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Abstract

We cast some new insights into solving the digital mat-
ting problem by treating it as a semi-supervised learning
task in machine learning. A local learning based approach
and a global learning based approach are then produced,
to fit better the scribble based matting and the trimap based
matting, respectively. Our approaches are easy to im-
plement because only some simple matrix operations are
needed. They are also extremely accurate because they can
efficiently handle the nonlinear local color distributions by
incorporating the kernel trick, that are beyond the ability
of many previous works. Our approaches can outperform
many recent matting methods, as shown by the theoretical
analysis and comprehensive experiments. The new insights
may also inspire several more works.

1. Introduction

Digital matting refers to the process of extracting a fore-
ground object image F along with its opacity mask α (typi-
cally called “alpha matte”) from a given digital image I , as-
suming that I is formed by linearly blending F and a back-
ground image B using α:

I = αF + (1− α)B. (1)

It is usually followed by a compositing process to create a
new image by linearly blending the extracted foreground
object image and a new background image with the ex-
tracted alpha matte, also using Eq. 1. Digital matting is
an invaluable tool in image editing, film and video motion
picture production, etc.

The digital matting problem is inherently under-
constrained because it has more unknowns (F , B and α)
than the constraints (Eq. 1). The ill-posed problem has
been extensively studied by adding more information and
constraints. The additional information is supplied by set-
ting the scribbles [14] or trimaps [4], i.e. labeling some

pixels which are definitely foreground or background, or
providing multiple images or video [16]. The single im-
age based matting problem (the topic of this paper), even
with the known alpha value of the labeled pixels, is still ill-
posed. Therefore, several works proposed additional con-
straints. For example, F and B can be well estimated with a
series of nearest labeled foreground and background pixels
[4, 15], the foreground and background colors are assumed
to be locally smooth [12, 9, 8], and the alpha values are ex-
pected to be locally coherent [14, 6], etc. The first constraint
is usually for the trimap based matting while the other two
are generally for the scribble based matting. The constraints
were proved to be very useful, and with them various tech-
niques [16] have been proposed to efficiently extract high
quality alpha mattes and foreground colors.

To apply the additional supplied information and con-
straints for solving the matting problem, one critical ele-
ment in producing accurate results is how to model the re-
lation between the alpha matte values and the image col-
ors of a series of associated pixels. For simplicity, we call
this relation the alpha-color relation. The associated pixels
are some pixels with which the chosen alpha-color model
is determined. The determined alpha-color model will then
be used to predict α value of the unlabeled pixels. For the
trimap based matting, usually a series of nearest labeled pix-
els are associated, while for the scribble based matting, usu-
ally some neighboring pixels of the pixel being estimated
are associated.

The previous matting methods model the alpha-color re-
lation in different ways, but for most of them the chosen
model comes from the additional supplied information and
constraints mentioned above. For example, both [15] and
[9] assume the associated colors lie on a line in the RGB
space, and based on this, some linear alpha-color models
are deducted and employed. For [15], the associated pixels
are a pair of labeled foreground and background pixels, and
a linear alpha-color model is specified implicitly through
computing the alpha value with the unlabeled pixel’s dis-
tances to the pair of colors along the line. For [9], the associ-
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ated pixels are the pixels in a local patch, and an explicit lin-
ear alpha-color model is then deducted. More assumptions
and the resulting models will be explained in next section.
A common problem of the previous matting techniques is
that when their assumptions cannot be satisfied in practice,
they may fail because the assumed alpha-color models (e.g.
the linear models in [15] and [9]) are not sufficient for rep-
resenting correctly the alpha-color relations.

In this paper, we attempt to cast some new insights into
the single image based digital matting problem by treating
it as a semi-supervised learning problem [18, 17, 21, 20] in
machine learning, resulting in a local learning based mat-
ting approach and a global learning based approach. The
local learning based approach learns the alpha-color model
from the neighboring pixels of the pixel being estimated,
and fits better the scribble based matting. The global learn-
ing based approach learns the model from some nearby la-
beled pixels, and suits better the trimap based matting.

