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Abstract—Smart factory under Industry 4.0 and industrial
Internet of Thighs (IoT) has attracted much attention from
both academia and industry. In wireless industrial networks,
industrial IoT (IIoT) and IoT devices have different quality-
of-service (QoS) requirements, ranging from ultra-reliable low-
latency communications (URLLC) to high transmission data
rates. These industrial networks will be highly complex and
heterogeneous, as well as the spectrum and energy resources are
severely limited. Hence, this paper presents a heterogeneous radio
frequency (RF)/visible light communication (VLC) industrial net-
work architecture to guarantee the different QoS requirements,
where RF is capable of offering wide-area coverage and VLC has
the ability to provide high transmission data rate. A joint uplink
and downlink energy-efficient resource management decision-
making problem (network selection, subchannel assignment and
power management) is formulated as a Markov decision process.
In addition, a new deep post-decision state (PDS) based expe-
rience replay and transfer (PDS-ERT) reinforcement learning
algorithm is proposed to learn the optimal policy. Simulation
results corroborate the superiority in performance of the pre-
sented heterogeneous network, and verify that the proposed PDS-
ERT learning algorithm outperforms other existing algorithms in
terms of meeting the energy efficiency and the QoS requirements.

Index Terms—Industrial Internet of Things, heterogeneous
RF/VLC industrial networks, URLLC, energy efficiency, resource
management, deep reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of industrial automation,

the fourth industrial revolution (Industry 4.0) takes the

Internet of Things (IoT) into industrial systems, where smart

devices (sensor, actuators, machines and robots) intelligently

send data to realize the real-time industrial control with the

minimal human interaction [1], [2]. The future factories and
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industries expect to replace conventional wired communication

networks by wireless networks, in order to improve the flex-

ibility in moving machinery and reducing the infrastructure

expenditure [3]-[5]. Massive machine-type communication

(mMTC) can effectively support the massive communication

connectivity of a large number of IoT devices in industrial

networks, by transmitting short packets with low data rates

in a short period of time [6]. In practical industrial wireless

networks (IWNs), industrial IoT (IIoT) devices generally have

the following requirements or challenges: strict latency and

reliability requirements [7], high transmission data rate de-

mands, limited energy batteries and the scarce wireless radio

frequency (RF) spectrum resource, all these issues impose

challenging requirements to efficient network structures and

wireless communication technologies [1]-[4], [8], [9].

Recently, considering the fact that ultra-reliable and low

latency communications (URLLC) in 5G is closely related

to industrial networks, some advanced resource managements

approaches have been proposed to ensure the latency and

reliability requirements of IIoT communications [5], [8]-[15].

For instance, industrial automation may require end-to-end

latencies in the range of 1-5ms with the transmission reliability

of 99.999 % or higher [8], [10], [11]. Ye et al. [5] proposed

a novel two-phase transmission protocol to guarantee the

stringent low delay and high reliability in device-to-device-

enabled industrial networks. Considering the large number

of IIoT devices in industrial networks, the current research

developments, such as clustered IWNs [12], adaptive routing

protocols [13], software defined network and edge computing

[14], have been proposed to provide reliable and low latency

wireless links for IIoT communications. Besides reliable and

low latency requirements, energy efficiency plays an important

role in IWNs, since most of IIoT devices (sensors, actua-

tors and controllers) are power-constrained in green IWNs

[15]. The energy-efficient resource allocation and transmission

protocol design were presented for the IIoT communication

systems in 5G-enabled IWNs, in order to maximize the

network energy efficiency (EE) while satisfying quality of

service (QoS) requirements of devices [9], [16]. In [17],

a dynamic routing approach was proposed to improve the

energy consumption and communication latency performance

in large-scale IIoT systems. The authors in [18] investigated

the problem of how to optimize the tradeoff between the QoS

satisfactions and the EE in IIoT systems.

The practical IWNs may exist both IoT and IIoT devices,
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where IoT (consumer usage) mainly focuses on throughput

and packet loss rate while IIoT (industrial purpose) em-

phasizes the latency and reliability, leading to the different

QoS requirements [1], [14]. In this case, the different QoS

requirements range from low latency and high reliability to

high data rates, resulting in heterogeneous industrial networks

[14]. Hence, hierarchical structures or designs are widely

adopted in industrial networks [8], [14], [16], [19]-[21]. The

hierarchical transmission architectures were presented to effi-

ciently complete a large amount of application services based

on the priority levels in smart industries [19], [20]. In order

to reduce the network complexity, Kalor et al. [8] studied

how to simplify the manageability of heterogeneous networks

by slicing deterministic and packet-switched protocols, and

a hierarchical transmission-estimation approach based on 5G

enabled codesign was proposed to improve the transmission

reliability [16]. Moreover, an ant colony algorithm was em-

ployed in industrial heterogeneous networks to improve the

network reliability [21].

To achieve the intelligent decision making, the reinforce-

ment learning (RL) tool is applied to learn the optimal policy

of resource allocation, energy management and transmission

scheduling for IIoT or IoT [11], [22]-[28]. A Q-learning based

practical duty cycle control was developed to improve the

network delay and transmission reliability [22]. He et al. pro-

posed a distributed deep RL (DRL) combined with Ethereum

blockchain to create a reliable and safe IIoT communication

environment [23], and the authors in [11] and [24] applied

DRL to search the optimal solution to minimize the IoT

communication delay. Analysis of QoS satisfactions in IoT

frameworks using RL was treated in [25]-[27], which also

investigated different RL algorithms for resource allocation,

access control and energy saving. Moreover, an efficient

transfer RL approach was proposed to guarantee the URLLC

requirements of internet of vehicles (IoVs) [28]. However, al-

most all of the above papers [11], [22]-[28] did not investigate

how to satisfy the different QoS requirements of devices in

dynamic and complex industrial networks.

