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Abstract

A new algorithmic framework is proposed for

learning autoencoders of data distributions. We

minimize the discrepancy between the model and

target distributions, with a relational regulariza-

tion on the learnable latent prior. This regular-

ization penalizes the fused Gromov-Wasserstein

(FGW) distance between the latent prior and its

corresponding posterior, allowing one to flexi-

bly learn a structured prior distribution associ-

ated with the generative model. Moreover, it

helps co-training of multiple autoencoders even

if they have heterogeneous architectures and in-

comparable latent spaces. We implement the

framework with two scalable algorithms, mak-

ing it applicable for both probabilistic and de-

terministic autoencoders. Our relational regu-

larized autoencoder (RAE) outperforms exist-

ing methods, e.g., the variational autoencoder,

Wasserstein autoencoder, and their variants, on

generating images. Additionally, our relational

co-training strategy for autoencoders achieves

encouraging results in both synthesis and real-

world multi-view learning tasks. The code is

at https://github.com/HongtengXu/

Relational-AutoEncoders.

1. Introduction

Autoencoders have been used widely in many challenging

machine learning tasks for generative modeling, e.g., im-

age (Kingma & Welling, 2013; Tolstikhin et al., 2018) and

sentence (Bowman et al., 2016; Wang et al., 2019) gener-

ation. Typically, an autoencoder assumes that the data in

the sample space X may be mapped to a low-dimensional

manifold, which can be represented in a latent space Z .

The autoencoder fits the unknown data distribution px via
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a latent-variable model denoted pG, specified by a prior

distribution pz on latent code z ∈ Z and a generative model

G : Z 7→ X mapping the latent code to the data x ∈ X .

Learning seeks to minimize the discrepancy between px
and pG. According to the choice of the discrepancy, we

can derive different autoencoders. For example, the varia-

tional autoencoder (Kingma & Welling, 2013) applies the

KL-divergence as the discrepancy and learns a probabilis-

tic autoencoder via maximizing the evidence lower bound

(ELBO). The Wasserstein autoencoder (WAE) (Tolstikhin

et al., 2018) minimizes a relaxed form of the Wasserstein

distance between px and pG, and learns a deterministic au-

toencoder. In general, the objective function approximating

the discrepancy consists of a reconstruction loss of observed

data and a regularizer penalizing the difference between

the prior distribution pz and the posterior derived by en-

coded data, i.e., qz|x. Although existing autoencoders have

achieved success in many generative tasks, they often suffer

from the following two problems.

Regularizer misspecification Typical autoencoders, like

the VAE and WAE, fix the pz as a normal distribution, which

often leads to the problem of over-regularization. Moreover,

applying such an unstructured prior increases the difficulties

in conditional generation tasks. To avoid oversimplified pri-

ors, the Gaussian mixture VAE (GMVAE) (Dilokthanakul

et al., 2016) and the VAE with VampPrior (Tomczak &

Welling, 2018) characterize their priors as learnable mixture

models. However, without side information (Wang et al.,

2019), jointly learning the autoencoder and the prior suffers

from a high risk of under-regularization, which is sensi-

tive to the setting of hyperparameters (e.g., the number of

mixture components and the initialization of the prior).

Co-training of heterogeneous autoencoders Solving a

single task often relies on the data in different domains

(i.e., multi-view data). For example, predicting the mor-

tality of a patient may require both her clinical record and

genetic information. In such a situation, we may need to

learn multiple autoencoders to extract latent variables as

features from different views. Traditional multi-view learn-

ing strategies either assume that the co-trained autoencoders

share the same latent distributions (Wang et al., 2015; Ye

et al., 2016), or assume that there exists an explicit transform

between different latent spaces (Wang et al., 2016). These

assumptions are questionable in practice, as the correspond-
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ing autoencoders can have heterogeneous architectures and

incomparable latent spaces. How to co-train such heteroge-

neous autoencoders is still an open problem.

To overcome the aforementioned problems, we propose

a new Relational regularized AutoEncoder (RAE). As il-

lustrated in Figure 1(a), we formulate the prior pz as a

Gaussian mixture model. Differing from existing methods,

however, we leverage the Gromov-Wasserstein (GW) dis-

tance (Mémoli, 2011) to regularize the structural difference

between the prior and the posterior in a relational manner,

i.e., comparing the distance between samples from the prior

with samples from the posterior, and restricting their dif-

ference. Considering this relational regularizer allows us

to implement the discrepancy between pz and qz|x as the

fused Gromov-Wasserstein (FGW) distance (Vayer et al.,

2018a). Besides imposing structural constraints on the prior

distribution within a single autoencoder, for multiple au-

toencoders with different latent spaces (e.g., the 2D and 3D

latent spaces shown in Figure 1(b)) we can train them jointly

by applying the relational regularizer to their posterior dis-

tributions.

