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Abstract—Edge computing provides a promising paradigm
to support the implementation of industrial Internet of Things
(IIoT) by offloading computational-intensive tasks from resource-
limited machine-type devices (MTDs) to powerful edge servers.
However, the performance gain of edge computing may be
severely compromised due to limited spectrum resources,
capacity-constrained batteries, and context unawareness. In
this paper, we consider the optimization of channel selection
which is critical for efficient and reliable task delivery. We
aim at maximizing the long-term throughput subject to long-
term constraints of energy budget and service reliability. We
propose a learning-based channel selection framework with ser-
vice reliability awareness, energy awareness, backlog awareness,
and conflict awareness, by leveraging the combined power of
machine learning, Lyapunov optimization, and matching theory.
We provide rigorous theoretical analysis, and prove that the
proposed framework can achieve guaranteed performance with
a bounded deviation from the optimal performance with global
state information (GSI) based on only local and causal infor-
mation. Finally, simulations are conducted under both single-
MTD and multi-MTD scenarios to verify the effectiveness and
reliability of the proposed framework.

Index Terms—Industrial Internet of Things (IIoT), resource
allocation, context awareness, edge computing, machine learning,
Lyapunov optimization, matching theory.

Manuscript received August 1, 2019; revised September 10, 2019 and
October 31, 2018; accepted December 15, 2019; current version December
30, 2019. This work was partially supported by the National Natural Science
Foundation of China (NSFC) under Grant Number 61971189; the Science and
Technology Project of State Grid Corporation of China under Grant Number
SGSDDK00KJJS1900405; the Exploration Project of State Key Laboratory
of Alternate Electrical Power System with Renewable Energy Sources (North
China Electric Power University) under Grant Number LAPS2019-12; the
European Regional Development Fund (FEDER), through the Competitiveness
and Internationalization (COMPETE 2020), Regional Operational Program
of the Agarve (2020), Fundao para a ciłncia e Tecnologia, i-Five: Extenso
do acesso de espectro dinmico para rdio 5G, POCI-01-0145-FEDER-030500.
(Corresponding author: Z. Zhou).

H. Liao, Z. Zhou and X. Zhao are with State Key Laboratory
of Alternate Electrical Power System with Renewable Energy Sources
(North China Electric Power University), and School of Electrical and
Electronic Engineering, North China Electric Power University, Bei-
jing, China (e-mail: haijun liao@ncepu.edu.cn, zhenyu zhou@ncepu.edu.cn,
zhaoxw@ncepu.edu.cn).

L. Zhang is with Shandong Electric Power Research Institute for State Grid
Corporation of China, Jinan, China (e-mail: 18660130685@163.com).

S. Mumtaz is with the The Instituto de Telecomunicações,1049-001, Aveiro,
Portugal (e-mail: smumtaz@av.it.pt).

A. Jolfaei is with the Department of Computing, Macquarie University,
Sydney NSW 2113, Australia (e-mail: alireza.jolfaei@mq.edu.au).

S. H. Ahmed is with the Department of Electrical and Computer Sci-
ence, Georgia Southern University, Statesboro, GA 30460, USA (e-mail:
sh.ahmed@ieee.org).

A. K. Bashir is with the Department of Computing and Mathe-
matics, Manchester Metropolitan University, Manchester, U.K (e-mail:
dr.alikashif.b@ieee.org).

I. INTRODUCTION

THE fourth industrial revolution aims to realize intercon-

nected, responsive, intelligent and self-optimizing man-

ufacturing processes and systems through seamless integra-

tion of advanced manufacturing techniques with industrial

Internet of Things (IIoT) [1]. In this new paradigm, bil-

lions of machine-type devices (MTDs) will be deployed in

the field for continuously performing various tasks such as

monitoring, billing, and protection [2], [3]. Nevertheless, the

tension between resource-limited MTDs and computational-

intensive tasks has become the bottleneck for reliable service

provisioning [4].

Offloading computational-intensive tasks from resource-

limited MTDs to powerful servers provides a promising

solution for accommodating the fast-growing computational

demands. In conventional cloud computing, the remote cloud

servers are generally located far away from MTDs, and the

long-distance data transmission raises numerous issues includ-

ing unstable connection, network congestion, and unbearable

latency [5]. In comparison, edge computing [6], which shifts

the computational capabilities from remote clouds to network

edges within radio access network (RAN) [7], is a promising

paradigm to reduce latency, relieve congestion, and prolong

battery lifetime. It has attracted intensive research efforts from

both industry and academia. In [8], Fan et. al considered the

workload balancing problem in fog computing, and proposed

a distributed device association algorithm to minimize the

communication latency and the computational latency. They

also extended their work to drone-assisted communication

networks for IoT [9]. Markakis et. al developed a multi-

access edge computing based IoT framework for supporting

next-generation emergency services, and provided several use

cases of remote healthcare monitoring and management [10].

Omoniwa et. al proposed an edge computing-based IoT frame-

work to enhance smart grid with improved scalability, security,

response and less system cost [11].

Unfortunately, although edge computing provides a promis-

ing way to exploit the abundant computational resources of

edge servers, its performance gain may be severely compro-

mised due to limited spectrum resources, capacity-constrained

batteries, and context unawareness. First, to deliver a large

volume of tasks from MTDs to the edge server on a real-

time basis, channel selection has to be dynamically optimized

in accordance with time-varying context parameters such as

channel state information (CSI), energy state information
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(ESI), server load, and service reliability requirement. Con-

ventional centralized optimization approaches [12], [13], rely 
on a common presumption that there exists a central node, 
e.g., the base station (BS), which has the perfect knowledge of 
all the context parameters. This presumption is too optimistic 
in real-world implementation considering the prohibitive cost 
of signaling overhead to collect information of the entire 
network. Therefore, a distributed optimization approach where 
each MTD individually optimizes its channel selection strategy 
based on only local information is more desirable. However, 
when the number of MTDs far more exceeds that of available 
channels, selection conflict w ill o ccur f requently i f multi-

ple MTDs compete for the same channel, thus making the 
strategies of channel selection coupled across different MTDs. 
Second, given the limited battery capacity, a MTD will be 
out of service when the battery energy is exhausted. As a 
result, the short-term channel selection strategy also couples 
the long-term energy budget. Last but not least, industrial 
applications often require that certain service reliability should 
be guaranteed [14]. How to meet the stringent reliability 
requirement with limited resources and information brings 
another dimension of difficulty.

Matching theory provides a flexible, l ow-complexity, and 
efficient t ool t o s olve t he c ombinatorial p roblem s uch as 
channel selection [15], task selection [16], and server selection 
[17]. However, it requires perfect knowledge of global state 
information (GSI) to construct the preference list, which spec-

ifies the fundamental matching criteria [18]. There exist some 
research attempts which study the optimization of channel 
selection based on matching and game theory [19], [20]. How-

ever, they rely on the assumption that the uncertain context 
parameters follow some well-known probability distribution, 
and may suffer from severe performance loss if the practical 
probability distributions of uncertain factors disagree from the 
presumed statistical models.

In this paper, we propose a learning-based context-aware 
channel selection framework by combining machine learning, 
Lyapunov optimization, and matching theory. Specifically, we 
adopt the upper confidence b ound ( UCB) a lgorithm [ 21] to 
enable a MTD to learn the matching preferences and maximize 
the long-term optimality performance while maintaining a 
well-balanced tradeoff between exploitation and exploration. 
UCB was originally developed to solve the multi-armed ban-

dit (MAB) problem [22], which involves sequential decision 
making based on only local information. It was designed for 
the single-player scenario and thereby inevitably leading to 
selection conflicts in the multi-player scenario where multiple 
MTDs are prone to select the same channel [23].

We aim at maximizing the long-term network through-

put subject to long-term constraints of energy budget and 
service reliability. The stochastic optimization problem is 
converted to a series of short-term deterministic problems 
by leveraging Lyapunov optimization [14]. We start from 
the simplified s ingle-MTD s cenario w ith p erfect G SI, and 
propose a Service-reliability-aware, Energy-aware, and data-

Backlog-aware GSI (SEB-GSI) algorithm for channel selec-

tion. Then, we extend SEB-GSI to the nonideal case with 
only local information, and develop a UCB-based channel

selection algorithm named SEB-UCB. It enables the MTD

to dynamically balance throughput, energy consumption, and

service reliability via online learning. Next, for the multi-MTD

scenario with GSI, we formulate the optimization problem of

channel selection as a one-to-one matching between MTDs

and channels, and propose a matching-based solution named

SEB-Matching GSI (SEB-MGSI). Afterwards, we emphasize

the multi-MTD scenario with only local information, and

develop a matching-learning based context-aware channel se-

lection algorithm named SEB Conflict-aware MUCB (SEBC-

MUCB), in which each MTD makes decision and learns the

selection conflicts by continuously observing the relationship

between matching preferences and matching results.

The main contributions are summarized as follows:

• Learning-based channel selection: We propose a

learning-based channel selection framework by leverag-

ing the combined power of UCB, Lyapunov optimization

and matching theory. It can learn the long-term opti-

mal strategy and achieve guaranteed performance with

a bounded deviation while the long-term constraints of

energy budget and service reliability are satisfied in a best

effort way based on only local and causal information.

• Context awareness: The proposed framework can achieve

service reliability awareness, energy awareness, and back-

log awareness by dynamically adjusting the exploitation

weights in accordance with the performances of through-

put, energy consumption and service reliability. It can

also achieve conflict awareness by continuously learning

the difference between matching preference and actual

matching result.