The above reported works have ability to improve the

industrial communication performance, but conventional RF

networks may fail to support a large number of communication

services (including high data rate) due to the saturation of

RF spectrum in industrial networks, and hard to meet the

energy-efficient communication due to a large number IIoT or

IoT devices [1], [2], [8], [15]. Heterogeneous RF/visible light

communication (VLC) network architecture was considered as

a promising technique for indoor communication environments

with the high energy-efficient utilization and reliable character-

istics [29]-[31], where RF is capable of offering long-distance

transmission with the wide-area coverage and VLC has the

ability to provide high transmission data rate by generating

multiple small optical cells. Moreover, the literatures [32]

and [33] applied the heterogeneous RF/VLC structure in IoT

communication networks to efficiently schedule transmission

under high data rate requirements. However, conventional

heterogeneous RF/VLC networks reported by the works [29]-

[33] did not investigate the URLLC requirements in IWNs.

Motivated by the above observations, in the paper, we

Fig. 1. The indoor heterogeneous RF/VLC industrial network.

present an energy-efficient resource management based the

heterogeneous RF/VLC architecture for industrial networks

to guarantee the diverse requirements (high reliability, low

latency and high data rate) of IIoT and IoT devices. In order

to enable IWNs with high intelligence, a new deep post-

decision state (PDS) based experience replay and transfer

(PDS-ERT) RL algorithm is proposed to realize intelligent

resource management, with the purpose of maximizing the

network EE while ensuring the minimum data rate constraints

and the strict URLLC requirements. The major contributions

of this work are summarized as follows:

• A new heterogeneous RF/VLC industrial network ar-

chitecture is developed to support uplink and downlink

communication services, which considers the EE, high

reliability, low latency and high transmission data rates

requirements in practical industrial networks.

• We formulate a joint uplink and downlink resource

management (network selection, subchannel assignment

and power management) problem with considering QoS

requirements, and the energy-efficient resource manage-

ment problem is modelled as a RL framework, thus

the network is capable of intelligently making decisions

based on the instantaneous observations.

• In order to satisfy different QoS requirements in dynamic

industrial networks, a deep PDS-ERT learning algorithm

is proposed to learn the optimal policy for the intelli-

gent resource management under the continuous-valued

state and action variables, which effectively improves the

learning speed, efficiency and stability.

• The effectiveness of presented heterogeneous industrial

architecture and the proposed deep PDS-ERT learning

algorithm based intelligent resource management have

been evaluated by the comprehensive simulations.

The rest of this paper is organized as follows. The hetero-

geneous RF/VLC network architecture is presented in Sec-

tion II. Section III formulates the energy-efficient resource

management problem. The proposed deep PDS-ERT learning

algorithm is provided in Section IV. Simulation results are

presented in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

A. Heterogeneous RF/VLC Industrial Network Architecture

Smart factories under Industry 4.0 will consist of a large

number of IIoT devices (sensors, machines, actuators, robots
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etc.) and IoT devices (computers, smartphones, tablets etc.),

resulting in different QoS requirements of communication

services, such as ranging from high reliability and low latency

to high data rates. Conventional RF networks may fail to

support the large number of services due to the limited RF

spectrum and energy resources. To address these issues, we

present a new heterogeneous RF/VLC network structure to

support different QoS requirements in industrial networks.

First of all, we divide the IIoT and IoT devices into two

groups based on their different QoS requirements:

Group 1: the URLLC services of the devices (generally are

IIoT devices) have specific requirements on low latency and

high reliability but have much looser constraints on the high

date rate. For example, each sensor reports a small amount

of collected data to the central controller (uplink) or the

central controller sends the low bit rate information to each

actuator(downlink) within the strict latency requirements.

Group 2: the normal services of the devices (commonly are

IoT devices) have the high data rate requirements but are less

interested in the latency and reliability requirements, such as

the high quality image, video and webpage.

We set that the devices in the group 1 are with a higher

priority to access the channel resource to guarantee the high

reliability and low latency requirements, while the devices

in the group 2 are with a lower priority to access channel

resource.

After that, a heterogeneous RF/VLC industrial network

architecture is presented to support the above mentioned

different services, as shown in Fig. 1, where a number of

VLC access points (APs) (refer to femtocells) are uniformed

attached on the room ceiling and one RF AP (refers to

microcell) is placed in the center. Each VLC AP contains

one LED lamp based luminaries devices offering both lighting

requirements and communications services, and every VLC

AP covers a confined area to generate a small optical cell.

By contrast, the RF AP provides the coverage for the entire

room. Both the VLC and RF APs connect the Internet to per-

form the communication services, where VLC APs broadcast

information to devices through visible light signals and the

RF AP provides communication services by the RF signals.

Considering the unpractical components and challenges of

the wireless VLC uplink [29]-[33], VLC only offers the

downlink data streams while RF provides both the uplink

and downlink data streams. We would like to mentioned

that due to human activities and device mobility, the VLC

line-of-sight (LOS) communication link may be intermittently

interrupted or blocked of a number for time slots, called

blocked LOS VLC links, and the blocked VLC links may not

support general communication services [29]-[33]. Under this

heterogeneous network, RF is capable of offering wide-area

coverage and VLC has the ability to provide high transmission

data rate due to the abundant bandwidth resources across

multiple optimal cells. Motivated by the above analysis, the

RF AP mainly provides the URLLC services of the devices

in group 1 due to its wide-area coverage, while VLC APs

mainly support the normal services of the devices in group 2

due to its offering high transmission data rate.

In addition, the IoT device’s priority depends on its QoS

requirements or application services, when the IoT device

changes its application services, it will report this information

to the central controller in the industrial network by the RF

uplink, and hence the IoT device will be assigned to the

channel resource based on its current priority. For example,

one device ingroup 2 with the normal service currently applies

the URLLC services with the low latency and high reliability,

it will report this information to the central controller and then

it will be classified into group 1 with the higher priority to

access the channel resource to guarantee the high reliability

and low latency requirements.

