviewed the basic ideas presented in NeweU's knowledge level 

paper, we ask the following question: Can the knowledge level be applied to 
predict the behavior of machine learning programs? The answers are surprising. To 

explore them, we begin by attempting to describe a few well-known machine 
learning programs at the knowledge level. 
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3.1 L E X  and LEX2 

The LEX system (Mitchell, Utgoff, & Banerji, 1983; Mitchell, 1983) and its 

successor LEX2 (Keller, 1983) are systems that learn through practice. Their task is 
symbolic integration. LEX contains a simple forward-chaining problem solver for 

symbolic integration. The problem solver has the usual set of integration operators, 
such as 

OP12: f udv --+ uv - f vdu 

(integration by parts) and 

OP3: f cf(x)dx ~ c f f(x)dx 

(factor out constants). 

The problem solver is capable of applying these operators in a breadth-first 
fashion to solve any integration problem - -  given enough time and space. The goal 
of the LEX learning system is to improve the performance of this problem solver by 
attaching heuristics to the integration operators. The heuristics describe sets of 
algebraic expressions to which a given operator should be applied. For example, a 
heuristic for OP12 could state that OP12 should only be applied to problems of the 

form 

f f(x) transc(x)dx, 

that is, integrals where the integrand is the product of an arbitrary function ofx and 
a transcendental function of x. 

LEX learns these heuristics by solving problems (with the unimproved problem 
solver) and then analyzing the search tree to identify good and bad instances of 
operator applications. Good instances are instances that led to a solution. Bad 

instances are instances in which applying a given operator did not lead to a solution. 
In LEX, the version space algorithm (Mitchell, 1982) is applied to discover general 
heuristics describing the good instances. In LEX2, an analytic technique is applied 
to infer deductively the exact situations under which a given operator should be 

applied. 
Both LEX and LEX2 gradually improve their performance over time, and many 

researchers have developed similar systems, exploring various aspects of the 

general problem of improving the performance of a problem solver (see, e.g., 
Kibler & Porter, 1983; Langley, 1983; Araya, 1984). 

Suppose we try to describe LEX at the knowledge level. We may begin by 

attributing to it the goal of printing correct solutions to symbolic integration 
problems. And we may ascribe to it knowledge of all of the standard operators of 
symbolic integration. At this point, the situation is analogous to the perfectly 
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rational chess player. With knowledge of the integration operators in hand, LEX 

can be said to know how to solve every solvable integration problem. Indeed, the 

only difference between LEX's initial behavior and its behavior after it has solved 

many problems and learned many heuristics is its speed. Since the knowledge level 

ignores all questions of implementation, LEX appears to be unchanged at the 

knowledge level. LEX's learning is invisible at the knowledge level. For the same 

reasons, this is also the case for LEX2. 

Another way of viewing this kind of learning is to regard it as altering the way 

that LEX is implemented. Before learning takes place, LEX is implemented as a 

simple breadth-first forward-chaining problem solver. After learning, LEX has 

been reimplemented as a heuristically guided forward-chaining problem solver. 

Since the details of the implementation are suppressed at the knowledge level, 

there is no change evident there. The knowledge level is a kind of specification for 
LEX's ideal behavior, and that specification has not changed. In summary, LEX 

provides an example of a learning system whose learning behavior is not 

visible - -  and hence, not describable - -  at the knowledge level. 

3.2 MRS 

Genesereth's MRS system (Russell, 1985) is a deductive database system in which 

facts (and rules) can be stored and queried using a restricted form of first-order 

predicate calculus. Systems of this type are not usually considered to be learning 

systems, but for the purposes of this paper, they form a natural class of systems that 
do a simple kind of learning. 

In MRS, for example, we can begin by typing commands like 

(assert '(if (man $x) (mortal $x))) 

(assert '(man Socrates)) 

which can be read as asserting that all men are mortal and that Socrates is a man. 
We can now ask MRS whether Socrates is mortal: 

(truep '(mortal Socrates)) 

((t .  t)) 

MRS returns ((t. t)), which indicates that the answer is 'yes.' This is all simple 
enough. Now suppose we ask it whether Homer is mortal: 

(truep '(mortal Homer)) 

nil 

It returns nil, which in this case, we will interpret as meaning that it doesn't know. 
But suppose that we tell it that Homer is a man: 
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(assert ' (man Homer) )  

Now, MRS will know that Homer  is mortal as well: 

(truep '(mortal Homer))  

((t.  t)) 

It has learned something new. 

A knowledge level analysis of programs like MRS is very straightforwaro, 

because the internal structures of these programs mimic logic directly. We begin by 

attributing to MRS the goal of printing only correct facts. And,  after the first two 

assertions have been entered, we attribute to MRS knowledge that all men are 

mortal and that Socrates is a man. Now, according to our previous observations 

concerning the knowledge level, MRS knows the deductive closure of these two 

beliefs. In particular, it knows that Socrates is mortal. The truep query 

demonstrates that this is correct. 

Now we tell MRS an additional fact - -  that is to say, we give MRS some 

additional knowledge. We tell it that Homer  is also a man. Now it knows this, and it 

knows that Homer  is mortal as well. 

In short, the behavior of MRS can be described very well at the knowledge level. 

The 'learning' that MRS performs consists of accepting new facts from its 

'environment '  (i.e., keyboard) and recording them in its memory as symbol 

structures. When it is asked a question, it applies its current knowledge to 

determine what answer to give. 
The knowledge level perspective allows us to describe MRS's behavior in terms 

of 'knowledge flow.' New knowledge flows from the environment into the system, 

where it is combined with knowledge already there. The combined body of 

knowledge may be larger than either part taken alone because of new conclusions 

that can be drawn. 

3.3 A Q l l  and ID3 

AQ11 (Michalski & Larson, 1978) and ID3 (Quinlan, 1983) are two very successful 

inductive learning programs that develop general decision rules from specific 

examples. Both programs accept training instances such as 2 

Red(al) A SmaU(al) A Square(a1) A Pretty(a1) 

2 These training instances include an 'A' rather than the customary implication sign before the 
category name (i.e., Pretty(x)). The reason is that implications cannot be observed in nature, only 
conjunctions. The implication sign would only be appropriate if these training instances were instead; 
presented as very specific, universally quantified rules, e.g., Vx Red(x) A Small(x) A Square(x) 
Pretty(x). Indeed, that is the form that AQll accepts. 
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Black(a2) A Big(a2) A Circle(a2) A Pretty(a2) 
Black(a3) A Small(a3) A Circle(a3) A 7Pretty(a3) 

and produce generalizations such as 

Vx Red(x) V Big(x) ~ Pretty(x). 

The unusual aspect of inductive programs is that they go beyond their data to 

develop general beliefs from specific facts. How can we analyze this at the 

knowledge level? 
Again, let us begin by ascribing to A Q l l  the goal of printing correct definitions 

of concepts such as Pretty(x). After it has read in the training instances, we can 

ascribe to A Q l l  the knowledge that a l  is a pretty, small, red square, a2 is a big, 

black circle that is also pretty, and a3 is a small, black circle that is not pretty. Is this 

all the knowledge that A Q l l  has? 