• Multiple deployment scenarios and information availabil-

ity cases: The simplified single-MTD scenario is firstly

studied to provide some insight. Then, the more com-

plicated multi-MTD scenario where selection conflicts

exist is investigated. For both the single-MTD and the

multi-MTD scenarios, the ideal case with perfect GSI is

firstly studied as the performance benchmark. Then, the

analysis is extended to the nonideal case with only local

information where learning is considered.

• Rigorous theoretical analysis and extensive performance

evaluation: We analyze the optimality performance of

the proposed framework from the perspective of net-

work throughput and learning regret. We also provide

a comprehensive analysis of computational complexity.

Extensive simulations are carried out to validate its ef-

fectiveness and reliability under various scenarios and

parameter settings.

The remaining parts of this paper are organized as follows.

The system model and the problem formulation are intro-

duced in Section II. Section III and Section IV describe the

learning-based context-aware channel selection for the single-

MTD scenario and the multi-MTD scenario, respectively.

A performance analysis from the perspective of optimality

and complexity is given Section V. Practical implementation

considerations and simulation results are provided in Section

VI and Section VII. Section VIII concludes this paper.
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Fig. 1. System model.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model and problem formulation

are introduced.

A. System Model

As shown in Fig. 1, we consider a single-cell scenario

where an edge server is collocated with a BS. The BS

provides connection service and the edge server provides

computing service for K MTDs within the cell, the set of

which is denoted by M = {m1, · · · ,mk, · · · ,mK}. There

exist J orthogonal subchannels, the set of which is defined

as C = {c1, · · · , cj , · · · , cJ}. The bandwidth of subchannel

cj is denoted by Bj . Channel selection conflict occurs when

more than one MTDs select the same subchannel at the same

time, and only one MTD can succeed to access the subchannel

under the coordination of the BS.

A time-slotted model is adopted where the total optimization

period is divided into T slots with equal length τ , the set

of which is denoted by T = {1, · · · , t, · · · , T}. In this

model, CSI remains unchanged within a slot and varies across

different slots. In each slot, each MTD determines its channel

selection strategy individually. Particularly, a MTD faces J+1
options, i.e., either selecting one of the J subchannels or

remaining idle. Fig. 1 shows an example of channel selection

with 4 MTDs and 2 subchannels. m1 selects subchannel c1 for

data transmission while m2 remains idle. Channel selection

conflict occurs between m3 and m4 due to the simultaneous

selection of subchannel c2.

In the following, the models of task transmission, energy

consumption, delay, and service reliability are introduced.

1) Task Transmission Model: In the t-th slot, Ak(t) new

tasks with equal size γk arrive at mk ∈ M, which are firstly

stored in the local buffer and then are transmitted to the edge

server. Hence, the total task size is γkAk(t). Meanwhile, it

has to retransmit Yk(t) amount of data, which have not been

correctly delivered due to bit error. The task data stored in

the local buffer of mk can be modeled as a queue, i.e., queue

k. γkAk(t) as well as Yk(t) can be seen as the amount of

task data entering the queue and Uk(t) represents the amount

of task data leaving the queue. Define Qk(1) as the initial

amount of data backlog. Qk(t) is the backlog of data queue

k in the t-th slot, i.e., an accumulation of data that are yet to

be processed. Qk(t) is dynamically evolved as

Qk(t+ 1) = max{Qk(t)− Uk(t), 0}+ γkAk(t) + Yk(t+ 1).
(1)

The set of channel selection indicators consists of J + 1
binary elements, which is denoted by {xk,j,t}, where xk,j,t ∈
{0, 1}. When j = 1, 2, · · · , J , xk,j,t = 1 represents that mk

selects subchannel cj for data transmission in the t-th slot and

when j = J + 1, xk,j,t = 1 represents that mk remains idle.

Considering the powerful computational capability of the

edge server, the objective of each MTD is to offload as many

tasks as possible, which equals to maximizing the total amount

of task data that can be transmitted, i.e., the throughput.

Uplink transmission is considered here. Denote Hk,j,t as the

uplink channel gain of subchannel cj between mk and the BS.

Given xk,j,t, the achievable uplink transmission rate is given

by

Rk,j,t =

{
Bj log2(1 +

PTXHk,j,t

δ2
), j = 1, 2, · · · , J

0, j = J + 1
, (2)

where δ2 is the noise power, and PTX is the transmission

power. The throughput of mk in the t-th slot is given by

zk,j,t = min{Qk(t), τRk,j,t}. (3)

The amount of data transmitted to the edge server can be

Uk(t) =
J+1∑

j=1

xk,j,tzk,j,t. (4)

Denote the bit error rate (BER) for mk transmitting data

through subchannel cj in the t-th slot as P e
k,j,t. We consider

the noncoherent binary phase shift keying (BPSK) modulation

and the corresponding BER [24] of it can be derived as

P e
k,j,t =

1

2
erfc

(√
PTXHk,j,t

δ2

)
. (5)

Here, BPSK is just used as an example to derive the queue

evolution model, which can be naturally extended to other

modulation schemes such as quadrature amplitude modula-

tion (QAM) and orthogonal frequency division multiplexing

(OFDM).

Therefore, Yk(t + 1), the amount of data that has to be

retransmitted in the next slot can be calculated as

Yk(t+ 1) = Uk(t)P
e
k,j,t. (6)

2) Energy Consumption Model: In the t-th slot, the energy

consumption of mk for data transmission is the transmission

power multiplied by the transmission delay, i.e.,

Ek,j,t =

{
PTX min{Qk(t)

Rk,j,t
, τ}, j = 1, 2, · · · , J .

0, j = J + 1.
(7)

The limited battery capacity exerts a direct impact on the

total energy budget of mk over T slots, which is denoted by
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Ek,max. Therefore, the long-term energy consumption of mk 
must satisfy

Ek =
T∑

t=1

J+1∑

j=1

xk,j,tEk,j,t ≤ Ek,max. (8)

3) Delay Model: In IIoT, the data size of computational

results is generally smaller than that of the computational

tasks. Therefore, for the sake of simplicity, we can neglect the

downlink transmission delay. Some previous works, e.g., [25]–

[27], also ignore the downlink transmission time. On the other

hand, our work can be easily extended to the scenario where

the downlink transmission time is considered. Therefore, the

total offloading delay is the sum of the transmission delay and

computational delay, which can be given by

dtotalk,j,t = dtrak,j,t + dcomk,j,t. (9)

Given xk,j,t and zk,j,t, the transmission delay is calculated

by dividing throughput zk,j,t with transmission rate Rk,j,t, i.e.,

dtrak,j,t =

{
zk,j,t

Rk,j,t
= min{Qk(t)

Rk,j,t
, τ}, j = 1, 2, · · · , J.

+∞, j = J + 1.
(10)

Based on the computational intensity model in [28], assum-

ing that the computational intensity of the task data transmitted

by mk in the t-th slot is λk,t (CPU cycles/bit), it requires

zk,j,tλk,t CPU cycles to process the task data. It is noted

that although a linear relationship between workload and data

size is employed, our work is compatible with other nonlinear

models and can be used for different kinds of IIoT applications

with different computing intensities. Denoting the available

computational resources for mk in the t-th slot as ξk,t, the

computational delay is calculated as

dcomk,j,t =

{
zk,j,tλk,t

ξk,t
, j = 1, 2, · · · , J.

+∞, j = J + 1.
(11)

4) Service Reliability Requirement Model: We model the

service reliability requirement in terms of delay. Denoting

the task delay requirement as dk,t, the task offloading is

unsuccessful if the offloaded task cannot be processed within

the specified delay requirement, i.e., dtotalk,j,t > dk,t. Denote

Xk,T as the number of successful task offloading for mk over

T slots, which is given by

Xk,T =
T∑

t=1

J+1∑

j=1

I{dtotalk,j,t ≤ dk,t}xk,j,t. (12)

I{x} is an indicator function with I{x} = 1 if event x

is true and I{x} = 0 otherwise. The edge server performs

computational resource optimization at the end of each slot

and feeds back the result of whether the delay requirement of

mk can be satisfied or not.

The service reliability requirement is defined as

Xk,T

T
≥ ηk, (13)

where ηk ∈ (0, 1] represents the minimum successful proba-

bility of task offloading.

B. Problem Formulation

The objective is to maximize the long-term network

throughput under the long-term constraints of energy budget

and service reliability. Therefore, network throughput maxi-

mization problem is formulated as

P1 : max
{xk,j,t}

T∑

t=1

K∑

k=1

J+1∑

j=1

xk,j,tzk,j,t,

s.t. C1 :
K∑

k=1

xk,j,t ≤ 1, j = 1, 2, · · · , J, ∀t ∈ T ,

C2 :
J+1∑

j=1

xk,j,t ≤ 1, ∀mk ∈ M, ∀t ∈ T ,

C3 :
T∑

t=1

J+1∑

j=1

xk,j,tEk,j,t ≤ Ek,max, ∀mk ∈ M,

C4 :
Xk,T

T
≥ ηk, ∀mk ∈ M, (14)

where C1 and C2 are the channel selection constraints, i.e.,

in each slot, each subchannel can be selected by at most one

MTD, and each MTD can select only one subchannel at most

or remains idle. C3 and C4 correspond to the constraints of

energy consumption and service reliability, respectively. Here,

we focus on optimizing channel selection strategy while the

optimization of computational resource allocation is left to the

future work. The reason is that the proposed algorithm is nat-

urally compatible with any computational resource allocation

scheme. Similarly, some previous works also only consider

the channel selection problem [28]–[30]. On the other hand,

the joint optimization of channel selection and computational

resource allocation is a completely different problem, which

requires different system modeling, problem formulation, and

optimization design. Utilizing learning algorithms to solve

the joint optimization problem of integer channel selection

and continuous computational resource allocation is also a

worthwhile research direction which will be investigated in

the future work.