In the industrial network, a set of IIoT and IoT devices are

randomly distributed on the floor, where the device (mainly

IIoT device) requiring the URLLC service is equipped one

RF enabled transceiver, and the device (mainly IoT device)

needing the uplink/downlink data rate is equipped with one

VLC receiver (called photodetector (PD)) and one RF enabled

transceiver. The network selection (RF or VLC) decision-

making problem can be formulated as a Markov decision

process (MDP) with the goal of maximizing the reward

function, and solved with the proposed DRL algorithm, which

will be provided in Section III and Section IV.

The number of VLC APs, devices, subchannels per VLC

AP and subchannels per RF AP are denoted by C, K, NVLC

and NRF, respectively. The set of VLC APs and devices are

denoted as C = {1, . . . , C} and K = {1, . . . ,K}, respectively.

Let NVLC = {1, . . . , NVLC} and NRF = {1, . . . , NRF}
represent the subchannel sets of per VLC AP and RF AP,

respectively, where the subchannels for VLC are reused across

all optical cells. The network employs Orthogonal Frequency

Division Multiple Access (OFDMA) to serve devices.

B. VLC Channel Model

In VLC networks, the VLC LOS links can support the

successful communication services while the blocked LOS

VLC links cannot provide the high transmission data rate

services [29]-[33]. For the VLC link, the LOS channel gain

from one AP to one device is expressed as [28]

hVLC =
(ϑ+ 1)Ar

2π(dVLC)
2 cos

ϑ(φ)Ts(ψ)g(ψ)cosψ (1)

where Ar is the active area of the PD. dVLC and ψ denote the

distance and the angle of incidence between the LED and the

device, respectively. φ is the angle of irradiance from the LED

to the device. ϑ is the order of Lambertian emission with ϑ =
−ln 2

/

(ln cosφ1/2) with φ1/2 being the LED’s semi-angle at

half power. Ts(ψ) and g(ψ) are the gain of the optical filter

and the optical concentrator gain at the PD, respectively. g(ψ)
can be expressed as: g(ψ) = η

/

sin2ψc when 0 ≤ ψ ≤ ψc, and

g(ψ) = 0 if ψc < ψ, where ψc and η are the semi-angle field

of view (FOV) of the PD and the refractive index, respectively.

As shown in Fig. 1, due to the multiple VLC APs deploy-

ment, the devices locate in the overlapped areas may suffer

inter-cell interference (ICI) from adjacent cells. If the k-th

device (k ∈ K) is assigned to VLC AP c ∈ C on the n-th
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subchannel (n ∈ NVLC), the received signal-to-interference-

plus-noise-ratio (SINR) of the device is expressed as [29]-[31]

γVLC
k,n =

µ2PVLC
n,c (hVLC

k,n,c)
2

µ2
∑

c′∈C P
VLC
n,c′ (hVLC

k,n,c′)
2
+NVLC

0 BVLC
sub

(2)

where µ is the PD’s responsivity, PVLC
n,c indicates the allocated

transmit electrical power on the n-th subchannel of the c-th
VLC AP, hVLC

k,n,c is the VLC channel gain from the c-th VLC

AP to device k on the n-th subchannel, NVLC
0 represents the

power spectral density (PSD) of noise at the PD, BVLC
sub is

the subchannel bandwidth BVLC
sub = BVLC/NVLC with BVLC

being the VLC transmission bandwidth.

Hence, the data rate of k-th device associated by VLC AP

c can be expressed as

RVLC
k =

∑

n∈NVLC

ρVLC
k,n,c

BVLC
sub

2 log2(1 + γVLC
k,n,c) (3)

where ρVLC
k,n,c is a binary variable, ρVLC

k,n,c ∈ {0, 1}, ρVLC
k,n,c =1

represents that the k-th device assigns the n-th subchannel of

VLC AP c ; otherwise, ρVLC
k,n,c =0. The scaling factor 1/2 is

due to the Hermitian symmetry [29]-[31].

C. RF Channel Model

Each indoor industrial factory room deploys one RF AP to

be acted as one cell. The device may receive the ICI from

adjacent industrial factory rooms with the same technology

and the interference from competing technologies operating

over the same band [34], when the device locates in the

overlapped areas. In the RF network, the channel gain is

typically given by [35]

gRF
k,n = 10−PLk[dB]/10 (4)

where PLk[dB] is the RF path loss of the k-th device in dB,

which is expressed as [35]

PLk[dB] = Alog10(d
RF
k ) +B + Elog10(fc/5) +X (5)

where dRF
k is the distance from the RF AP to the k-th device

and fc denotes the carrier frequency in GHz. A, B and E
are constants depending on the propagation model. For the

LOS propagation, A=18.7, B= 46.8 and E = 20. For NLOS

scenario, we have A= 36.8, B= 43.8 and E= 20. X indicates

the wall penetration loss in the NLOS scenario, we set X =
5(Nwall − 1) for thin walls or obstacles, where Nwall is the

number of obstacles between the RF AP and the device.

Let M denote the number of the adjacent industrial factory

rooms (or adjacent cells) and let m denote the m-th adjacent

industrial factory room. For downlink, if the k-th device is

assigned to the RF AP on the n-th subchannel (n ∈ NRF),

the received SINR of the device is given by

γRF,D
k,n =

PRF,D
n gRF

k,n
∑M

m=1 P
RF,D
n,m gRF

k,n,m +NRF
0 BRF

sub + IRF,D
k,n

(6)

where PRF,D
n and PRF,D

n,m are the allocated transmit power

on the n-th subchannel of the corresponding RF AP and

the m-th adjacent RF AP, respectively. gRF
k,n,m is the RF

interference channel gain from the RF AP in the m-th adjacent

RF cell to the k-th device. NRF
0 represents the PSD of noise

at the receiver, BRF
sub is the subchannel bandwidth BRF

sub =
BRF/NRF with BRF being the RF AP bandwidth. IRF,D

k,n is

the interference from competing technologies operating over

the same band. In this paper, we assume that there exists

one RF transmitter in an adjacent factory room under another

competing technology operating over the same band [34].

