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Learning Attack Strategies from Intrusion Alerts

Abstract

Understanding the strategies of attacks is crucial for security applications such as computer and network

forensics, intrusion response, and prevention of future attacks. Though time-consuming and error-prone,

manual analysis has been the dominant way to learn attack strategies from intrusion alerts. This paper

presents techniques to automatically learn attack strategies from intrusion alerts. Central to these techniques

is a model that represents an attack strategy as a graph of attacks with constraints on the attack attributes and

the temporal order among these attacks. To learn the intrusion strategy is then to extract such a graph from a

sequences of intrusion alerts. To further facilitate the analysis of attack strategies, which is essential to many

security applications such as computer and network forensics and incident handling, this paper presents

techniques to measure the similarity between attack strategies. The basic idea is to reduces the similarity

measurement of attack strategies into error-tolerant graph isomorphism problem, and measures the similarity

between attack strategies in terms of the cost to transform one strategy into another. Finally, this paper

presents some experimental results, which demonstrate the potential of the aforementioned techniques.

1 Introduction

It has become a well-known problem that current intrusion detection systems (IDSs) produce large volumes of

alerts, including both actual and false alerts. As the network performance improves and more network-based

applications are being introduced, the IDSs are generating increasingly overwhelming alerts. This problem

makes it extremely challenging to understand and manage the intrusion alerts, let alone respond to intrusions

timely.

It is often desirable, and sometimes necessary, to understand attack strategies in security applications such

as computer and network forensics and intrusion responses. For example, attack strategies may be used to

profile hackers or hacking tools in computer and network forensics. As another example, it is easier to pre-

dict attacker’s next move, and reduce the damage caused by intrusions, if the attack strategy is known during

intrusion response. However, in practice, it usually requires that human users analyze the data collected dur-

ing intrusions manually to understand the attack strategy. This process is not only time-consuming, but also

error-prone. An alternative to manual analysis is to list all possible attack strategies using vulnerability analysis

tools such as attack graphs [1, 36]. However, these tools require a predefined security property so that they can

use modeling checking techniques to identify possible attack sequences that may lead to the violation of the

security property.

In this paper, we present techniques to automatically learn attack strategies from intrusion alerts reported

by IDSs. Our approach is based on the recent advances in intrusion alert correlation [11, 32]. By examining

correlated intrusion alerts, our method extracts the constraints intrinsic to the attack strategy automatically.

Specifically, an attack strategy is represented as a directed acyclic graph (DAG), which we call an attack strat-

egy graph, with nodes representing attacks, edges representing the (partial) temporal order of attacks, and

constraints on the nodes and edges. These constraints represent the conditions that any attack instance must

satisfy in order to use the strategy. To cope with variations in attacks, we use generalization techniques to hide

the differences not intrinsic to the attack strategy.

To facilitate intrusion analysis in applications such as computer and network forensics, we further develop

techniques to measure the similarity between sequences of intrusion alerts based on their attack strategies. Sim-

ilarity measurement of alert sequences is a fundamental problem in many security applications such as profiling
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hackers or hacking tools, identification of undetected attacks, attack prediction, and so on. To achieve this goal,

we harness the results on error tolerant graph/subgraph isomorphism detection in the pattern recognition field.

By analyzing the semantics and constraints in similarity measurement of alert sequences, we transform this

problem into error tolerant graph/subgraph isomorphism detection.

Our contribution in this paper is three-fold. First, we develop a model to represent attack strategies as well

as algorithms to extract attack strategies from correlated alerts. Second, we develop techniques to measure the

similarity between sequences of alerts on the basis of the attack strategy model. Third, we perform a number

of experiments to validate the proposed techniques. Our experimental results show that our techniques can

successfully extract invariant attack strategies from sequences of alerts, measure the similarity between alert

sequences conforming to human intuition, and identify attacks possibly missed by IDSs.

The remainder of this paper is organized as follows. The next section presents a model to represent and

extract attack strategies from a sequence of correlated intrusion alerts. Section 3 discusses the methods to

measure the similarity between sequences of related alerts based on their strategies. Section 4 presents the

experiments we perform to validate the proposed methods. Section 5 discusses the related work, and Section 6

concludes this paper. The appendices give details of proof, analysis, and experimental results.

2 Modeling Attack Strategies

In this section, we present a method to represent and automatically learn attack strategies from a sequence of

related intrusion alerts. Our method is developed by extending the alert correlation model by Ning, Cui, and

Reeves [32], which we call the NCR model for the sake of presentation. In the following, we first give a brief

overview of the NCR model, and then discuss our method.

2.1 An Overview of the NCR Model

The NCR model was developed to reconstruct attack scenarios from alerts reported by IDSs. It is based on the

observation that “most intrusions are not isolated, but related as different stages of attacks, with the early stages

preparing for the later ones” [32]. The NCR model requires the prerequisites and consequences of intrusions.

The prerequisite of an intrusion is the necessary condition for the intrusion to be successful. For example, the

existence of a vulnerable ftp service is the prerequisite of a ftp buffer overflow attack against this service. The

consequence of an intrusion is the possible outcome of the intrusion. For example, gaining local access as root

from a remote machine may be the consequence of a ftp buffer overflow attack. The NCR model then correlates

two alerts if the consequence of the earlier alert prepares for the prerequisites of the later one.

The NCR model uses logical formulas, which are logical combinations of predicates, to represent the prereq-

uisites and consequences of intrusions. For example, a scanning attack may discover UDP services vulnerable

to certain buffer overflow attacks. Then the predicate UDPVulnerableToBOF (VictimIP, VictimPort) may be

used to represent this discovery.

The NCR model formally represents the prerequisites and consequences of known attacks as hyper-alert

types. A hyper-alert type is a triple (fact, prerequisite, consequence), where fact is a set of alert attribute

names, prerequisite is a logical formula whose free variables are all in fact, and consequence is a set of logical

formulas such that all the free variables in consequence are in fact. Intuitively, a hyper-alert type encodes the

knowledge about the corresponding attacks. Given a hyper-alert type T = (fact, prerequisite, consequence),

a type T hyper-alert h is a finite set of tuples on fact, where each tuple is associated with an interval-based

timestamp [begin time, end time]. The hyper-alert h implies that prerequisite must evaluate to True and all the

logical formulas in consequence might evaluate to True for each of the tuples.

The correlation process in the NCR model is to identify the prepare-for relations between hyper-alerts. In-

tuitively, it is to check if an earlier hyper-alert contributes to the prerequisite of a later one. In the formal
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Figure 1: An example of hyper-alert correlation graph

model, this is performed through the notions of prerequisite and consequence sets. Consider a hyper-alert type

T = (fact, prerequisite, consequence). The prerequisite set (or consequence set) of T , denoted Prereq(T ) (or

Conseq(T )), is the set of all predicates that appear in prerequisite (or consequence). Moreover, the expanded

consequence set of T , denoted ExpConseq(T ), is the set of all predicates that are implied by Conseq(T ).
Thus, Conseq(T ) ⊆ ExpConseq(T ). Given a type T hyper-alert h, the prerequisite set, consequence set,

and expanded consequence set of h, denoted Prereq(h), Conseq(h), and ExpConseq(h)), respectively, are

the predicates in Prereq(T ), Conseq(T ), and ExpConseq(T ) whose arguments are replaced with the corre-

sponding attribute values of each tuple in h. Each element in Prereq(h), Conseq(h), or ExpConseq(h) is

associated with the timestamp of the corresponding tuple in h. Then hyper-alert h1 prepares for hyper-alert h2

if there exist p ∈ Prereq(h2) and c ∈ ExpConseq(h1) such that p = c and c.end time < p.begin time.