III. LEARNING-BASED CONTEXT-AWARE CHANNEL

SELECTION FOR THE SINGLE-MTD SCENARIO

In this section, we consider the single-MTD scenario with

only one MTD, e.g., mk, and propose a learning-based

context-aware channel selection algorithm.

A. Problem Transformation

Problem P1 cannot be directly solved due to the long-term

optimization objective and constraints. To provide a tractable

solution, we leverage Lyapunov optimization to transform

a coupled long-term stochastic optimization problem into a

series of short-term deterministic problems [31], [32], which

can be solved in low complexity while the data backlog, energy

consumption, and service reliability are balanced over time.

Based on the concept of virtual queue [33], the long-term

energy budget and service reliability constraints, i.e., C3 and

C4, can be transformed to queue stability constraints. We
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define a virtual energy deficit queue Nk(t) and a virtual service 
reliability deficit queue Fk(t), which a re evolved as

Nk(t+ 1) = max{Nk(t) +
J+1∑

j=1

xk,j,tEk,j,t −
Ek,max

T
, 0},

Fk(t+ 1) = max{Fk(t) + ηk −
J+1∑

j=1

I{dtotalk,j,t ≤ dk,t}xk,j,t, 0},

(15)

with Nk(1) = Fk(1) = 0. Nk(t) represents the deviation of

current energy consumption from the energy budget, while

Fk(t) reflects the deviation of service reliability from the

specified requirement. Examples of queue evolution for MTDs

are shown in Fig. 1. Taking m1 as an example, the data queue

Q1(t), the virtual energy deficit queue N1(t), and the virtual

service reliability deficit queue F1(t) are dynamically updated

at each slot based on (1) and (15). Comparing m1 and m2, it

is noted that the data backlog and the service reliability deficit

of m1 are larger while the energy deficit of m2 is larger.

Then, P1 can be transformed into a series of short-

term optimization subproblems. At each slot, if the energy

consumption of mk until the t-th slot does not exceed the

energy budget, an online multi-objective optimization problem

is defined to maximize throughput and service reliability while

minimizing energy consumption, which is given by

P2 : min
{xk,j,t}

K∑

k=1

J+1∑

j=1

[−Vkzk,j,t + αkNk(t)Ek,j,t

− βkFk(t)(
J+1∑

j=1

I{dtotalk,j,t ≤ dk,t}xk,j,t − ηk)],

s.t. C1 ∼ C2. (16)

For convenience, we write θk,j,t = −Vkzk,j,t +

αkNk(t)Ek,j,t − βkFk(t)(
∑J+1

j=1 I{dtotalk,j,t ≤ dk,t}xk,j,t − ηk).
Here, θk,j,t is a weighted sum of throughput, energy

consumption and service reliability, where Vk, αkNk(t), and

βkFk(t) are the corresponding weights.

P2 and P1 are not equal, and the results of P2 may not be

feasible for P1. Nevertheless, we can prove that the results of

P2 are within a bounded deviation from the optimal results

in Section V. Furthermore, C3 can be guaranteed by defining

that if the energy budget of mk is exhausted, then it cannot

transmit data and is forced to remain idle. In other words,

at the t-th slot, P2 will be solved if and only if the energy

budget is not exhausted. On the other hand, C4 is satisfied in a

best effort way due to service reliability awareness, i.e., a large

deviation from the service reliability requirement will enforces

mk to select the option with higher successful chances of task

offloading, thereby trying the best to satisfy C4. It is noted that

C4 cannot be 100% guaranteed due to the lack of centralized

optimization and coordination among all the MTDs.

The local information is referred as the information that can

be possessed by mk without additional information exchange

with other entities in the network, e.g., the BS or the other

MTDs. The nonlocal information refers to the information

that can only be possessed by mk with additional information

Algorithm 1 SEB-GSI

1: Input: Vk, αk, βk.

2: Phase 1: Initialization

3: Set Qk(1) as the initial amount of data backlog, Nk(1) =
0, Fk(1) = 0, xk,j,t = 0, j = 1, 2, · · · , J + 1, ∀t ∈ T .

4: Repeat

5: Phase 2: Decision making

6: Input: Hk,j,t, δ
2.

7: Calculate the accurate value of θk,j,t with GSI, j =
1, 2, · · · , J + 1 .

8: Choose j by solving P2.

9: Observe zk,j,t, Ek,j,t and whether the delay requirement

can be satisfied or not.

10: Update Uk(t) and Yk(t+ 1) based on (4) and (6).

11: Update Qk(t + 1), Nk(t + 1), and Fk(t + 1) as (1) and

(15).

12: Until t > T .

exchange. Otherwise, if information exchange is infeasible,

nonlocal information is unknown to mk. Therefore, the in-

formation required to solve P2 can be classified into two

categories, i.e.,

• Local Information: information that can be possessed

by mk without additional information exchange, e.g., the

queue backlog Qk(t), the transmission power PTX , the

total energy budget Ek,max, the computational intensity

of task data λk,t, the task delay requirement dk,t, and the

service reliability requirement ηk.

• Nonlocal Information: information that cannot be pos-

sessed by mk without additional information exchange,

e.g., the uplink channel gain Hk,j,t for any subchannel

cj ∈ C, the available computational resources of the

edge server ξk,t, and the channel selection strategies of

other MTDs {xk,j,t} (only required for the multi-MTD

scenario).

For the local information, the time-varying information is

denoted by the symbol with subscript t or as a function of t,

e.g., Qk(t), λk,t, and dk,t. Otherwise, the local information is

fixed, e.g., PTX , Ek,max, and ηk. The nonlocal information

is expressed in the same way and all the nonlocal information

is time-varying.

Based on whether mk has the nonlocal information or not,

we consider an ideal and nonideal case, respectively. In the

ideal case, mk has the perfect knowledge of GSI, which

includes both local and nonlocal information. In the nonideal

case, mk only knows the local information while the nonlocal

information is unavailable.

B. The SEB-GSI Algorithm for the Ideal Case

For the ideal case with GSI, we propose a context-aware

channel selection algorithm named SEB-GSI with service re-

liability awareness, energy awareness and backlog awareness.

SEB-GSI does not require future non-causal information. The

detailed procedures are summarized in Algorithm 1, which

consists of two phases, i.e., initialization (Line 2 ∼ 3) and

decision making (Line 5 ∼ 9). Algorithm 1 is provided to
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demonstrate how to initialize queues, determine the optimal 
option, and update queues.

In the initialization phase, the initial length of all the queues 
and initial values of all the selection indicators are set as zero.

Then, the decision making phase is executed in a slot-by-

slot fashion. At the beginning of the t-th slot, mk calculates 
the value of θk,j,t towards option j, j = 1, 2, · · · , J + 1, 
based on the current GSI. The optimum option j can be found 
by solving P2, which is equivalent to a minimum seeking 
problem with computational complexity O(J). Afterwards, 
mk sets xk,j,t = 1, and updates all queues accordingly. In 
the next slot, the iteration continues until t > T .

The proposed SEB-UCB can adapt to the variations of the 
amount of data backlog, energy state and the service reliability 
state due to the endowed context awareness, which is achieved 
through the dynamic adjustment of channel selection strategy 
based on the values of Fk(t), Nk(t), and Qk(t). Details are 
given as follows:

• Service reliability awareness: When the service re-

liability deviates severely from the service reliability

requirement, a large weight Fk(t) will be placed on the

service reliability term which enforces mk to select the

option with higher successful chances of task offloading,

thereby enabling service reliability awareness.

• Energy awareness: When the energy consumption sig-

nificantly exceeds the current energy budget, a large

weight Nk(t) on the energy consumption term will en-

force mk to select the option with less consumption, i.e.,

remaining idle, thereby enabling energy awareness.

• Backlog awareness: A large data backlog Qk(t) will lead

to a large throughput zk,j,t = τRk,j,t based on (3), which

motivates mk to choose the subchannel with higher data

transmission rate, thereby enabling backlog awareness.

Since Fk(t), Nk(t), and Qk(t) are updated without requir-

ing future information, SEB-GSI optimizes the balance among

throughput performance, energy consumption, and service

reliability requirement in an online fashion.

C. The SEB-UCB Algorithm for the Nonideal Case

In the nonideal case where the nonlocal information is

unavailable, the proposed SEB-GSI algorithm is infeasible

because the accurate value of θk,j,t cannot be obtained. To

tackle this problem, we modify SEB-GSI based on the UCB1

framework [21], which is a low-complexity learning-based al-

gorithm to deal with the sequential decision-making problem,

and develop a learning-based context-aware channel selection

algorithm named SEB-UCB. Instead of directly calculating

θk,j,t in SEB-GSI, SEB-UCB estimates θk,j,t based on his-

torical observations while simultaneously taking into account

the uncertainty of estimation via confidence bound. It enables

mk to learn the optimal option based only on local information

and achieve a bounded deviation from the optimal performance

obtained with GSI.

The proposed SEB-UCB algorithm is summarized in Algo-

rithm 2. In each time slot, mk makes decisions based on only

two kinds of local information: θ̄k,j,t−1 and x̂k,j,t−1, where

θ̄k,j,t−1 represents the empirical estimation of θk,j,t−1 up to

Algorithm 2 SEB-UCB

1: Input: Vk, αk, βk, ω.