For uplink, the received SNR at the RF AP from the k-th

device on the n-th subchannel is

γRF,U
k,n =

PRF,U
k,n gRF

k,n
∑M

m=1 P
RF,U
k′,n,mg

RF
k′,n,m +NRF

0 BRF
sub + IRF,U

k,n

(7)

where PRF,U
k,n and PRF,U

k′,n,m are the transmit power of the k-

th device on subchannel n in its associated cell and the the

k’-th device on subchannel n in the m-th adjacent RF cell,

respectively. gRF
k′,n,m is the RF interference channel gain from

the k’-th device in the m-th adjacent RF cell to the current

RF AP. IRF,U
k,n is the interference from competing technologies

operating over the same band [34]. Hence, the achievable data

rates of downlink and uplink are defined as

RRF,D
k =

∑

n∈NRF

ρRF,D
k,n BRF

sublog2(1 + γRF,D
k,n ) (8)

RRF,U
k =

∑

n∈NRF

ρRF,U
k,n BRF

sublog2(1 + γRF,U
k,n ) (9)

respectively, where ρRF,D
k,n and ρRF,U

k,n are the channel assign-

ment indicators, and they are binary values of “1” or “0”.

III. INDUSTRIAL NETWORK REQUIREMENTS AND

PROBLEM FORMULATION

In this section, we formulate the energy-efficient resource

management problem (joint network selection, subchannel

assignment and power management) in the heterogeneous

RF/VLC industrial network with the objective of maximizing

the network EE while guaranteeing the QoS requirements of

IIoT or IoT devices. We take these practical requirements

into account as constraints in the mathematical way, and the

decision making problem is modelled as a MDP [21]-[27].

A. Requirements of IIoT and IoT Devices

1) URLLC requirements: The real-time industrial control

applications (URLLC services) have strict latency and trans-

mission reliability requirements, but they are not interested in

the high data rate. This subsection investigates how to model

the URLLC requirements in a mathematical way.

For URLLC services, we assume that the k-th IIoT device or

transmitter follows the independent and identically distributed

Poisson distribution with the packet arrival rate λ and the data

packet size Lpacket in bytes [27]. Generally, the total latency

(Tl) of one packet consists of the waiting time of the packet

to be served in the queue (Tw), the transmission time (Tt), the

channel access delay (Ta), the backhaul delay (Tb), the packet
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reception delay (Tr) and the processing delay (Tp), which can

be expressed as [36]

Tl = Tw + Tt + Ta + Tb + Tr + Tp (10)

In (10), the transmission time of one packet is calculated by

Tt = Lpacket/Rd, where Rd is the achievable link data rate.

Due to the latency requirement, each packet in URLLC

should be successfully transmitted in a limited time duration.

Let Tmax denote the maximum tolerable latency threshold

of each transmission packet, the latency constraint can be

guaranteed by controlling the probability of Tl exceeding the

threshold value Tmax , which can be expressed as

pLat = Pr {Tl ≥ Tmax} ≤ pLatmax (11)

where pLatmax denotes the maximum violation probability.

In this paper, the outage probability is used to character-

ize the reliability requirement and it can be defined as the

probability that the received SINR (γk,n) at the receiver is

lower than the target threshold γtark,n. Then, the requirement on

the reliability is satisfied by controlling the outage probability,

Pr {γk,n < γtark,n}. And the outage probability cannot beyond

the violation probability pRel
max, which can be given by

pRel
m = Pr

{

γk,n < γtark,n

}

≤ pRel
max (12)

2) Minimum data rate requirements: As illustrated above,

for the normal services, some IIoT devices and IoT devices

may require the high data rates, though the latency is of less

significance. Hence, the minimum data rate requirements of

these devices should be considered in resource management.

Let Rk denote the k-th device’ current data rate, the minimum

data rate requirement can be satisfied by controlling the

probability of the unsatisfied normal service (pNor
k ), where Rk

fails to achieve its minimum data rate threshold Rmin
k , which

can be given by

pNor
k = Pr{Rk < Rmin

k } ≤ pNor
max (13)

where pNor
max denotes the maximum violation probability.

B. Problem Formulation

The total achievable data rate and the total power consump-

tion can be calculated as

R =
∑

k∈K

∑

c∈C

αk,cR
VLC
k,c +

∑

k∈K

βkR
RF,D
k +

∑

k∈K

βkR
RF,U
k

(14)

P = CPVLC
fix + PRF

fix +
∑

k∈K

∑

c∈C

∑

n∈NVLC

αk,cρ
VLC
k,n,cP

VLC
n,c

∑

k∈K

(
∑

n∈NRF

(ρRF,D
k,n PRF,D

n + ρRF,U
k,n PRF,U

k,n ) + Pcir)

(15)

respectively, where αk,l and βk denote the association between

a device and a VLC AP or a RF AP, respectively, both having

binary values of “1” or “0” to indicate that there exists a

selection or no selection exists. In addition, PRF
fix and PVLC

fix

denote the fixed power consumption of the RF AP and each

VLC AP, respectively, resulting from the AP hardware power

consumption (circuit operation, data processing, backhaul con-

nection, etc.). Note that PVLC
fix also includes the optical power

using for illumination. Pcir is the circuit power consumption

of one device.

Our goal is to maximize the network EE (the radio of the

overall data rate and the total power consumption: ηEE =
R/P) while ensure the mentioned QoS requirements of de-

vices in Section III.A. In this paper, we present a utility

function (also called reward function) in the heterogeneous

industrial network, which can be expressed as

r = ηEE − µ1

∑

k∈K

pLatk − µ2

∑

k∈K

pRel
k − µ3(

∑

k∈K

pNor
k ) (16)

where the part 1 is the network benefit (the overall EE in

Kbit/J), the part 2, part 3 and part 4 are the cost functions

in terms of the unsatisfied latency, unsatisfied reliability and

unsatisfied minimum data rate requirements, respectively. The

coefficient µi, i ∈ {1, 2, 3} are the weights of the last three

parts, which are used to balance the benefit and the cost.