The proposed relational regularizer is applicable for both

probabilistic and deterministic autoencoders, corresponding

to approximating the FGW distance as hierarchical FGW

and sliced FGW, respectively. We demonstrate the ratio-

nality of these two approximations and analyze their com-

putational complexity. Experimental results show that i)

learning RAEs helps achieve structured prior distributions

and also suppresses the under-regularization problem, out-

performing related approaches in image-generation tasks;

and ii) the proposed relational co-training strategy is bene-

ficial for learning heterogeneous autoencoders, which has

potential for multi-view learning tasks.

2. Relational Regularized Autoencoders

2.1. Learning mixture models as structured prior

Following prior work with autoencoders (Tolstikhin et al.,

2018; Kolouri et al., 2018), we fit the model distribution

pG by minimizing its Wasserstein distance to the data dis-

tribution px, i.e., minDw(px, pG). According to Theorem

1 in (Tolstikhin et al., 2018), we can relax the Wasserstein

distance and formulate the learning problem as follows:

min
G,Q

Epx
Eqz|x;Q

[d(x,G(z))]
︸ ︷︷ ︸

reconstruction loss

+ γD(Epx
[qz|x;Q], pz)︸ ︷︷ ︸

distance(posterior, prior)

, (1)

where G : Z 7→ X is the target generative model (decoder);

qz|x;Q is the posterior of z given x, parameterized by an

encoder Q : X 7→ Z; d represents the distance between

samples; and D is an arbitrary discrepancy between distri-

butions. Accordingly, qz;Q = Epx
[qz|x;Q] is the marginal

distribution derived from the posterior. Parameter γ achieves

(a) Proposed RAE (b) Relational Co-training

Figure 1. (a) Learning a single autoencoder with relational reg-

ularization. (b) Relational co-training of the autoencoders with

incomparable latent spaces.

a trade-off between reconstruction loss and the regularizer.

Instead of fixing pz as a normal distribution, we seek to

learn a structured prior associated with the autoencoder:

min
G,Q,pz∈P

Epx
Eqz|x;Q

[d(x,G(z))] + γD(qz;Q, pz). (2)

where P is the set of valid prior distributions, which is

often assumed as a set of (Gaussian) mixture models (Dilok-

thanakul et al., 2016; Tomczak & Welling, 2018). Learning

the structured prior allows one to explore the clustering

structure of the data and achieve conditional generation

(i.e., sampling latent variables from a single component of

the prior and generating samples accordingly).

2.2. Relational regularization via Gromov-Wasserstein

Jointly learning the prior and the autoencoder may lead to

under-regularization in the training phase – it is easy to fit

pz to qz;Q without harm to the reconstruction loss. Solving

this problem requires introduction of structural constraints

when comparing these two distributions, motivating a rela-

tional regularized autoencoder (RAE). In particular, besides

commonly-used regularizers like the KL divergence (Dilok-

thanakul et al., 2016) and the Wasserstein distance (Titouan

et al., 2019), which achieve direct comparisons of the distri-

butions, we consider a relational regularizer based on the

Gromov-Wasserstein (GW) distance (Mémoli, 2011) in our

learning problem:

minG,Q,pz∈P Epx
Eqz|x;Q

[d(x,G(z))]

+ γ((1− β)D(qz;Q, pz)︸ ︷︷ ︸
direct comparison

+βDgw(qz;Q, pz)︸ ︷︷ ︸
relational comparison

). (3)

where β ∈ [0, 1] controls the trade-off between the two

regularizers, and Dgw is the GW distance defined as follows.

Definition 2.1. Let (X , dx, px) and (Y, dy, py) be two met-

ric measure spaces, where (X , dx) is a compact metric
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space and px is a probability measure on X (with (Y, dy, py)
defined in the same way). The Gromov-Wasserstein distance

Dgw(px, py) is defined as

infπ∈Π(px,py) ∫X×Y ∫X×Y rx,y,x′,y′dπ(x, y)dπ(x′, y′)

= infπ∈Π(px,py) E(x,y,x′,y′)∼π×π[rx,y,x′,y′ ]

where rx,y,x′,y′ = |dx(x, x
′) − dy(y, y

′)|2, and Π(px, py)
is the set of all probability measures on X × Y with px and

py as marginals.

The rx,y,x′,y′ defines a relational loss, comparing the differ-

ence between the pairs of samples from the two distributions.

Accordingly, the GW distance corresponds to the minimum

expectation of the relational loss. The optimal joint distri-

bution π∗ corresponding to the GW distance is called the

optimal transport between the two distributions.