The NCR model uses a hyper-alert correlation graph to represent a set of correlated alerts. A hyper-alert

correlation graph CG = (N , E) is a connected directed acyclic graph (DAG), where N is a set of hyper-alerts,

and for each pair n1, n2 ∈ N , there is a directed edge from n1 to n2 in E if and only if n1 prepares for n2.

Figure 1 shows a hyper-alert correlation graph adapted from [32]. The numbers inside the nodes represent the

alert IDs, and the types of alerts are marked below the corresponding nodes.

Limitations of the NCR model. The NCR model can be used to construct attack scenarios, which are

represented as hyper-alert correlation graphs, from intrusion alerts. Although such attack scenarios reflect

attack strategies, they do not capture the essence of the strategies. Indeed, even with the same attack strategy,

if an attacker changes certain details during attacks, the NCR model will generate very different hyper-alert

correlation graphs. For example, an attacker may repeat (unnecessarily) one step in a sequence of attacks many

times, and the NCR model will generate a much more complex attack scenario. As another example, if an

attacker uses equivalent, but different attacks, the NCR model will generate different hyper-alert correlation

graphs as well. It’s then up to the user to figure out manually the common strategy behind two sequences of

attacks. This fact certainly increases the overhead in intrusion alert analysis.

2.2 Attack Strategy Graph

In the following, we present a model to represent and automatically extract attack strategies from correlated

alerts. The goal of this model is to capture the invariants in attack strategies that do not change across multiple

instances of attacks.

The strategy behind a sequence of attacks is indeed about how to arrange earlier attacks to prepare for the

later ones so that the attacker can reach his/her final goal. Thus, the prepare for relations between the intrusion

alerts (i.e., detected attacks) is intrinsic to attack strategies. However, in the NCR model, the prepare for

relations are between specific intrusion alerts; they do not directly capture the conditions that have to be met
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by related attacks. To facilitate the representation of the invariant attack strategy, we transform the prepare for

relation into some common conditions that have to be satisfied by all possible instances of the same strategy.

In the following, we formally represent such a conditions as an equality constraint.

Definition 1 Given a pair of hyper-alert types (T1, T2), an equality constraint for (T1, T2) is a conjunction of

equalities in the form of u1 = v1∧· · ·∧un = vn, where u1, · · · , un are attribute names in T1 and v1, · · · , vn are

attribute names in T2, such that there exist p(u1, · · · , un) and p(v1, · · · , vn), which are the same predicate with

possibly different arguments, in ExpConseq(T1) and Prereq(T2), respectively. Given a type T1 hyper-alert

h1 and a type T2 hyper-alert h2, h1 and h2 satisfy the equality constraint if there exist t1 ∈ h1 and t2 ∈ h2 such

that t1.u1 = t2.v1 ∧ · · · ∧ t1.un = t2.vn evaluates to True.

There may be several equality constraints for a pair of hyper-alert types. However, if a type T1 hyper-alert

h1 prepares for a type T2 hyper-alert h2, then h1 and h2 must satisfy at least one of the equality constraints.

Indeed, h1 preparing for h2 is equivalent to the conjunction of h1 and h2 satisfying at least one equivalent

constraint and h1 occurring before h2. Assume that h1 occurs before h2. If h1 and h2 satisfy an equality

constraint for (T1, T2), then by Definition 1, there must be a predicate p(u1, · · · , un) in ExpConseq(T1) such

that the same predicate with possibly different arguments, p(v1, · · · , vn), is in Prereq(T2). Since h1 and h2

satisfy the equality constraint, p(u1, · · · , un) and p(v1, · · · , vn) will be instantiated to the same predicate in

ExpConseq(h1) and Prereq(h2). This implies that h1 prepares for h2. Similarly, if h1 prepares for h2,

there must be an instantiated predicate that appears in ExpConseq(h1) and Prereq(h2). This implies that

there must be a predicate with possibly different arguments in ExpConseq(T1) and Prereq(T2) and that this

predicate leads to an equality constraint for (T1, T2) satisfied by h1 and h2.

Example 1 Let us use an example from [32] to illustrate the notion of equality constraint. Consider the fol-

lowing hyper-alert types: SadmindPing = ({VictimIP, VictimPort}, ExistsHost(VictimIP), {VulnerableSadmind

(VictimIP)}), and SadmindBufferOverflow = ({VictimIP, VictimPort}, ExistHost (VictimIP) ∧ VulnerableSad-

mind (VictimIP), {GainRootAccess (VictimIP)}). The first hyper-alert type indicates that SadmindPing is a type

of attacks that requires the existence of a host at the VictimIP to succeed, and as a result, the attacker may find out

that this host has a vulnerable Sadmind service. The second hyper-alert type indicates that this type of attacks re-

quires a vulnerable Sadmind service at the VictimIP, and as a result, the attack may gain root access. It is easy to

see that there is a common predicate V ulnerableSadmind in both Prereq(SadmindBufferOverflow) and

ExpConseq(SadmindPing). Thus, we have an equality constraint V ictimIP = V ictimIP for (Sadmind-

Ping, SadmindBufferOverflow), where the first VictimIP comes from SadmindPing, and the second VictimIP

comes from SadmindBufferOverflow.

We observe in many occasions that one step in a sequence of attacks may trigger multiple intrusion alerts,

and the number of alerts may vary in different situations. This is partially due to the existing vulnerabilities

and the hacking tools. For example, unicode shell [33], which is a hacking tool against Microsoft IIS web

server, checks about 20 vulnerabilities at the scanning stage and usually triggers the same number of alerts.

As another example, in the attack scenario reported in [32], the attacker tried 3 different stack pointers and 2

commands in Sadmind Amslverify Overflow attacks for each victim host until one attempt succeeded. Even

if not necessary, an attacker may still deliberately repeat the same step multiple times to confuse IDSs and/or

system administrators. However, such variations do not change the corresponding attack strategy. Indeed, these

variations make the attack scenarios unnecessarily complex, and may hinder manual or automatic analysis of

the attack strategy. Thus, we decide to disallow such situations in our representation of attack strategies.

In the following, an attack strategy is formally represented as an attack strategy graph.

Definition 2 Given a set S of hyper-alert types, an attack strategy graph over S is a quadruple (N,E, T,C),
where (1) (N,E) is a connected DAG (directed acyclic graph); (2) T is a mapping that maps each n ∈ N to

a hyper-alert type in S; (3) C is a mapping that maps each edge (n1, n2) ∈ E to a set of equality constraints

for (T (n1), T (n2)); (4) For any n1, n2 ∈ N , T (n1) = T (n2) implies that there exists n3 ∈ N such that

T (n3) 6= T (n1) and n3 is in a path between n1 and n2.
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Figure 2: An example of attack strategy graph

In an attack strategy graph, each node represents a step in a sequence of related attacks. Each edge (n1, n2)
represents that a type T (n1) attack is needed to prepare for a successful type T (n2) attack. Each edge may

also be associated with a set of equality constraints satisfied by the intrusion alerts. These equality constraints

indicate how one attack prepares for another. Finally, as represented by condition 4 in Definition 2, the same

type of attacks should be considered as one step, unless they are in different stages of the attacks.

Note that attack strategies may also be specified manually in languages such as LAMBDA [12] and STATL

[15]. However, manual specification of attack strategies requires prior knowledge of the strategies, and is also

time-consuming and error-prone. Tools based on modeling checking techniques (e.g., attack graphs [21, 36])

can certainly be used to build attack strategies from knowledge of individual types of attacks. However, these

methods require clearly identified security properties to run the model checking tools, which may not always

be available in reality. In contrast, our notion of attack strategy graph is intended to represent the strategies

extracted from correlated intrusion alerts. Based on the knowledge about individual attack types, a program can

automatically extract attack strategies from correlated intrusion alerts.