Our approaches bear multiple advantages. First, they are
easy to implement because only some simple matrix oper-
ations are required. Second, they are extremely accurate.
They can efficiently handle the nonlinear local color distri-
butions in the image with a more general alpha-color model
by using the kernel trick, that are beyond the ability of many
previous works like [9, 15]. They outperform many recent
matting methods, as shown by the theoretical analysis and
the comprehensive experiments. Third, our new insights
could also inspire several more works following the line of
using other learning methods and image features.

2. Previous Work

From the human intervention point of view, the single
image based matting methods can be classified into three
types: trimap based [4, 12, 6, 15, 13], scribble based [14, 9],
and automatic [8]. Trimap can usually provide more labeled
pixels but needs more labor than scribbles.

For modeling the alpha-color relation, there are basically
three ways previously used to specify the associated pixels:
choose a series of nearby labeled pixels, select the neigh-
boring pixels, or use both.

The associated pixels are chosen as a series of nearby la-
beled pixels mostly in some trimap based matting methods.
For example, Bayesian Matting [4], as a parametric tech-
nique, assumes and fits an oriented Gaussian distribution
for each cluster of the image colors of the nearby labeled
pixels and then uses it to estimate the α value of the un-
labeled pixels with a maximum-likelihood criterion. The
non-parametric technique in Robust Matting [15] instead
samples some representative pairs of foreground color and
background color from the labeled pixels by assuming that
the color of the unlabeled pixel is on a line in the RGB space
of the sampled pair of colors. The alpha value is then com-
puted based on the unlabeled pixel’s distances on the line to

the pair of colors.
The associated pixels are selected from the pixel’s neigh-

borhood mostly in the scribble based matting methods, and
also in some trimap based methods. For example, the
Closed-Form Matting [9] and the Spectral Matting [8] as-
sume a linear line in the RGB space for the colors of a local
patch, resulting in a linear alpha-color model for solving
the matting. Alternatively, the alpha-color relation is spec-
ified by assuming that the alpha matte’s gradient is propor-
tional to the image gradient in Poisson Matting [12] and that
the absolute change of α value is encouraged to be consis-
tent with the value of an exponential function of the abso-
lute color changes (in the form of solving a matting Lapla-
cian problem) in the Random-Walk Matting [6]. Recently,
the alpha-color relation is specified by computing the al-
pha value based on the predefined distances’ values to the
scribbles for the geodesic distance based matting [1] and
FuzzyMatte [19]. The distances are both computed based
on the measurement of the neighboring pixels’ color simi-
larity. They assume that a shorter distance to the foreground
scribbles or a larger distance to the background indicate a
larger alpha matte value, and vice-versa.

The associated pixels are specified as both the nearby la-
beled pixels and the neighboring pixels in some trimap or
scribble based matting methods. For example, Soft Scis-
sors [13] specifies the alpha-color relation from some la-
beled pixels as in the robust matting and at the same time
from a local patch as in the Closed-Form Matting. The Iter-
ative BP Matting [14] assumes and fits a Gaussian Mixture
Model for some nearest labeled pixels, enforces smoothness
on the alpha value for the neighboring pixels, and solves the
matte by solving a Markov Random Field (MRF).

We can see that the previous methods specify the alpha-
color model from some assumptions on, for example, the
associated pixels’ color distribution, and the linearity of the
model. In contrast, our approaches do not rely on these
assumptions, and learn a more general alpha-color model
which can be linear or nonlinear. Our approaches are more
robust and can produce more accurate matte result.

Besides the single image based matting methods, there
are also some other approaches using multiple images to
make the matting problem over-constrained. They use a
video or flash/no-flash pair of images, etc. References can
be found in [16].

3. Estimating Alpha Matte with Learning

Matting consists of two main tasks: alpha matte’s esti-
mation, and foreground (and background) colors’ compu-
tation. Given an image I for which the complete set of
pixels is denoted by Ω = {1, · · · , n} where n is the total
number of pixels, and given a set of labeled pixels Ωl ⊂ Ω
for which we know the α values, alpha matte estimation is
defined as computing the α values of the set of unlabeled
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(a) (b) (c) (d) (e)