The Dgw(qz;Q, pz) in (3) penalizes the structural difference

between the two distributions, mutually enhancing the clus-

tering structure of the prior and that of the posterior. We

prefer using the GW distance to implement the relational

regularizer, because of the ease by which it may be com-

bined with existing regularizers, allowing design of scalable

learning algorithms. In particular, when the direct regular-

izer is the Wasserstein distance (Titouan et al., 2019), i.e.,

D = Dw, we can combine it with the Dgw and derive a new

regularizer as follows:

(1− β)Dw(px, py) + βDgw(px, py)

=(1− β) infπ∈Π(px,py) ∫X×Y cx,ydπ(x, y)+

β inf
π∈Π(px,py)

∫X×Y ∫X×Y rx,y,x′,y′dπ(x, y)dπ(x′, y′)

≤ inf
π∈Π(px,py)

(
(1− β) ∫X×Y cx,ydπ(x, y)︸ ︷︷ ︸

Wasserstein term

+

β ∫X×Y ∫X×Y rx,y,x′,y′dπ(x, y)dπ(x′, y′)
︸ ︷︷ ︸

Gromov-Wasserstein term

)

=Dfgw(px, py;β),

(4)

where c : X × Y 7→ R is a direct loss function between

the two spaces. The new regularizer enforces a shared opti-

mal transport for the Wasserstein and Gromov-Wasserstein

terms, corresponding to the fused Gromov-Wasserstein

(FGW) distance (Vayer et al., 2018a) between the distribu-

tions. The rationality of this combination has two perspec-

tives. First, the optimal transport indicates the correspon-

dence between two spaces (Mémoli, 2011; Xu et al., 2019b).

In the following section, we show that this optimal trans-

port maps encoded data to the clusters defined by the prior.

Enforcing shared optimal transport helps ensure the consis-

tency of the clustering structure. Additionally, as shown in

(4), Dfgw(px, py;β) ≥ (1−β)Dw(px, py)+βDgw(px, py).
When replacing the regularizers in (3) with the FGW regular-

izer, we minimize an upper bound of the original objective

function, useful from the viewpoint of optimization.

Therefore, we learn an autoencoder with relational regular-

ization by solving the following optimization problem:

min
G,Q,pz∈P

Epx
Eqz|x;Q

[d(x,G(z))] + γDfgw(qz;Q, pz;β), (5)

where the prior pz is parameterized as a Gaussian mixture

model (GMM) with K components {N (µk,Σk)}
K
k=1. We

set the probability of each component as 1
K

. The autoen-

coder can be either probabilistic or deterministic, leading to

different learning algorithms.

3. Learning algorithms

3.1. Probabilistic autoencoder with hierarchical FGW

When the autoencoder is probabilistic, for each sample x,

the encoder Q outputs the mean and the logarithmic vari-

ance of the posterior qz|x;Q. Accordingly, the marginal

distribution qz;Q becomes a GMM as well, with number

of components equal to the batch size, and the regularizer

corresponds to the FGW distance between two GMMs. In-

spired by the hierarchical Wasserstein distance (Chen et al.,

2018; Yurochkin et al., 2019; Lee et al., 2019), we leverage

the structure of the GMMs and propose a hierarchical FGW

distance to replace the original regularizer. In particular,

given two GMMs, we define the hierarchical FGW distance

between them as follows.

Definition 3.1 (Hierarchical FGW). Let p =
∑K

k=1 akpk

and q =
∑N

n=1 bnqn be two GMMs. {pk}
K
k=1 and {qn}

N
n=1

are M -dimensional Gaussian distributions. a = [ak] ∈
∆K−1, b = [bn] ∈ ∆N−1 are the distribution of the Gaus-

sian components. For β ∈ [0, 1], the hierarchical fused

Gromov-Wasserstein distance between these two GMMs is

Dhfgw(p, q;β)

=min
T=[tkn]∈Π(a,b)

(1− β)
∑

k,n
Dw(pk, qn)tkn+

β
∑

k,k′,n,n′
|Dw(pk, pk′)−Dw(qn, qn′)|2tkntk′n′

=Dfgw(a, b;β).

(6)

As shown in (6), the hierarchical FGW corresponds to

an FGW distance between the distributions of the Gaus-

sian components, whose ground distance is the Wasserstein

distance between the Gassuain components. Figures 2(a)

and 2(b) further illustrate the difference between the FGW

and our hierarchical FGW. For the two GMMs, instead of

computing the optimal transport between them in the sam-

ple space, the hierarchical FGW builds optimal transport

between their Gaussian components. Additionally, we have

Proposition 3.2. Dhfgw(p, q;β) = Dfgw(p, q) when Σ = 0
for all the Gaussian components.

Replacing the FGW with the hierarchical FGW, we convert

an optimization problem of a continuous distribution (the π
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(a) FGW (b) Hierarchical FGW (c) Sliced FGW

Figure 2. Illustrations of FGW, hierarchical FGW, and sliced FGW.

