
Learning-based Cursive Handwriting Synthesis

Jue Wang1,2 *, Chenyu Wu1,2 , Ying-Qing Xu1 , Heung-Yeung Shum1 and Liang Ji2

1. Microsoft Research Asia, Beijing 100080, China
2. Dept. of Automation, Tsinghua Univ., Beijing 100084, China

E-mail: yqxu@microsoft.com

Abstract

In this paper, an integrated approach for modeling,
learning and synthesizing personal cursive handwriting is
proposed. Cursive handwriting is modeled by a tri-unit
handwriting model, which focuses on both the handwritten
letters and the interconnection strokes of adjacent letters.
Handwriting strokes are formed from generative models
that are based on control points and B-spline curves. In
the two-step learning process, a template-based matching
algorithm and a data congealing algorithm are proposed
to extract training vectors from handwriting samples, and
then letter style models and concatenation style models
are trained separately. In the synthesis process, isolated
letters and ligature strokes are generated from learned
models and concatenated with each other to produce the
whole word trajectory, with guidance from a deformable
model. Experimental results show that the proposed
system can effectively learn the individual style of cursive
handwriting and has the ability to generate novel
handwriting of the same style.

1. Introduction

Pen-based interfaces are now a hotspot in
Human-Machine Interface (HCI) research because in
numerous situations, a pen together with a notepad is more
convenient than a keyboard or a mouse. The flourish of
pen-based devices such as Tablet PCs brings a great
demand for various cursive handwriting computing
techniques. When writing a note on a Tablet PC, if the
computer can automatically correct some written errors
and generate some predefined handwriting strokes,
communication through a pen-based interface would be
more effective and intelligent. Furthermore, handwriting is
preferable to typed text in some cases because it adds a
personal touch. All these applications bring an urgent
requirement for handwriting synthesis techniques.

The problem of handwriting synthesis has been
addressed for a substantial amount of time and many

 *Jue and Chenyu participated in this work when they were
working as interns at Microsoft Research Asia.

studies can be found in the literature. Generally speaking,
these approaches can be divided into two categories based
on their properties: movement simulation techniques and
shape simulation methods. Most movement simulation
approaches are based on motor models [1] and try to
model the process of handwriting production [2, 3]. Shape
simulation techniques, on the contrary, only consider the
trajectory of handwriting. They are more practical than
movement simulation techniques when the dynamic
information of handwriting is not available and the
trajectory of handwriting has been re-sampled by other
processors such as recognizers, as addressed in [4]. Our
approach is a shape simulation technique, as the one
proposed in [5]. In that study, a straightforward approach
was proposed in which handwriting is synthesized from
collected handwritten glyphs. However, this work lacks
mathematical models and explanations for individual
styles of cursive handwriting, which are essential for
achieving satisfying synthesis results.

In this paper, a mathematical analysis of cursive
handwriting style is given, and a series of models are
proposed to capture the characteristics of different writing
styles. Based on the fact that in individual cursive
handwriting, not only the styles of letters but the styles of
ligature strokes between letters are unique, a tri-unit
cursive handwriting model is proposed, which enables us
to extract letter strokes and ligature strokes from cursive
handwriting. Each stroke is modeled by a cubic B-spline
with some control points extracted by 1-D Gabor filters. A
parametric generative model is proposed based on the
distributions of control points to model writing styles of
these strokes. After the training process, generative models
can synthesize new letters and ligature strokes of the same
style. A deformable model is then applied to incorporate
these strokes into integrated, seemingly natural
handwritten words.

2. Models

2.1 Tri-Unit Handwriting Model

The model of cursive handwriting plays the most
important role in determining how natural our synthetic
results appear. Because letters are connected with their

neighbors in cursive handwriting, each letter is “context
related”, which means that each letter is connected to and
affected by its two neighbors in specific ways. Based on
this fact, we borrow the ideal of “triphthong” [12] in
speech processing and propose a tri-unit handwriting
model. The trajectory of each letter can be divided into
three parts in sequence: the head, the body and the tail
units. The head unit of each letter is connected with and
influenced by the tail unit of the previous letter and the tail
unit is connected with and influences the head unit of the
next letter. The three units combine together to give the
whole trajectory of the letter, and the tail and head unit of
adjacent letters together can be called the concatenation
part.