If we answer 'yes' to this question, we are faced with a problem. The general rule 

printed by A Q l l  - -  that all big or red objects are pretty - -  is not a logical 

consequence of the training instances. Hence, according to Newell's definition of 

knowledge, A Q l l  can't know that it is true. And since A Q l l ' s  goal is to print true 

facts, it appears that by printing this general rule, A Q l l  has violated its goals. The 

knowledge level description of A Q l l  is unable to predict what rules A Q l l  will 

print out. 
We saw in the previous section that, in constructing knowledge level descriptions, 

we have considerable flexibility to ascribe alternative goals and knowledge. 

Perhaps by changing the goals and background knowledge that we ascribe to 

A Q l l ,  we will be able to predict A Q l l ' s  behavior at the knowledge level. Suppose, 

for example, that we attribute to A Q l l  the following knowledge: 

[Vx Red(x) V Big(x) D Pretty(x)] V [Vx Black(x) V Big(x) ~ Pretty(x)] 

In other words, either it is the case that all big or red things are pretty or else it is 

the case that all big or black things are pretty (or both). Now, when A Q l l  

combines this prior knowledge with its training instances, the third training instance 

conflicts with the 'big or black' rule. Consequently, A Q l l  can infer that all big or 

red things are pretty. 3 

This tactic works for this particular example, but what about some other cases? 

A Q l l  has been successfully applied in a wide variety of domains. One of its most 

famous applications (Michalski & Chilausky, 1980) involved inferring general rules 

for diagnosis of soybean diseases from specific examples. From 290 training 

instances of diseased soybean plants, A Q l l  inferred a set of rules for diagnosing 15 

3 The version space algorithm (Mitchell, 1978, 1982) provides an efficient mechanism for performing 
this kind of calculation, but over larger sets of possible hypotheses. 
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different soybean diseases. If we try to describe this at the knowledge level, we 

must attribute some background knowledge to AQ11--knowledge about soybeans_! 

In general, for every new application domain, we will have to assume that A Q l l  

starts off implicitly knowing something about that domain. This is absurd. An 

alternative view is that the knowledge 'in' A Q l l  changes over time. When A Q l l  

first begins, it knows nothing. After presentation of the training instances, A Q l l  

knows those specific facts. Then A Q l l  analyzes the training instances and makes 

an 'inductive leap' from them to a general rule. As a result of this leap, it knows 

more than it did before. The conclusion of our analysis is that this inductive 

leap - -  however it occurs - -  cannot be described as a deductive process without 

introducing ad hoc prior knowledge. 

Let us consider, for a moment,  how programs such as A Q l l  actually make these 

inductive leaps. To do this, we must leave the knowledge level and descend into the 

symbol level - -  the level of symbol structures (Newell & Simon, 1976). A Q l l  

employs the A q algorithm. Given a set of positive and negative training instances, 

A q attempts to find the maximally general description of those training instances 

that is in disjunctive normal form (DNF) with fewest disjuncts. In other words, 

A Q l l  searches for a description of the form: 

vx  v C (x) v . . .  v C (x) = P(x) 

where P(x) is the predicate to be learned [e.g., Pretty(x)], and the Ci(x) are 

individual conjunctions. The rule must correctly classify (i.e., 'cover') all of the 

positive instances as being P's, and it must not predict that any of the negative 

instances are P's. Moreover, A Q l l  seeks to minimize the number of disjuncts (Ci) 

in the rule. 
This description of Aq is a symbol level description because it refers to the 

syntactic form of the symbol structures that A q manipulates. It describes a search 

space (the space of all DNF rules), and it specifies a syntactic termination condition 

(consistent rule with fewest disjuncts). From this description, let us see how A q 

makes its inductive leaps from the training instances. 

Given the three training instances above, A q starts by considering only DNF 

rules. This is an inductive leap because it assumes that some such rule exists. It 

might be the case that it is impossible to determine whether an object is Pretty given 

only its color, size, and shape. This would be evident when the learning system 

received inconsistent training instances, such as 

Red(al) A Small(al) A Square(al) A Pretty(al) 
Red(a4) A Small(a4) A Square(a4) A --nPretty(a4). 

A q ignores this possibility and assumes that the training instances are consistent 

with some DNF rule. 
Within the space of DNF rules, there are many alternative rules consistent with 

the observed data. For example, the trivial rule 
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Vx [Red(x) A Small(x) A Square(x)] V 

[Black(x) /~ Big(x) /~ Circle(x)l = Pretty(x) (1) 

is consistent with the data and does not involve any further inductive leaps. It is the 

most specific consistent DNF rule. The rule 

Vx [Red(x)/k Small(x)] V [Black(x) A Big(x)] = Pretty(x) (2) 

is also consistent, but slightly more general, since it predicts that a big, black circle 

and a small, red square are also pretty even though the training data do not include 

these objects. Even more general than Rule 2 are the following two rules: 

Vx Red(x) V Big(x) = Pretty(x) 
Yx Red(x) V Square(x) ~ Pretty(x) 

(3) 
(4) 

These two rules are the maximally general rules with fewest disjuncts. Finally, the 

rule 

Vx Red(x) V Big(x) V Square(x) ~ Pretty(x) (5) 

is the most general possible rule consistent with the training instances, but it does 

not have the fewest disjuncts. The A q algorithm will choose either Rule 3 or Rule 4, 

since they both satisfy the criterion of being maximally general and having fewest 

disjuncts. 
To find the best rule, A q does not conduct an exhaustive search of the space but 

instead employs a kind of 'greedy' algorithm as follows. The algorithm begins by 

choosing a particular positive training instance (called the 'seed') and finding the 

set of all maximally general conjunctive rules that cover that instance and do not 

cover any of the negative instances. Note that this set of conjunctive rules usually 

does not cover all of the positive training instances. A q chooses one of these 

conjunctive rules, adds it to the 'solution rule, '  and discards the rest of them. It 

also removes from further consideration any positive instances that have been 

covered by the chosen rule. Now the process is repeated on the remaining positive 

instances. Another  seed is chosen, another  set of conjunctive rules is formed,  and 

one of them is selected to be part of the solution rule. This process continues until 

all of the positive instances have been covered. The final solution rule is the 

disjunction of the individual conjunctive rules that were selected. 4 

To see how this algorithm works in the present case, suppose that the training 

instance 

Red(al) /X SmaU(al) /k Square(al) A Pretty(al) 

4 This sketch of A q omits many important features of the algorithm. See Michalski (1969) for a 
complete description. 
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is chosen as the first seed. The set of maximally general conjunctive rules that cover, 

the seed but do not cover a negative instance is the set 

{Vx Red(x) ~ Pretty(x), Vx Square(x) D Pretty(x)}. 

A q selects one of these rules (say, the first) and places it in the solution set. All 

positive training instances covered by the rule are removed from further 

consideration. In this case, this removes the seed instance but leaves the second 

training instance 

Black(a2) A Big(a2) A Circle(a2) A Pretty(a2). 

This instance is now chosen as the seed, and the set 

{Vx Big(x) ~ Pretty(x)} 

of maximally general conjunctive rules is computed. Since this set has only one 

element, it is selected and placed in the solution set. Since no uncovered positive 
instances remain, A q prints the rule 

Vx Red(x) V Big(x) ~ Pretty(x) 

and terminates. 

It should be noted that this greedy algorithm does not always find a rule with 

fewest conjunctions. Indeed, the general covering problem is NP-complete. 

Instead, it provides an efficient algorithm that approximates the optimal rule. 

From this examination of the symbol level details of the Aq algorithm, we can see 

that A q makes its inductive leaps by assuming a syntactic form for the desired rule 

and then imposing a set of syntactic constraints on that rule. A greedy algorithm is 

employed to find a rule that satisfies (approximately) those constraints. It is not at 

all surprising that the behavior of A q cannot be described at the knowledge level as 

deductive inference. 