Now let’s see an example of an attack strategy graph.

Example 2 Figure 2 is the attack strategy graph extracted from the hyper-alert correlation graph in Figure 1.

The hyper-alert types are marked above the corresponding nodes, and the equality constraints are labeled near

the corresponding edges. This attack strategy graph clearly shows the component attacks and the constraints

that the component attacks must satisfy.

2.2.1 Learning Attack Strategies from Correlated Intrusion Alerts

As discussed earlier, our goal is to learn attack strategies automatically from correlated intrusion alerts. This

requires that we extract the constraints intrinsic to attack strategy from alerts so that the same constraints apply

to all the other instances of the same strategy.

Our strategy to achieve this goal is to process the correlated intrusion alerts in two steps. First, we aggregate

intrusion alerts that belong to the same step of a sequence of attacks into one hyper-alert. For example, in

Figure 1, alerts 002 through 005 are indeed attempts of the same attack with different parameters, and thus they

should be aggregated as one step in the attack sequence. Second, we extract the constraints between the attack

steps and represent them as an attack strategy graph. For example, after we aggregate the hyper-alerts in the

first step, we may extract the attack strategy graph shown in Figure 2.

The challenge lies in the first step. Because of the variations of attacks as well as the signatures that IDSs use

to recognize attacks, there is no clear way to identify intrusion alerts that belong to the same step in a sequence of

attacks. In the following, we first attempt to use the attack type information to do so. The notion of aggregatable

hyper-alerts is introduced formally to clarify when the same type of hyper-alerts can be aggregated.

Definition 3 Given a hyper-alert correlation graph CG = (N,E), a subset N ′ ⊆ N is aggregatable, if (1) all

nodes in N ′ are the same type of hyper-alerts, and (2) ∀n1, n2 ∈ N ′, if there is a path from n1 to n2, then all

nodes in this path must be in N ′.

Intuitively, in a hyper-alert correlation graph, where intrusion alerts have been correlated together, the same

type of hyper-alerts can be aggregated as long as they are not used in different stages in the attack sequence.

Condition 1 in Definition 3 is quite straightforward, but condition 2 deserves more explanation. Consider the

same type of hyper-alerts h1 and h2. If h1 prepares for a different type of hyper-alert h′ (directly or indirectly),

5



Algorithm 1. ExtractStrategy

Input: A hyper-alert correlation graph CG.

Output: An attack strategy graph ASG.

Method:

1. Let CG′ = GraphReduction (CG).

2. Let ASG = (N, E, T, C) be an empty attack strategy graph.

3. for each hyper-alert h in CG′

4. Add a new node, denoted nh, into N and set T (nh) be the type of h.

5. for each edge (h, h′) in CG′

6. Add (nh, nh′) into E.

7. for each pc ∈ ExpConseq(h) and pp ∈ Prereq(h′)
8. if pc = pp then

9. Add into C(nh, nh′) the equality constraint (u1 = v1) ∧ · · · ∧ (un = vn),
where ui and vi are the ith variable of pc and pp before instantiation, respectively.

10. return ASG(N, E, T, C).

Subroutine GraphReduction

Input: A hyper-alert correlation graph CG = (N, E).
Output: An irreducible hyper-alert correlation graph CG′ = (N ′, E′).
Method:

1. Partition the hyper-alerts in N into groups such that the same type of hyper-alerts are all

in the same group.

2. for each group G

3. if there is a path g, n1, · · · , nk, g′ in CG such that only g and g′ in this path are in G then

4. Divide G into G1, G2, and G3 such that all hyper-alerts in G1 occur before n1,

all hyper-alerts in G3 occur after n2, and all the other hyper-alerts are in G2.

5. Repeat steps 2 to 4 until no group can be divided.

6. Aggregate the hyper-alerts in each group into one hyper-alert.

7. Let N ′ be the set of aggregated hyper-alerts.

8. for all n1, n2 ∈ N ′

9. if there exists (h1, h2) ∈ E and h1 and h2 are aggregated into n1 and n2, respectively

10. add (n1, n2) into E′.

11. return CG′ = (N ′, E′).

Figure 3: An algorithm to extract attack strategy graph from a hyper-alert correlation graph

and h′ further prepares for h2 (directly or indirectly), h1 and h2 obviously belong to different steps in the

same sequence of attacks. Thus, we shouldn’t allow them to be aggregated together. Although we have never

observed such situations, we cannot rule out such possibilities.

Based on the notion of aggregatable hyper-alerts, the first step in learning attack strategy from a hyper-alert

correlation graph is quite straightforward. We only need to identify and merge all aggregatable hyper-alerts. To

proceed to the second step in strategy learning, we need a hyper-alert correlation graph in which each hyper-

alert represents a separate step in the attack sequence. Formally, we call such a hyper-alert correlation graph an

irreducible hyper-alert correlation graph.

Definition 4 A hyper-alert correlation graph CG = (N,E) is irreducible if for all N ′ ⊆ N , where |N ′| > 1,

N ′ is not aggregatable.

Figure 3 shows the algorithm to extract attack strategy graphs from hyper-alert correlation graphs. The

subroutine GraphReduction is used to generate an irreducible hyper-alert correlation graph, and the rest of the

algorithm extracts the components of the output attack strategy graph. The steps in this algorithm are self-

explanatory; we do not repeat them in the text. Lemma 1 ensures that the output of algorithm 1 indeed satisfies

the constraints of an attack strategy graph. The proof of Lemma 1 can be found in Appendix A.

Lemma 1 The output of Algorithm 1 is an attack strategy graph.
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2.3 Dealing with Variations of Attacks

Algorithm 1 in Figure 3 has ignored equivalent but different attacks in sequences of attacks. For example,

an attacker may use either pmap dump or Sadmind Ping to find a vulnerable Sadmind service. As another

example, an attacker may use either SadmindBufferOverflow or TooltalkBufferOverflow attack gain remote

access to a host. Obviously, at the same stage of two sequences of attacks, if an attacker uses equivalent but

different attacks, Algorithm 1 will return two different attack strategy graphs, though the strategies behind them

are the same.

We propose to generalize hyper-alert types so that the syntactic difference between equivalent hyper-alert

types is hidden. For example, we may generalize both SadmindBufferOverflow and TooltalkBufferOverflow

attacks into RPCBufferOverflow.

A generalized hyper-alert type is created to hide the unnecessary difference between specific hyper-alert

types. Thus, an occurrence of any of the specific hyper-alerts should imply an occurrence of the generalized

one. This is to say that satisfaction of the prerequisite of a specific hyper-alert implies the satisfaction of the

prerequisite of the generalized hyper-alert. Moreover, to cover all possible impact of all the specific hyper-alerts,

the consequences of all the specific hyper-alert types should be included in the consequence of the generalized

hyper-alert type. It is easy to see that this generalization may cause loss of information. Thus, generalization of

hyper-alert types must be carefully handled so that information essential to attack strategy is not lost.

In the following, we formally clarify the relationship between specific and generalized hyper-alert types.

Definition 5 Given two hyper-alert types Tg and Ts, where Tg = (factg, prereqg, conseqg) and Ts = (facts,

prereqs, conseqs), we say Tg is more general than Ts (or, equivalently, Ts is more specific than Tg) if there

exists an injective mapping f from factg to facts such that the following conditions are satisfied:

• If we replace all variables x in prereqg with f(x), prereqs implies prereqg, and

• If we replace all variables x in conseqg with f(x), then all formulas in conseqs are implied by conseqg.