Similar to the works [22]-[28], we adopt MDP to model

the intelligent resource management decision making in prob-

abilistic or deterministic environments based on the require-

ments of systems [37]. Generally, MDP can be defined as a

tuple (S,A,P, r, ξ), where the main elements of the MDP can

be defined as:

Agents: The RF AP, VLC APs and active devices.

State space S: In the heterogeneous industrial network,

the network state can be defined as the subchannel occupy

status (idle or busy), the channel quality (SINR value), the

service application types (normal services (low priority) and

URLLC services (high priority)), service satisfaction (reliabil-

ity, latency and minimum data rate).

Action space A: In each time slot, the agent will take

the action a ∈ A according to the current state s, where the

action includes the VLC or RF AP selection, the subchannel

assignment and the transmit power management.

Transition probability P: The transition probability

P(s′|s, a) captures the probability that the agent takes the

action a ∈ A from the state s ∈ S to a new state s′ ∈ S .

Reward r: After taking one action, the agent will obtain an

immediate reward r from the environment where the learning

process is driven by the reward. We have built the reward

function shown in (16), which decides that the policy that the

agent finds. ξ ∈ [0, 1) is a discount factor.

Policy: The policy is a function that can be deterministic

or stochastic, which decides the the action selection with the

given state. Let π(s) denotes a policy: π(s) : S → A, which

is a mapping from the state space S to the action space A.

In heterogeneous industrial network, each agent tries to

search the policy π(s) to improve its immediate reward r. Let

V π(s) denotes the value function, which is also a cumulative

discounted reward, and it can be calculated by

V (s) = Eπ

{

∞
∑

t=1
γtr(st, at)|s0 = s

}

= Eπ

{

r(s, at) + ξ
∫

s′∈S
(s′|s, a)V (s′)ds′

}

(17)
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The optimal strategy π∗(s) can be achieved by satisfying the

Bellman equation: V ∗(s) = max
a∈A

V (s) [36]. Once the optimal

strategy π∗(s) is achieved by maximizing the cumulative re-

ward from the beginning, it implements the intelligent resource

management in heterogeneous industrial networks.

Q-learning is a well-known RL algorithm for policy learning

in wireless networks. Let Q(s, a) denote the Q-function of

the state-action pair (s, a), which is also the expected utility.

The value function V (s) is the maximum Q-function over the

feasible actions at the sate s. The Q-function can be updated

at the end of each time stage, which is

Qt+1(st, at) = (1− αt)Qt(st, at) + αt [r(st, at) + ξVt(st+1)]
(18)

where αt ∈ (0, 1] is a time-varying learning rate. When the

learning rate αt admits
∑∞

t=1 αt = ∞ and
∑∞

t=1 α
2
t < ∞,

then the Q-function Qt(s, a) will converge to the optimal value

Q∗(s, a) by Vt(st) = max
a∈A

Qt(st, at) [38].

IV. PROPOSED DEEP PDS-ERT-BASED INTELLIGENT

RESOURCE MANAGEMENT

As illustrated in the above section, the policy can be

numerically learned by adopting the Q-learning, policy gradi-

ent schemes and DQN algorithms [38]. However, Q-learning

cannot deal with continuous state-action spaces and the policy

gradient may converge to the local optimal position. Although

DQN has the ability to handle the continuous control problem

under high-dimensional sensory inputs, its nonlinear function

approximator is known to be unstable or even to diverge.

Moreover, it also needs a large number training samples to

guarantee the training efficiency, all the above mentioned

factors may limit the application in industrial IoT networks.

To overcome the above problems, we propose a deep PDS-

ERT learning algorithm, as shown in Fig. 2, to accelerate

the learning rate, enhance the learning efficiency and ensure

the learning stability towards the optimal policy for the re-

source management in the heterogeneous industrial network.

In details, the agent can utilize the learned strategies from

the historical experience and the other agents, and integrate

the PDS-learning principle into the conventional DRL to learn

the unknown dynamics. The main procedures of the proposed

PDS-ERT learning based intelligent resource management are

presented in the following subsections.

A. Experience Replay and Transfer

In RL, the policy strategy π(s, a) determines the resource

management strategy in heterogeneous industrial networks. In

order to improve the learning efficiency, a modified experience

replay and transfer mechanism is presented for policy learning

by utilizing the historical knowledge or using the learned

knowledge from other agents.

1) Policy strategy selection: One of the important processes

of the experience replay and transfer mechanism is that how

to find the most useful learned policy strategy (e.g., network

selection, subchannel assignment and power management)

from the historical knowledge, or search one agent as the

expert agent to utilize the learned policy strategy from the

Fig. 2. Deep PDS-ERT learning based intelligent resource management.

expert. Instead of blindly searching the expert agent or the

historical experience [31], the agent calculates the similarity

level between the current agent and other active agents (or

the historical knowledge) by evaluating the following three

metrics: (1) service information, which refers to URLLC

services and the normal services; (2) the device information,

which includes the device position and mobility behavior; (3)

the channel information, which contains the channel SINR

values and assignment indicators, etc.

The mentioned similarity can be calculated by applying the

Bregman Ball method [38], where Bregman Ball is acted as

the minimum manifold with a central Zcen, and a radius Rrad.

Any information point Zpoi is inside this ball, and the agent

searches the information point which has the most strong

similarity with Zcen. The distance between any information

point and the central Zcen is expressed as [39]

B(Zcen, Rrad) = {Zpoi ∈ Z : D(Zpoi, Zcen) ≤ Rrad} (19)

where D(a, b) is the Bregman divergence [39], which is also

the manifold distance between two data points. Once the

highest similarity value between the learning agent and the

expert agent or historical information is achieved, the learning

agent can utilize the policy strategy.