(f) (g) (h)
Figure 1. Local learning in alpha matte estimation learns the structure of the “image intensity surface”. (a). An image from [15]. (b). Local
patch of the input image. (c). Scribbles (blue for foreground and red for background). (d). Ground truth alpha matte. (e). Estimated alpha
matte with local learning. (f). “Image intensity surface” of the corresponding gray image of (b). (g). Alpha surface of (d). (h). Alpha
surface of (e). Note the similarities among the structures of the three surfaces.

pixels Ωu = Ω − Ωl. Here the set of labeled pixels Ωl is
composed of two subsets: Ωf

l labeled as definite foreground
and for which we know α is 1, and Ωb

l labeled as definite
background and for which we know α is 0. We indicate Ωf

l

and Ωb
l using blue and red colors respectively, as shown in

Fig. 1. After an accurate alpha matte is obtained, we can
simply use, for example, the method in [14] to determine a
pair of foreground and background colors for each pixel.

We consider the alpha matte estimation as a learning
problem. We treat each pixel i ∈ Ω as a data point denoted
by xi ∈ R

d. xi can be set as Ii or other features extracted
for pixel i. In this paper, we set xi = Ii which is a scale
value for a gray image (d = 1) or a vector composed of
the RGB color components for a color image (d = 3). The
learning problem can be then formulated as follows. Given
a data point set X ⊆ R

d, X = {xi}i∈Ω, and the alpha val-
ues {αi}i∈Xl

of the labeled data points Xl = {xi}i∈Ωl
, our

goal is to compute the accurate alpha values {αi}i∈Xu
of

the unlabeled data points Xu = X − Xl through learning
methods.

This learning problem apparently belongs to the semi-
supervised learning problem [21, 20, 18, 17], i.e. learning
(to specify α values of Ωu) from partially labeled data (Ωl).
Semi-supervised learning addresses the learning process not
only using the labeled data points but also the unlabeled data
points. It can produce high accuracy even with little human
effort for a general classification task.

3.1. Estimating Alpha Matte via Local Learning

Our local learning based matting technique trains a local
alpha-color model for each pixel in the image only based
on its neighboring pixels which are considered to be most
related. As the local learning methods [21, 18] in machine

learning can effectively use the manifold structure, the local
learning in alpha matte estimation can exploit the structure
of the “image intensity surface” formed by the colors of the
image pixels on the regular lattice (called “image structure”
in [6]), as shown in Fig. 1. Note that in the matting problem
the neighboring pixels are determined according to the Eu-
clidean distance between pixels on the regular lattice of the
image, which is different from the general semi-supervised
learning problems.

We next formulate the alpha matte estimation by first as-
suming each pixel’s alpha value as a linear combination of
its associated neighboring pixels. Then, we elaborate on de-
termining the coefficients of the linear combination with a
local learning process based on a linear alpha-color model,
followed by relaxing the linear model to a more general one
which can be nonlinear with the kernel trick [10].

3.1.1 Alpha Matte Estimation

In the estimation of alpha matte with local learning, for any
pixel i ∈ Ω, we assume that its alpha matte value αi can
be predicted by a linear combination of the alpha values
{αj}j∈Ni

of its neighboring pixels Ni ⊂ Ω. We select the
pixels in a 7×7 local path centered at i as the neighbors. We
then estimate simultaneously the alpha values of all pixels
through minimizing a quadratic cost.

We first denote Ni = {τ1, · · · , τm}. If we use
αi = [ατ1 , · · · , ατj

, · · ·ατm
]T where τj ∈ Ni to

denote the vector of alpha values of Ni, and fi =
[fiτ1 , · · · , fiτj

, · · · , fiτm
]T to denote the vector of the lin-

ear combination coefficients, the combination for i can be
represented by

αi = fTi αi. (2)

We can also rewrite αi in Eq. 2 in the form of the
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linear combination of alpha values of all the pixels. We
denote the alpha values of all the pixels with the vec-
tor α = [α1, · · · , αn]T where the coefficients with ξi =
[fi1, · · · , fin]T . For ξi, the values for the pixels in Ni are
equal to the corresponding ones in fi, and the remaining are
zero. We have

αi = ξT
i α. (3)

By introducing a new matrix F through stacking
{ξi}i∈Ω: F = [ξ1, · · · , ξn], we can rewrite Eq. 3 in a more
concise format

α = FT α. (4)

If we know F, a classical way to estimate α is to mini-
mize the following quadratic cost

arg min
α
‖α− FT α‖2 + c‖αl −α∗l ‖ (5)

where αl denotes the vector of the alpha variables of the la-
beled pixels in Ωl and α∗l denotes the vectors of the already
known alpha values of the labeled pixels. As suggested in
[18], different c values may lead to different algorithms for
solving the Eq. 5. Here we set c = ∞, which forces the
matte value to be 1 for the labeled foreground pixels and 0
for background. It can help in utilizing the additional pro-
vided information to the maximum extent [11].