Utgoff & Mitchell (1982), Mitchell (198,0), and Utgoff (1984) have studied the 

criteria (such as fewest disjuncts) that inductive learning programs employ to make 

their inductive leaps. They call these criteria the 'bias' of the learning system. In 

their view, every inductive learning program is searching a space of possible rules to 
decide which rule to believe. As training instances arrive, some of the rules are 

eliminated from consideration because they are inconsistent with the data. 

However, even after eliminating all such rules, there will in general still be several 

alternative rules that are consistenf with the data (this is Gold's theorem; see Gold, 

1967). A deductive program that possessed no other knowledge aside from the 

training instances would choose the maximally specific rule, that is, the rule that 
simply summarizes the data. In our Pretty example, this rule would contain the 

disjunction of the individual training instances (see rule 1). To force the program to 
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generalize and move beyond the data, the program is given 'biases' to prefer, for 
example, maximally general rules in disjunctive normal form with fewest disjuncts 
(the bias of Aq). These biases virtually always refer to syntactic, symbol level 
properties of the rules. Here is a list of biases that have been employed in machine 
.learning programs: 

• Occam's Razor: Prefer simple concept descriptions. To apply this bias, 
simplicity is usually defined as syntactic brevity in some fixed vocabulary 
(e.g., Michalski & Larson, 1978; Quinlan, 1983). 

• Restricted language: Prefer (actually, restrict attention to) descriptions that 
can be expressed in a restricted (i.e., logically incomplete) language (e.g., 
Mitchell, 1978; Buchanan & Mitchell, 1978). 

• Conjunctive descriptions: Prefer concept descriptions expressed as conjunc- 
tions of positive literals in some fixed vocabulary. This is a variant of the 
restricted language bias in which disjunction and negation are removed from 
the language (e.g., Mitchell, 1978; Hayes-Roth & McDermott, 1978). 

• Maximally general descriptions: Prefer concept descriptions that are as 
general as possible (i.e., possess the most models). For full logical 
languages, this bias results in the program selecting the disjunction of the 
negations of all of the negative training instances. By restricting the language 
to exclude negation, this bias can be made more powerful (e.g., Michalski & 
Larson, 1978). 

• Maximally specific descriptions: Prefer concept descriptions that are as 
specific as possible (i.e., possess the fewest models). For full logical 
languages, as we have seen above, this amounts to simply listing the 
disjunction of the training instances. However, many programs apply this 
bias in combination with a restricted language or a conjunctive bias (e.g., 
Hayes-Roth & McDermott, 1978; Vere, 1975; Dietterich & Michalski, 
1981). 

• Least disjunction: Prefer concept descriptions (expressed in disjunctive 
normal form) having the fewest number of disjuncts (e.g., Michalski & 
Larson, 1978). 

• One disjunct per lesson: Prefer concept descriptions in which exactly one 
disjunct was introduced in each lesson. This bias presupposes that the 
training instances have been partitioned into a sequence of lessons 
(VanLehn, 1983). 

In order to successfully predict the behavior of learning programs at the 
knowledge level, we need to find a way to capture each of these biases in logic. 
Once we have done that, we can construct a logical argument to show how the 
general concepts learned by these systems follow as deductive consequences of 
their starting knowledge (i.e., their biases) and the training instances. 
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Furthermore, it should be emphasized that, when the biases are converted into 

logical axioms, these axioms must not refer to the internal symbol structures of the 

program. They should take the form of beliefs about the world. A knowledge level 

description always refers only to externally visible aspects of the agent, without 

regard to implementation. 5 

Unfortunately, our analysis of the Pretty case does not provide much hope that 

this formalization of bias can be accomplished. There, we saw that each new 

application of AQ 11 seemed to require ascribing new background knowledge to the 

program. Furthermore, the biases listed above all involve syntactic properties of 

the representation for concepts rather than semantic properties about the domain. 

Hence, we are drawn to the following conjecture: 

Conjecture 1 Bias conjecture. None of  the syntactic biases listed above can be 

captured as a single set of  logical axioms that can be ascribed to a learning system 

as its background knowledge. 

We do not have a proof of this conjecture, but the evidence is mounting that is 

correct. One further piece of evidence concerns the bias to prefer maximally 

specific descriptions. This is equivalent to McCarthy's circumscription operation 

(McCarthy, 1980, 1986). Circumscription can be viewed in two ways. First, it can 

be viewed as an operator that is applied to a set of sentences (e.g., training 

instances) in order to derive additional axioms. Second, it can be viewed as a 

special second-order logic assumption that is made after all of the training instances 

have been presented. In either case, it is non-monotonic, so it can not be viewed as 

a body of background knowledge possessed by the learning program. The act of 

applying the circumscription operation is precisely the act of making an unjustified 

inductive leap. 
There is one special case in which the bias conjecture is wrong (Grosof, personal 

communication). The case involves the bias to prefer only concepts that can be 

represented in a restricted language. If there are only finitely many such concepts, 

then it is possible to represent the set of all possible concepts as a giant disjunction. 

As training instances are presented to the learning program, they eliminate possible 

disjuncts until only one remains - -  the desired concept. This is how we handled the 

Pretty case above, and this approach provides a way to formalize the version space 

algorithm (which employs the restricted language bias) as a deductive process. 

However, most interesting cases (e.g., Meta -DENDRAL and LEX) involve 

restricted languages containing an infinite number of possible concept descriptions. 

So this is a very special case, indeed. 
In summary, inductive learning programs cannot, in general, be described 

successfully at the knowledge level. The knowledge that can be attributed to the 

5 It would be easy to create a 'logic program' that described the internal symbol structures of a 
learning program using logic. This would not be a knowledge level description, however. 
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system after learning exceeds the knowledge that was given to the system before 

learning. This failure of the knowledge level can be traced to a failure of logic to 

capture the kinds of syntactic biases that are employed by these learning programs. 

This concludes the review of our attempts to describe learning systems at the 

knowledge level. The next section presents an analysis of these attempts. 

4. Knowledge level learning and symbol level learning 

In the previous section, we reviewed three different kinds of machine learning 

systems and at tempted to describe their behavior at the knowledge level. For 

systems like LEX and LEX2, we discovered that their problem-solving behavior 

could be well-described at the knowledge level but their learning behavior was 

completely invisible at the knowledge level. For the second class of systems, 

deductive data base systems like MRS, we were able to describe their learning 

behavior at the knowledge level. But the third class of systems - -  inductive learning 

programs - -  could not be described successfully at the knowledge level. 

4.1 Definitions 

In order  to formalize our analysis, let us define the following two properties of AI 

systems. We will then apply these two properties to develop a taxonomy of 

different kinds of machine learning. 

Definition 1 A system is said to be deductively describable at the knowledge 

level if  its behavior can be captured (and predicted) as deductive inference over a 

set of  sentences that do not refer to symbol level entities. 

According to our analysis, programs such as LEX and LEX2 and programs such 

as MRS are deductively describable at the knowledge level. Programs such as 

A Q l l  and ID3 are not. 

Definition 2 A system is said to exhibit knowledge level learning (KLL) if it 

exhibits a positive change in its knowledge level description over time. In other 

words, suppose we observe a system at time T1 and attribute to it knowledge K~. A t  

some later time T2, suppose we observe the system again and attribute knowledge 

g2. I f  K2 > K1, then we say that the system has learned at the knowledge level. 