The mapping f is called the generalization mapping from Ts to Tg.

Example 3 Suppose the hyper-alert types SadmindBufferOverflow and TooltalkBufferOverflow are specified

as follows: SadmindBufferOverflow = ({VictimIP, VictimPort}, ExistHost (VictimIP) ∧ VulnerableSadmind

(VictimIP), {GainRootAccess (VictimIP)}), and TooltalkBufferOverflow = ({VictimIP, VictimPort}, ExistHost

(VictimIP) ∧ VulnerableTooltalk (VictimIP), {GainRootAccess (VictimIP)}). Assume that VulnerableSadmind

(VictimIP) imply VulnerableRPC (VictimIP). Intuitively, this represents that if there is a vulnerable Sadmind

service at VictimIP, then there must be a vulnerable RPC service (i.e., the Sadmind service) at VictimIP. Simi-

larly, we assume VulnerableTooltalk (VictimIP) also implies VulnerableRPC (VictimIP). Then we can generalize

both SadmindBufferOverflow and TooltalkBufferOverflow into RPCBufferOverflow = ({VictimIP}, ExistHost

(VictimIP) ∧ VulnerableRPC (VictimIP), {GainRootAccess (VictimIP)}), where the generalization mapping is

f(V ictimIP ) = V ictimIP .

By identifying a generalization mapping, we can specify how a specific hyper-alert can be generalized into a

more general hyper-alert. Following the generalization mapping, we can find out what attribute values of a spe-

cific hyper-alert should be assigned to the attributes of the generalized hyper-alert. The attack strategy learning

algorithm can be easily modified: We first generalize the hyper-alerts in the input hyper-alert correlation graph

into generalized hyper-alerts following the generalization mapping, and then apply Algorithm 1 to extract the

attack strategy graph.

Although a hyper-alert can be generalized in different granularities, it is not an arbitrary process. In particu-

lar, if one hyper-alert prepares for another hyper-alert before generalization, the generalized hyper-alerts should

maintain the same relationship. Otherwise, the dependency between different attack stages, which is intrinsic

in an attack strategy, will be lost.
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The remaining challenge is how to get the “right” generalized hyper-alert types and generalization mappings.

The simplest way is to manually specify them. For example, Apache2, Back, and Crashiis are all Denial of

Service attacks. We may simply generalize all of them into one WebServiceDOS. However, there are often

different ways to generalize. To continue the above example, Apache2 and Back attacks are against the apache

web servers, while Crashiis is against the Microsoft IIS web server. To keep more information about the attacks,

we may want to generalize Apache and Back into ApacheDOS, while generalize Crashiis and possibly other

DOS attacks against the IIS web server into IISDOS. Nevertheless, this doesn’t affect the attack strategy graphs

extracted from correlated intrusion alerts as long as the constraints on the related alerts are satisfied.

Automatic Generalization of Hyper-Alert Types It is time-consuming and error-prone to manually gener-

alize hyper-alert types. One way to partially automate this process is to use clustering techniques to identify

the hyper-alert types that should be generalized into a common one. In our experiments, we use the bottom-

up hierarchical clustering [20] to group hyper-alert types hierarchically on the basis of the similarity between

them, which is derived from the similarity between the prerequisites and consequences of hyper-alert types.

The method used to compute the similarity is described below.

To facilitate the computation of similarity between prerequisites of hyper-alert types, we convert each pre-

requisite into an expanded prerequisite set, which includes all the predicates that appear or are implied by the

prerequisite. Similarly, we can get the expanded consequence set. Consider two sets of predicates, denoted S1

and S2, respectively. We adopt the Jaccard similarity coefficient [19] to compute the similarity between S1 and

S2, denoted Sim(S1, S2). That is, Sim(S1, S2) = a
a+b+c

, where a is the number of predicates in both S1 and

S2, b is the number of predicates only in S1, and c is the number of predicates only in S2.

Given two hyper-alert types T1 and T2, the similarity between T1 and T2, denoted Sim(T1, T2), is then

computed as Sim(T1, T2) = Sim(XP1,XP2) × wp + Sim(XC1,XC2) × wc, where XP1 and XP2 are the

expanded prerequisite sets of T1 and T2, XC1 and XC2 are the expanded consequence sets of T1 and T2, and

wp and wc = 1 − wp are the weights for prerequisite and consequence, respectively. (In our experiments, we

use wp = wc = 0.5 to give equal weight to both prerequisite and consequence of hyper-alert types.) We may

then set a threshold t so that two hyper-alert types are grouped into the same cluster only if their similarity

measure is greater than or equal to t. Appendix B includes some generalization hierarchies we encountered in

our experiments.

3 Measuring the Similarity between Attack Strategies

In this section, we present techniques to measure the similarity between attack strategy graphs based on er-

ror tolerant graph/subgraph isomorphism detection, which has been studied extensively in pattern recogni-

tion [4,24–27]. Since the attack strategy graphs are extracted from sequences of correlated alerts, the similarity

between two attack strategy graphs are indeed the similarity between the original alert sequences in terms of

their strategies. Such similarity measurement is a fundamental problem in intrusion analysis; it has potential

applications in incident handling, computer and network forensics, and other security management areas.

We are particularly interested in two problems. First, how similar are two attack strategies? Second, how

likely is one attack strategy a part of another attack strategy? These two problems can be mapped naturally to

error tolerant graph isomorphism and error tolerant subgraph isomorphism problems, respectively.

To facilitate the later discussion, we give a brief overview of error tolerant graph/subgraph isomorphism.

Further details can be found in the rich literature on graph/subgraph isomorphism [4, 24–27].

3.1 Error Tolerant Graph/Subgraph Isomorphism

In graph/subgraph isomorphism, a graph is a quadruple G = (N,E, T,C), where N is the set of nodes, E is

the set of edges, T is a mapping that assigns labels to the nodes, and C is a mapping that assigns labels to the
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edges. Given two graphs G1 = (N1, E1, T1, C1) and G2 = (N2, E2, T2, C2), a bijective function f is a graph

isomorphism from G1 to G2 if

• for all n1 ∈ N1, T1(n1) = T2(f(n1));

• for all e1 = (n1, n
′
1) ∈ E1, there exists e2 = (f(n1), f(n′

1)) ∈ E2 such that C(e1) = C(e2), and for all

e2 = (n2, n
′
2) ∈ E2, there exists e1 = (f−1(n2), f

−1(n′
2)) ∈ E1 such that C(e2) = C(e1).

Given a graph G = (N,E, T,C), a subgraph of G is a graph Gs = (Ns, Es, Ts, Cs) such that (1) Ns ⊆ N ,

(2) Es = E ∩ (Ns × Ns), (3) for all ns ∈ Ns, Ts(ns) = T (ns), and (4) for all es ∈ Es, Cs(es) = C(es).
Given two graphs G1 = (N1, E1, T1, C1) and G2 = (N2, E2, T2, C2), an injective function f is a subgraph

isomorphism from G1 to G2, if there exists a subgraph G2s of G2 such that f is a graph isomorphism from G1

to G2s.

As a further step beyond graph/subgraph isomorphism, error tolerant graph/subgraph isomorphism (which is

also known as error correcting graph/subgraph isomorphism) is introduced to cope with noises or distortion in

the input graphs. There are two approaches for error tolerant graph/subgraph isomorphism: graph edit distance

and maximal common graph. In this paper, we focus on graph edit distance to study the application of error

tolerant graph/subgraph isomorphism in intrusion detection.