In order to solve Eq. 5, we need to reformulate it. We
introduce the diagonal matrix C of size n×n, for which the
jth diagonal element takes the constant value c if j ∈ Ωl,
and other diagonal elements are zero. We also bring in the
vector α∗ of length n, for which the jth element equals the
already known alpha value of pixel j if j ∈ Ωl. Then, Eq. 5
is reformulated as

arg min
α∈Rn

αT
(
I(n)−F

)(
I(n)−F

)T
α+(α−α∗)T C(α−α∗)

(6)
where I(n) is the n × n identity matrix. Eq. 6 is similar to
the quadratic optimization problem proposed in [18].

By taking the first derivative of α in Eq. 6 and setting it
to zero, we get the solution

α =
(
(I(n) − F)(I(n) − F)T + C

)−1
Cα∗. (7)

Eq. 7 can be computed if the linear combination coef-
ficients in Eq. 2 are known. Their computation is accom-
plished by the local learning process explained next.

3.1.2 Local Learning

Local learning in alpha matte estimation tries to train a lo-
cal alpha-color model for each pixel i ∈ Ω to describe the
dependencies between {xj}j∈Ni

in R
d and {αj}j∈Ni

in R,
which can then be used to predict αi from xi. This train-
ing process results in the estimation of fi in Eq. 2, which is

only based on the already known values xi and {xj}j∈Ni
,

making Eq. 7 solvable.
For a data vector x, we denote x′ = [xT 1]T . We first

choose a linear alpha-color local model for the local learn-
ing:

α = xT β + β0 = x′T
[

β
β0

]
(8)

where β = [β1, . . . , βd]T and β0 are the model coefficients.
As before, for pixel i ∈ Ω, we denote Ni =

{τ1, · · · , τm}. Note that αi = [ατ1 , · · · , ατm
]T ; we denote

the new notation: Xi = [x′τ1
· · · x′τm

]T which is a matrix of
size m × (d + 1) and is stacked by the data values of the
pixels in Ni.

With the ridge regression technique [5], we can estimate
β and β0 by solving a quadratic optimization problem:

arg min
β,β0

∥∥∥∥αi − Xi

[
β
β0

]∥∥∥∥
2

+ λr

[
β
β0

]T [
β
β0

]
(9)

where λr is a parameter for which we set 0.1.
The optimal solution of Eq. 9 can be easily derived as

[
β̂

β̂0

]
=

(
XT

i Xi + λrI(d+1)

)−1
XT

i αi

= XT
i

(
XiXT

i + λrI(m)

)−1
αi. (10)

Substituting Eq. 10 into Eq. 8, we can finally get fi of
Eq. 2 as

fi =
(
XiXT

i + λrI(m)

)−1
Xix′i, (11)

which is free from {αj}j∈Ni
and only relates to xi and

{xj}j∈Ni
.

The linear alpha-color model in Eq. 8 can be extended to
being nonlinear with the kernel trick [10], by replacing x ∈
R

d with a feature vector Φ(x) ∈ R
p where Φ is typically a

nonlinear map function. Usually, p > d and the nonlinear
model in the low dimensional space can be represented by a
linear model in the high dimensional space as shown in the
following

α = Φ(x)T β + β0 (12)

where, unlike Eq. 8, β = [β1, . . . , βp]T and Φ(x) =
[φ1(x), · · · , φp(x)]T .

With the kernel trick, we only need to replace the inner
product of any two data vectors x′i and x′j in Eq. 11 with
their kernel function value k(x′i, x′j). We first denote

ki = [k(x′τ1
, x′i), · · · , k(x′τm

, x′i)]
T (13)

and

Ki =

⎡
⎢⎣

k(x′τ1
, x′τ1

) · · · k(x′τ1
, x′τm

)
...