The black solid arrow represents the distance between samples

while the black dotted arrow represents the relational loss between

sample pairs. In (a, c), the red and blue arrows represent the Eu-

clidean distance between samples. In (b), the red and blue arrows

represent the Wasserstein distance between Gaussian components.

in (4)) to a much simpler optimization problem of a discrete

distribution (the T in (6)). Rewriting (6) in matrix form,

we compute the hierarchical FGW distance via solving the

following non-convex optimization problem:

Dhfgw(p, q;β) = minT∈Π(a,b)〈D − 2βDpTD
⊤
q , T 〉, (7)

where 〈·, ·〉 indicates the inner product between matrices,

Π(a, b) = {T ≥ 0|T1N = a, T⊤1K = b}, and 1N is

an N -dimensional all-one vector. The optimal transport

matrix T is a joint distribution of the Gaussian components

in the two GMMs, where Dp = [Dw(pk, pk′)] ∈ R
K×K

and Dq = [Dw(qn, qn′)] ∈ R
N×N , whose elements are the

Wasserstein distances between Gaussian components, and

D = (1− β)Dpq +
β

K
(Dp ⊙Dp) +

β

N
(Dq ⊙Dq)

⊤ (8)

with Dpq = [Dw(pk, qn)] ∈ R
K×N and ⊙ represents the

Hadamard product. The Wasserstein distance between Gaus-

sian distributions has a closed form:

Definition 3.3. Let p = N (up,Σp) and q = N (uq,Σq) be

two N -dimensional Gaussian distributions, where u and Σ
represent the mean and the covariance matrix, respectively.

The Wasserstein distance Dw(p, q) is

‖up − uq‖
2
2 + trace(Σp +Σq − 2(Σ

1
2
p ΣqΣ

1
2
p )

1
2 ). (9)

When the covariance matrices are diagonal, i.e., Σ =
diag(σ2), where σ = [σn] ∈ R

N is the standard deviation,

(9) can be rewritten as

Dw(p, q) = ‖up − uq‖
2
2 + ‖σp − σq‖

2
2. (10)

We solve (7) via the proximal gradient method in (Xu et al.,

2019b), with further details in the Supplementary Material.

The hierarchical FGW is a good substitute for the original

FGW, imposing structural constraints while being more effi-

cient computationally. Plugging the hierarchical FGW and

its computation into (5), we apply Algorithm 1 to learn the

proposed RAE. Note that taking advantage of the Envelope

Algorithm 1 Learning RAE with hierarchical FGW

1: Input Samples in X
2: Output The autoencoder {G,Q} and the prior with K Gaus-

sian components pz = 1

K

∑
k
N (z;µk, diag(σk)).

3: for each epoch
4: for each batch of samples {xn}

N
n=1 ⊂ X

5: µn, log(σ
2
n) = Q(xn) for n = 1, ..., N .

6: Reparameterize zn = µn + ǫσn, where ǫ ∼ N (0, I).
7: qz;Q = 1

N

∑
n
N (z;µn, diag(σn)).

8: Calculate Dp, Dq via (10), calculate D via (8)
9: Obtain optimal transport T ∗ via solving (7).

10: Lreconstruction =
∑

n
d(xn, G(zn)).

11: Dhfgw(qz;Q, pz;β) = 〈D − 2βDpT
∗D⊤

q , T ∗〉.
12: Update G,Q, pz = Adam(Lreconstruction + γDhfgw).

Theorem (Afriat, 1971), we treat the optimal transport ma-

trix as constant when applying backpropagation, reducing

computational complexity significantly. The optimal trans-

port matrix maps the components in the qz;Q to those in the

pz . Because the components in the qz;Q correspond to sam-

ples and the components in the pz correspond to clusters,

this matrix indicates the clustering structure of the samples.

3.2. Deterministic autoencoder with sliced FGW

When the autoencoder is deterministic, its encoder outputs

the latent codes corresponding to observed samples. These

latent codes can be viewed as the samples of qz;Q. For

the prior pz , we can also generate samples with the help

of the reparameterization trick. In such a situation, we

estimate the FGW distance in (5) based on the samples of the

two distributions. For arbitrary two metric measure spaces

(X , dx, px) and (Y, dy, py), the empirical FGW between

their samples {xi}
N
i=1 and {yj}

N
j=1 is

D̂fgw(px, py;β)

=minT∈Π( 1
N

1N , 1
N

1N )(1− β)
∑N

i,j=1
d(xi, yj)tij+

β
∑

i,i′,j,j′
|d(xi, xi′)− d(yj , yj′)|

2tijti′j′ .

(11)

We can rewrite this empirical FGW in matrix form as (7),

and solve it by the proximal gradient method discussed

above. When the samples are in 1D space and the met-

ric is the Euclidean distance, however, according to the

sliced GW distance in (Titouan et al., 2019) and the sliced

Wasserstein distance in (Kolouri et al., 2016), the optimal

transport matrix corresponds to a permutation matrix and

the D̂fgw(px, py;β) can be rewritten as:

D̂fgw(px, py;β) = min
σ∈PN

1− β

N

∑N

i=1
(xi − yσ(i))

2+

β

N

∑N

i,j=1
((xi − xj)

2 − (yσ(i) − yσ(j))
2)2,

(12)

where PN is the set of all permutations of {1, ..., N}. With-

out loss of generality, we assume the 1D samples are sorted,
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i.e., x1 ≤ ... ≤ xN and y1 ≤ ... ≤ yN , and demonstrate

that the solution of (12) is characterized by the following

theorem.