The notation K2 > K1 requires some discussion. To determine whether K2 > K~, 

consider every sentence s whose truth value can be inferred from K1. If K2 > Kl, 

the truth values of all such sentences s must also be inferrable from K2 and, 

fur thermore,  there must exist at least one additional sentence, s ' ,  whose truth value 

can not be inferred from K 1 but can be inferred from K2. In the terminology of 
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Greiner and Genesereth (1983), s' is a novel fact. This definition allows the truth 

value of a sentence to change over time. Hence,  the learning system can hold 

mistaken beliefs and later correct them as long as some new belief is also held. This 

condition excludes unmotivated mind changes. 

The definition of KLL also excludes other changes in knowledge level description 

such as forgetting (K1 > g2) and noncumulative knowledge shifts (K1 and /(2 

incomparable). From this definition, we can conclude that systems in the second 

and third classes (MRS-like systems and AQl l - l ike  systems) exhibit knowledge 

level learning. 
The relationship between these two definitions is shown in Figure 1. The set of 

deductively describable systems partially intersects the set of knowledge level 

learning systems. This intersection contains exactly the deductive database systems 

such as MRS. They learn because knowledge flows into them from some external 

source - -  this is the only way that a deductive system can exhibit a knowledge 

increase. Without external inputs, a deductive system has no source of novelty - -  it 

can only spend its time computing the consequences of what it already (implicitly) 

knows. 
Based on Definitions 1 and 2, we can give reasonable names to these three classes 

of learning systems. We call the first class (LEX-like systems) symbol level learning 

(SLL) systems, because their learning behavior is apparent only at the symbol 

level. 

Definition 3 Symbol level learning is improvement in computational performance 
that yields no change in the knowledge level description of  the system. 

The second class (MRS-like systems), we call deductive knowledge level learning 
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(DKLL) systems, because they are deductively describable but still exhibit 
knowledge level learning. These systems can be viewed equivalently as symbol 
level learning systems that also receive inputs from some external source of 

knowledge. 

Definition 4 Deductive knowledge level learning is knowledge level learning that 

is deductively describable at the knowledge level. 

Finally, we call the third class (which includes AQ11, ID3, and other inductive 
learning programs) nondeductive knowledge level learning (NKLL) systems. 

Definition 5 Nondeductive knowledge level learning is knowledge level learning 
that cannot be described at the knowledge level. 

One pleasing aspect of these definitions is that they formalize the intuition that 
there are two very different kinds of learning: learning that improves performance 
and learning that acquires new knowledge. For many years there has been some 

controversy about how 'learning' should best be defined. The majority of workers 

in machine learning subscribed to the following 'improved performance' definition 
(Simon, 1983): 

Learning denotes changes in the system that are adaptive in the sense that they 
enable the system to do the same task or tasks drawn from the same population 
more efficiently and more effectively the next time. 

This definition was always intended to include both SLL and KLL. The feeling 

was that performance could be 'improved' either by improving the efficiency with 
which existing knowledge was used or by acquiring new knowledge (see, for 

example, Dietterich, London, Clarkson, & Dromey, 1982). However, Simon 
termed his definition 'only partially satisfactory,' and other researchers (e.g., 
Scott, 1983) have criticized it for excluding important kinds of learning. In 
particular, the improved performance definition requires that there exist some 

performance task by which the improvement can be measured. Learning in the 
absence of a specific performance task is not true learning according to this 
definition. In retrospect, we can see that this was all a maneuver to avoid talking 
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about knowledge. By defining knowledge in terms of problem-solving performance, 

it was possible to convert 'acquisition of knowledge' into 'improvement of 
performance.' Newell's clarification of the knowledge level eliminates the need for 

this dodge. We can now come right out and say it: one kind of learning is the 
acquisition of knowledge. 

4.2 Discussion 

There are several interesting issues raised by this classification of learning systems. 
In this section, we discuss three of them. 

First, the category assigned to a particular learning system may change 

depending on where the 'system boundary' is placed. For example, some readers 
may be surprised to see that a system such as LEX is considered to be a symbol 
level learning system. After all, LEX employs inductive inference to learn its 

heuristics, and inductive inference clearly involves NKLL. The difficulty that this 
example points out is that, in performing knowledge level analysis, one must be 

very careful to draw the boundaries of the system being analyzed. In our 
discussions so far, we have talked about the LEX system as a whole. LEX contains, 

as a subpart, the problem solver, which already knows how to solve symbolic 

integration problems. However, LEX also contains other components, including 
the critic, the generalizer, and a set of heuristic rules that encode knowledge of 
when it is advisable to apply various integration operators. 

When the problem solver attacks a problem, it does not simply print the answer. 

It also tells the critic and generalizer how the solution was found by providing them 
with the search tree. The critic and generalizer analyze this information to extract 

training examples and then inductively generalize those examples to form 

heuristics. Hence, if we redraw the system boundary (see Figure 2) so that we are 
analyzing only the knowledge 'located' in the critic-plus-generalizer-plus-heuris- 

tics, we see that it increases over time. As LEX runs, knowledge contained in the 

problem solver is converted, via inductive inference, into knowledge contained in 
the heuristic rules. Hence, the critic-plus-generalizer-plus-heuristics part of LEX is 
performing NKLL. 

When the LEX system is viewed as a whole, however, its net knowledge has not 
changed. The knowledge that was already known to the problem solver has simply 
been re-represented in the form of heuristic rules that lead to more efficient 
problem solving. Hence, as a whole, LEX is a SLL system. Indeed, the fact that 
LEX already knows how to perform symbolic integration explains why LEX2 is 
able to apply deductive techniques to acquire the same knowledge as LEX. In 
LEX2, the knowledge implicit in the problem solver is made explicit and then 

transformed via constraint back-propagation to yield heuristic rules. This method 
of 'knowledge transfer' is more efficient than the inductive inference technique 
employed in LEX. 

The second issue raised by the knowledge-level/symbol-level distinction is the 
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problem of improving a resource-limited computation. Consider again the example 

of the ideal chess player. Once this chess player is told the rules of chess, he or she 

l~nows how to play the game perfectly. When we tell an ordinary person (or 
computer program) the rules of chess, on the other hand, they play miserably, 

because they do not have infinite space and time resources. Hence, the knowledge 

level prediction - -  based on viewing people and computer programs as ideal 
agents - -  fails totally. 

What happens when we try to do a knowledge level analysis of the process by 

which a grand master [or a program along the lines of Samuel's (1959) checkers 
player] learns how to play chess? The conclusion is the same as it was for LEX - -  the 
grand master is performing symbol level learning. This is very unsatisfying, because 

we know that grand masters spend years learning how to play chess. They certainly 

seem to know more than novices who merely know the rules. We would like to 
have a knowledge level analysis that showed the grand masters acquiring more 
knowledge through study. 

Again, the solution is to subdivide the grand master into two systems. The first 

system knows the rules of the game, and it is capable of conducting an exhaustive 

look-ahead search that in principle could determine the perfect game. The second 
system is a large knowledge base of chunks for recognizing good and bad board 

positions (see Chase & Simon, 1973). It is this second knowledge base that is 

growing as the grand master learns. This second system is performing knowledge 
level learning. 