The edit distance method assumes a set of edit operations (e.g., deletion, insertion and substitution of nodes

and edges) as well as the costs of these operations, and defines the similarity of two graphs in terms of the least

cost sequence of edit operations that transforms one graph into the other. We denote the edited graph after a

sequence of edit operations ∆ as ∆(G). Consider two graphs G1 and G2. The distance D(G1, G2) from G1 to

G2 w.r.t. graph isomorphism is the minimum sum of edit costs associated with a sequence of edit operations ∆
on G1 that leads to a graph isomorphism from ∆(G1) to G2. Similarly, the distance Ds(G1, G2) from G1 to G2

w.r.t. subgraph isomorphism is the minimum sum of edit costs associated with a sequence of edit operations ∆ on

G1 that leads to a subgraph isomorphism from ∆(G1) to G2. An error tolerant graph/subgraph isomorphism

from G1 to G2 is a pair (∆, f ), where ∆ is a sequence of edit operations on G1, and f is a graph/subgraph

isomorphism from ∆(G1) to G2.

It is well known that subgraph isomorphism detection is an NP-complete problem [17]. Error tolerant sub-

graph isomorphism detection, which involves subgraph isomorphism detection, is also in NP and generally

harder than exact subgraph isomorphism detection [25]. Nevertheless, error tolerant subgraph isomorphism has

been widely applied in image processing and pattern recognition [4, 24–27]. In our application, all the attack

strategy graphs we have encountered are small graphs with less than 10 nodes. We argue that it is very unlikely

to have very large attack strategy graphs in practice. Thus, we believe error tolerant graph/subgraph isomor-

phism can be applied to measure the similarity between attack strategy graphs with reasonable response time.

Indeed, we did not observe any noticeable delay in our experiments.

3.2 Working with Attack Strategy Graphs

To successfully use error tolerant graph/subgraph isomorphism detection techniques, we need to answer at least

the following three questions. What are the edit operations on an attack strategy graph? What are reasonable

edit costs of these edit operations? What is the right similarity measurement between attack strategy graphs?

All the edit operations on a labeled graph are applicable to attack strategy graphs. Specifically, an edit

operation on an attack strategy graph ASG = (N,E, T,C) is one of the following:

1. Inserting a node n: $ → n. This represents adding a stage into an attack strategy. This edit operation is

only needed for error-tolerant graph isomorphism.

2. Deleting a node n: n → $. This represents removing a stage from an attack strategy. Note that this

implies deleting all edges adjacent with n.
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3. Substituting the hyper-alert type of a node n: T (n) → t, where t is a hyper-alert type. This represents

changing the attack at one stage of the attack strategy.

4. Inserting an edge e = (n1, n2): $ → e, where n1, n2 ∈ N . This represents adding dependency (i.e.,

prepare for relation) between two attack stages.

5. Deleting an edge e = (n1, n2): e → $. This represents removing dependency (i.e., prepare for relation)

between two attack stages.

6. Substituting the label of an edge e = (n1, n2): C(e) → c, where c is a set of equality constraints. This

represents changing the way in which two attack stages are related to each other. (Note that c is not

necessarily a set of equality constraints for (T (n1), T (n2)).)

These edit operations do not necessarily transform one attack strategy graph into another attack strategy

graph. Indeed, a labeled graph must satisfy some constraints to be an attack strategy graph. For example, all the

equality constraints in the label associated with (n1, n2) must be valid equality constraints for (T (n1), T (n2)).
It is easy to see that the edit operations may violate some of these constraints.

One may suggest these constraints be enforced throughout the transformation of attack strategy graphs. As

an additional benefit, this can be used to reduce the search space required for graph/subgraph isomorphism.

However, this approach may not find the least expensive sequence of edit operations, and may even fail to find a

transformation from one attack strategy graph to (the subgraph of) another. Indeed, editing distance is one way

to measure the difference between attack strategy graphs; it is not necessary to require that all the intermediate

edited graphs are attack strategy graph. As long as the final edited graph is isomorphic to an attack strategy

graph, it is guaranteed to be an attack strategy graph. Thus, we do not require the intermediate graphs during

graph transformation be attack strategy graphs.

Assignment of edit costs to the edit operations is a critical step in error tolerant graph/subgraph isomorphism.

The actual costs are highly dependent on the domain in which these techniques are applied. In our application,

there are multiple reasonable ways to assign the edit costs. In the following, we attempt to give some constraints

that the cost assignment must satisfy.

In an attack strategy graph, a node represents a stage in an attack strategy, while an edge represents the causal

relationship between two steps in the strategy. Obviously, changing the stages in an attack strategy affects the

attack strategy significantly more than modifying the causal relationships between stages. Thus, the edit costs

of node related operations should be significantly more expensive than those of the edge related operations.

Inserting or deleting a node implies having one more or fewer step in the strategy, while substituting a node

type implies to replace the attack in one step in the strategy. Thus, inserting or deleting a node has at least the

same impact on the strategy as substituting the node type. Moreover, deleting a node and inserting a node are

both manipulations of a stage; there is no reason to say one operation has more impact than the other. Therefore,

they should have the same cost. Both inserting and deleting an edge changes the causal relationship between

two attack stages, and they should have the same impact on the attack strategy. However, substituting the label

of an edge is just to change the way in which two attack stages are related. Thus, it should have less cost than

edge insertion and deletion. In summary, we can derive the following constraint in edit cost assignments.

Constraint 1 Costn→$ = Cost$→n ≥ CostT (n)→t >> Cost$→e = Coste→$ ≥ CostC(e)→c.

The labels in an attack strategy graph is indeed a set of equality constraints. As a result, labels are not

entirely independent of each other. This further implies that edit costs for edge label substitution should not

be uniformly assigned. For example, substituting an edge label {A,B} for {A,C} should have less cost than

substituting {A,B} for {C,D}. This observation leads to another constraint.

Constraint 2 Assume that the edit operation C(e) → c replaces C(e) = cold with cnew. The edit cost

CostC(e)→c should be smaller when cold and cnew have more equality constraints in common.
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Here we give a simple way to accommodate Constraint 2. We assume there is a maximum edit cost for label

substitution operation, denoted as MaxCostC(e)→c. The edit cost of a label substitution is then CostC(e)→c =

MaxCostC(e)→c ×
|cold∩cnew|
|cold∪cnew| , where cold and cnew are the labels (i.e., sets of equality constraints) before and

after the operation.

Error tolerant graph/subgraph isomorphism detection techniques can conveniently give a distance between

two labeled graphs, which is measured in terms of edit cost. As we discussed earlier, we use these techniques

to help answer two questions: (1) How similar are two sequences of attacks in terms of their attack strategy?

(2) How likely does one sequence of attacks use a part of attack strategy in another sequence of attacks? In the

following, we transform the edit distance measures into more direct similarity measures.

Consider an attack strategy graph ASG. We refer to the distance from ASG to an empty graph as the

reductive weight of ASG, denoted as Wr(ASG). Similarly, we refer to the distance from an empty graph to

ASG as the constructive weight of ASG, denoted Wc(ASG).

Definition 6 Consider two attack strategy graphs ASG1 and ASG2. The similarity between ASG1 and ASG2

w.r.t. (attack) strategy is Sim(ASG1, ASG2) = Sim(ASG1→ASG2)+Sim(ASG2→ASG1)
2 , where Sim(ASGx →

ASGy) = 1 −
D(ASGx,ASGy)

Wr(ASGx)+Wc(ASGy) .

Definition 7 Consider two attack strategy graphs ASG1 and ASG2. The similarity between ASG1 and ASG2

w.r.t. (attack) sub-strategy is SimSub(ASG1, ASG2) = 1 − Ds(ASG1,ASG2)
Wr(ASG1)+Wc(ASG2) .