Theorem 3.4. For x, y ∈ {x = [xi], y = [yj ] ∈ R
N ×

R
N |x1 ≤ ... ≤ xN , y1 ≤ ... ≤ yN}, we denote their

zero-mean translations as x′ and y′, respectively. The

solution of (12) satisfies: 1) When (
∑

i x
′
iy

′
i +

1−β
8β )2 ≥

(
∑

i x
′
iy

′
n+1−i+

1−β
8β )2, the solution is the identity permuta-

tion σ(i) = i. 2) Otherwise, the solution is the anti-identity

permutation σ(i) = n+ 1− i.

The proof of Theorem 3.4 is provided in the Supplementary

Material. Consequently, for the samples in 1D space, we

can calculate the empirical FGW distance via permuting

the samples. To leverage this property for high-dimensional

samples, we propose the following sliced FGW distance:

Definition 3.5 (Sliced FGW). Let SM−1 = {θ ∈
R

M |‖θ‖2 = 1} be the M -dimensional hypersphere and

uSM−1 the uniform measure on SM−1. For each θ, we

denote the projection on θ as Rθ, where Rθ(x) = 〈x, θ〉.
For (X , dx, px) and (Y, dy, py), we define their sliced fused

Gromov-Wasserstein distance as

Dsfgw(px, py;β) = Eθ∼uSM−1
[Dfgw(Rθ#px, Rθ#py;β])],

where Rθ#p represents the distribution after the projection,

and Dfgw(Rθ#px, Rθ#py) is the FGW distance between

(Rθ(X ), dRθ(x), Rθ#px) and (Rθ(Y), dRθ(y), Rθ#py).

According to this definition, the sliced FGW projects the

original metric measure spaces into 1D spaces, and calcu-

lates the FGW distance between these spaces. The sliced

FGW corresponds to the expectation of the FGW distances

under different projections. We can approximate the sliced

FGW distance based on the samples of the distributions as

well. In particular, given {xi}
N
i=1 from X , {yi}

N
i=1 from Y ,

and L projections {Rθl}
L
l=1, the empirical sliced FGW is

D̂sfgw(px, py;β)

=
1

L

∑L

l=1
D̂fgw(Rθl#px, Rθl#py;β)

=
1

L

∑L

l=1
min
σ∈PN

1− β

N

∑N

i=1
(xi,θl − yσ(i),θl)

2+

β

N

∑N

i,j=1
((xi,θl − xj,θl)

2 − (yσ(i),θl − yσ(j),θl)
2)2,

(13)

where xi,θl = Rθl(xi) represents the projected sample. Fig-

ure 2(c) further illustrates the principle of the sliced FGW

distance. Replacing the empirical FGW with the empirical

sliced FGW, we learn the relational regularized autoencoder

via Algorithm 2.

3.3. Comparisons on computational complexity

Compared with calculating empirical FGW distance directly,

our hierarchical FGW and sliced FGW have much lower

Algorithm 2 Learning RAE with sliced FGW

1: Input Samples in X
2: Output The autoencoder {G,Q} and the prior with K Gaus-

sian components pz = 1

K

∑
k
N (z;µk, diag(σk)).

3: for each epoch
4: for each batch of samples {xn}

N
n=1 ⊂ X

5: for n = 1, ..., N
6: Samples of qz;Q: zn = Q(xn).
7: Samples of pz: k ∼ Categorical(K), z′n = µk + ǫσk.
8: for l = 1, ..., L
9: Create a random projection θl ∈ SM−1

10: zn,θl = Rθlzn, z′n,θl
= Rθlz

′

n for n = 1, ..., N .

11: Sort {zn,θl}
N
n=1 and {z′n,θl

}Nn=1, respectively.

12: Calculate D̂fgw(Rθl#qz;Q, Rθl#pz;β]) based on
sorted samples and Theorem 3.4.

13: Lreconstruction =
∑

n
d(xn, G(zn)).

14: Calculate D̂sfgw(qz;Q, pz;β) via (13).

15: Update G,Q, pz = Adam(Lreconstruction + γD̂sfgw).

computational complexity. Following notation in the pre-

vious two subsections, we denote the batch size as N , the

number of Gaussian components in the prior as K, and the

dimension of the latent code as M . If we apply the proximal

gradient method in (Xu et al., 2019b) to calculate the empiri-

cal FGW directly, the computational complexity is O(JN3),
where J is the number of Sinkhorn iterations used in the

algorithm. For our hierarchical FGW, we apply the proxi-

mal gradient method to a problem with a much smaller size

(i.e., solving (7)) because of K ≪ N in general. Accord-

ingly, the computational complexity becomes O(JN2K).
For our sliced FGW, we apply L random projections to

project the latent codes to 1D spaces, whose complexity

is O(LMN). For each pair of projected samples, we sort

them with O(N logN) operations and compute (12) with

O(N2) operations. Overall, the computational complexity

of our sliced FGW is O(LN(M + logN +N)). Because

J ≈ L in general, the computational complexity of the

sliced FGW is comparable to that of the hierarchical FGW.