The third issue that arises when we consider the definition of knowledge level 

learning concerns the question of whether it is possible to have knowledge level 
learning without any inputs from the environment. We know that for deductively 
describable systems, such as MRS, input from the environment is required for 

knowledge level learning. Furthermore, all of the examples of nondeductive KLL 
systems that we have seen thus far have received training examples from the 
environment. However, the following example demonstrates that input is not 
needed for NKLL. 

Consider the (imaginary) system HL (for hash learner). HL runs in the following 
loop. First, it generates a string of random bits (i.e., a 'hash'). Then, it attempts to 
interpret this bit string as a sentence in logic. If the bit string does not yield a well- 

formed logical sentence, it is discarded. Otherwise, the sentence is checked to see if 
it is consistent with everything else that the system knows thus far. If so, then it is 

added to the knowledge base. Otherwise, it is discarded. Then another hash is 
generated, and the loop repeats. 

HL is a nondeductive knowledge level learning system. As it runs, its knowledge 

increases, yet it is very unlikely that we could construct a deductive description of 
its behavior. After all, it operates by generating random facts and then believing 
them if they are consistent. Yet, HL does not require any input from the 
environment. Hence, HL demonstrates that input is not required for NKLL. 

HL is an imaginary system, yet the AM system (Lenat & Brown, 1984) shares 
many of its properties. AM receives no input from its environment, but it 
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constructs (by a process of heuristically guided mutation and combination) a large 

system of mathematical concepts. AM knows more when it finishes than it does 
when it starts. 

5. Prospects for theories of learning 

Now that we have developed the notions of knowledge level learning and symbol 

level learning, we consider the implications of these definitions for the construc- 

tion of coherent theories of learning. 

What is an AI theory of learning? An AI theory is a theory of methods. It 

describes a space of possible methods and shows where existing methods fall in that 

space. The theory should also tell us something about the structure of the space: 

What are the trade-offs? What are the fundamental limitations? A theory of 

learning should tell us how to design learning systems that meet specific 

requirements. Ideally, the theory should also allow us to estimate the performance 

of such learning programs without having to construct them. 

We being by considering one possibility for developing a theory of symbol level 

learning. Then we take up the question of knowledge level learning and discuss 

research directions that may help us find a theory of KLL. 

5.1 Theories of symbol level learning 

As we have seen above, the goal of a symbol level learning system is to improve its 

performance without changing the knowledge level view of the system. In other 

words, SLL is correctness-preserving program improvement. Hence, a theory of 

SLL will be a theory of methods for transforming inefficient programs into efficient 

o n e s .  

The prospects for developing such a theory are excellent. Research in automatic 

programming (e.g., Green, Luckham, Balzer, Cheatham, & Rich, 1983) has 

catalogued a large variety of correctness-preserving program transformation 

techniques. The remainder of this section sketches one approach to unifying all of 

these techniques based on the notion of 'test incorporation.' Further details are 

presented in Bennett and Dietterich (1986). The fundamental idea is to view all 

problem solving programs as improvements upon a 'naive' generate-and-test 

problem solver. This 'naive' problem solver consists of two modules: a generator, 
which generates data objects representing candidate solutions, and a test, which 

evaluates these data objects and returns true or false depending on whether or not 

they are solutions. For any well-structured problem, such a generate-and-test 

problem solver can be constructed. The generator need only generate a superset of 

the possible solutions. The test contains the information sufficient to recognize 

correct solutions and filter out incorrect solutions. 

The fundamental claim of the 'test incorporation' theory is that all improve- 
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ments to such a generate-and-test problem solver consist of 'incorporating' 

portions of the test into the generator so that each candidate solution produced by 

tke generator is guaranteed to satisfy the 'incorporated' parts of the test. In some 

sense, the test contains additional knowledge about the solutions to our problem 
that is not already contained in the generator. 

• For example, consider the problem of sorting a list of numbers. A naive 

generator for this problem might work by enumerating all possible permutations of 

the list of numbers, and the test would then check these permutations to see if one 

of them happened to have the numbers in ascending order. This problem solver 

could be improved by incorporating parts of the test into the generator. For 

example, suppose that the test has the form 

Sorted(p) ¢> (Vi p[1] -< p[i]) A Sorted(rest(p)) 

where p is a list whose elements can either be accessed by index (e.g., p[i]) or by the 

function rest(p) which returns the sublist of elements 2 through n. 

The first part of the test says that p[1] --< p[i]. We could incorporate this into the 

generator by first computing the smallest element in the list and then generating all 

possible permutations for the remainder of the list. This incorporation will speed up 

the problem solver substantially. Indeed, if we apply this same incorporation 

recursively to each subproblem, we arrive at the selection sort algorithm. 

In AI, similar methods have been employed in the design of expert problem- 

solving systems. Consider, for example, the Dendral system (Lindsay, Buchanan, 

Feigenbaum, & Lederberg, 1980). The goal of Dendral is to find the molecular 

structure of an unknown molecule by analyzing the mass spectrum for that 

molecule. If we were to solve this problem by direct generate-and-test, we might 

proceed as follows. First, we would construct a generator of all possible molecular 

structures. Then, we would build a test that could test these molecular structures to 

see if they matched the observed spectrum. This would be accomplished by 

simulating what would happen to each candidate structure when it is placed in the 

mass spectrometer. The simulated spectrum could then be matched to the actual 

observed spectrum. This is basically how Dendral works - -  except for one 

important difference. Before running the generate-and-test part of Dendral, the 

spectrum is analyzed, and a list of constraints is extracted to guide the generator. 

For example, based on an analysis of the spectrum, it might be possible to deter- 

mine that the molecule cannot contain any N H  3 groups. This constraint can be 

incorporated into the generator so that no molecular structures containing NH3 are 

generated. Indeed, the most important feature of the generator (which is called 

CONGEN, for constrained generator) is that it can accept and incorporate a wide 

variety of constraints. 

A second claim of the test incorporation theory is that there is a small set of basic 
incorporation techniques. The correctness of this claim has not yet been demon- 

-strated, but some work has been done on systemizing incorporation techniques. 

For example, Tappel (1980) describes the method called constrain component: 
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Constrain Component: Suppose the generator generates composite objects (e.g., 

sets, sequences, tuples) of type X that contain a subcomponent C. If the test 

contains a predicate P(C), then that predicate can be incorporated by modifyirig 

the generator so that it tests P(C) prior to combining the subcomponents 

together to produce a composite component X. In effect, we want to find the 

subgenerator for subcomponent C and move P from the global test into the loc~il 

test for this subgenerator. 

In the sorting example above, we applied this method to constrain p[1] prior to 

combining it with rest(p). 
Tappel distinguishes between simple constraints (simple predictates that make 

up part of the test) and other types of test information such as ordering constraints 

and mapping constraints. To quote Tappel: 'To incorporate a [simple] constraint 

means to modify the generator so that it only generates items which already satisfy 

the constraint; to incorporate an ordering means to modify the generator so it 

generates elements directly in that order; and to incorporate a mapping f means to 

generate elements f(x) instead of elements x.' For each of these kinds of test 

information, Tappel has identified a small number of incorporation methods. 

Similarly, Mostow (1983) shows how different parts of the test can be 

incorporated in various ways into the generator. In his problem solver, the 

generator has the form of a path-extending heuristic search. In other words, it 

constructs candidate solutions (which are represented as paths through a graph) 

incrementally by extending partial paths under heuristic guidance. For such 

generators, there are two key points at which test information can be incorporated. 

