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Abstract 
 

In this paper, an integrated approach for modeling, 
learning and synthesizing personal cursive handwriting is 
proposed. Cursive handwriting is modeled by a tri-unit 
handwriting model, which focuses on both the handwritten 
letters and the interconnection strokes of adjacent letters. 
Handwriting strokes are formed from generative models 
that are based on control points and B-spline curves. In 
the two-step learning process, a template-based matching 
algorithm and a data congealing algorithm are proposed 
to extract training vectors from handwriting samples, and 
then letter style models and concatenation style models 
are trained separately. In the synthesis process, isolated 
letters and ligature strokes are generated from learned 
models and concatenated with each other to produce the 
whole word trajectory, with guidance from a deformable 
model. Experimental results show that the proposed 
system can effectively learn the individual style of cursive 
handwriting and has the ability to generate novel 
handwriting of the same style. 

 

1. Introduction  
 

Pen-based interfaces are now a hotspot in 
Human-Machine Interface (HCI) research because in 
numerous situations, a pen together with a notepad is more 
convenient than a keyboard or a mouse. The flourish of 
pen-based devices such as Tablet PCs brings a great 
demand for various cursive handwriting computing 
techniques. When writing a note on a Tablet PC, if the 
computer can automatically correct some written errors 
and generate some predefined handwriting strokes, 
communication through a pen-based interface would be 
more effective and intelligent. Furthermore, handwriting is 
preferable to typed text in some cases because it adds a 
personal touch. All these applications bring an urgent 
requirement for handwriting synthesis techniques.  

The problem of handwriting synthesis has been 
addressed for a substantial amount of time and many 
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studies can be found in the literature. Generally speaking, 
these approaches can be divided into two categories based 
on their properties: movement simulation techniques and 
shape simulation methods. Most movement simulation 
approaches are based on motor models [1] and try to 
model the process of handwriting production [2, 3]. Shape 
simulation techniques, on the contrary, only consider the 
trajectory of handwriting. They are more practical than 
movement simulation techniques when the dynamic 
information of handwriting is not available and the 
trajectory of handwriting has been re-sampled by other 
processors such as recognizers, as addressed in [4]. Our 
approach is a shape simulation technique, as the one 
proposed in [5]. In that study, a straightforward approach 
was proposed in which handwriting is synthesized from 
collected handwritten glyphs. However, this work lacks 
mathematical models and explanations for individual 
styles of cursive handwriting, which are essential for 
achieving satisfying synthesis results.  

In this paper, a mathematical analysis of cursive 
handwriting style is given, and a series of models are 
proposed to capture the characteristics of different writing 
styles. Based on the fact that in individual cursive 
handwriting, not only the styles of letters but the styles of 
ligature strokes between letters are unique, a tri-unit 
cursive handwriting model is proposed, which enables us 
to extract letter strokes and ligature strokes from cursive 
handwriting. Each stroke is modeled by a cubic B-spline 
with some control points extracted by 1-D Gabor filters. A 
parametric generative model is proposed based on the 
distributions of control points to model writing styles of 
these strokes. After the training process, generative models 
can synthesize new letters and ligature strokes of the same 
style. A deformable model is then applied to incorporate 
these strokes into integrated, seemingly natural 
handwritten words. 

 
2. Models 
 
2.1 Tri-Unit Handwriting Model 
 

The model of cursive handwriting plays the most 
important role in determining how natural our synthetic 
results appear. Because letters are connected with their 



neighbors in cursive handwriting, each letter is “context 
related”, which means that each letter is connected to and 
affected by its two neighbors in specific ways. Based on 
this fact, we borrow the ideal of “triphthong” [12] in 
speech processing and propose a tri-unit handwriting 
model. The trajectory of each letter can be divided into 
three parts in sequence: the head, the body and the tail 
units. The head unit of each letter is connected with and 
influenced by the tail unit of the previous letter and the tail 
unit is connected with and influences the head unit of the 
next letter. The three units combine together to give the 
whole trajectory of the letter, and the tail and head unit of 
adjacent letters together can be called the concatenation 
part. 