4. Relational Co-Training of Autoencoders

Besides learning a single autoencoder, we can apply our

relational regularization to learn multiple autoencoders. As

shown in Figure 1(b), when learning two autoencoders we

can penalize the GW distance between their posterior distri-

butions, and accordingly the learning problem becomes:

min
{Gs,Qs}2

s=1

∑2

s=1

(
Epxs

Eqzs|xs;Qs
[d(xs, Gs(zs))]+

γ(1− τ)D(qzs;Qs
, pzs)

)
+ 2γτDgw(qz1;Q1

, qz2;Q2
).

(14)

The regularizer D quantifies the discrepancy between the

marginalized posterior and the prior, the prior distribu-

tions can be predefined or learnable parameters, τ ∈ [0, 1]
achieves a trade-off between D and the relational regularizer
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Dgw, and γ controls the overall significance of these two

kinds of regularizers. When learning probabilistic autoen-

coders, we set D to the hierarchical Wasserstein distance

between GMMs (Chen et al., 2018) and approximate the

relational regularizer by a hierarchical GW distance, equiv-

alent to the hierarchical FGW with β = 1. When learning

deterministic autoencoders, we set D to the sliced Wasser-

stein distance used in (Kolouri et al., 2018) and approximate

the relational regularizer via the sliced GW (Titouan et al.,

2019) (the sliced FGW with β = 1).

The main advantage of the proposed relational regulariza-

tion is that it is applicable for co-training heterogeneous

autoencoders. As shown in (14), the data used to train the

autoencoders can come from different domains and with

different data distributions. To fully capture the information

in each domain, sometimes the autoencoders have hetero-

geneous architectures, and the corresponding latent codes

are in incomparable spaces, e.g., with different dimensions.

Taking the GW distance as the relational regularizer, we

impose a constraint on the posterior distributions defined in

different latent spaces, encouraging structural similarity be-

tween them. This regularizer helps avoid over-regularization

because it does not enforce a shared latent distribution across

different domains. Moreover, the proposed regularizer is im-

posed on the posterior distributions. In other words, it does

not require samples from different domains to be paired.

According to the analysis above, our relational co-training

strategy has potential for multi-view learning, especially in

the scenario with unpaired samples. In particular, given the

data in different domains, we first learn their latent codes

via solving (14). Concatenating the latent codes in different

domains, we can use the concatenation of the latent codes

as the features for downstream learning tasks.

5. Related Work

Gromov-Wasserstein distance The GW distance has been

used as a metric for shape registration (Mémoli, 2009; 2011),

vocabulary set alignment (Alvarez-Melis & Jaakkola, 2018),

and graph matching (Chowdhury & Mémoli, 2018; Vayer

et al., 2018b; Xu et al., 2019b). The work in (Peyré et al.,

2016) proposes an entropy-regularized GW distance and

calculates it based on Sinkhorn iterations (Cuturi, 2013).

Following this direction, the work in (Xu et al., 2019b)

replaces the entropy regularizer with a Bregman proximal

term. The work in (Xu, 2019) proposes an ADMM-based

method to calculate the GW distance. To further reduce the

computational complexity, the recursive GW distance (Xu

et al., 2019a) and the sliced GW distance (Titouan et al.,

2019) have been proposed. For generative models, the work

in (Bunne et al., 2019) leverages the GW distance to learn

coupled adversarial generative networks. However, none of

the existing autoencoders consider using the GW distance

Table 1. Comparisons for different autoencoders

Method Q : X 7→ Z pz D(qz;Q, pz)
VAE Probabilistic N (z; 0, I) KL
WAE Deterministic N (z; 0, I) MMD

SWAE Deterministic N (z; 0, I) Dw

GMVAE Probabilistic 1

K

∑
k
N (z;uk,Σk) KL

VampPrior Probabilistic 1

K

∑
k
N (z;Q(xk)) KL

Our RAE
Probabilistic 1

K

∑
k
N (z;uk,Σk)

Dhfgw

Deterministic D̂sfgw

as their regularizer.

Autoencoders The principle of the autoencoder is to mini-

mize the discrepancy between the data and model distribu-

tions. The common choices of the discrepancy include the

KL divergence (Kingma & Welling, 2013; Dilokthanakul

et al., 2016; Tomczak & Welling, 2018; Takahashi et al.,

2019) and the Wasserstein distance (Tolstikhin et al., 2018;

Kolouri et al., 2018), which lead to different learning al-

gorithms. Our relational regularized autoencoder can be

viewed as a new member of the Wasserstein autoencoder

family. Compared with the MMD and the GAN loss used

in WAE (Tolstikhin et al., 2018), and the sliced Wasserstein

distance used in (Kolouri et al., 2018), our FGW-based regu-

larizer imposes relational constraints and allows the learning

of an autoencoder with structured prior distribution.