Appendix C gives a simple analysis of the impact of edit costs on the similarity measurements. In summary,

when the number of edges are not substantially more than the number of nodes, and the number of edge

operations are not substantially more than the number of node operations, the similarity measure is mainly

determined by the number of nodes and node operations rather than the edit costs.

4 Experiments

We have performed a series of experiments to study the techniques proposed in this paper. In our experiments,

we used the implementation of the NCR model, the NCSU Intrusion Alert Correlator [31], to correlate intrusion

alerts. Following their example, we also used GraphViz [2] to visualize graphs. In addition, we used GUB [24],

A Toolkit for Graph Matching, to perform error tolerant graph/subgraph isomorphism detection and compute

distances between attack strategy graphs. We used Snort [35] as our IDS sensor.

Our test data sets include the 2000 DARPA intrusion detection scenario specific data sets [28]. The data sets

contain two scenarios: LLDOS 1.0 and LLDOS 2.0.2. In LLDOS1.0, the sequence of attacks includes IPsweep,

probes of sadmind services, breakins through sadmind exploits, installations of DDoS programs, and finally the

DDoS attack. LLDOS 2.0.2 is similar to LLDOS 1.0; however, the attacks in LLDOS 2.0.2 are more stealthy

than those in LLDOS 1.0. In addition to the DARPA data sets, we also performed three sequences of attacks in

an isolated network. In all these three attack sequences, the attacker started with nmap [16] scans of the victim.

Then, in the first sequence, the attacker sent malformed urls [8] to the victim’s Internet Information Services

(IIS) to get a cmd.exe shell. In the second sequence, the attacker took advantage of the flaws of IP fragment

reassembly on Windows 2000 [7] to launch a DoS attack. In the third sequence, the attacker launched a buffer

overflow attack against the Internet Printing Protocol accessed via IIS 5.0 [5, 9]. Further details of these attack

sequences are included in Appendix D. We also used the alert sets provided along with the Intrusion Alert

Correlator [31]. These alerts were generated by RealSecure Network Sensor [18] on the 2000 DARPA data

sets, too. We label their alert sets with RealSecure, while label ours with Snort to distinguish between them.
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n1: FTP_Syst

n2: Sadmind_Ping

{n1.DestIP=n2.DestIP}

n3: Sadmind_Amslverify_Overflow

{n1.DestIP=n3.DestIP}

{n2.DestIP=n3.DestIP}

n5: Rsh

{n3.DestIP=n5.SrcIP}

n6: Mstream_Zombie

{n3.DestIP=n6.SrcIP}

{n5.SrcIP=n6.SrcIP}

n7: Stream_DoS

{ }

n4: Email_Almail_Overflow

{n4.DestIP=n5.SrcIP}

{n4.DestIP=n6.SrcIP}

(a) LLDOS1.0 inside dataset (RealSecure)

n1: RPC portmap request sadmind

n2: RPC sadmind UDP PING

{n1.DestIP=n2.DestIP}

n3: TELNET access

{n2.DestIP=n3.SrcIP}

n4: RSERVICES rsh root

{n2.DestIP=n4.SrcIP}

{n3.SrcIP=n4.SrcIP}

n5: DDOS shaft client to handler

{n3.SrcIP=n5.SrcIP}

{ n4.SrcIP=n5.SrcIP }

(b) LLDOS1.0 inside dataset (Snort)

n1: Sadmind_Amslverify_Overflow

n3: FTP_Put

{n1.DestIP=n2.DestIP}

n4: Mstream_Zombie

{n1.DestIP=n2.SrcIP}

{n3.DestIP=n2.SrcIP}

n5: Stream_DoS

{ }

n2: Email_Almail_Overflow

{n2.DestIP=n3.DestIP}

{n2.DestIP=n4.SrcIP}

(c) LLDOS2.0.2 inside dataset (RealSecure)

n1: TELNET access

n2: DDOS shaft client to handler

{ n1.SrcIP=n2.SrcIP}

(d) LLDOS2.0.2 inside dataset (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS unicode directory traversal attempt

{n2.DestIP=n5.DestIP}

n6: WEB-IIS cmd.exe access

{n2.DestIP=n6.DestIP} {n3.DestIP=n5.DestIP}{n3.DestIP=n6.DestIP}{n4.DestIP=n5.DestIP}{n4.DestIP=n6.DestIP}

n7: ATTACK RESPONSES http dir listing

{n5.DestIP=n7.SrcIP}{n6.DestIP=n7.SrcIP}

(e) WEB-IIS unicode exploits (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: (spp_frag2) Oversized fragment, probable Dos

{n2.DestIP=n3.DestIP}

(f) jolt2 DoS attack (Snort)

n1: ICMP PING NMAP

n2: SCAN namp fingerprint attempt

{n1.DestIP=n2.DestIP}

n3: SCAN namp TCP

{n1.DestIP=n3.DestIP}

n4: SCAN namp XMAS

{n1.DestIP=n4.DestIP}

n5: WEB-IIS ISAPI .printer access

{n2.DestIP=n5.DestIP} {n3.DestIP=n5.DestIP} {n4.DestIP=n5.DestIP}

(g) WEB-IIS ISAPI .printer access (Snort)

Figure 4: Attack Strategy Graphs Extracted from Our Experiments
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4.1 Learning Attack Strategies from Correlated Intrusion Alerts

Our first goal is to evaluate the effectiveness of our approach on extracting the attack strategies. Figure 4 shows

all of the attack strategy graphs extracted from the test data sets. The label inside each node is the node ID

followed by the hyper-alert type of the node. The label of each edge describes the set of equality constraints for

the hyper-alert types associated with the two end nodes.

The attack strategy graphs we extracted from LLDOS 1.0 (inside part) are shown in Figure 4(a) and 4(b).

Comparing them with the description of the data set [28], we know that both Figures 4(a) and 4(b) have cap-

tured most of the attack strategy. The missing parts are due to the attacks missed by the IDSs. Since we

didn’t generalize variations of hyper-alert types, these graphs still have syntactic differences despite of their

common strategy. (Note that the “RPC sadmind UDP PING” alert reported by Snort is indeed the “Sad-

mind Amslverify Overflow” alert by RealSecure, and the “RPC portmap sadmind request UDP” alert by Snort

is the “Sadmind Ping” alert by RealSecure.) Moreover, false alerts are also reflected in the attack strategy

graphs. For example, the hyper-alert types “Email Almail Overflow” and “FTP Syst” in Figure 4(a) do not

belong to the attack strategy, but they are included because of the false detection.

The attack strategies extracted from LLDOS 2.0.2 are shown in Figures 4(c) and 4(d). Compared with the

five phases of attack scenarios [28], it is easy to see that Figure 4(c) reveals most of the adversary’s strategy.

However, Figure 4(d) reveals two steps fewer than Figure 4(c). Our further investigation indicates that this is

because one critical attack step, the buffer overflow attacks against sadmind service, was completely missed by

Snort. Figures 4(e), 4(f), and 4(g) show the attack strategies extracted from the three sequences of attacks we

performed. By comparing with the attacks, which are described in Appendix D, we can see that the stages as

well as the constraints intrinsic to these attack strategies are mostly captured by these graphs.

Though showing some potential, these experimental results also reveal a limitation of the attack strategy

learning method: That is, our method depends on the underlying IDSs as well as the alert correlation method.

If the hyper-alert correlation graphs do not reveal the entire attack strategy, or include false alerts, the attack

strategy graphs generated by our method will not be perfect. Nevertheless, our technique is intended to automate

the analysis process typically performed by human analysts, who may make the same mistake if no other

information is used. More research is clearly needed to mitigate the impact of imperfect IDS and correlation.