Test information can be applied as early as possible to eliminate partial solutions 

that can never be extended to form legal complete solutions, and test information 

can be applied to guide the problem solver to consider more promising partial 

solutions first. Mostow's program BAR identifies parts of the test that constitute 

monotonically necessary conditions - -  that is, conditions that must hold on every 

partial path of a solution in order for it to be a legal solution. These conditions are 

incorporated into the generator to prune partial paths. BAR also identifies 

monotonically sufficient conditions - -  that is, conditions that, if they hold for a 
partial path, guarantee that the partial path can be extended into a legal solution 

path. These conditions can be incorporated as ordering heuristics that tell the 

generator which partial solutions to work on first. 

In our discussion thus far, we have focused on problems where a naive generate- 

and-test method could be completely specified. This corresponds to the standard 

symbol level learning situation. There are many problems, however, where this 
cannot be done. In these cases, while it is always possible to develop a generator 

that will eventually generate the correct solution, it is not always possible to 

develop a test that will recognize it. Often, it is a matter of waiting for additional 

information from the environment (e.g., in response to questions, as a result of 

observations, experiments, etc.) that will eventually provide enough constraint to' 

determine whether a candidate solution is correct. This corresponds to the 
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deductive knowledge level learning situation. The need to accept information from 

the environment has important implications for how we go about improving the 

performance of such systems. 
For simple, well-structured problems, where the complete generate-and-test 

problem solver can be specified, it is reasonable to consider a 'compilation' 

approach to symbol level learning. In this approach, a compiler operates on the 
generate-and-test problem solver to convert it into a much more efficient, but 
equivalent, problem solver. If the test is only partially known, however, this will 

not do. Any parts of the test that are known can be incorporated, but then the 
'compiler' must wait for the rest of the test to become available. When the 
additional test information arrives, the 'compiler' must then incorporate it into the 

generator. This is called 'run-time incorporation,' because incorporation is 

delayed until the problem solver is already executing. Indeed, the distinction 
between the problem solver and the compiler is very difficult to draw in these 

situations. 

For example, consider the MYCIN system. In MYCIN, the goal is to diagnose 
the disease of the patient. However, the specific information about the patient is 
unavailable when MYCIN begins to run. If the naive generate-and-test version of 

MYCIN had been constructed, it might operate as follows. The naive generator 

would generate pairs consisting of patient descriptions with associated diagnoses. 
The patient descriptions would then be submitted to the environment (i.e., the 

physician), who would decide whether the given patient description matched the 

description of the real patient. A much more efficient approach, of course, is to ask 
the physician for the description of the patient, and then incorporate this 
description into the generator, so that it only considers diagnoses that are 
consistent with the given patient description. 

Another example of run-time incorporation is the technique of constraint 
propagation employed in EL (Stallman & Sussman, 1977) and similar systems 

(e.g., Sussman & Steele, 1980; Gosling, 1983; Dietterich, 1984). In these systems, 

the task is to label the nodes of a network with values that satisfy a set of constraints 
(which reside on the arcs of the network). Rather than generating possible labelings 

and then testing them against the arc constraints, these systems take the labels 
given for one or more starting nodes and dynamically incorporate the arc 

constraints to compute legel labels for other nodes. 
In summary, the theory of test incorporation provides a theory of symbol level 

learning by showing how all kinds of program improvement can be accomplished 

through incorporation of test information into the generator. The notion of run- 
time incorporation extends this theory to encompass deductive knowledge level 

learning, which, as we have seen above, is simply a matter of providing a symbol 
level learning system with input from the environment. 

We close this section by reconsidering the LEX2 system. How can LEX2 be 
.viewed as performing test incorporation? Keller (1983) presents the case in some 
detail. The generator in LEX2 generates sequences of operator applications, and 
the test determines whether these sequences yield a solved integration problem. 
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The learning system modifies LEX2 by propagating the test information backward 

through a given operator sequence to determine a predicate that can be applied at 

the start of the sequence to decide whether the sequence will yield a solved 

problem. This is very similar to the methods employed by Mostow to improve the 

performance of his heuristic search problem solver. Many symbol level learnir~g 

systems (e.g., Fikes, Hart, & Nilsson, 1972; Mooney & DeJong, 1985; Ellman, 

1985; Mahadevan, 1985) employ similar techniques. 

5.2 Theories of knowledge level learning 

The task of constructing a theory of nondeductive knowledge level learning 

(NKLL) is much more difficult than it is for symbol level learning (and deductive 

knowledge level learning). The chief difficulty is that we lack a good normative 

model of NKLL. A normative model is one that specifies the behavior of an 'ideal' 

learning system. For symbol level learning, the ideal learner improves the 

performance of the system as much as possible without changing its knowledge 

level description. Given this model, it is easy (at least in principle) to evaluate any 

proposed method of symbol level learning to determine whether it is correct and 

effective. Moreover, when we analyze symbol level learning systems, we can 

consider the knowledge level and symbol level independently, because the symbol 

level is not supposed to affect the knowledge level. 

For NKLL, however, the situation is much more difficult. In NKLL, the 

knowledge level description of the system changes in a way that cannot be 

predicted at the knowledge level. It is only by considering the symbol level that one 

can predict the behavior of NKLL programs. The symbol level 'shows through' to 

the knowledge level, and the two levels cannot be considered independently. 

Hence, in evaluating and comparing NKLL systems, we must examine symbol level 

architectures, control schemes, representation methods, and vocabularies. We can 

not obtain any benefit from the convenient level of abstraction provided by the 

knowledge level. 
There are two basic methods for dealing with this fundamental difficulty. One 

approach is to attempt to construct a normative model of NKLL that does not refer 

to the symbol level. Perhaps such a model can be constructed based on a different 

notion of the ideal rational agent. Could we modify the purely deductive ideal 
rational agent so that it included a model of rational plausible reasoning? Such an 

ideal agent would always believe the hypothesis that was most plausible with 

respect to the given data. 
The other method is to cease the search for a general theory of NKLL and 

instead focus on the development of induction methods that appear to give good 

results in practice. This has been the approach pursued within the AI machine 

learning community. Let us consider each of these approaches in turn. 
The development of a model of an ideal rational agent that incorporates 

plausible reasoning appears to be very difficult. The best tool that we have is 
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probability theory, but it is difficult to see how to assign probabilities without 
Ieference to symbol level entities. The notions of sample space and event space 
require that a particular representation and vocabulary have already been 
specified. Further study of the foundations of probability may provide some other 

,ways of applying probabilistic methods to the problem of characterizing rational 

behavior. 
Theoretical work in inductive inference has developed some more limited 

models of ideal learning behavior [see Angluin & Smith (1982) for an excellent 

review]. Gold (1967) proposed the criterion of identification in the limit. This 
criterion states that, given enough training instances, the learning system should 

eventually converge on the correct theory (i.e., concept, language, etc.). This is 
certainly an important criterion, but it does not completely characterize the ideal 
learning system. In particular, it is easy to construct learning algorithms that satisfy 

this criterion and yet lack many other important properties. For example, it is also 
desirable that the learning system converge after seeing as few training instances as 
possible. The diFfficulty with these convergence-based norms is that they emphasize 

the long-term correctness of the learning process without considering the path that 
is taken prior to convergence. For practical learning systems, limiting behavior is 
virtually irrelevant. The important question is how good are the current hypotheses 
of the learning system given the data that have been seen so far? This brings us back 
to the notion of plausibility. We would like our learning system always to propose 

the hypothesis that is most plausible with respect to the observed data. 