...
...

k(x′τn
, x′τ1

) · · · k(x′τn
, x′τm

)

⎤
⎥⎦ . (14)
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Then, fi from the nonlinear local model is expressed as be-
low

fi = (Ki + λrI(m))−1ki (15)

which is also built only on xi and {xj}j∈Ni
. Note that the

kernel function value can be computed as a preprocessing
to the alpha estimation.

Compared to the previous matting methods, the ker-
nel trick makes our alpha-color model more general con-
sidering its efficiency in representing nonlinear relations
[10]. In this paper, we use the Gaussian kernel k(x′i, x′j) =
exp

(
1
ϑ‖x′i − x′j‖2

)
where parameter ϑ is set to the variance

value of the grayscale image of the given image.

3.1.3 Comparison to the Closed-Form Matting

The Closed-Form matting technique [9] computes matte by
solving a matting Laplacian problem. With some of the
symbols used in Eq. 6, its equation to calculate the optimal
α of an image can be rewritten as the below minimization:

α = arg min
α∈Rn

αTLα + (α−α∗)T C′(α−α∗) (16)

where L is a n × n Laplacian matrix and C′ is a diagonal
matrix similar to C in Eq. 6. This minimization looks sim-
ilar to Eq. 6 if we treat

(
I(n) − F

)(
I(n) − F

)
in Eq. 6 as L

in Eq. 16.
However, there are significant differences between the

Closed-Form matting method and our local learning based
matting approach, some of which bring in substantial im-
provements of performance to our approach. First, we de-
rive our approach by treating the matting problem as a semi-
supervised learning task. This is completely different from
the Closed-Form method which was derived from the as-
sumption of a linear local color distribution and uses a linear
alpha-color model. Second, the Closed-Form method may
fail when its assumption is not satisfied. In contrast, our
method can learn a more general alpha-color model which
can be nonlinear. This is a very important advantage con-
sidering that the nonlinear color distribution can frequently
happen as shown in Fig. 2. Note that our more general
model is very easy to implement by replacing the inner
product of data vectors in Eq. 11 with the kernel function
value. Moreover, in practice, to avoid the failure case, small
window sizes (typically 3× 3) for the local patch is used in
[9] although a larger window size is more stable. In con-
trast, a larger window size (typically 7× 7) can be used by
our method. Third, the nonzero diagonal elements are set to
a large number in C′ in the Closed-Form method while to
∞ in C by us. As explained above, our approach can use the
useful information in the labeled pixels to the maximum ex-
tent. Fourth, unlike the Closed-Form method, our approach
can easily incorporate other features besides intensity/color.

Figure 2. Top row: from left to right, a real image with three im-
posed red rectangles, and the three local patches specified by the
red rectangles. Bottom row: from left to right, colors’ distributions
in the RGB space of the three patches.

3.2. Estimating Alpha Matte via Global Learning

Global learning in alpha matte estimation is to estimate
the alpha value of the unlabeled pixels with a global alpha-
color model trained from some chosen labeled pixels. The
chosen pixels closer to the unlabeled pixel can help more
in the matte’s estimation. Therefore it suits particularly to
the case when a trimap is provided and the unknown region
is slim. We choose for each unknown pixel two subsets
from its nearby labeled foreground and background pixels
respectively, and weight them to train the global alpha-color
model using the weighted ridge regression technique [7].

To choose the subsets from the labeled pixels, we first
select two subsets Qf

l ⊆ Ωf
l and Qb

l ⊆ Ωb
l , in which for any

pixel j we have Dj < Dth, where Dj means the shortest
Euclidean distance of j to the pixels in Ωu on the regular
lattice, and Dth is a distance threshold. For each unknown
pixel i, we then select two subsets Qf ′

l ⊂ Qf
l and Qb′

l ⊂
Qb

l , in which the pixels have the shortest distance to i. We
set the two subsets having the same number (e.g. 80) of
pixels. To compute Dj , we use the algorithm in [3] that
can finish in a linear time. Dth is determined by Dth =
(γd|Ωu|)/|Ω|+

√
2 where γd is a constant and is empirically

set to γd = 1.2. It is designed with the strategy that, when
the unknown region is thicker, it is larger and more labeled
pixels near the pixel being estimated can be selected, and
otherwise, it is smaller and more distant labeled pixels can
be chosen. Note that Dth is set with the distance to the
unknown region instead of the pixel being estimated. An
example is shown in Fig. 3.