Another observation is that alerts from heterogeneous IDSs can help complete the attack strategies. For

example, combining Figures 4(c) and 4(d), we know that an attacker may launch buffer overflow attacks against

sadmind service and then use telnet to access the victim machine.

Note that we do not give a quantitative performance evaluation of attack strategy extraction (i.e., the false

positive and false negative of the extracted attack strategies). This is because such measures are indeed deter-

mined by the underlying intrusion alert correlation algorithm. As long as correlation is performed correctly, our

method can always extract the strategy reflected by the correlated alerts.

4.2 Measuring the Similarity between Alert Sequences

We performed some experiments to measure the similarity between the previously extracted seven attack strat-

egy graphs. To hide the unnecessary differences between alert types, we generalized similar alert types. Due to

space reasons, we do not redraw the attack strategy graphs. The generalization details are given in Appendix

D. We assume the edit costs for node operations are all 10, and the edit costs for the edge operations are all 1.

Tables 1 and 2 show the similarity measurements between each pair of attack strategy graphs w.r.t. attack

strategy and attack sub-strategy, respectively. Each subscript in the tables denotes the graph it represents. We

notice that SimSub(Gi, Gj) may not necessarily be equal to SimSub(Gj , Gi).

Table 1 indicates that Figure 4(a) is more similar to Figures 4(b), and 4(c) to the other graphs. In addition,

Figure 4(g) is more similar to Figures 4(e) and 4(f) than the other graphs. Based on the description of these

attack sequences, we can see these similarity measures conform to human perceptions.

13



Table 1: The similarity w.r.t. attack strategy between attack strategy graphs in Figure 4

G4(a) G4(b) G4(c) G4(d) G4(e) G4(f) G4(g)

G4(a) / 0.72 0.73 0.21 0.29 0.31 0.25

G4(b) 0.72 / 0.66 0.55 0.25 0.25 0.29

G4(c) 0.73 0.66 / 0.40 0.34 0.38 0.30

G4(d) 0.21 0.55 0.40 / 0.21 0.40 0.38

G4(e) 0.29 0.25 0.34 0.21 / 0.48 0.74

G4(f) 0.31 0.25 0.38 0.40 0.48 / 0.61

G4(g) 0.25 0.29 0.30 0.38 0.74 0.61 /

Table 2: The similarity w.r.t. attack sub-strategy between attack strategy graphs in Figure 4

G4(a) G4(b) G4(c) G4(d) G4(e) G4(f) G4(g)

G4(a) / 0.72 0.66 0.31 0.53 0.31 0.43

G4(b) 0.89 / 0.67 0.55 0.61 0.38 0.51

G4(c) 0.90 0.68 / 0.40 0.61 0.38 0.52

G4(d) 0.89 1.00 0.86 / 0.79 0.60 0.73

G4(e) 0.51 0.58 0.58 0.21 / 0.48 0.26

G4(f) 0.72 0.65 0.65 0.40 0.91 / 0.89

G4(g) 0.59 0.51 0.48 0.27 0.93 0.61 /

Table 2 shows the similarity between attack strategy graphs w.r.t. attack sub-strategy. We can see that Figures

4(b), 4(c), and 4(d) are very similar to a sub-strategy of Figure 4(a). In addition, Figure 4(d) is exactly a sub-

strategies of Figure 4(b). Similarly, Figures 4(g) and 4(f) are both similar to sub-strategies of Figure 4(e), and

Figure 4(f) is also similar to a sub-strategy of Figure 4(g). Comparing these measure values with these attack

sequences, we can see these measures also conform to human perceptions.

The experiments also reveal some remaining problems that haven’t been addressed by our techniques. First,

the similarity measures make sense in terms of their relative values. However, we still do not understand what

a specific similarity measure represents. Second, false alerts generated by IDSs have a negative impact on the

measurement. It certainly requires further research to address these issues.

4.3 Identification of Missing Detections

Our last set of experiments is intended to study the possibility to apply the similarity measurement method to

identify attacks missed by IDSs. For the sake of presentation, we first introduce two terms: precedent set and

successive set. Intuitively, the precedent set of a node n in an attack strategy graph is the set of nodes from

which there are paths to n, while the successive set of n is the set of nodes to which n has a path. In the

following, we show two examples we encountered in our experiments.

Example 4 The attack strategy graph in Figure 4(c) has no network probe phase, but Figure 4(a) does. The

similarity measurement SimSub(G4(c), G4(a)) = 0.90 and Sim(G4(c), G4(a)) = 0.73 indicate that these two

strategies are very similar and it’s very likely that Figure 4(c) is a sub-strategy of Figure 4(a). Thus, it is possible

that some probe attacks are missed by the IDS when the IDS detected the attacks corresponding to Figure 4(c).

Indeed, this is exactly what happened in LLDOS 2.0.2. The adversary uses some stealthy attacks (i.e., HINFO

query to the DNS server) to get the information about the victim host.

Example 5 Consider Figures 4(d) and 4(b). We have SimSub(G4(d), G4(b)) = 1.0. Thus, G4(d) is exactly a

sub-strategy of G4(b). By checking the LLDOS2.0.2 alerts reported by Snort, we know that there are also “RPC

portmap sadmind request UDP” alerts as in Figure 4(b). However, since Snort did not detect the later buffer

overflow attack, these “RPC portmap sadmind request UDP” alerts aren’t correlated with the later alerts.
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We then perform the following steps, trying to identify attacks possibly missed in LLDOS 2.0.2. We pick

node n1 in Figure 4(d), and find its corresponding node n3 in Figure 4(b), which is mapped to n1 by the

subgraph isomorphism. It is easy to see that in Figure 4(b), the precedent set of n3 is {n1 n2}, and n1 has the

type “RPC portmap sadmind request UDP”. We then go back to LLDOS 2.0.2 alerts, and find “RPC portmap

sadmind request UDP” alerts before “TELNET ACCESS”. By comparing the precedent set of n1 in Figure 4(d)

and the precedent set of n3 in Figure 4(b), we suspect that “RPC sadmind UDP PING” (which corresponds

to node n2 in Figure 4(b)) has been missed in LLDOS 2.0.2. If we add such an alert, we may correlate it

with “RPC portmap sadmind request UDP” and further with “TELNET access” in Figure 4(d). Indeed, “RPC

sadmind UDP PING” is the buffer overflow attack missed by Snort in LLDOS 2.0.2.

The later part of example 5 is very similar to the abductive correlation proposed in [11]. The additional

feature provided by the similarity measurement is the guidelines about what attacks may be missed. In this

sense, the similarity measurement is complementary to the abductive correlation. Moreover, these examples

are provided to demonstrate the potential of identifying missed attacks through measuring similarity of attack

sequences. It is also possible that the attacker didn’t launch those attacks. Additional research is necessary to

improve the performance and reduce false identification rate.

5 Related Work

Our work in this paper is closely related to the recent results in intrusion alert correlation. In particular, our

attack strategy model can be considered as an extension to [11] and [32]. In addition to correlating alerts

together based on their relationships, we further extract the attack strategy used in the attacks, and use them to

measure the similarity between sequences of alerts.

There are other alert correlation techniques. The techniques in [10, 13, 37, 40] correlate alerts on the basis

of the similarities between the alert attributes. The Tivoli approach correlates alerts based on the observation

that some alerts usually occur in sequence [14]. M2D2 correlates alerts by fusing information from multiple

sources besides intrusion alerts, such as the characteristics of the monitored systems and the vulnerability

information [29], thus having a potential to result in better results than those simply looking at intrusion alerts.