2.2 Generative Models

Because our system is recognition- and segmentation-

based, it is assumed that the contents of the handwriting
samples are known and that adjacent letters are roughly
segmented. In our proposed generative models, each letter
is modeled by a B-spline curve controlled by some control
points. Let { }nn xxxxX ,,...,, 121 −≡ denote a written stroke

in terms of its n control points. The thi control point is

located at ()y
i

x
i pp , . The location of any point)(bs on

the stroke can be expressed by the control points using the
following linear function:

.)()(
1
∑

=

=
n

i
ii xbcbs (1)

To extract control points automatically from handwritten
strokes, we use a series of 1-D Gabor filters and take the
strongest response points as control points. The 1-D Gabor
filter is defined as:





















−⋅=









−⋅=

)
2

cos(
2

exp)cos(

)
2

sin(
2

exp)sin(

2

2

2

2

x
TT

x
constxG

x
TT

x
constxG

π

π

where T is the scale of the filter. Since handwriting data
contains an x component and a y component, each
component is viewed as an individual 1-D signal. Using
this method, a series of multi-scale control points can be
extracted from handwritten strokes, as shown in Fig. 1.
The reconstructed strokes using B-splines are also shown.
The trivial difference between the original and
reconstructed trajectories shows that the extracted control
points can represent handwriting data quite well.

It is obvious that the control points at larger scales
contain more global and structural information of the
stroke, while those at smaller scales typically reflect local
variations. For a handwritten letter, the control points at
the largest scale roughly represent the structural
characteristics, as shown in Fig. 2. This fact makes the
implementation of the proposed tri-unit handwriting
model quite easy. For a letter with n (n>=3) control points

at the largest scale, the second control point is viewed as
the segment point between the head and the body units,
while the thn)1(− control point is viewed as the segment
point between the body and the tail units. In the case of
n<3, the control points at the next smaller scale are used
for substitution. Control points at the largest scale are
called main control points. Since each head part and tail
part contain two main control points, there are always four
main control points in the stroke of a concatenation part.

2.3 Writing Style Models

According to the generative model, the characteristics

of a letter are determined by the locations of its control
points. So the problem of learning the writing style of a
letter is converted to learning the specific distributions of
these control points. For convenience, the following
analysis is focused on one style of a certain letter, which
is denoted as S . A written style model is adopted as an
instantiation of the general framework of latent variable
models. In this study, the manifest variables are the
control point vectors extracted from handwritten
strokes, and the latent variable is the style intrinsically
involved in these straits.

When a stroke
iX is being written, the writer is

guided intrinsically by the inherent style S and this

process is denoted as
iF . Furthermore, each strait has its

unique global style-independent parameters such as scale,
location and slant. So we have

),,()(iiii ANSFSFX == (3)

(a) (b)

Figure 2. (a) Control points in the largest scale of
the handwritten letter “h”. (b) Reconstructed “h”
using only the largest- scale control points.

(a)

(b)

Figure 1. (a) Control points extracted from the
original strait. (b) Reconstructed strait using
control points and B-splines.

(2)

where
iN is structural noise, and

iA stands for affine

transform parameters. Introducing these parameters
enables us to unify the different

iF ’s into a general F .

Typically, affine transforms are uncorrelated with the
intrinsic style of a written letter, but largely affect letter
appearance. Miller et al. proposed a congealing algorithm
to learn these affine parameters of each sample [11], and
some EM-based algorithms are proposed in [9] and [10]
for the same purpose. In this study, a similar algorithm is
applied to diminish the effects of affine transforms in the
training process, which will be discussed in detail in the
next section. In this way, (3) can be divided into two steps
as follows:

�iiAi

ii

AXTX

NSFX

,(

),(
*

*

=

= (4)

where
AT stands for the affine transform. The congealing

algorithm is used to get *
iX from

iX by eliminating the

effects of
iA . We denote)(SFH = as the “standard”

instantiation of the writing style. Following [8] and
assuming a Gaussian distribution for these samples, the
probability of the control points lying within a small
hypervolume Vδ is approximately:






 −Σ−−
Σ

= −)()(
2

1
exp

)2(

1
)(1

2
1

HXHXVXp T

nπ
δ (5)

where Σ is the covariance matrix of the distribution.