 
2.2 Generative Models 

 
Because our system is recognition- and segmentation- 

based, it is assumed that the contents of the handwriting 
samples are known and that adjacent letters are roughly 
segmented. In our proposed generative models, each letter 
is modeled by a B-spline curve controlled by some control 
points. Let { }nn xxxxX ,,...,, 121 −≡  denote a written stroke 

in terms of its n control points. The thi control point is 

located at ( )y
i

x
i pp , . The location of any point )(bs  on 

the stroke can be expressed by the control points using the 
following linear function:  

.)()(
1
∑

=

=
n

i
ii xbcbs                          (1) 

To extract control points automatically from handwritten 
strokes, we use a series of 1-D Gabor filters and take the 
strongest response points as control points. The 1-D Gabor 
filter is defined as: 
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where T is the scale of the filter. Since handwriting data 
contains an x component and a y component, each 
component is viewed as an individual 1-D signal. Using 
this method, a series of multi-scale control points can be 
extracted from handwritten strokes, as shown in Fig. 1. 
The reconstructed strokes using B-splines are also shown. 
The trivial difference between the original and 
reconstructed trajectories shows that the extracted control 
points can represent handwriting data quite well. 

It is obvious that the control points at larger scales 
contain more global and structural information of the 
stroke, while those at smaller scales typically reflect local 
variations. For a handwritten letter, the control points at 
the largest scale roughly represent the structural 
characteristics, as shown in Fig. 2. This fact makes the 
implementation of the proposed tri-unit handwriting 
model quite easy. For a letter with n (n>=3) control points 

at the largest scale, the second control point is viewed as 
the segment point between the head and the body units, 
while the thn )1( − control point is viewed as the segment   
point between the body and the tail units. In the case of 
n<3, the control points at the next smaller scale are used 
for substitution. Control points at the largest scale are 
called main control points. Since each head part and tail 
part contain two main control points, there are always four 
main control points in the stroke of a concatenation part.  
 
2.3 Writing Style Models 

 
According to the generative model, the characteristics 

of a letter are determined by the locations of its control 
points. So the problem of learning the writing style of a 
letter is converted to learning the specific distributions of 
these control points. For convenience, the following 
analysis is focused on one style of a certain letter, which 
is denoted as S . A written style model is adopted as an 
instantiation of the general framework of latent variable 
models. In this study, the manifest variables are the 
control point vectors extracted from handwritten 
strokes, and the latent variable is the style intrinsically 
involved in these straits. 

When a stroke 
iX is being written, the writer is 

guided intrinsically by the inherent style S  and this 

process is denoted as 
iF . Furthermore, each strait has its 

unique global style-independent parameters such as scale, 
location and slant. So we have  

),,()( iiii ANSFSFX ==                  (3) 

(a) (b) 

Figure 2. (a) Control points in the largest scale of 
the handwritten letter “h”. (b) Reconstructed “h” 
using only the largest- scale control points.  

(a) 

(b) 

Figure 1. (a) Control points extracted from the 
original strait. (b) Reconstructed strait using 
control points and B-splines. 

(2) 



where 
iN  is structural noise, and 

iA  stands for affine 

transform parameters. Introducing these parameters 
enables us to unify the different 

iF ’s into a general F .  

Typically, affine transforms are uncorrelated with the 
intrinsic style of a written letter, but largely affect letter 
appearance. Miller et al. proposed a congealing algorithm 
to learn these affine parameters of each sample [11], and 
some EM-based algorithms are proposed in [9] and [10] 
for the same purpose. In this study, a similar algorithm is 
applied to diminish the effects of affine transforms in the 
training process, which will be discussed in detail in the 
next section. In this way, (3) can be divided into two steps 
as follows: 
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where 
AT  stands for the affine transform. The congealing 

algorithm is used to get *
iX  from 

iX by eliminating the 

effects of 
iA . We denote )(SFH =  as the “standard” 

instantiation of the writing style. Following [8] and 
assuming a Gaussian distribution for these samples, the 
probability of the control points lying within a small 
hypervolume Vδ is approximately: 
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where Σ  is the covariance matrix of the distribution. 
 
3. Learning Strategies 
 
3.1 Learning Framework 
 

The learning framework of the proposed system is 
shown in Fig. 3. Letters and ligature strokes are extracted 
from recognized and segmented cursive handwriting 
samples. Due to the variability of different writing styles, 
a template-based feature correspondence algorithm is 
proposed to match control points of different samples 
correctly. Before the parameter learning process, a sample 
congealing algorithm is used to separate global 
deformations from sample strokes. These algorithms will 
be discussed below. 

 
3.2 Template-based Feature Correspondence 

 
In [8], the number of control points of each digit is 

fixed and there is no matching problem. However, due to 
the complexity of cursive handwriting, the numbers of 
main control points extracted from different samples of 
different writing styles are typically different. Even in the 
situation that the numbers of the main control points are 
equal for two samples, these control points do not 
necessarily correspond to each other naturally. To solve 
this problem, an automatic matching algorithm is 
proposed. The basic idea of the algorithm is that rather 
than matching control points in different samples directly, 
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Figure 3. Flow chart of the model learning framework. 
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Figure 4. Illustration of the template based 
control point matching algorithm. (a) Two 
samples of “h” and the template of “h” (centre). 
(b) Responses of Y component data to Gabor 
filters at the largest scale. (c) Indirectly 
matching results using the matching algorithm. 
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control points of a sample are matched to a “self- 
contained” template, which acts as a bridge between 
different samples. In this way, control points of different 
samples are matched correctly, although indirectly. 