The mission-impact-based approach correlates alerts raised by INFOSEC devices such as IDS and firewalls

with the importance of system assets [34]. The alert clustering techniques in [22, 23] use conceptual clustering

and generalization hierarchy to aggregate alerts into clusters. Alert correlation may also be performed by

matching attack scenarios specified by attack languages. Examples of such languages include STATL [15],

LAMBDA [12], and JIGSAW [38].

Our approach to similarity measurement of attack strategies is based on error-tolerant graph/subgraph iso-

morphism techniques [3, 6, 24, 25, 39]. The early work about graph/subgraph isomorphism was presented

in [3, 6, 39]. The traditional methods are A* based approaches [30]. The more efficient algorithms proposed

recently include decomposition-based approaches [24–26] and decision tree-based approaches [24, 27].

6 Conclusion

In this paper, we developed techniques to extract attack strategies from correlated intrusion alerts based on

the recent advances in intrusion alert correlation [11, 32]. Our contributions include a model to represent and

algorithms to extract attack strategies from intrusion alerts. Moreover, to accommodate variations in attacks

that are not intrinsic to attack strategies, we propose to generalize different types of intrusion alerts to hide

the unnecessary difference between them. Finally, we developed techniques to measure the similarity between

sequences of attacks based on their strategies. Our experimental results have shown that our techniques can

successfully extract invariant attack strategies from sequences of alerts, measure the similarity between alert

sequences in a way conforming to human intuition, and has a potential to identify attacks missed by IDSs.
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A Proof Sketch of Lemma 1

We first prove the output of the subroutine GraphReduction is an irreducible hyper-alert correlation graph by

contradiction. Consider the output CG′ = (N ′, E′) of GraphReduction. Suppose there exists Ns ⊆ N ′, where

|Ns| > 1, such that Ns is aggregatable. Thus, all nodes in Ns are the same type of hyper-alerts, and for any

two different nodes n1, n2 ∈ Ns, if there is a path from n1 to n2, then all nodes in the path are in Ns. Since

CG′ is aggregated from the input hyper-alert correlation graph, for all pairs of nodes n′
1 and n′

2, where n′
1 and

n′
2 are aggregated into n1 and n2, respectively, if there exists a path from n′

1 to n′
2 in the input graph, all the

nodes in the path must be in the group of nodes aggregated into the nodes in Ns. According to steps 3 and 4

in GraphReduction, they should have been kept in the same group and aggregated into one node in CG′. This

leads to a contradiction to the assumption that n′
1 and n′

2 are aggregated into n1 and n2, respectively.

Now we prove the output of Algorithm 1 is an attack strategy graph. Consider the output of Algorithm 1

ASG = (N,E, T,C). It is easy to see that T is a mapping that maps each n ∈ N to a hyper-alert type, and C is

a mapping that maps each edge e ∈ E to a set of equality constraints. In addition, because the input hyper-alert

correlation graph is a DAG, (N,E) must be a directed graph. Suppose there is a cycle n1, n2, · · · , n1 in (N,E).
There must exist two nodes n11, n12, and n21 in the input hyper-alert correlation graph such that n11 and n12

are aggregated into n1, n21 is aggregated into n2, and there exists a path n11, · · · , n21, · · · , n12. However,

according to the subroutine GraphReduction, n11 and n12 should have been put into two separate groups. Thus,

(N,E) cannot have any cycle. Finally, for any n1, n2 ∈ N , since the output of GraphReduction is irreducible,

if T (n1) = T (n2), then there must exist n3 ∈ N in a path between n1 and n2 such that T (n3) 6= T (n1).

B Automatic Generalization of Hyper-Alert Types

This appendix shows some examples for automatic generalization of hyper-alert types. Figure 5 shows the

results we obtained for the hyper-alert types in the 2000 DARPA data sets. Here the string inside the non-leaf

node means Generalization Type followed by an ID. From Figure 5(b), we know that FTP Put and Rsh can be

generalized to the same type. These results were used in our later experiments when we computed the similarity

measures between attack strategy graphs.

C Analysis of the Edit Cost Influence to Similarity Measurement

Suppose we have two graph Ga and Gb, which have na and nb nodes, and ea and eb edges, respectively.

Suppose we perform an error tolerant graph isomorphism from Ga to Gb, the node operations have the same

cost CN , and edge operations have the same cost CE , where CN ≫ CE . In the sequence of edit operations,

suppose there are NN node operations, and NE edge operations. Then the similarity measure can be simplified

as follows:
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Figure 5: Generalization hierarchies for the hyper-alert types in DARPA 2000 dataset. Threshold t = 0.5.

Sim(Ga, Gb) = 1 −
D(Ga, Gb)

Wr(Ga) + Wc(Gb)
= 1 −

CN × NN + CE × NE

CN × (na + nb) + CE × (ea + eb)

Further let ea + eb = k × (na + nb), and NE = s × NN . Then we have

Sim(Ga, Gb) = 1 −
CN × NN + CE × s × NN

CN × (na + nb) + CE × k × (na + nb)
= 1 −

NN × (CN + CE × s)

(na + nb) × (CN + CE × k)

When k and s are not large, since CN ≫ CE , the formula can be further simplified below:

Sim(Ga, Gb) = 1 −
NN

na + nb

Thus, under the above assumptions, the similarity is approximately determined by the proportion of the

number of edited nodes to the total number of nodes.

D Further Details of The Experiments

Attack Sequences in Our Experiments. Here we describe the three sequences of attacks performed in our

experiments. Since the descriptions of the attacks in the DARPA datasets are available on-line [28], we don’t

repeat them in this paper.

In the first sequence of attacks (Figure 4(e)), the attacker first uses nmap [16] to scan the victim machine.

(Nmap supports ping sweeps, port scans, and operating system detection.) After knowing that the OS of the
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Figure 6: Additional generalizations of hyper-alert types in our experiments

victim may be windows 2000 and port 80 is open, the attacker runs a Perl script which includes 20 different

malformed urls [8] against the victim machine’s Internet Information Services (IIS). The output of the Perl

script is a list of malformed urls to which the victim IIS is vulnerable. The attacker then selects one of the

vulnerabilities to perform the actual attack and gets a cmd.exe shell on the victim machine. The attacker then

uses interactive commands to list and delete some files, and finally exit the command shell. Figure 4(e) reveals

this strategy.

In the second sequence of attacks (Figure 4(f)), the attacker uses nmap to scan the victim machine. However,

after knowing that the OS of the victim may be windows 2000, the attacker ran a “jolt2” Perl script, which

would create a DoS attack to the victim machine. (Jolt2 is a DoS attack which can take advantage of the flaws

of IP fragment reassembly on Windows 2000 [7].) Figure 4(f) reveals this strategy, and because of the limitation

of the Snort’s signatures, it can only tell administrators “(spp frag2) Oversized fragment, probable DoS”.

In the third sequence of attacks (Figure 4(g)), the attacker uses nmap to scan the victim machine. After

knowing the OS of the victim may be windows 2000 and the port 80 is open, the attacker sets up a netcat

listening port on his machine, and runs a program “iis5hack” buffer overflow attack, which may result in a

buffer overflow on the Internet Printing Protocol accessed via IIS 5.0 [5, 9]. Following a successful iishack

attack, the attaker’s machine would get a reverse cmd.exe shell on the netcat listening port, and the attacker can

do whatever he/she wants on the victim machine, such as listing and deleting files. In Figure 4(g), the netcat

command shell attack is missing, because Snort cannot detect such attacks.

Generalization of Hyper-alert Types. The generalizations of hyper-alert types in our experiments include

those in Figure 5 as well as additional ones in Figure 6.
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