2: Phase 1: Initialization

3: Set Qk(1) as the initial amount of data backlog, Nk(1) =
0, Fk(1) = 0, θ̄k,j,0 = 0, x̂k,j,0 = 0 and xk,j,t = 0,

j = 1, 2, · · · , J + 1, ∀t ∈ T .

4: Repeat

5: Phase 2: Estimation and decision making

6: Calculate the estimation value of the MTD towards option

j as (17).

7: Select the optimal option j based on (18).

8: Phase 3: Learning

9: Observe zk,j,t, Ek,j,t and whether the delay requirement

can be satisfied or not.

10: Update θ̄k,j,t and x̂k,j,t based on (19) and (20).

11: Update Uk(t) and Yk(t+ 1) based on (4) and (6).

12: Update Qk(t + 1), Nk(t + 1), and Fk(t + 1) as (1) and

(15).

13: Until t > T .

slot t, and x̂k,j,t−1 represents the number of times that mk

has selected the j-th option up to slot t. The estimation of mk

towards the option j in the t-th slot is estimated as

θ̃k,j,t = θ̄k,j,t−1 − ω

√
2 ln t

x̂k,j,t−1
, (17)

where the first term represents the empirical performance of

the option j, and the second term represents the confidence

bound, which is designed to balance the tradeoff between

exploration and exploitation. On one hand, the first term

pushes mk to select a priori known optimal option up to slot

t. On the other hand, the second term is inversely proportional

to x̂k,j,t−1, which allows mk to explore options with less

number of selections in order to improve the accuracy of

estimation. Here, ω is the weight of exploration compared with

exploitation, i.e., a larger ω represents a higher preference for

exploration.

After estimating θ̃k,j,t for all the J+1 options, mk chooses

option j with the least estimation value, which is determined

as

j = argmin
j

{
θ̃k,j,t

}
. (18)

Then, mk observes the corresponding results zk,j,t, Ek,j,t

associated with xk,j,t = 1 and whether the delay requirement

can be satisfied or not. Accordingly, θ̄k,j,t and x̂k,j,t are

updated as

θ̄k,j,t =
θ̄k,j,t−1x̂k,j,t−1

x̂k,j,t−1 + xk,j,t

+
−Vkzk,j,txk,j,t

x̂k,j,t−1 + xk,j,t

+
αkNk(t)Ek,j,txk,j,t

x̂k,j,t−1 + xk,j,t

−
βkFk(t)(

∑J
j=1 I{d

total
k,j,t ≤ dk,t}xk,j,t − ηk)xk,j,t

x̂k,j,t−1 + xk,j,t

, (19)

and

x̂k,j,t = x̂k,j,t−1 + xk,j,t. (20)
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Algorithm 3 SEB-MGSI

1: Input: {Vk}, {αk}, {βk}, ω.

2: Phase 1: Initialization

3: Set Qk(1) as the initial amount of data backlog, Nk(1) =
0, Fk(1) = 0, θ̄k,j,0 = 0, and xk,j,t = 0, j = 1, 2, · · · , J+
1, ∀mk ∈ M, ∀t ∈ T .

4: Repeat

5: Phase 2: Preference list construction

6: Each MTD calculates its preference value towards each

option as (21).

7: Each MTD constructs its preference list Fk and any mk ∈
Mt transmits Fk to the edge server for iterative matching.

8: Phase 3: Iterative matching

9: Step 1: Initialization

10: Initialize φ = ∅, Ω = ∅.

11: Step 2: Pricing-based iterative matching

12: if ∃φ(mk) = ∅ then

13: any mk ∈ Mt selects its most preferred subchannel in

Fk.

14: if any cj ∈ C selected by only one MTD mk then

15: φ(mk) = cj .

16: else

17: Add cj into Ω.

18: for cj ∈ Ω do

19: cj raises its price ρk,j as (22).

20: All the MTDs selecting cj update their preferences

as (21) and renew their selection strategies.

21: end for

22: end if

23: end if

24: Observe zk,j,t, Ek,j,t and whether the delay requirement

can be satisfied or not.

25: Update Uk(t) and Yk(t+ 1) based on (4) and (6).

26: Update Qk(t + 1), Nk(t + 1), and Fk(t + 1) as (1) and

(15).

27: Until t > T .

Based on zk,j,t, Uk(t) and Yk(t+1) can be calculated based

on (4) and (6). Next, the three queues, i.e., Qk(t+1), Nk(t+1),
and Fk(t+ 1), are updated as (1), (15).

Finally, increase t to t + 1, and repeat lines 5 ∼ 12 until

t > T .

IV. LEARNING-BASED CONTEXT-AWARE CHANNEL

SELECTION FOR THE MULTI-MTD SCENARIO

In this section, we consider channel selection under the

multi-MTD scenario, where the channel selection strategies of

different MTDs are coupled. Both the SEB-GSI and the SEB-

UCB algorithms proposed in the previous section are not suit-

able for this scenario because the coupling among MTDs are

not considered. To tackle this problem, we start from the ideal

case with perfect GSI, and develop a matching-based context-

aware channel selection algorithm named SEB-MGSI. Next,

we consider the more practical nonideal case with only local

information, and develop a matching-learning based context-

aware channel selection algorithm named SEBC-MUCB.

A. The SEB-MGSI Algorithm for the Ideal Case

When K MTDs are competing for the J subchannels, the

channel selection problem involves a one-to-one matching

between K MTDs and J subchannels. The definition of

matching is given by

Definition 1. (Matching): Denote φ as the one-to-one corre-

spondence from set M∪C onto itself. Specifically, φ(mk) = cj
indicates that mk is matched with subchannel cj , i.e., xk,j,t =
1, j = 1, 2, · · · , J , and φ(mk) = mk indicates that mk is not

matched with any subchannel and has to remain idle, i.e.,

xk,J+1,t = 1.

Remark 1. xk,J+1,t = 1 actually contains two situations,

the first of which is that mk prefers to remain idle, and the

second of which is mk being forced to remain idle due to the

shortage of subchannel.

The SEB-MGSI algorithm is developed based on pricing-

based matching [16], which is summarized in Algorithm 3.

It can be implemented in two phases: initialization (Line 2

∼ 3), preference list construction (Line 5 ∼ 7) and iterative

matching (Line 8 ∼ 22).

1) Initialization: The initial length of all the queues and

initial values of all the selection indicators are set as zero.

2) Preference List Construction: In the second phase of

preference list construction, Since the preference of mk to-

wards any option j, j = 1, · · · , J+1, is inversely proportional

to θk,j,t, it can be simply expressed as

Lk,j,t =
1

θk,j,t
− ρk,jI{j < J + 1}, (21)

where ρk,j represents the cost of matching mk with cj , the

initial value of which is set as zero.

Denote the preference list of mk towards all the J + 1
options as Fk, which is obtained by sorting all the Lk,j,t, j =
1, 2, · · · , J + 1, in a descending order.

If option J+1 ranks the first in Fk, mk will skip the iterative

matching process and remain idle during this slot. Otherwise,

any mk ∈ Mt updates Fk by removing option J + 1, where

Mt ⊆ M is the set of MTDs selecting to transmit data in

the t-th slot. Then any mk ∈ Mt transmits it to the edge

server for resolving matching conflicts based on the following

procedures:

3) Iterative Matching: Step 1: Initialization

• Initialize φ = ∅ and Ω = ∅. Here, Ω denotes the

conflicting set of subchannels which are selected by more

than one MTDs.

Step 2: Pricing-based iterative matching

Repeat

• If ∃φ(mk) = ∅, any mk ∈ Mt selects its most preferred

subchannel in Fk.

• For any subchannel cj ∈ C, if it is selected by only

one MTD, e.g., mk, then they are directly matched, i.e.,

φ(mk) = cj . Otherwise, add cj into Ω.

• If Ω 6= ∅,

– Each subchannel cj ∈ Ω raises its price ρk,j as

ρk,j = ρk,j +
∆ρj

Fk(t)
, (22)
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Algorithm 4 SEBC-MUCB

1: Input: {Vk}, {αk}, {βk}, ω.

2: Phase 1: Initialization

3: Set Qk(1) as the initial amount of data backlog, Nk(1) =
0, Fk(1) = 0, θ̄k,j,0 = 0, x̂k,j,0 = 0, and xk,j,t = 0,

j = 1, 2, · · · , J + 1, ∀mk ∈ M, ∀t ∈ T .

4: Temporarily match ∀mk ∈ M with ∀cj ∈ C to observe

the performances of throughput, energy consumption and

delay.

5: Repeat

6: Phase 2: Pricing-based matching

7: Each MTD calculates its preference value towards each

option as (23).

8: Each MTD constructs its preference list Fk and the mk ∈
Mk transmits Fk to the edge server for iterative matching.

9: Each MTD performs the corresponding selection based on

φ(mk).
10: Phase 3: Learning

11: Observe zk,j,t, Ek,j,t and whether the delay requirement

can be satisfied or not.

12: Update θ̄k,j,t and x̂k,j,t based on (19) and (20).

13: Update Uk(t) and Yk(t+ 1) based on (4) and (6).

14: Update Qk(t+ 1), Nk(t+ 1), and Fk(t+ 1) as (1), (15).

15: Until t > T .

where ∆ρj is the step size for price rising.