3. Learning Strategies

3.1 Learning Framework

The learning framework of the proposed system is
shown in Fig. 3. Letters and ligature strokes are extracted
from recognized and segmented cursive handwriting
samples. Due to the variability of different writing styles,
a template-based feature correspondence algorithm is
proposed to match control points of different samples
correctly. Before the parameter learning process, a sample
congealing algorithm is used to separate global
deformations from sample strokes. These algorithms will
be discussed below.

3.2 Template-based Feature Correspondence

In [8], the number of control points of each digit is

fixed and there is no matching problem. However, due to
the complexity of cursive handwriting, the numbers of
main control points extracted from different samples of
different writing styles are typically different. Even in the
situation that the numbers of the main control points are
equal for two samples, these control points do not
necessarily correspond to each other naturally. To solve
this problem, an automatic matching algorithm is
proposed. The basic idea of the algorithm is that rather
than matching control points in different samples directly,

Recognized and
segmented cursive

handwriting

Control point
extraction and

unit segmentation

Feature
correspondence

Sample
congealing

Parameter
Estimation

Trained letter
style generative

model

Parameter
Estimation

Trained concatenation style
generative model

Sample
congealing

Samples of letter

Samples of concatenation stroke

Figure 3. Flow chart of the model learning framework.

 1

 2

 3

1H 2H

 4

 5

H

 1

 2

 3 1

 2

 3

 4

 5
 1

 2

 3

(a)

(b)

(c)

Figure 4. Illustration of the template based
control point matching algorithm. (a) Two
samples of “h” and the template of “h” (centre).
(b) Responses of Y component data to Gabor
filters at the largest scale. (c) Indirectly
matching results using the matching algorithm.

 1

 2

 3

 1

 2 3

 1 1

 1 2 2

 2 3 3

 3 4

 5

1H
2H

H

control points of a sample are matched to a “self-
contained” template, which acts as a bridge between
different samples. In this way, control points of different
samples are matched correctly, although indirectly.

The vector of main (largest-scale) control points
extracted from the template is denoted as),,,(21 mxxxT K

.

For a sample
iX , suppose it has n main control points.

The template is carefully designed to make nm ≥ . For
correct matching of control points, we try to match their
responses to Gabor filters. Each control point corresponds
to a local maxima of the Gabor filtering response, and the
value of the response at this point is denoted as)(kg ,

where k is the index number of a control point in the
vector. A matching function is calculated as:

nmtkgtkgtM TX

n

k
i

−=⋅+=∑
=

,,0),()()(
1

L
 (6)

An optimal
mt is calculated as

)(maxarg tMt
t

m = (7)

That means the kth control point of the sample
corresponds to the thtk m)(+ control point of the template.

Another advantage of the matching algorithm is that it
can do sample classification automatically. Since the
matching modes of different samples may be different,
samples with the same matching mode are clustered and
samples with different matching modes are viewed as
instantiations of different writing styles. Samples of
different styles are trained separately.

The template-based matching algorithm is used for
feature correspondence of the segmented letters. For the
concatenation part, no special matching algorithm is
needed because the four main control points of different
concatenation samples can be matched naturally.

3.3 Data Congealing Algorithm

As discussed above, the locations of corresponding

control points are not clustered very well due to the
different affine transforms. Since the structure of a
handwritten letter is largely determined by the
largest-scale control points, only these points are
considered in the congealing algorithm, which is similar to
the one proposed in [11]. A joint entropy is defined as the
criterion in that study and the proposed algorithm works
well in image-based applications, but it is not suitable in
our stroke-based situation. In our study, a deformable
energy-based criterion, which is similar to the data
mismatch criterion proposed in [9], is defined as:

































⋅

−
−−= ∑

=

sN

i X

i

s V

XX

N
E

1

2

2
exp

1
log (8)

where
sN is the number of samples, X is the mean

vector calculated as

∑
=

=
sN

i
i

s

X
N

X
1

1 (9)

and
XV is the variance of the Gaussian calculated as

 ∑
=

−=
sN

i
i

s
X XX

N
V

1

21 (10)

The algorithm is formally described as follows:
1. Maintain an affine transform matrix

iU for each

sample, which is set to identity initially.
2. Compute the deformable energy-based criterion E .
3. Repeat until convergence:

(a) For each sample
iX ,

i. For each one of the six unit affine matrixes
[11] 6,,1, L=jAj

,

A. Let
ij

new
i UAU =

B. Apply new
iU to the sample and

recalculate the criterion E .
C. If E has been reduced, accept new

iU ,

otherwise:
D. Let

ij
new
i UAU 1−= and apply again. If

E has been reduced, accept new
iU ,

otherwise revert to
iU .