The vector of main (largest-scale) control points 
extracted from the template is denoted as ),,,( 21 mxxxT K

. 

For a sample 
iX , suppose it has n main control points. 

The template is carefully designed to make nm ≥ . For 
correct matching of control points, we try to match their 
responses to Gabor filters. Each control point corresponds 
to a local maxima of the Gabor filtering response, and the 
value of the response at this point is denoted as )(kg , 

where k  is the index number of a control point in the 
vector. A matching function is calculated as: 
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An optimal 
mt is calculated as  
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That means the kth  control point of the sample 
corresponds to the thtk m )( + control point of the template. 

Another advantage of the matching algorithm is that it 
can do sample classification automatically. Since the 
matching modes of different samples may be different, 
samples with the same matching mode are clustered and 
samples with different matching modes are viewed as 
instantiations of different writing styles. Samples of 
different styles are trained separately.  

The template-based matching algorithm is used for 
feature correspondence of the segmented letters. For the 
concatenation part, no special matching algorithm is 
needed because the four main control points of different 
concatenation samples can be matched naturally. 

 
3.3 Data Congealing Algorithm 

 
As discussed above, the locations of corresponding 

control points are not clustered very well due to the 
different affine transforms. Since the structure of a 
handwritten letter is largely determined by the 
largest-scale control points, only these points are 
considered in the congealing algorithm, which is similar to 
the one proposed in [11]. A joint entropy is defined as the 
criterion in that study and the proposed algorithm works 
well in image-based applications, but it is not suitable in 
our stroke-based situation. In our study, a deformable 
energy-based criterion, which is similar to the data 
mismatch criterion proposed in [9], is defined as: 
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where 
sN is the number of samples, X  is the mean 

vector calculated as  

∑
=

=
sN

i
i

s

X
N

X
1

1                           (9)  

and 
XV is the variance of the Gaussian calculated as 
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The algorithm is formally described as follows: 
1. Maintain an affine transform matrix 

iU for each 

sample, which is set to identity initially.  
2. Compute the deformable energy-based criterion E . 
3. Repeat until convergence: 

(a) For each sample 
iX , 

i. For each one of the six unit affine matrixes 
[11] 6,,1, L=jAj

,  

A. Let 
ij

new
i UAU =  

B. Apply new
iU  to the sample and 

recalculate the criterion E . 
C. If E  has been reduced, accept new

iU , 

otherwise: 
D. Let 

ij
new
i UAU 1−=  and apply again. If 

E  has been reduced, accept new
iU , 

otherwise revert to 
iU . 

4. End. 
After the congealing process, the distributions of the 

main control points are more likely to satisfy the Gaussian 
distribution assumption in (5). 

 
4. Synthesis Strategies 
 
4.1 Synthesis Framework 
 

The handwriting synthesis framework is illustrated in 
Fig. 5. Instantiations of letters A and B are generated from 
the trained generative models, and some structural noise 
and transforms are added to increase the variability of the 
synthetic results. An instantiation of the ligature stroke is 
also generated from the trained concatenation style model. 

Trained letter 
style generative 

model 

Structural 
noise 

Global affine 
transforms 

Synthesized 
letter A 

Synthesized 
letter B 

Trained 
concatenation style 
generative model  

Synthesized 
concatenation stroke  

AB 

Deformable 
model 

Synthesized 
cursive 

handwriting AB 

Figure 5. Flow chart of the cursive handwriting 
synthesis framework. 



 
These generated strokes are integrated together by a 
deformable model to yield a cursive handwritten AB that 
is natural and smooth. 
 
4.2 Deformable Models 
 

In the proposed tri-unit handwriting model, there is an 
overlap between the letter and the concatenation part. The 
trajectory in the overlap is determined jointly by the letter 
style model and the concatenation style model. This kind 
of design guarantees that the letter style and the 
concatenation style are preserved simultaneously.  

A deformable energy of the trained generative model is 
defined from (5) as 

Σ+−Σ−= − log
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For a synthetic letter, its main body is generated from 
the letter style model, but its head part and tail part 
deserve some deformations to make a smooth and natural 
connection with neighbors. A concatenating energy and an 
energy minimization criterion are defined to guide the 
deformation process.  