– All the MTDs which have selected cj recalculate

their preferences towards cj based on (21), and renew

their selection strategies accordingly. If the cost of

cj is too high, some MTDs will give it up and select

other subchannels.

– Repeat the pricing process until only one MTD

remains, e.g., mk. Then, set φ(mk) = cj and remove

cj from Ω.

– If any cj in Fk has been matched with other MTDs

and is unavailable to mk, then φ(mk) = mk.

Until ∀φ(mk) 6= ∅.

Finally, the MTDs select the subchannels based on the

derived φ, observe the corresponding results zk,j,t, Ek,j,t

associated with xk,j,t = 1, and whether the delay requirement

can be satisfied or not. Then, each MTD mk updates Uk(t),
Yk(t+ 1), Qk(t+ 1), Nk(t+ 1), and Fk(t+ 1) as (19), (20),

(4), (6), (1) and (15). The iterations between the phase of

preference list construction and the phase of iterative matching

are terminated when t > T .

In the proposed pricing-based matching, the price of occu-

pying cj for mk is inversely proportional to Fk(t), thereby

allowing MTDs with larger service reliability deficit to have

a higher probability to be matched with a subchannel, which

further enhances service reliability awareness.

B. The SEBC-MUCB Algorithm for the Nonideal Case

In the nonideal case where the nonlocal information re-

quired to construct preference lists of MTDs is unavailable, the

matching-based SEB-GSI algorithm is infeasible. Following

the idea of SEB-UCB developed in subsection III-C, an

intuitive solution is to enable a MTD to estimate its preference

list via online learning. We augment SEB-UCB by adding

conflict awareness into the learning process, and develop the

matching-learning based SEBC-MUCB algorithm. In SEBC-

MUCB, a MTD can learn the impacts of decision coupling and

matching conflicts by continuously observing the difference

between its matching preference and actual matching results.

SEBC-MUCB is summarized in Algorithm 4, which con-

sists of three phases, i.e., initialization (Line 2 ∼ 4), pricing-

based matching (Line 6 ∼ 9), and learning (Line 10 ∼ 14).

In the first phase of initialization, firstly, the initial length of

all the queues and initial values of all the selection indicators

are set as zero. Then, for any mk ∈ M, it is temporarily

matched with every cj ∈ C to observe the performances of

throughput, energy consumption and delay.

In the second phase of pricing-based matching, mk esti-

mates its preference towards the j-th option as

L̃k,j,t =
1

θ̄k,j,t−1
+ ω

√
2 ln t

x̂k,j,t−1
− ρk,jI{j < J + 1}. (23)

Here, the preference value of mk towards an option that has

not been selected, e.g., x̂k,j,t−1 = 0, is defined as +∞ so that

each option can be selected by mk at least once.

Then, based on (23), mk constructs its preference list Fk

similarly as subsection IV-A and transmits it to the edge

server. Next, MTDs are matched with subchannels based on

the pricing-based matching. Eventually, each MTD selects the

subchannel according to the obtained φ(mk).
In the third phase of learning, each MTD mk observes the

corresponding results zk,j,t, Ek,j,t associated with xk,j,t = 1
and whether the delay requirement can be satisfied or not.

Then, each MTD mk updates θ̄k,j,t, x̂k,j,t, Uk(t), Yk(t+ 1),
Qk(t + 1), Nk(t + 1), and Fk(t + 1) as (19), (20), (4), (6),

(1) and (15). The iterations between the phase of pricing-based

matching and the phase of learning are terminated when t > T .

V. PERFORMANCE ANALYSIS

In this section, we provide a comprehensive performance

analysis of the proposed algorithms from the perspective of

optimality and complexity.

A. Optimality

We first present the bounded cumulative throughput per-

formance of SEB-MGSI. Then, we quantify the performance

loss due to learning in terms of learning regret and provide

its upper bound. Finally, the bounded cumulative throughput

performance of SEBC-MUCB is provided.

To provide theoretical upper bound of the cumulative

throughput performance, we describe a scenario where MTDs

know the GSI for the future T slots. We define x∗
k,j,t, z

∗
k,j,t

and j∗ as the channel selection indicator, throughput and

the optimum option derived with T -slot GSI. Specifically,

x∗
k,j,t = 1 is satisfied when event j = j∗ is true and x∗

k,j,t = 0

otherwise. Accordingly, define ẍk,j,t, θ̈k,j,t, z̈k,j,t and j̈ as the

channel selection indicator, the weighted sum of throughput,

energy consumption and service reliability, throughput and the
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j̆

optimum option achieved by the algorithms for the ideal case, 
i.e., SEB-MGSI for multi-MTD scenario and SEB-GSI for the 
single-MTD scenario. Define x̆ k,j,t, θ̆ k,j,t, z̆ k,j,t a nd a s the 
channel selection indicator, the weighted sum of throughput, 
energy consumption and service reliability, throughput and the 
optimum option achieved by the algorithms for the ideal case, 
i.e., SEBC-MUCB for multi-MTD scenario and SEB-UCB for 
the single-MTD scenario.

Theorem 1. The cumulative throughput achieved by SEB-

MGSI is be lower bounded as

T∑

t=1

K∑

k=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −

KT 2Bmax

Vk

≤
T∑

t=1

K∑

k=1

J+1∑

j=1

ẍk,j,tz̈k,j,t,

(24)

where Bmax is defined as

Bmax =
1

2
(max{γkAk(t) + Yk(t+ 1)− Uk(t)})

2

+
1

2
(max{

J+1∑

j=1

xk,j,tEk,j,t −
Ek,max

T
})2

+
1

2
(max{

J+1∑

j=1

I{dtotalk,j,t ≤ dk,t}xk,j,t − ηk})
2. (25)

Proof: See Appendix A.

Learning regret represents the expected performance dif-

ference between the cumulative weighted sum of throughput,

energy consumption and service reliability achieve by SEB-

GSI and that achieved by SEBC-MUCB. Given K MTDs and

J + 1 options, the learning regret R is defined as

R = E{
T∑

t=1

K∑

k=1

J+1∑

j=1

[ẍk,j,tθ̈k,j,t − x̆k,j,tθ̆k,j,t]}

= E{
T∑

t=1

K∑

k=1

[xk,j̈,tθk,j̈,t − xk,j̆,tθk,j̆,t]}. (26)

For the purpose of simplicity, we define

∆θk,j̈,j̆ = θ̈k,j − θ̆k,j , (27)

where θ̈k,j = E[θk,j̈,t] and θ̆k,j = E[θk,j̆,t].

Theorem 2. When ω = 1, the learning regret of the SEBC-

MUCB is upper bounded as

R ≤ 8(J + 1)
K∑

k=1

(∆θk,j̈,j̆)
3
ln(T ) +K(J + 1)∆θk,j̈,j̆

+ (J + 1)
K∑

k=1

+∞∑

t=1

[2t−4K+2∆θk,j̈,j̆ ] (28)

Proof: See Appendix B.

Based on the definition of learning regret, the cumulative

throughput achieved by SEBC-MUCB can be derived as the

cumulative throughput achieved by SEB-MGSI minus learning

regret.

Theorem 3. The cumulative throughput achieved by SEBC-

MUCB is lower bounded as

K∑

k=1

T∑

t=1

J+1∑

j=1

x̆k,j,tz̆k,j,t ≥
K∑

k=1

T∑

t=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −R

−
KT 2Bmax

Vk

− αk

K∑

k=1

T∑

t=1

N̈k(t)Ëk,j,t

− βk

K∑

k=1

T∑

t=1

F̈k(t)(ηk −
J∑

j=1

xk,j̈,t).

(29)

Proof: See Appendix C.

Theorem 1 and theorem 3 indicate that both SEB-MGSI

and SEBC-MUCB can achieve a guaranteed throughput per-

formance. Theorem 2 indicates that SEBC-MUCB can achieve

a bounded deviation from SEB-MGSI.

Theorem 4. The cumulative throughput achieved by SEB-GSI

is lower bounded as

T∑

t=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −

T 2Bmax

Vk

≤
T∑

t=1

J+1∑

j=1

ẍk,j,tz̈k,j,t. (30)

Theorem 5. When ω = 1, the learning regret of the SEB-UCB

is upper bounded as

R ≤ 8(J + 1)(∆θk,j̈,j̆)
3
ln(T ) + ∆θk,j̈,j̆(J + 1)(1 +

π2

3
).

(31)

Theorem 6. The cumulative throughput achieved by SEB-

UCB is lower bounded as

T∑

t=1

J+1∑

j=1

x̆k,j,tz̆k,j,t ≥
T∑

t=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −R

−
T 2Bmax

Vk

− αk

T∑

t=1

N̈k(t)Ëk,j,t

− βk

T∑

t=1

F̈k(t)(ηk −
J∑

j=1

xk,j̈,t). (32)

Proof: Theorem 4, Theorem 5, and Theorem 6 can

be proved as special cases of Theorem 1, Theorem 2, and

Theorem 3, respectively, when K = 1. The detailed proof is

ignored due to space limitation.

Theorem 7. For SEBC-MUCB, after the initial

⌈8(∆θk,j̈,j̆)
2
ln(t)⌉ times of selecting a non-optimal option,

the probability of selecting a non-optimal option is upper

bounded by 2t−4K . As t → +∞, the upper bound converges

to 0.

Proof: See Appendix D.