For each pixel j in the subsets Qf ′
l and Qb′

l , we set a
weight wj = 1/(Dj)γw where γw = 0.25 is an empirically
determined constant. We further create a diagonal matrix
WQi

with the w values of the pixels in Qf ′
l ∪ Qb′

l , whose

size is t× t where t = |(Qf ′
l ∪Qb′

l

)|.
The weighted ridge regression technique [7] is then used
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(a) (b) (c) (d) (e)
Figure 3. Global learning in alpha matte estimation learns the alpha-color relation from some labeled pixels. (a). Input image. (b). Hand-
drawn trimap. (c). Selected labeled foreground pixels (blue) and background pixels (red) for the estimation of the unknown pixel (green).
(d). Alpha matte result. (e). Inset showing enlarged version of a patch of (d).

to train the global model. As in local learning, we first give
the theoretical results for the linear alpha-color model and
then extend it to the nonlinear case. We introduce αQi

to
denote the vector composed of the alpha values of the pixels
in Qf ′

l ∪Qb′
l and XQi

to represent the matrix constructed in
a similar way to Xi in section 3.1.2 but with the data values
of the pixels in Qf ′

l ∪ Qb′
l instead of Ni. With a similar

mathematical deduction process to local learning, for any
pixel i ∈ Ωu, we have its alpha value’s estimation with a
linear model as below

αi = x′Ti XT
Qi

WQi

(
WQi

XQi
XT

Qi
WQi

+ λrI(t)
)−1

αQi
.

(17)
Extending the linear model to a nonlinear model with the

kernel trick [10], we get

αi = kT
Qi

WQi
(WQi

KQi
WQi

+ λrI(t))−1αQi
. (18)

where kQi is created in a similar way as ki in Eq. 13 and
KQi

similar as Ki in Eq. 14 but with the data values of the

pixels in Qf ′
l ∪Qb′

l . Here, we use the same kernel function
as the local learning.

Compared with the Bayesian Matting [4] and Robust
Matting [15] etc., our global learning approach employs a
different way to select some labeled pixels for computing
the alpha-color model. Moreover, our approach can learn a
more general alpha-color model with the kernel trick.

We can see that our local learning and global learning
approaches are both easy to implement because only some
simple matrix operations are required. It can be seen from
Eqns. 7, 11, 17, and 18.

4. Results and Discussions

We provide both visual assessments and quantitative
evaluations for comparing our learning based matting ap-
proaches with the previous methods. They are based on our
own test images, and the public test sets of Wang-Cohen
[15] and Levin et al. [8] for which the ground truth mat-
tes are available. The set of Wang-Cohen consists of eight

Figure 4. Local learning vs. global learning with a test image
from [15]. Left: mean square error curves, for which the numbers
1 ∼ 11 on the x-axis correspond to the ten fine to coarse levels
of trimap and the manually set scribbles, respectively. Right: the
manually set scribbles.

images named T1 to T8. For each test image, ten levels
of fine-coarse trimaps are provided. The set of Levin et al.
were captured on three dolls named “Monster”, “Lion” and
“Monkey”. Each doll has a ground truth matte and six im-
ages captured with different backgrounds.

4.1. Local Learning vs. Global Learning

We ran our local learning and global learning approaches
on the Wang-Cohen’s eight test images. For each image,
besides the provided eight trimaps, we manually set a series
of sparse scribbles.

We found that when the unknown region in the trimap
is very slim, our global learning approach outperforms the
local learning, whereas when the trimap becomes coarser,
it deteriorates very quickly. With the sparse scribbles, the
errors produced by the global learning approach are very
large, as shown by the results on one representative image
in Fig. 4. Similar performance degradation may occur when
the labeled pixels become sparser for some other trimap
based matting techniques like the Bayesian Matting [4] and
the Robust Matting [15], etc. In practice, the local learning
approach fits better when sparse scribbles or a coarse trimap
are provided while the global learning approach fits better
when a fine trimap is offered.
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Figure 5. Mean Square Error (MSE) statistics of alpha matte computation on the test image sets.