In the absence of a theory of plausible reasoning, perhaps the best that can be 
done is to investigate learning systems that perform well in practice. As we have 

discussed above, this amounts to experimenting with different biases to see which 
ones perform well in particular domains, with particular vocabularies, and so on. 
Several different avenues of research are currently being pursued. 

One line of research focuses on studying the computational properties of various 
architectures and exploiting their constraints to provide biases (Genesereth, 1980). 
This is the approach of the connectionist learning theorists (e.g., Hinton, 
Sejnowski, & Ackley, 1984) and also of the SOAR group (Rosenbloom, Laird, 
Newell, Golding, & Unruh, 1985). The problem with this approach, of course, is 
that the space of interesting architectures is very large, and any particular set of 
architectural constraints appears arbitrary. 

A second line of research, exemplified by Utgoff (1984), is to explore techniques 
for incremental recovery from overly strong biases. If we can find methods for 
gradually relaxing the biases of learning programs, then we can start those 

programs with very strong biases without too much concern for the errors that will 
arise. 

A third approach is to study the role of vocabulary choice in learning systems 
(see, e.g., Lenat & Brown, 1984; Flann & Dietterich, 1985, 1986). Given a specific 
learning problem, how can we choose the vocabulary so that the learning is made 
easy? In current induction systems, a great deal of vocabulary engineering takes 
place behind the scenes. We need to study this phenomenon and try to extract some 
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principles. Are our vocabulary engineers relying on their own knowledge of the 

'right answer' to guide their choices? 

Finally, an important direction being pursued is to search for other sources of 

constraint that can decrease our reliance on biases. Systems that can intelligently 

select their own training instances or construct fruitful experiments show promise 

of being much more effective learning systems (e.g., Dietterich, 1984). Rather than 

relying on biases to make wild inductive leaps, these systems can gather enough 

data to make less radical guesses. 

6. Summary and concluding remarks 

In this paper we have attempted to extend Newell's analysis of the knowledge level 

to include learning systems as well as basic problem-solving systems. Based on this 

analysis, we drew the following conclusions: 

• The knowledge level provides a useful way of classifying learning systems 

into symbol level learning systems and knowledge level learning systems. 

• Symbol level learning systems do not exhibit any change at the knowledge 

level. 
• Knowledge level learning systems exhibit an increase in their knowledge at 

the knowledge level. 

• Some KLL systems - -  deductive KLL - -  can be described at the knowledge 

level in terms of knowledge flowing in from the environment. 

• Other KLL systems - -  nondeductive KLL - -  cannot be so described. It is 

necessary to examine the symbol level of such systems in order to predict or 

explain their behavior. 

• A theory of symbol level learning can be developed based on the test 

incorporation theory of problem-solver improvement. 

• A theory of nondeductive knowledge level learning appears to be difficult to 

develop, because we lack a normative model of plausible reasoning. 

Acknowledgments 

I wish to thank Allen Newell, James Bennett, and Pat Langley for reading earlier 
drafts of this paper and providing many helpful comments. I also wish to thank 

Benjamin Grosof for showing me his proof that the version space algorithm can be 

described deductively. Other people who have read and commented on earlier 

drafts include Nicholas Flann, Colin Gerety, Dennis Kibler, John Laird, and Jeff 

Shrager. This research was supported in part by a grant from the National Science 

Foundation (grant DMC-8514949). 



LEARNING AT THE KNOWLEDGE LEVEL 313 

References 

Angluin, D., & Smith, C.H. (1982). A survey of inductive inference: Theory and methods (Technical 
Report 250). New Haven, CT: Yale University, Department of Computer Science. 

Araya, A. (1984). Learning problem classes by means of experimentation and generalization. 
• Proceedings of the National Conference on Artificial lntellgience (pp. 11 - 15). Austin, TX: Morgan- 

Kaufmann. 
Bennett, J.S., & Dietterich, T.G. (1986). The test incorporation hypothesis and the weak methods 

(Technical Report 86-30-4). Corvallis, OR: Oregon State University, Department of Computer 

Science. 
Buchanan, B.G., & Mitchell, T.M. (1978). Model-directed learning of production rules. In D.A. 

Waterman & F. Hayes-Roth (Eds.), Pattern-directed h~ference systems (pp. 297-312). New York: 

Academic Press. 
Chase, W., & Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81. 
Dietterich, T.G, (1984). Constraint propagation techniques for theory-driven data interpretation 

(Technical Report STAN-CS-84-1030). Stanford, CA: Stanford University, Department of Computer 

Science. 
Dietterich, T.G., London, R.L., Clarkson, K., & Dromey, G. (1982). Learning and inductive inference 

(Technical Report STAN-CS-82-913). Stanford, CA: Stanford University, Department of 
Computer Science. In P.R. Cohen & E.A. Feigenbaum (Eds.), The handbook of artificial intelligence 
(Vol. 3). Los Altos, CA: William Kaufmann. 

Dietterich, T.G., & Michalski, R.S. (1981). Inductive learning of structural descriptions: Evaluation 
criteria and comparative review of selected methods. Artificial Intelligence, 16, 257-294. 

Ellman, T. (1985). Generalizing logic circuit designs by analyzing proofs of correctness. Proceedings of 

the Ninth International Conference on Artificial Intelligence. Los Angeles, CA: Morgan-Kaufmann. 
Fikes, R.E., Hart, P.E., & Nilsson, N.J. (1972). Learning and executing generalized robot plans. 

Artificial Intelligence, 3, 251-288. 

Flann, N.S., & Dietterich, T.G. (1985). Exploiting functional vocabularies to learn structural 
descriptions. Proceedings of the Third International Workshop on Machine Learning (pp. 41-43). 
New Brunswick, N J: Rutgers University, Department of Computer Science. 

Flann, N.S., & Dietterich, T.G. (1986). Selecting appropriate representations for learning from 

examples (Technical Report 86-30-5). Corvallis, OR: Oregon State University, Department of 
Computer Science. 

Genesereth, M.R. (1980). Models and metaphors. Proceedings of the National Conference on Artificial 
Intelligence (pp. 208-211). Stanford, CA: Morgan-Kaufmann. 

Gold, E. (1967). Language identification in the limit. Information and Control, 16, 447-474. 
Gosling, J. (1983). Algebraic constraints. Doctoral dissertation, Department of Computer Science, 

Carnegie-Mellon University, Pittsburgh, PA. 
Green, C., Luckham, D., Balzer, R., Cheatham, T., & Rich, C. (1983). Report on a knowledge-based 

software assistant (Technical Report KES.U.83.2). Palo Alto, CA: Kestrel Institute. 
Greiner, R., & Genesereth, M.R. (1983). What's new? A semantic definition of novelty. Proceedings of 

the Eighth International Conference on Artificial Intelligence (pp. 450-454). Karlsruhe, FRG: Morgan- 
Kaufmann. 

Halpern, J.¥.,  & Moses, ¥.  (1985). A guide to the modal logics of knowledge and belief: Preliminary 
draft. Proceedings of  the Ninth International Conference on Artificial Intelligence (pp. 480-490). Los 
Angeles, CA: Morgan-Kaufmann. 

Hayes-Roth, F., & McDermott, J. (1978). An interference matching technique for inducing 
abstractions. Communications of the ACM, 26, 401-410. 