B. Complexity

SEB-GSI: The computational complexity of SEB-GSI con-

sists of four parts. The first part is initialization with the

complexity of O(J + 4), and the second part is calculating

θk,j,t of J + 1 options with the complexity of O(J + 1). The
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third part is seeking the minimum θk,j,t with the complexity 
of O(J) and the fourth part is renewing queues with the 
complexity of O(3). Therefore, the computational complexity 
of FEB-GSI is O(J + 4) + O(J + 1) + O(J) + O(3).

SEB-UCB: The computational complexity of SEB-UCB is 
composed of three parts. The computational complexity of the 
first phase is O(3J +6), and that of the second phase is O(J + 
1) + O(J). The complexity of the third phase is O(2J + 
5). Therefore, the computational complexity of SEB-UCB is 
O(3J + 3) + O(J + 1) + O(J) + O(2J + 5).

SEB-MGSI: The computational complexity of SEB-MGSI 
is composed of three parts. The first part i s initialization with 
the complexity of O(2J + 5), and the second part is the 
complexity of pricing-based matching. Assuming the matching 
conflicts can be r esolved within ̟  i terations, t he conflict can 
be solved with the complexity of O(J +1)+O((J +1) log(J + 
1)) + O(I̟) when K ≥ J . The complexity of renewing 
queues is O(3). Therefore, the computational complexity of 
SEB-MGSI is O(2J + 5) + O(J + 1) + O((J + 1) log(J + 
1)) + O(I̟) + O(3).

SEBC-MUCB: The computational complexity of SEBC-

MUCB consists of three parts. The complexity of the first and 
second phases are the same as that of SEB-UCB and SEB-GSI, 
respectively. The complexity of the third phase if O(2J + 5). 
Therefore, the complexity of SEBC-MUCB is O(3J + 6) + 
O(J + 1) + O((J + 1) log(J + 1)) + O(I̟) + O(2J + 5) 
when K ≥ J .

VI. IMPLEMENTATION CONSIDERATIONS

In real-world implementation, the convergence time and 
the performance loss due to learning can be further reduced. 
Theorem 2 indicates that the learning regret is related to both 
the numbers of MTDs and subchannels to be explored as well 
as the exploration cost. Two heuristic solutions are provided 
here, i.e., set division and task division.

A. Set Division

To reduce the numbers of MTDs and subchannels, one

heuristic solution is to divide the set of subchannels C and

the set of MTDs M into several subsets. Then, a subchannel

set, e.g., Cs ⊂ C, is exclusively licensed to a MTD subset

Ms ⊂ M, i.e., only MTDs belonging to the subset Ms are

allowed to use subchannels in Cs. As a result, the numbers

of competing MTDs and subchannels can be reduced since

| Cs |< J and | Ms |< K.

When implementing the set division-based heuristic solu-

tion, the BS has to obtain the precise knowledge of the set

of subchannels C and the set of MTDs M. Since the sets

of subchannels and MTDs do not vary every slot, the BS

only needs to collet this information once at each optimization

duration. The BS will collect the information of C and M,

perform set division based on certain optimization rules, and

inform the MTDs of the division results, i.e., | Cs | and | Ms |.
On the other hand, both | Cs | and | Ms | should be decided

vigilantly. Specifically, | Cs |≪| Ms | will lead to severe

competition while | Cs |≫| Ms | will incur a large exploration

cost.

B. Task Division

To increase the convergence speed and reduce the explo-

ration cost, another heuristic solution is to enable MTDs to

utilize a smaller task for learning. The MTDs can divide a

large task into several smaller tasks. Since the task size is

small, both the transmission delay and computational delay

can be reduced significantly. Furthermore, with smaller task,

each slot can also be divided into several subslots, and in

each subslot, the MTDs can make a channel selection decision

and perform learning by observing the feedback from the

edge server, thereby increasing the total number of exploration

in each slot. This can dramatically improve the convergence

speed and reduce the convergence time. When implementing

the task division-based heuristic solution, a MTD has to divide

a large task into several smaller tasks. In other words, the task

should be dividable. Both task division and slot division can

be performed by the MTD based on local information.

C. Implementation Delay

Although the learning-based algorithm involves a lot of

iterations, the iteration delay in each slot is negligible. The

reason is that during each slot, a MTD only makes one

decision and then waits for the reward associated with the

decision. In other words, there is only one iteration of channel

selection at each slot. Therefore, the delay for processing

a task mainly consists of the transmission delay and the

computational delay, while the iteration delay can be ignored.

VII. SIMULATIONS

In this section, we validate the proposed algorithms via

simulations under the scenarios of single-MTD and multi-

MTD, respectively.

A. Performance under the Single-MTD Scenario

In the single-MTD scenario, we consider one MTD and

three subchannels over a total period of T = 103 time slots,

i.e., K = 1 and J = 3. We set τ = 1 s, PTX = 1
W, Ek,max = 700 J. We assume that Ak(t) follows a

uniform distribution within the interval [0.9Āk, 1.1Āk] Mbits,

where Āk = 20 Mbits represents the time-average amount of

collected data. The initial value Qk(1) is randomly selected

within the interval [0.8Āk, 1.2Āk] Mbits. The computational

complexity is set as λk,t = 103 CPU cycles/bit. The avail-

able computational resource for mk in the t-th slot ξk,t is

randomly distributed within the interval [0.9ξ̄k, 1.1ξ̄k] CPU

cycles, where ξ̄k = 18× 109 CPU cycles represents the time-

average amount of computational resource. Uk(t) does not

need to be initialized, the value of which depends on the

selection strategies, CSI as well as local data backlog. The

service reliability requirement is set as ηk = 0.7. We set

Vk = 1, αk = 5, and βk = 3 to balance the tradeoff among

throughput performance, energy consumption, and service

reliability. The achievable transmission rate of subchannel sj
in each slot follows a uniform distribution within the range

[0.8R̄j , 1.2R̄j ], where R̄j represents the average transmission

rate. We set R̄j = 10, 20, 30 Mbits when j = 1, 2, 3.
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Fig. 2. Performances under single-MTD scenario.
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Fig. 3. Performances under multi-MTD scenario.

The weight of exploration ω is set as 1. Two heuristic

algorithms are used for comparison. One is the conventional

UCB algorithm proposed in [34], and the other is the random

selection algorithm in which mk randomly selects a subchan-

nel at each slot. The SEB-GSI with perfect GSI is used as an

upper performance benchmark.

Fig. 2(a) and Fig. 2(b) show the cumulative network

throughput and cumulative energy consumption performances

over a total of 103 slots. Compared with UCB and random

selection, the proposed SEB-UCB with only local information

can improve throughput by 30% and 36% respectively, while

satisfying the constraint of energy consumption. Particularly,

there exists a performance floor after 700 slots. The reason

is demonstrated in Fig. 2(b), which explicitly shows that the

two heuristic algorithms use energy more aggressively at the

beginning and then run out of the energy at t = 700 and

t = 720, thereby leaving no energy for data transmission. It is

noted that the energy consumption of the proposed algorithms

will not increase after t = 1000 since the energy budget is

exactly exhausted at t = 1000, i.e., the proposed algorithms

can well exploit the available energy during the specified op-

timization duration compared with other heuristic algorithms.

Besides, the SEB-UCB performs just slightly worse than the

SEB-GSI algorithm with perfect GSI. The curve trends of both

the network throughput and energy consumption performances

track those of SEB-GSI strictly.

Fig. 2(c) shows the data backlog performance. Simulation

results demonstrate that SEB-UCB can provide bounded data

backlog, while the backlogs of UCB and random selection

increase linearly with time after 700 slots, which significantly

degrades the queue stability performance and may even lead

to severe data loss.

B. Performance under the Multi-MTD Scenario

For the multi-MTD scenario, we consider three MTDs and

three subchannels, i.e., K = J = 3. We set Ek,max = 730 J,

ηk = 0.73, Vk = 1, αk = 20, and βk = 25, ∀mk ∈ M. The

other simulation parameters remain the same as those in the

single-MTD scenario.

Five heuristic algorithms are used for comparison. The first

one is the EBC-MUCB algorithm without service reliability

awareness, i.e., the service reliability constraint is not consid-

ered. The second one is the SBC-MUCB algorithm without

energy awareness, i.e., the energy consumption constraint

is not considered. The third one is the conventional UCB

algorithm, and the fourth one is random selection. The fifth

one is the Lyapunov optimization-based access control and re-

source allocation (ACRA) algorithm developed in [14]. ACRA

requires perfect GSI to find the optimum option. Here, we

assume that only the CSI of the previous slot is available, i.e.,

the CSI is outdated information. In other words, optimization
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at the t-th slot is performed based on the CSI of the (t−1)-th
slot.

Fig. 3(a) shows the cumulative network throughput versus

time slot. The proposed SEBC-MUCB outperforms UCB

and random selection by 13.7% and 31.2%, respectively.

Compared with SBC-MUCB and EBC-MUCB, SEBC-MUCB

improves throughput by 3.46% and 3.96%, respectively, due to

the additional consideration of energy awareness and service

reliability awareness. Taking SBC-MUCB as an example,

although it achieves a higher throughout at the beginning, it

runs out of energy at t = 981 and is forced to be idle for

the remaining slots, which significantly degrades the overall

throughput performance.

Fig. 3(b) shows the cumulative energy consumption versus

time slot. Simulation results show that The energy consump-

tion of SEBC-MUCB and EBC-MUCB algorithms has not

exceeded the energy budget due to energy awareness. Different

from the scenario of single-MTD, UCB consumes the least

energy since the frequent selection conflicts force MTDs to

remain idle so that the energy consumption becomes less.