Co-training methods For data in different domains, a

commonly-used co-training strategy maps them to a shared

latent space, and encourages similarity between their la-

tent codes. This co-training strategy suppresses the risk

of overfitting for each model and enhances their general-

ization power, which achieves encouraging performance

in multi-view learning (Kumar & Daumé, 2011; Chen &

Denoyer, 2017; Sindhwani et al., 2005). However, this

strategy assumes that the latent codes yield the same distri-

bution, which may lead to over regularization. Additionally,

it often requires well-aligned data, i.e., the samples in differ-

ent domains are paired. Our relational co-training strategy

provides a potential solution to relax these restrictions for

practical applications.

6. Experiments

6.1. Image generation

We test our relational regularized autoencoder (RAE) for

image-generation tasks and compare it with the following

alternatives: the variational autoencoder (VAE) (Kingma &

Welling, 2013), the Wasserstein autoencoder (WAE) (Tol-

stikhin et al., 2018), the sliced Wasserstein autoencoder

(SWAE) (Kolouri et al., 2018), the Gaussian mixture VAE

(GMVAE) (Dilokthanakul et al., 2016), and the Vamp-

Prior (Tomczak & Welling, 2018). Table 1 lists the main

differences between our RAE and these baselines.
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Table 2. Comparisons on learning image generator

Encoder
Method

MNIST CelebA
Q : X 7→ Z Rec. loss FID Rec. loss FID

Probabilistic

VAE 16.60 156.11 96.36 59.99
GMVAE 16.76 60.88 108.13 353.17

VampPrior 22.41 127.81 — —
RAE 14.14 41.99 63.21 52.20

Deterministic
WAE 9.97 52.78 63.83 52.07

SWAE 11.10 35.63 87.02 88.91
RAE 10.37 49.39 64.49 51.45

Table 3. Runtime per epoch (second) when training various models

Dataset WAE SWAE P-RAE D-RAE

MNIST 25.6 24.7 26.9 24.8
CelebA 602.2 553.4 618.5 569.7

We test the methods on the MNIST (LeCun et al., 1998)

and CelebA datasets (Liu et al., 2015). For fairness, all

the autoencoders have the same DCGAN-style architec-

ture (Radford et al., 2015) and are learned with the same

hyperparameters: the learning rate is 0.001; the optimizer is

Adam (Kingma & Ba, 2014) with β1 = 0.5 and β2 = 0.999;

the number of epochs is 50; the batch size is 100; the weight

of regularizer γ is 1; the dimension of latent code is 8 for

MNIST and 64 for CelebA. For the autoencoders with struc-

tured priors, we set the number of the Gaussian components

to be 10 and initialize their prior distributions at random.

For the proposed RAE, the hyperparameter β is set to be 0.1,

which empirically makes the Wasserstein term and the GW

term in our FGW distance have the same magnitude. The

probabilistic RAE calculates the hierarchical FGW based on

the proximal gradient method with 20 iterations, and the de-

terministic RAE calculates the sliced FGW with 50 random

projections. All the autoencoders use Euclidean distance

as the distance between samples, thus the reconstruction

loss is the mean-square-error (MSE). We implement all

the autoencoders with PyTorch and train them on a single

NVIDIA GTX 1080 Ti GPU. More implementation details,

e.g., the architecture of the autoencoders, are provided in

Supplementary Material.

For each dataset, we compare the proposed RAE with the

baselines on i) the reconstruction loss on testing samples;

ii) the Fréchet Inception Distance (FID) between 10,000

testing samples and 10,000 randomly generated samples.

We list the performance of various autoencoders in Table 2.

Among probabilistic autoencoders, our RAE consistently

achieves the best performance on both testing reconstruction

loss and FID score. When learning deterministic autoen-

coders, our RAE is at least comparable to the considered

alternatives on these measurements. Figure 3 compares the

autoencoders on their convergence of the reconstruction

loss. The convergence of our RAE is almost the same as

that of state-of-the-art methods, which further verifies its

feasibility.

For the autoencoders learning GMMs as their priors, we

further make comparisons for them in conditional genera-

tion tasks, i.e., generating samples conditioned on specific

Gaussian components. Figures 4 and 5 visualize the gener-

ation results for various methods. For the MNIST dataset,

the GMVAE, our probabilistic RAE, and deterministic RAE

achieve desired generation results. The images conditioned

on different Gaussian components correspond to different

digits/writing styles. The VampPrior, however, suffers from

a problem of severe mode collapse. The images conditioned

on different Gaussian components are similar to each other

and with limited modes – most of them are “0”, “2”, “3”,

and “8”. As shown in Table 1, for each Gaussian component

of the prior, the VampPrior parameterizes it by passing a

landmark xk through the encoder. Because the landmarks

are in the sample space, this implicit model requires more

parameters, making it sensitive to initialization with a high

risk of overfitting. Figures 3(a) and 3(b) verify our claim:

the testing loss of the VampPrior is unstable and does not

converge well during training. For the CelebA dataset, the

GMVAE fails to learn a GMM-based prior. As shown in

Figure 5(a), the GMVAE trains a single Gaussian distri-

bution, while ignoring the remaining components. As a

result, only one Gaussian component can generate face im-

ages. Our probabilistic and deterministic RAE, by contrast,

learn their GMM-based prior successfully. In particular,

all the components of our probabilistic RAE can generate

face images, but the components are indistinguishable. Our

deterministic RAE achieves the best performance in this

conditional generation task – different components can gen-

erate semantically-meaningful images with interpretable

diversity. For each component, we add some tags to high-

light semantic meaning. The visual comparisons for various

autoencoders on their reconstructed and generated samples

are shown in Supplementary Material.