Closed-Form Learning-nonlinear
Figure 6. Alpha matte results produced by the Closed-Form
method and our nonlinear local learning approach for the origi-
nal image in Fig. 2. The red arrow indicates the errors produced
by the Closed-Form method.

4.2. Local Learning vs. Previous Scribble Based
Methods

To evaluate the performance of our local learning based
matting approaches (both the linear case with Eqns. 7 and
11 and the nonlinear case with Eqns. 7 and 15), we com-
pare the Mean Squared Errors (MSE) of the matting results
between our approaches and the Closed-Form Matting [9],
Random-Walk Matting [6], Iterative BP Matting [14], with
the two test image sets and some of our test images.

For the two public test sets, an operator who had no expe-
rience in any of the methods was asked to draw some fore-
ground and background scribbles which pass through the
main parts of the foreground and background objects. For
each doll in the test images of Levin et al., the MSE values
are averaged over the 6 images with different background.
The MSE statistics are shown in Fig. 5.

We can see from the results, first, our approach with
the linear alpha-color model produces better (for some de-
gree) results than the Closed-Form Matting. As discussed
in section 3.1, similar alpha-color models and similar solv-
ing methods are employed by the two methods. However,
C in Eq. 6 and C′ in Eq. 16 take different values. In addi-
tion, our approach employs a larger window size. Second,
our approach with the nonlinear alpha-color model outper-
forms other methods for most of the images. It shows the

efficiency of using the more general alpha-color model with
the kernel trick in our matting scheme.

The strength of the more general alpha-color model with
the kernel trick in our local learning approach can also be
seen from Fig. 6. The nonlinear local color distributions
as shown in Fig. 2 cause errors to the result of the Closed-
Form method. In contrast, our approach produces high ac-
curate results because the more general model can handle
the complex local color distributions.

4.3. Global Learning vs. Previous Trimap Based
Methods

To evaluate the performance of our global learning based
matting approach, we compare the MSE of matting results
with the Bayesian Matting [4], Robust Matting [15], Pois-
son Matting [12] and Spectral Matting [8], using the test set
of Wang-Cohen.

From the results, we found that the comparisons on the
8 test images are similar. We show in this paper the results
on a representative test image, as in Fig. 7.

From the comparisons, we have some findings: first, Ro-
bust Matting and our method produce most accurate results.
Similar to the robust color sampling mechanism in Robust
Matting, training a nonlinear alpha-color model with some
nearest labeled pixels in our method is very efficient in pre-
dicting the unknown pixel’s alpha values. Second, Poisson
Matting and Bayesian Matting degrades more quickly when
the trimap becomes coarser. Third, Spectral Matting’s accu-
racy is lower compared to Robust Matting and our method.
Note that the results can still show that our method outper-
forms the Closed-Form method because of the better per-
formances of the Spectral Matting than the Closed-Form
method reported in [8].

In the supplementary, more results are available includ-
ing another example of MSE curve similar to Fig. 7, the al-
pha mattes and composition results by our method for some
other popularly used test images, and the alpha mattes by
our approach for all the test images used in this paper.
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Bayesian Robust Poisson

Spectral Learning Ground truth
Figure 7. Results on a representative test image from [15], for
which there are ten fine to coarse levels of trimap. Top: Mean
square error curves. Bottom: Best mattes among the trimap levels
for each method and the ground truth.

5. Conclusion and Future Work

By treating the digital matting problem as a semi-
supervised learning task, we propose two new matting ap-
proaches: a local learning based method and a global learn-
ing based method. They are easy to implement because
only some simple matrix operations are needed. They are
extremely accurate because they can learn a more general
alpha-color model which can be linear or nonlinear with the
help of the kernel trick.

Our new insights casted into the matting problem could
inspire several more works following the line of using other
learning methods such as the support vector machine [2],
other kernels [10], or other image features (e.g. texture fea-
tures).
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