Fig. 3(c) demonstrates that SEBC-MUCB achieves the least

data backlog among all the algorithms. In comparison, the

data backlog of SBC-MUCB increases dramatically after t =
981 due to the ignorance of energy awareness. UCB performs

worse than EBC-MUCB and SBC-MUCB since the frequent

selection conflicts impede MTDs from data transmission and

data backlog becomes very large.

Fig. 4 shows the service reliability deficit versus time slot.

The proposed SEBC-MUCB can meet the service reliability

requirement and achieve the second least service reliability

deficit. Although SBC-MUCB achieves the least service re-

liability deficit, its throughput and energy consumption per-

formance are worse than SEBC-MUCB because only service

reliability awareness is considered. The service reliability

deficit of EBC-MUCB increases dramatically after t = 700
due to the negligence of service reliability awareness. UCB

performs the worst since it has not been endowed with the

capability of conflict resolution.

From Fig. 3(a) to Fig. 4, we can find that although the

energy consumption and the service reliability deficit of ACRA

are nearly the same as those of SEBC-MUCB, the throughput

performance and the data backlog performance are worse.

SEBC-MUCB outperforms ACRA by 10.58% in terms of

throughput, and 4783.76% in terms of data backlog due to the

endowed capability of online learning. Particularly, the data

backlog performance of ACRA is significantly degraded by

employing the outdated CSI for optimization. Therefore, we

can conclude that learning plays an important role for backlog

reduction under the scenario where perfect GSI is unavailable.

Fig. 5 shows the impact of parameter Vk on the throughput

performances of MTDs. Specifically, we set V1 = V2 = 1
for m1 and m2, while V3 increases from 10−4 to 103 for

m3. Simulation results demonstrate that as V3 increases, the

throughput of m3 increases first and then decreases, while the

throughput of m1 shows the opposite trend. The rationale is

that when V3 increases from 10−4 to 25 (log(V3) increase

from −4 to 1.4), m3 puts a larger weight on the throughput,

and becomes more active to explore channels for throughput

improvement. This will cause more channel selection conflicts,

thereby reducing the throughput of m1. However, when V3

is too large (log(V3) > 1.4), m3 over-evaluates throughput

and has little concern on energy consumption. It will quickly

run out of energy and is forced to remain idle, which signifi-

cantly degrades the throughput performance. Meanwhile, other

MTDs such as m1 can benefit from the idle state of m3 since

the channel selection conflicts is relieved.

VIII. CONCLUSIONS

In this paper, we proposed learning-based channel selec-

tion which incorporates service reliability awareness, energy

awareness and backlog awareness. We started from single-

MTD scenario and proposed distributed low-complexity SEB-

GSI algorithm with CSI and SEB-UCB algorithm under

information uncertainty. Then, we extended it to the multi-

MTD scenario and developed SEBC-MUCB algorithm by

integrating MAB, Lyapunov optimization and matching theory.

Simulation results demonstrate that the proposed SEB-UCB

can improve throughput by 30% and 36% compared with UCB

and random selection. SEBC-MUCB outperforms UCB and

random selection by 13.7% and 31.2% while stabilizing data

backlog queue and satisfying energy consumption constraint

as well as service reliability requirement. Due to the limited

computational capability and battery capacity of MTDs, we

only consider the scenario of task offloading, while local
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computing is ignored. Our future work will focus on the online 
cross-layer resource optimization including local computation, 
rate control, channel selection, and resource allocation in the 
edge server under information uncertainty.

APPENDIX A
PROOF OF THEOREM 1

Define qk(t), nk(t) and fk(t) as

qk(t) = γkAk(t) + Yk(t+ 1)− Uk(t),

nk(t) =
J+1∑

j=1

xk,j,tEk,j,t −
Ek,max

T
,

fk(t) =
J+1∑

j=1

I{dtotalk,j,t ≤ dk,t}xk,j,t − ηk. (33)

Taking (33) into (1) and (15), we can obtain

Qk(t+ 1)−Qk(t) ≥ qk(t),

Nk(t+ 1)−Nk(t) ≥ nk(t),

Fk(t+ 1)− Fk(t) ≥ fk(t). (34)

Define the concatenated vector of the data backlog queue

and virtual queues as G(t) = [{Qk(t)}, {Nk(t)}, {Fk(t)}].
Define the Lyapunov function and one-slot Lyapunov drift as

L(G(t)) =
1

2

K∑

k=1

[Q2
k(t) +N2

k (t) + F 2
k (t)], (35)

∆1(G(t)) = L(G(t+ 1))− L(G(t)). (36)

Define the drift-minus-reward term as

DR1(G(t)) = ∆1(G(t))− Vk

K∑

k=1

J+1∑

j=1

zk,j,t. (37)

Taking (36) into (35), we can derive

∆1(G(t)) =
1

2

K∑

k=1

[Q2
k(t+ 1)−Q2

k(t)]

+
1

2

K∑

k=1

[N2
k (t+ 1)−N2

k (t)]

+
1

2

K∑

k=1

[F 2
k (t+ 1)− F 2

k (t)]. (38)

Based on (34), we have

Q2
k(t+ 1) ≤ (Qk(t) + qk(t))

2
. (39)

Taking (39) into (52)

∆1(G(t)) ≤
K∑

k=1

1

2
[q2k(t) + n2

k(t) + f2
k (t)]

+
K∑

k=1

[qk(t)Qk(t) + nk(t)Nk(t) + fk(t)Fk(t)].

(40)

Define Bk as

Bk = max
t∈T

1

2
[q2k(t) + n2

k(t) + f2
k (t)]. (41)

Taking (40) and (41) into (37)

DR1(G(t)) ≤
K∑

k=1

Bk − Vk

J+1∑

j=1

K∑

k=1

zk,j,t

+
K∑

k=1

[qk(t)Qk(t) + nk(t)Nk(t) + fk(t)Fk(t)].

(42)

Similarly as (36), T -slot Lyapunov drift can be defined as

∆T (G(t)) = L(G(t+ T ))− L(G(t)). (43)

Therefore, the sum of DR1(G(t)) over T slots can be derived

as

∆T (G(1))− Vk

T∑

t=1

K∑

k=1

J+1∑

j=1

zk,j,t

≤
K∑

k=1

TBk − Vk

T∑

t=1

J+1∑

j=1

K∑

k=1

zk,j,t

+
T∑

t=1

K∑

k=1

[qk(t)Qk(t) + nk(t)Nk(t) + fk(t)Fk(t)]. (44)

The last term on the right-hand side of (48) satisfies

T∑

t=1

K∑

k=1

[qk(t)Qk(t) + nk(t)Nk(t) + fk(t)Fk(t)]

=
T∑

t=1

K∑

k=1

[qk(t)Qk(1) + nk(t)Nk(1) + fk(t)Fk(1)]|

+
T∑

t=1

K∑

k=1

[(Qk(t)−Qk(1))qk(t)]

+
T∑

t=1

K∑

k=1

[(Nk(t)−Nk(1))nk(t)]

+
T∑

t=1

K∑

k=1

(Fk(t)− Fk(1))fk(t)]. (45)

Define qmax, nmax and fmax as the maximum positive

value for all MTDs to satisfy

Qk(t+ 1)−Qk(t) ≤ qmax,

Nk(t+ 1)−Nk(t) ≤ nmax,

Fk(t+ 1)− Fk(t) ≤ fmax. (46)

Based on (46), we can obtain

(Qk(t)−Qk(1))qk(t)

= (Qk(t)−Qk(t− 1))qk(t) + (Qk(t− 1)−Qk(1))qk(t)

≤ qmaxqk(t) + (Qk(t− 1)−Qk(1))qk(t). (47)
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Since Qk(1) = Nk(1) = Fk(1) = 0, taking (47) into (45), we 
can bound the last term on the right-hand side of (48) as

T∑

t=1

K∑

k=1

[qk(t)Qk(t) + nk(t)Nk(t) + fk(t)Fk(t)]

≤
K∑

k=1

T∑

t=1

(t− 1)(q2max + n2
max + f2

max)

=
KT (T − 1)

2
(q2max + n2

max + f2
max)

= KT (T − 1)Bmax, (48)

where Bmax = 1
2 (q

2
max + n2

max + f2
max).

We can see Bmax ≥ Bk must be satisfied, (48) can thus be

bounded as

∆T (G(1))− Vk

T∑

t=1

K∑

k=1

J+1∑

j=1

zk,j,t

≤ KT 2Bmax − Vk

T∑

t=1

K∑

k=1

J+1∑

j=1

zk,j,t. (49)

We denote x∗
k,j,t and z∗k,j,t as the channel selection in-

dicators and throughput performance obtained by employing

exhaustive method with T -slot GSI. By applying SEB-MGSI

into the left side and considering exhaustive method on the

right-hand side, we obtain

∆T (G(1))− Vk

T∑

t=1

K∑

k=1

J∑

j=1

ẍk,j,tz̈k,j,t

≤ KT 2Bmax − Vk

T∑

t=1

K∑

k=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t (50)

By dividing both sides of (50) by Vk, we can derive that

T∑

t=1

K∑

k=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −

KT 2Bmax

Vk

≤
T∑

t=1

K∑

k=1

J+1∑

j=1

ẍk,j,tz̈k,j,t. (51)

This completes the proof of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2

At each slot, either the optimal or the non-optimal sub-

channel will be selected. Denote the number of times that a

non-optimal selection for mk, i.e., option j̆, has been selected

up to the t-slot as χk,j̆,t−1. If option j̆ is selected by mk in

the t-th slot, then χk,j̆,t = χk,j̆,t−1+1. The learning regret R

can be derived as

R = E{
T∑

t=1

K∑

k=1

J+1∑

j=1

[ẍk,j,tθ̈k,j,t − x̆k,j,tθ̆k,j,t]}

= E{
T∑

t=1

K∑

k=1

[xk,j̈,tθk,j̈,t − xk,j̆,tθk,j̆,t]}

=
K∑

k=1

J+1∑

j̆=1

E[θk,j̈,t − θk,j̆,t]E[χk,j̆,T ]

=
K∑

k=1

J+1∑

j̆=1

∆θk,j̈,j̆E[χk,j̆,T ]. (52)

Then, we recall the indicator function I{x} where I{x} = 1
if event x is true and I{x} = 0 otherwise. Besides, we make a

crude approximation that the non-optimal selection are made

at least m times. If ak,j̆,t = 1, we should have

θ̃k,j̆,t ≥ θ̃k,j̈,t. (53)

It indicates that the upper confidence bound of the selected

option should be larger than that of the optimal option.