2) Overall action strategy: As analyzed above, after finding

the most suitable historical policy or transferred policy strategy

by adopting the experience replay and transfer mechanism

[40], the agent utilizes the learned action strategy aert and

its current native action ana to generate an overall action.

Accordingly, the overall action can be selected by

aov = ςaert + (1− ς)ana (20)

where ς ∈ [0, 1] denotes the transfer rate, which will be

reduced after every learning step to gradually remove the effect

of the historical policy information on the new policy.

3) Experience collection: In order to avoid storing the

unreliable experience, after interacting with the environment,

the learned experience et = (st, at, rt, st+1) with the best

reward is recorded in the relay memory. If the capacity of the

relay is full, the relay memory will make room for the new

collected experience by the following two steps.

i) Experience combination: We combine some historical

experience data into one data point if they have similar

functions by using the the Bregman Ball concept [39].
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ii) Experience deletion: If the capacity of the memory is

full and the new collected experience needs to be stored in

the memory, the least used historical experience is deleted

from the memory. Because the least used experience have tiny

contribution to the learning process.

B. Deep PDS-ERT Learning based Resource Management

In this subsection, deep PDS-ERT is developed by incorpo-

rating the experience replay and transfer mechanism into the

deep PDS-learning algorithm. In particular, instead of directly

using the selected native action strategy anat to update the Q-

function Q(st), the historical or transferred action strategy aertt

can be utilized to exploit the extra information to improve

learning speed and efficiency. Similar to the classical PDS

[27], PDS-ERT can be described as the immediate network

state that is achieved after the known information occurs, but

before the unknown information takes place.

After achieving the corresponding overall action aovt by

(20), each deep PDS-ERT learning agent obtains an immediate

known reward rk(st, a
ov
t ) and then the state st transits to the

post-decision sate ŝt (ŝt ∈ Ŝ with Ŝ being the set of PDS-

ERT) with a known transition probability Pk(ŝt|st, a
ov
t ). Af-

terward, PDS-ERT transits the current state ŝt to the next state

st+1 with an unknown transition probability Pu(st+1|ŝt, a
ov
t )

and an unknown reward ru(ŝt, a
ov
t ) is feedback to the agent.

Mathematically, the transition probability from the current

state st to the next state st+1 with PDS-ERT admits

P(st+1|st, a
ov
t ) =

∫

ŝ∈Ŝ

Pu(st+1|ŝt, a
ov
t )Pk(ŝt|st, a

ov
t )dŝ (21)

The reward consists of the known and unknown rewards at

ŝt and st+1,

r(st, a
ov
t ) = rk(st, a

ov
t ) +

∫

ŝ∈Ŝ

Pk(ŝt|st, a
ov
t )ru(ŝt, a

ov
t )dŝ

(22)

Then, the PDS-ERT quality Q-function with the PDS-ERT

state-action pair (ŝt, a
ov
t ) and the general Q-function can be

expressed as, respectively

Q̂t(ŝt, a
ov
t ) = ru(ŝt, a

ov
t ) +

∫

st+1∈S

Pu(st+1|ŝt, a
ov
t )Vt(st+1)ds

(23)

Qt(st, a
ov
t ) = rk(ŝt, a

ov
t ) +

∫

ŝ∈Ŝ

Pk(ŝt|st, a
ov
t )Q̂t(ŝt, a

ov
t )dŝ

(24)

After obtaining the sample (st, at, rk(ŝt, a
ov
t ), ŝt, ru(ŝt,

aovt ), st+1), the PDS-ERT quality value function is updated

Q̂t+1(ŝt, a
ov
t ) = (1− αt)Q̂t(ŝt, a

ov
t ) + αt[ru(ŝt, a

ov
t ) + ξVt(st+1)]

(25)

After obtaining Q̂t+1 in (25), Qt+1 can be updated in (24)

by replacing Q̂t by Q̂t+1.

According to the above presented PDS-ERT, the deep PDS-

ERT learning algorithm is presented to solve the intelligent

resource management problem. As shown in Fig. 2, in the

proposed deep PDS-ERT learning algorithm, at each time

stage, after updating Eq. (23) and (24) on the overall action aovt
and the observed sample (st, at, r(st, at), st+1) by PDS-ERT,

the classical DQN is applied to approximate the Q-function

Q(st, a
ov
t ,θt) of Q(st, a

ov
t ) through minimizing the following

loss function at each time stage

Lt(θt) = {r(st, a
ov
t ) + ξmax

a∈A
Qt(st+1, a

ov
t+1,θt)−Qt(st, a

ov
t ,θt)}

2

(26)

One key feature of using DQN is to sample the loss

functions in (26) at each iteration to reduce the computational

cost for the large-scale-state learning problems [25]-[26]. The

procedures to implement DQN can be found in [25]-[26].

The DQN parameters θ can be achieved by applying the

gradient descent method, which is given by

θt+1 = θt + βθt
∇Losst(θt) (27)

where βθt
is the learning rate of the DQN parameters θt.

After that, each agent (RF AP, VLC AP and device) will

take the action based on the selected policy strategy π(st,θt),
which can be achieved by

π(st,θt) = argmax
a∈A

{Qt(st, a
ov
t ,θt)} (28)

Theorem 1: The proposed PDS-ERT learning converges to

the optimal point of the MDP when the learning rate αt admits
∑∞

t=1 αt = ∞ and
∑∞

t=1 α
2
t <∞.

Proof: If each action is executed under an infinite number

of iterations, in other words, the learning policy is greedy with

the infinite explorations, the function Q(s, a) and the policy

strategy π(s, a) will gradually converge to the final points,

respectively, with a probability of 1 [38], [39]. Due to space

limitations, please see [24] and [27] for the full proof.

We denote the sets of the historical state space and action

space in the memory as S ′ and A′, respectively, and denote the

current state space and action space as S and A, respectively.