4. End.
After the congealing process, the distributions of the

main control points are more likely to satisfy the Gaussian
distribution assumption in (5).

4. Synthesis Strategies

4.1 Synthesis Framework

The handwriting synthesis framework is illustrated in
Fig. 5. Instantiations of letters A and B are generated from
the trained generative models, and some structural noise
and transforms are added to increase the variability of the
synthetic results. An instantiation of the ligature stroke is
also generated from the trained concatenation style model.

Trained letter
style generative

model

Structural
noise

Global affine
transforms

Synthesized
letter A

Synthesized
letter B

Trained
concatenation style
generative model

Synthesized
concatenation stroke

AB

Deformable
model

Synthesized
cursive

handwriting AB

Figure 5. Flow chart of the cursive handwriting
synthesis framework.

These generated strokes are integrated together by a
deformable model to yield a cursive handwritten AB that
is natural and smooth.

4.2 Deformable Models

In the proposed tri-unit handwriting model, there is an
overlap between the letter and the concatenation part. The
trajectory in the overlap is determined jointly by the letter
style model and the concatenation style model. This kind
of design guarantees that the letter style and the
concatenation style are preserved simultaneously.

A deformable energy of the trained generative model is
defined from (5) as

Σ+−Σ−= − log
2

1
)()(

2

1
)(1 HXHXXE T (11)

For a synthetic letter, its main body is generated from
the letter style model, but its head part and tail part
deserve some deformations to make a smooth and natural
connection with neighbors. A concatenating energy and an
energy minimization criterion are defined to guide the
deformation process.

Three adjacent letters in a cursive handwriting are
denoted as

1−iX ,
iX ,

1+iX , and their ligature strokes are

denoted as
iiXc ,1−
 and

1, +iiXc , respectively. Suppose

that after concatenation, the head part of the sample
iX

is deformed, so the ligature stroke between the letter
1−iX

and
iX is changed from

iiXc ,1−
 to new

iiXc ,1−
. Similarly, the

ligature stroke between the letter
iX and

1+iX is

changed from
1, +iiXc to new

iiXc 1, +
. The letter

iX is

changed to new
iX . The concatenation energy is defined as

[])()()(),,(1,,111
new
i

new
ii

new
iiiiic XEXcEXcEXXXE ++= +−+− α (12)

where α is a constant. To create a natural and smooth
strait, the head and tail parts of

iX are deformed to

minimize the concatenation energy:
),,(minarg 11 +−= iiic

new
i XXXEX (13)

Each letter in a cursive handwriting is deformed in this
way and a synthetic, style-preserving handwriting word
finally formed.

5. Experimental Results

To demonstrate the effectiveness of the proposed
system, some experimental results are shown in this
section. Firstly, we focus on a single simple handwritten
word. The sample is “the”. Because the proposed system
is unit-based, a word containing three letters is enough to
demonstrate the effectiveness of the system, and there is
no difficulty for the system to deal with more complex
words containing more letters. We collected several

Figure 7. A handwriting note synthesized by the system. Note that our approach can synthesize fluent
cursive handwriting words while the glyph-based approach [5] can not.

(a) (b)

(c)
(d)

Figure 66. Synthesizing words from samples. (a) Samples of the word “the” written by writer A. (b)
Two synthetic words of different styles learned by the system. (c) Samples of the same word
written by writer B. (d) One synthetic word of the specific style learned by the system.

samples of the word written by two writers and tried to
synthesize the same word of the same styles. The results
are shown in Fig. 6. It is interesting to note that the first
writer has two writing styles of the character “h”, that are
summarized and learned by the system. The results show
that after given some samples, the proposed system can
really learn the writing styles of letters and ligature strokes
of adjacent letters, and has the ability to generate novel
strokes and to concatenate them naturally.