Therefore, we have

χk,j̆,T ≤ m+
T∑

t=mI+1

I{θ̃k,j̆,t ≥ θ̃k,j̈,t, χk,j̆,t−1 ≥ m},

∀mk ∈ M, j̈ = 1, 2, · · · , J + 1, (54)

where the second item represents the crude approximation

made above.

We define the amount of times that option j̈ has been

selected by mk up to slot t as x̂
′

k,j̈,t−1
. Denote Bk,j̆,t as the

confidence interval, which can be given as

Bk,j̆,t−1 =

√
2 ln t

x̂k,j̆,t−1

. (55)

To write the inequality in a nicer form, we make a further

approximation as follows,

χk,j̆,T ≤ m+
T∑

t=mI+1

I{ max
m≤x̂k,j̆,t−1

<t

1 + F̆k(t)

θ̄k,j̆,t−1

+Bk,j̆,t−1

≥ min
0<x̂

′

k,j̈,t−1
<t

1 + F̈k(t)

θ̄k,j̈,t−1

+Bk,j̈,t−1},

∀mk ∈ M, j̆, j̈ = 1, 2, · · · , J + 1. (56)

Indeed, there will be at least one pair (x̂k,j̆,t−1, x̂
′

k,j̈,t−1
) that

can satisfy the inequality if (56) is satisfied. Therefore, we just

need to count the number of such pairs which satisfy (56). That
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is, we can expand the event above into the double sum which 
is at least as large:

χk,j̆,T ≤ m

+
T∑

t=mI+1

t−1∑

x̂k,j̆,t−1
=m

t−1∑

x̂
′

k,j̈,t−1
=1

I{
1 + F̆k(t)

θ̄k,j̆,t−1

+Bk,j̆,t−1

≥
1 + F̈k(t)

θ̄k,j̈,t−1

+Bk,j̈,t−1},

∀mk ∈ M, j̆, j̈ = 1, 2, · · · , J + 1. (57)

We make another odd inequality by increasing the sum to

go from t = 1 to +∞, and we can replace t− 1 with t as:

χk,j̆,T ≤ m

+
+∞∑

t=1

t∑

x̂k,j̆,t−1
=m

t∑

x̂
′

k,j̈,t−1
=1

I{
1 + F̆k(t)

θ̄k,j̆,t−1

+Bk,j̆,t−1

≥
1 + F̈k(t)

θ̄k,j̈,t−1

+Bk,j̈,t−1},

∀mk ∈ M, j̆, j̈ = 1, 2, · · · , J + 1. (58)

Suppose that this event actually happens, ∀mk ∈ M, j̆, j̈ =
1, 2, · · · , J + 1, at least one of the following cases must be

true:

(a) :
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t,

(b) :
1 + F̆k(t)

θ̄k,j̆,t−1

≥
1 + F̆k(t)

θ̆k,j
+Bk,j̆,t,

(c) :
1

θ̈k,j
<

1

θ̆k,j
+ 2Bk,j̆,t. (59)

Case (a) means that the reciprocal of the optimal option’s

empirical mean is less than or equal to the lower confidence

bound. Case (b) means that the reciprocal of empirical mean

of option j is larger than or equal to the upper confidence

bound. It can be proved if case (a) and case (b) are false, then

case (c) must be true. Case (a) happens with a probability:

P{
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t, ∀mk ∈ M,

j̆, j̈ = 1, 2, · · · , J + 1}

= P{
1 + F̈1(t)

θ̄1,j̈,t−1

≤
1 + F̈1(t)

θ̈1,j
−B1,j̈,t}

× P{
1 + F̈2(t)

θ̄2,j̈,t−1

≤
1 + F̈2(t)

θ̈2,j
−B2,j̈,t}

× · · · × P{
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t}. (60)

By applying Chernoff-Hoeffding inequality, when ω = 1,

we can derive

P{
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t}

≤ e
−2x̂

′

k,j̈,t−1
(Bk,j̈,t)

2

= e
−2x̂

′

k,j̈,t−1

2 ln t

x̂
′

k,j̈,t−1

= e−4 ln t = t−4. (61)

Therefore,

P{
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t,

∀mk ∈ M, j̆, j̈ = 1, 2, · · · , J + 1}

=
K∏

k=1

P{
1 + F̈k(t)

θ̄k,j̈,t−1

≤
1 + F̈k(t)

θ̈k,j
−Bk,j̈,t} ≤ t−4K . (62)

Similarly, the probability of the case (b) is also t−4K . By

the union bound, the probability that one of the three cases

happens is 2t−4K plus whatever the probability of case (c)
being true. We can make case (c) always false by a well-

chosen m. Note that θ̈k,j and θ̆k,j can be less than 1 through

adjusting parameters. Case (c) can then be transformed as

θ̈k,j − θ̆k,j −
1√
8 ln(t)

m

< 0. (63)

We can derive that when m > 8(∆θk,j̈,j̆)
2
ln(t), case (c) is

false.

Since the expected value of an event is just its probability

of occurrence, the expectation of (58) is

E[χk,j̆,T ] ≤ 8(∆θk,j̈,j̆)
2
ln(t) +

+∞∑

t=1

t∑

x̂k,j̆,t−1
=m

t∑

x̂
′

k,j̈,t−1
=1

2t−4K

≤ 8(∆θk,j̈,j̆)
2
ln(T ) + 1 +

+∞∑

t=1

t∑

x̂k,j̆,t−1
=1

t∑

x̂
′

k,j̈,t−1
=1

2t−4K

= 8(∆θk,j̈,j̆)
2
ln(T ) + 1 +

+∞∑

t=1

2t−4K+2. (64)

Taking (64) into (52), we can derive the upper bound of the

leaning regret R as

R =
K∑

k=1

J+1∑

j̆=1

∆θk,j̈,j̆E[χk,j̆,T ]

≤ 8(J + 1)
K∑

k=1

(∆θk,j̈,j̆)
3
ln(T ) +K(J + 1)∆θk,j̈,j̆

+ (J + 1)
K∑

k=1

+∞∑

t=1

[2t−4K+2∆θk,j̈,j̆ ]. (65)

This completes the proof of Theorem 2.
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APPENDIX C

PROOF OF THEOREM 3

From the concept of learning regret, we can derived

− Vkzk,j̆,t + αkN̆k(t)Ek,j̆,t + βkF̆k(t)(ηk −
J∑

j=1

xk,j̆,t)

≤ Rk,t − Vkzk,j̈,t + αkN̈k(t)Ek,j̈,t

+ βkF̈k(t)(ηk −
J∑

j=1

xk,j̈,t), (66)

where Rk,t represents the learning regret of mk in the t-th

slot and it satisfies

T∑

t=1

K∑

k=1

Rk,t = R. (67)

Then, we can get the following inequality must be satisfied

Vkzk,j̆,t ≥ Vkzk,j̈,t −Rk,t − αkN̈k(t)Ek,j̈,t

− βkF̈k(t)(ηk −
J∑

j=1

xk,j̈,t) (68)

By summing over k = 1, 2, · · · ,K and t = 1, 2, · · · , T , (68)

can be derived as

Vk

K∑

k=1

T∑

t=1

xk,j̆,tzk,j̆,t = Vk

K∑

k=1

T∑

t=1

J+1∑

j=1

x̆k,j,tz̆k,j,t

≥ Vk

K∑

k=1

T∑

t=1

J+1∑

j=1

ẍk,j,tz̈k,j,t −R− αk

K∑

k=1

T∑

t=1

N̈k(t)Ëk,j,t

− βk

K∑

k=1

T∑

t=1

F̈k(t)(ηk −
J∑

j=1

xk,j̈,t)

≥
K∑

k=1

T∑

t=1

J+1∑

j=1

x∗
k,j,tz

∗
k,j,t −R

− αk

K∑

k=1

T∑

t=1

N̈k(t)Ëk,j,t −
KT 2Bmax

Vk

− βk

K∑

k=1

T∑

t=1

F̈k(t)(ηk −
J∑

j=1

xk,j̈,t). (69)

This completes the proof of Theorem 3.

APPENDIX D

PROOF OF THEOREM 7

Based on (64), we can derive that after ⌈8(∆θk,j̈,j̆)
2
ln(t)⌉

times of selecting a non-optimal option, the probability of

selecting a non-optimal option at the t-th slot is upper bounded

by 2t−4K . Specifically, as t → +∞, the upper bound con-

verges to 0.

This completes the proof of Theorem 7.
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