At one decision stage, the sample complexity of the action

selection and learning update of the classical Q-learning

algorithm and DQN are O(|S| × |A|) and O(|S|2 × |A|)
[23], [24], [27], [36], respectively. As expected, the proposed

deep PDS-ERT learning algorithm by utilizing the historical

learning ecperience. Here, the sample complexity of the action

selection and learning update of the proposed deep PDS-ERT

learning algorithm is O(|S ′|2 × |A′|+ |S|2 × |A|) [23], [27],

[36], which is relatively higher than that of the classical Q-

learning algorithm and the DQN learning algorithm.

In addition to the above mentioned extra computational

complexity, our proposed deep PDS-ERT learning algorithm

needs a memory of |S ′| × |A′| to store the historical learning

knowledge, compared with the classical Q-learning algorithm

and the DQN learning algorithm [23],[24], [27]. The proposed

deep PDS-ERT learning algorithm based intelligent resource

management in heterogeneous RF/VLC industrial networks is

shown in Algorithm 1.

C. Applications of the Presented Network Architecture and the

Proposed Deep PDS-ERT Learning Algorithm

For the proposed solution, in addition to the use in the

energy-efficient resource management for industrial IoT net-

works, it can be also applied for the indoor energy harvesting,

indoor localization and connection handover.
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1) Indoor energy harvesting: In indoor industrial envi-

ronments, there exists some energy-constrained devices, e.g.,

sensors for monitoring, humidity and indoor air quality, etc.

Hence, it is important to extend the lifetime of the devices due

to their limited energy budget. In our presented heterogeneous

RF/VLC industrial network, at each IoT or IIoT device, light

energy harvesting is achieved by using PD and the harvested

energy is used for data sending over the RF uplink [41].

2) Indoor localization: Recently, VLC-based localization

has obtained the attractive attention, because it provides the

high positioning accuracy compared with the RF based indoor

positioning systems [42]. Hence, VLC-based localization in

our presented heterogeneous RF/VLC industrial network is

capable of realizing the indoor localization or navigation with

the high positioning accuracy for IoT/IIoT devices in industrial

networks [40].

3) Network handover: In the heterogeneous RF/VLC indus-

trial network, the presented heterogeneous network architec-

ture and the proposed deep reinforcement leaning algorithm

have the ability to implement the vertical and horizontal

handover processes to guarantee both the connectivity and QoS

requirements of mobile IoT devices [43].

4) Safety-critical systems: Our presented heterogeneous

RF/VLC architecture can be applied for the vehicular

safety critical networks. Vehicle-to-vehicle (V2V), vehicle-to-

infrastructure (V2I) and vehicle-to-everything (V2X) message

exchanges are considered the preferred pattern for safety-

critical communication (e.g. in anti-collision active systems).

LED-based VLC has been also proposed for V2V, V2I and

V2X message delivery [44], which can facilitate the safe driv-

ing by adaptive traffic signal control, intersection movement

assistance, speed management, and so on.

V. NUMERICAL RESULTS AND ANALYSIS

In this section, simulation results are conducted in Matlab

2017a to evaluate the performance of our presented hetero-

geneous RF/VLC industrial network and the proposed deep

PDS-ERT learning based intelligent resource management.

We consider an indoor industrial room with the area of

24m×24m×6m, where 6×6 VLC APs (uniform distribution)

and a RF AP (locate in the center) are distributed at a

height of 5 m. Additionally, the room is entirely covered

by the RF AP. A number of devices (K/2 IIoT devices and

K/2 IoT devices) are randomly distributed at four different

heights (0.5m, 1m, 1.5m and 2m). The RF AP has the carrier

frequency of 2.4 GHz, the bandwidth of BRF=10 MHz,

the number subchannels of NRF=32, the maximum transmit

power of 250 mW, the fixed power consumption of PRF
fix =6.7

W, and the PSD noise of NRF
0 =-173 dBm/Hz [29]-[31]. Each

VLC AP has the transmission bandwidth of BVLC=20 MHz

(the available bandwidth is 10 MHz due to the Hermitian

symmetry [29]-[31]), the number of subchannels NVLC=16,

the maximum transmit electronic power of 250W, the fixed

power consumption of PVLC
fix =4W and the PSD noise of

NVLC
0 = 10−21A2/Hz. Each device has the circuit power

consumption of Pcir=5mW and the maximum transmit power

of PRF
k,max=30mW. The LED lamp semi-angle at half power

and Lambertian emission order are 60o and 1, respectively.

Algorithm 1 Deep PDS-ERT Learning based Intelligent Resource
Management

Input: the discount factor ξ, IIoT and IoT environment simulators
and the samples of historical knowledge.
1: Initialize: the network state s0, value function V (s0), policy

strategy π(s0), and the DQN with parameters θ0;
2: for each time step t=0, 1, 2, ... do
3: The agent observes the state st;
4: if the agent applies new services or has poor performance then
5: Search the expert agent with the highest similarity;
6: Obtain the transferred action strategy aert

t from the expert;
7: Select the overall action by (20) and update the transfer rate ς;
8: Perform deep PDS-ER from step 10 to step 17;
9: else
10: The agent selects the action ana

t with a probability ε or choose
ana
t by satisfying ana

t = argmax
a∈A

Qt(st, a,θ);

11: Search the historical action aert
t with the highest similarity

from the experience replay memory;
12: With ana

t and aert
t , calculate the overall action aov

t by (20);
13: After executing action aov

t , the agent gets the reward r(st, a
ov
t )

and observes a new state st+1 from the environment;
14: The agent stores the experience et = (st, a

ov
t , r(st, a

ov
t ), st+1)

into its replay memory. If the capacity of the relay memory is
full, the least used historical experience is dropped;

15: Observe PDS tuple (st, a
ov
t , ŝt, r(st, a

ov
t ), st+1), the agent

updates the Q-function Q̂t(ŝt, a
ov
t ) and Qt(st, a

ov
t ) by (23)

and (24), respectively;
16: Update the DQN parameters θt by (27);
17: Reset the DQN evaluation network by θt+1=θt;
18: end if
19: end for
20: Output: RF/VLC network selection, subchannel assignment

and power management.