Hintikka, J. (1962). Knowledge and belief. Ithaca, NY: Cornell University Press. 
,Hinton, G.E., Sejnowski, T.J., & Ackley, D.H. (1984). Boltzmann machines: Constraint satisfaction 

networks that learn (Technical Report CMU-CS-84-119). Pittsburgh, PA: Carnegie-Mellon 
University, Department of Computer Science. 



314 T.G. DIETrERICH 

Keller, R.M. (1983). Learning by re-expressing concepts for efficient recognition. Proceedings of  the 

National Conference on Artificial Intelligence (pp. 182-186).Karlsruhe, FRG: Morgan-Kaufmann. 
Kibler, D., & Porter, B. (1983). Episodic learning. Proceedings of  the National Conference on Artificial 

Intelligence (pp. 191-196). Karlsruhe, FRG: Morgan-Kaufmann. 
Langley, P. (1983). Learning effective search heuristics. Proceedings of the Eighth International Joint 

Conference on Artificial Intelligence (pp. 419-421). Karlsruhe, FRG: Morgan-Kaufmann. 

Lenat, D.B., & Brown, J.S. (1984). Why AM and EURISKO appear to work. Artificial Intelligence, 

23, 269-294. 
Lindsay, R.K., Buchanan, B.G., Feigenbaum, E.A., & Lederberg, J. (1980). Applications of  artificial 

intelligence for organic chemistry: The DENDRAL project. New York: McGraw-Hill. 
Mahadevan, S. (1985). Verification-based learning: A generalization strategy for inferring problem- 

reduction methods. Proceedings of  the Ninth International Conference on Artificial Intelligence 

(pp. 616-623). Los Angeles, CA: Morgan-Kaufmann. 
McCarthy, J. (1958). Programs with common sense. Proceedings of  the Symposium on the 

Mechanization of Thought Processes, Vol. 1 (pp. 77-84). National Physical Laboratory. [Reprinted in 
M.L. Minsky (Ed.). (1968). Semantic information processing. Cambridge, MA: MIT Press.] 

McCarthy, J. (1980). Circumscription--a form of non-monotonic reasoning. Artificial Intelligence, 13, 

27-39. 
McCarthy, J. (1986). Applications of circumscription to formalizing common sense knowledge. Artificial 

Intelligence, 28, 89-116. 
Michalski, R.S. (1969). On the quasi-minimal solution of the general covering problem. Proceedings of  

the Fifth International Federation on Automatic Control, 27 (pp. 109-129). 
Michalski, R.S., & Chilausky, R.L. (1980). Learning by being told and learning from examples: An 

experimental comparison of the two methods of knowledge acquisition in the context of developing an 
expert system for soybean disease diagnosis. International Journal of Policy Analysis and Information 

Systems, 4, 125-161. 
Michalski, R.S., & Larson, J.B. (1978). Selection of most representative training examples and 

incremental generation of VL1 hypotheses: The underlying methodology and the description of 
programs ESEL and A Ql l  (Technical Report 867). Urbana, IL: University of Illinois, Department of 

Computer Science. 
Mitchell, T.M. (1978). Version spaces: An approach to concept learning (Technical Report STAN-CS- 

78-711). Stanford, CA: Stanford University, Department of Computer Science. 
Mitchell, T.M. (1980). The need for biases in learning generalizations (Technical Report CBM-TR-117). 

New Brunswick, NJ: Rutgers University, Department of Computer Science. 
Mitchell, T.M. (1982). Generalization as search. Artificial Intelligence, 18, 202-226. 
Mitchell, T.M. (1983) Learning and problem solving. Proceedings of  the Eighth International Joint 

Conference on Artificial Intelligence (pp. 1139-1151). Karlsruhe, FRG: Morgan-Kaufmann. 
Mitchell, T.M., Utgoff, P.E., & Banerji, R. (1983). Learning by experimentation: Acquiring and 

refining problem-solving heuristics. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), 
Machine learning. Los Altos, CA: Morgan-Kaufmann. 

Mooney, R., & DeJong, G. (1985). Learning schemata for natural language processing. Proceedings of  
the Ninth International Joint Conference on Artificial Intelligence (pp. 681-687). Los Angeles, CA: 

Morgan-Kaufmann. 
Mostow, D.J. (1983). Machine transformation of advice into a heuristic search procedure. In R.S., 

Micfialski, J.G., Carbonell, & T.M. Mitchell, (Eds.), Machine learning: An artificial intelligence 
approach. Los Altos, CA: Morgan-Kaufmann. 

Newell, A. (1981). The knowledge level. AI  Magazine, 2, 1-20. 
NeweU, A., & Simon, H.A. (1976). Computer science as empirical inquiry: Symbols and search. 

Communications of  the ACM, 19, 113-126. 
Quinlan, J.R. (1983). Learning efficient classification procedures and their application to chess end 

games. In R.S. Michalski, T.M. Mitchell, & J. G. Carbonell (Eds.), Machine learning: An artificial" 

intelligence approach. Los Altos, CA: Morgan-Kaufmann. 



LEARNING AT THE KNOWLEDGE LEVEL 315 

Rosenbloom, P.S., Laird, J.E., Newell, A., Golding, A., & Unruh, A. (1985). Current research on 
learning in SOAR. Proceedings of the Third International Machine Learning Workshop. New 
Brunswick, NJ: Rutgers University, Department of Computer Science. 

Russell, S. (1985). The compleat guide to MRS (Technical Report KSL-85-12). Stanford, CA: Stanford 
University, Department of Computer Science. 

-Samuel, A.L. (1959). Some studies of machine learning using the game of checkers. IBM Journal of 
Research and Development, 3, 220-229. 

Scott, P.D. (1983). Learning: The construction of a posteriori knowledge structures. Proceedings of the 

National Conference on Artificial Intelligence (pp. 359-363). Karlsruhe, FRG: Morgan-Kaufmann. 
Simon, H.A. (1983). Why should machines learn? In R.S. Michalski, T.M. Mitchell, & J.G. Carbonell 

(Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan-Kaufmann. 
Stallman, R.M., & Sussman, G.J. (1977). Forward reasoning and dependency-directed backtracking in 

a system for computer-aided circuit analysis. Artificial Intelligence, 9, 135-196. 

Sussman, G.J., & Steele, G.L., Jr. (1980). CONSTRAINTS-A language for expressing almost 
hierarchical descriptions. Arti1~cial Intelligence, 14,, 1-39. 

Tappel, S. (1980). Some algorithm design methods. Proceedings of the National Conference on Artificial 
Intelligence (pp. 64-67). Stanford, CA: Morgan-Kaufmann. 

Utgoff, P.E. (198,4). Shift of bias for inductive concept learning. Doctoral dissertation, Department of 
Computer Science, Rutgers University, New Brunswick, NJ. 

Utgoff, P.E., & Mitchell, T.M. (1982). Acquisition of appropriate bias for inductive concept learning. 
Proceedings of the National Conference on Artificial Intelligence (pp. 414-417). Pittsburgh, PA: 
Morgan-Kaufmann. 

VanLehn, K. (1983). Felicity conditions for human skill acquisition: Validating an Al-based theory 
(Technical Report CIS-21). Palo Alto, CA: Xerox Palo Alto Research Center. 

Vere, S.A. (1975). Induction of concepts in the predicate calculus. Proceedings of the Fourth 

International Conference on Artificial Intelligence (pp. 281-287). Tbilisi, USSR: Morgan-Kaufmann. 