Furthermore, the full collection of models were trained
for a specific writer. About 80 different words written by
the writer were collected and used for model training.
Each lower-case alphabetic letter is included in the
training set, which enables the system to synthesize any
sentence. Fig. 7 shows a handwritten note synthesized by
the system. Compared with the glyph-based technique in
[5], our proposed system is more flexible and has the
ability of generating the cursive handwriting trajectory of
a word fluently even if it does not appear in the training
samples. On the contrary, the glyph-based technique
cannot synthesize a whole word fluently and can only do it
by simply juxtaposing several glyphs in sequence. Some
synthetic words using different techniques are compared
in Fig. 8.

6. Conclusions and Future Work

Handwriting computing on the post-recognition level

is becoming an urgent requirement due to the rapid
developments of pen-based devices and systems. In this
study the problems of cursive handwriting modeling,
learning and synthesis are integrated together and a
model-based learning approach has been proposed to
synthesize individual cursive handwriting. The ability to
learn personal writing style and synthesize novel
handwriting of the same style brings handwriting
computing to a more intelligent level, and enables
computers to help and facilitate a user’s work on
pen-based devices.

Some experimental results are shown in the paper to
illustrate the effectiveness of the system on learning and
synthesizing cursive handwriting. However, how to give
an objective evaluation on synthetic handwriting is still a
problem. Another area to be addressed is that the spline-
based system can only handle fluid cursive handwriting
and must be coordinated with other techniques to deal
with mixed-style handwriting, which may compose of
abundant straight lines.

Another issue is that the success of the system heavily
depends on the accuracy of the segmentation of
handwriting samples used for training. Currently we are
improving our segmentation techniques to give more
reliable segmentation results. On the other hand, given the
fact that segmentation is never perfect, when the system is

relegated to end users of pen-based systems, some
interactive scenarios must be employed to enable users to
manually correct some severe segmentation mistakes in
the training data.

7. References

[1] R. Plamondon and F.J. Maarse, “An evaluation of motor

models of handwriting”, IEEE Trans. PAMI, 19, pp.
1060-1072, 1989.

[2] W. Guerfali and P. Plamondon, “The Delta LogNormal
theory for the generation and modeling of handwriting
recognition”, Proc. ICDAR , pp. 495-498, 1995.

[3] Y. Singer and N. Tishby, “Dynamical encoding of cursive
handwriting”, Proc. IEEE Conf. CVPR,1993.

[4] H. Beigi, “Pre-Processing the Dynamics of On-Line
Handwriting Data, Feature Extraction and Recognition”,
Proc. The Fifth International Workshop on Frontiers of
Handwriting Recognition, Colchester, England, 1996.

[5] I. Guyon, “Handwriting synthesis from handwritten glyphs”,
Porc. the Fifth International Workshop on Frontiers of
Handwriting Recognition, Colchester, England, 1996.

[6] G.L. Cash and M. Hatamian, “Optical character recognition
by the method of moments”, Comp. Vis., Graph. and Image
Proc., 39, pp. 291–310, 1987.

[7] K. Fukushima and N. Wake, “Handwritten alphanumeric
character recognition by the neocognition”, IEEE Trans.
Neural Networks, 2, pp. 355–365, 1991.

[8] M. Revow, G.K.I. Williamst and G.E. Hinton, “Using
generative models for handwritten digit recognition”, IEEE
Trans. PAMI, 18, pp. 592–606, 1996.

[9] K.W. Cheung, D.Y. Yeung and R.T. Chin, “A Bayesian
framework for deformable pattern recognition with
application to handwritten character recognition”, IEEE
Trans. PAMI, 20, pp. 1382–1388, 1998.

[10] A.K. Jain and D. Zongker, “Representation and recognition
of handwritten digits using deformable templates”, IEEE
Trans. PAMI, 19, pp. 1386–1391, 1997.

[11] E.G. Miller, N.E. Matsakis and P.A. Viola, “Learning from
one example through shared densities on transforms”, Proc.
IEEE Int’l Conf. CVPR, Hilton Head, South Carolina, 2000.

[12] A.W. Black and P. Taylor, “Automatically clustering
similar units for unit selection in speech synthesis”, Proc.
Eurospeech, Rhodes, Greece, 1997.

(a)

(b)

Figure 8. (a) Some words synthesized in [5]. (b)
The same words synthesized by our approach.
Note that there are always some intervals in the
synthetic words in (a) while the synthetic words
in (b) are more fluent.