Three adjacent letters in a cursive handwriting are 
denoted as 

1−iX , 
iX , 

1+iX , and their ligature strokes are 

denoted as 
iiXc ,1−
 and 

1, +iiXc , respectively.  Suppose 

that after concatenation, the head part of the sample 
iX   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

is deformed, so the ligature stroke between the letter 
1−iX  

and 
iX  is changed from 

iiXc ,1−
 to new

iiXc ,1−
. Similarly, the 

ligature stroke between the letter 
iX  and 

1+iX  is 

changed from 
1, +iiXc  to new

iiXc 1, +
. The letter 

iX  is 

changed to new
iX . The concatenation energy is defined as 

[ ] )()()(),,( 1,,111
new
i

new
ii

new
iiiiic XEXcEXcEXXXE ++= +−+− α (12) 

where α  is a constant. To create a natural and smooth 
strait, the head and tail parts of 

iX  are deformed to 

minimize the concatenation energy: 
),,(minarg 11 +−= iiic

new
i XXXEX              (13) 

Each letter in a cursive handwriting is deformed in this 
way and a synthetic, style-preserving handwriting word 
finally formed. 
 
5. Experimental Results 
 

To demonstrate the effectiveness of the proposed 
system, some experimental results are shown in this 
section. Firstly, we focus on a single simple handwritten 
word. The sample is “the”. Because the proposed system 
is unit-based, a word containing three letters is enough to 
demonstrate the effectiveness of the system, and there is 
no difficulty for the system to deal with more complex 
words containing more letters. We collected several 

Figure 7. A handwriting note synthesized by the system. Note that our approach can synthesize fluent 
cursive handwriting words while the glyph-based approach [5] can not.  

(a) (b) 

(c) 
(d) 

Figure 66. Synthesizing words from samples. (a) Samples of the word “the” written by writer A. (b) 
Two synthetic words of different styles learned by the system. (c) Samples of the same word 
written by writer B. (d) One synthetic word of the specific style learned by the system.  



samples of the word written by two writers and tried to 
synthesize the same word of the same styles. The results 
are shown in Fig. 6. It is interesting to note that the first 
writer has two writing styles of the character “h”, that are 
summarized and learned by the system. The results show 
that after given some samples, the proposed system can 
really learn the writing styles of letters and ligature strokes 
of adjacent letters, and has the ability to generate novel 
strokes and to concatenate them naturally. 

Furthermore, the full collection of models were trained 
for a specific writer. About 80 different words written by 
the writer were collected and used for model training. 
Each lower-case alphabetic letter is included in the 
training set, which enables the system to synthesize any 
sentence. Fig. 7 shows a handwritten note synthesized by 
the system. Compared with the glyph-based technique in 
[5], our proposed system is more flexible and has the 
ability of generating the cursive handwriting trajectory of 
a word fluently even if it does not appear in the training 
samples. On the contrary, the glyph-based technique 
cannot synthesize a whole word fluently and can only do it 
by simply juxtaposing several glyphs in sequence. Some 
synthetic words using different techniques are compared 
in Fig. 8. 

 
6. Conclusions and Future Work 

 
Handwriting computing on the post-recognition level 

is becoming an urgent requirement due to the rapid 
developments of pen-based devices and systems. In this 
study the problems of cursive handwriting modeling, 
learning and synthesis are integrated together and a 
model-based learning approach has been proposed to 
synthesize individual cursive handwriting. The ability to 
learn personal writing style and synthesize novel 
handwriting of the same style brings handwriting 
computing to a more intelligent level, and enables 
computers to help and facilitate a user’s work on 
pen-based devices. 

Some experimental results are shown in the paper to 
illustrate the effectiveness of the system on learning and 
synthesizing cursive handwriting. However, how to give 
an objective evaluation on synthetic handwriting is still a 
problem. Another area to be addressed is that the spline- 
based system can only handle fluid cursive handwriting 
and must be coordinated with other techniques to deal 
with mixed-style handwriting, which may compose of 
abundant straight lines.  

Another issue is that the success of the system heavily 
depends on the accuracy of the segmentation of 
handwriting samples used for training. Currently we are 
improving our segmentation techniques to give more 
reliable segmentation results. On the other hand, given the 
fact that segmentation is never perfect, when the system is 

relegated to end users of pen-based systems, some 
interactive scenarios must be employed to enable users to 
manually correct some severe segmentation mistakes in 
the training data. 
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(a) 

(b) 

Figure 8. (a) Some words synthesized in [5]. (b) 
The same words synthesized by our approach. 
Note that there are always some intervals in the 
synthetic words in (a) while the synthetic words 
in (b) are more fluent.  