6.2. Multi-view learning via co-training autoencoders

We test our relational co-training strategy on four multi-

view learning datasets (Li et al., 2015):1 Caltech101-7 is a

subset of the Caltech-101 dataset (Fei-Fei et al., 2004) with

1,474 images in 7 classes. Each image is represented by

48-dimensional Gabor features and 40-dimensional Wavelet

moments. Caltech101-20 is a subset of the Caltech-101

with 2,386 images in 20 classes. The features are the

same with the Caltech101-7. Handwritten is a dataset with

2,000 images corresponding to 10 digits. Each image has

240-dimensional pixel-based features and 76-dimensional

Fourier coefficients. Cathgen is a real-world dataset of

8,000 patients. For each patient, we seek to leverage 44-

dimensional clinical features and 67-dimensional genetic

1https://github.com/yeqinglee/mvdata

https://github.com/yeqinglee/mvdata
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(a) MNIST (b) Enlarged (a) (c) CelebA

Figure 3. Comparisons for various methods on their convergence.

(a) VampPrior

(b) GMVAE

(c) Probabilistic RAE

(d) Deterministic RAE
Figure 4. Comparisons on conditional digit generation.

features to predict the happening of myocardial infarction,

i.e., a binary classification task.

For each dataset, we use 80% of the data for training, 10%

for validation, and the remaining 10% for testing. We test

various multi-view learning methods. For each method, we

first learn two autoencoders for the data in different views in

an unsupervised way, and then concatenate the latent codes

of the autoencoders as the features and train a classifier

based on softmax regression. When learning autoencoders,

our relational co-training method solves (14) with γ = 1
and τ = 0.5. The influence of τ on the learning results is

shown in Supplementary Material. For simplification, we

set the prior distributions as normal distributions in (14).

The autoencoders are probabilistic, whose encoders and de-

coders are MLPs. Each autoencoder has 20-dimensional

latent codes, and more implementation details are provided

in Supplementary Material. We set D as the hierarchical

Wasserstein distance and the relational regularizer as the hi-

erarchical GW distance. In addition to the proposed method,

denoted as AEs+GW, we consider the following baselines:

i) learning two variational autoencoders independently

(Independent AEs); ii) learning two variational autoen-

coders jointly with a least-square co-regularization (Sind-

hwani et al., 2005) (AEs+CoReg); iii) learning latent rep-

resentations via canonical correlation analysis (CCA) (Vı́a

et al., 2007); iv) learning two autoencoders jointly with a

CCA-based regualrization (AEs+CCA) (Wang et al., 2015);

v) learning two autoencoders by replacing the Dgw in (14)

with a Wasserstein regularizer (AEs+W). The AE+CoReg

penalizes the Euclidean distance between the latent codes

from different views, which needs paired samples. The

remaining methods penalize the discrepancy between the

distributions of the latent codes, which are applicable for

unpaired samples. The classification accuracy in Table 4
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(a) GMVAE

(b) Probabilistic RAE

(c) Deterministic RAE
Figure 5. Comparisons on conditional face generation.

Table 4. Comparisons on classification accuracy (%)

Method Data type Caltech101-7 Caltech101-20 Handwritten Cathgen

Independent AEs Unpaired 56.92±1.67 33.07±2.09 52.09±5.82 64.36±1.93
AEs+CoReg (Sindhwani et al., 2005) Paired 76.58±1.38 60.25±1.66 56.20±5.25 66.79±1.30
CCA (Vı́a et al., 2007) Paired 78.33±1.88 52.27±2.32 66.28±5.02 65.28±2.17
AEs+CCA (Wang et al., 2015) Paired 80.24±1.22 62.37±1.35 69.72±4.64 66.89±1.57
AEs+W Unpaired 83.07±1.69 69.58±2.03 71.21±5.55 66.06±1.68
AEs+GW (Ours) Unpaired 84.29±1.74 69.39±2.01 72.36±3.82 66.99±1.77

demonstrates effectiveness of our relational co-training strat-

egy, as the proposed method outperforms the baselines con-

sistently across different datasets.

7. Conclusions

A new framework has been proposed for learning autoen-

coders with relational regularization. Leveraging the GW

distance, this framework allows the learning of structured

prior distributions associated with the autoencoders and pre-

vents the model from under-regularization. Besides learning

a single autoencoder, the proposed relational regularizer is

beneficial for co-training heterogeneous autoencoders. In

the future, we plan to make this relational regularizer ap-

plicable for co-training more than two autoencoders and

further reduce its computational complexity.
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