The active area, the FOV, the concentrator refractive index

and the responsivity of the PD are 1 cm2, 90o, 1.5 and 0.5

A/W, respectively. The gain of the optical filter is 1.

For the URLLC services, we set the maximum latency

threshold Tmax=1ms with Ta+Tb=0.1ms and Tr+Tp=0.3ms

[35], the transmission reliability is 0.999 with each message

size being 250 bytes and the SINR threshold is 5dB. For the

normal services, the minimum data rate is set as 3 Mbps in

downlink and 0.5 Mbps in uplink. Each time slot is 1ms. LOS

blocking probability for both VLC and RF links is 0.05. We set

µ1=µ2=105 and µ3=2×104 to balance the benefit and the costs

in (16) [24], [27]. In RL, the discount parameter ξ=0.98 and

the learning rate at=0.02. The DNN has three hidden layers

with each hidden layer being with 50 neurons.

In this section, we present the performance comparisons of

the following industrial networks: 1. our presented heteroge-

neous RF/VLC industrial network (denoted by RF/VLC); 2.

the network service is performed using two RF APs (denoted

by RF/RF) and the two carrier frequencies are 2.4 GHz and 5

GHz, where the network total bandwidth is 20 MHz to ensure

a fair comparison with the RF/VLC network. Moreover, we

also compare the performance of our proposed deep PDS-

ERT learning algorithm based intelligent resource manage-

ment with the following existing algorithms: 1. Deep PDS

learning [24] (denoted by Deep PDS); 2. Q-learning algorithm

with knowledge transfer [31] (denoted by QKT-learning); 3.

decomposing the optimization problem into two subproblems:

i). network selection and subchannel assignment, ii). transmit

power management, and solve it iteratively in a centralized
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Fig. 3. The performance evaluations and comparisons with varying total numbers of devices.

Fig. 4. The performance evaluations and comparisons vs. packet arrival rate of URLLC services (packets/slot/per IIoT source).

way, similar to [29] (denoted as Baseline 1).

Fig. 3 shows the EE per device, the probability of satisfied

normal services, the average URLLC latency per packet and

the reliability of URLLC services against the device density

when the packet arrival rate is λ=0.12 packets/slot/per IIoT

source. As seen in Fig. 3(a), the higher the number of devices,

the lower EE per device achieves, since the ICI becomes more

pervasive in the VLC RF networks which limits the data

rate improvement, and the power consumption as well as the

subchannel assignment increase in the VLC RF networks

under the high-density scenario of devices, leading to the EE

degradation. From Fig. 3(b) to Fig. 3(d), the probability of

the satisfied normal services and URLLC reliability decrease

and the URLLC latency increases as the increase number

of devices. This is because that under the fixed power and

bandwidth resource, the large number of services need to

be completed and different QoS requirements should to be

guaranteed, the network may fail to support all the services’

requirements, leading to bring down the performance in the

high-density scenario. However, the presented heterogeneous

network (RF/VLC) still outperforms the RF-RF network, and

the proposed deep PDS-RET learning algorithm achieves the

best performance among the existing algorithms.

We study in Fig. 4 how the performances vary with the

packet arrival rate (λ) when K=160. We can observe that the

EE value increases with λ to a peak due to the increased net-

work throughput when more packets transmit in the network.

The power consumption also increases during this process, but

the improvement rate of the network throughput is quite bigger

than that of the power consumption, leading to EE enhance-

ment. After that, it then slightly declines because of continuing

to increase λ will increase frequent connections and waiting

time in the queue, leading to more power consumption. In

this case, the throughput enhancement fails to compensate the

cost of consuming more total power, which slightly decreases

the EE performance. It is worth noting that compared with

RF/VLC, the performance of RF/RF is much sensitive to λ due

to the limited bandwidth. Even the decreased performances

happen with the increase of λ, our proposed deep PDS-RET

learning algorithm still achieves the best performance.

Let us now quantify the effect of the blocking probability

of RF&VLC links on the network performance, when K=

160 and λ =0.12 packets/slot/per IIoT source, as shown in

Fig. 5. As seen in Fig. 5 (a), when the blocking probabil-

ity is increased, the EE performance obviously declines in

RF&VLC networks while it is slightly reduced for RF/RF

networks. This is because the blocked links in the VLC

network unsuccessfully provides the high transmission data

rate, while the effect of blocked links can be negligible in the

RF network. From Fig. 5(b) to Fig. 5(d), the probability of

the satisfied normal services and URLLC reliability decrease,

and the URLLC latency increases during this process, because

the blockage degrades the received SINR value, results in

failing to guarantee the different QoS requirements of devices.

However, for all blocking probabilities, our proposed solution

still outperforms other solutions (network architecture and
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Fig. 5. The performance evaluations and comparisons vs. blocking probability of RF&VLC links.

Fig. 6. Learning process comparisons of RL algorithms.

algorithms).

In Fig. 6, we show the learning process of the RL algorithms

in terms of the reward when K= 120 and λ =0.12 pack-

ets/slot/per IIoT source. Clearly, the deep PDS-RET and QKT-

learning algorithms achieve the faster convergence than that

of the deep PDS learning algorithm, but QKT-learning has the

lowest performance in large-scale networks. The deep PDS-

ERT learning algorithm achieves the best reward value, the

fastest convergence and the most stability (less fluctuations)

by utilizing the historical experience strategy to improve the

learning efficiency and convergence speed, compared with

other RL algorithms.

From Fig.3 to Fig.6, the proposed deep PDS-RET learn-

ing algorithm based heterogeneous RF/VLC can effectively

meet the energy-efficient communications, guarantee the strict

URLLC requirements and ensure the high data rate demands

at different scenarios in industrial networks.

VI. CONCLUSION

In this paper, we presented a heterogeneous RF/VLC net-

work architecture for wireless industrial networks to support

different QoS requirements (ranging from high reliability and

low latency (URLLC requirements) to high data rates) of IIoT

and IoT devices. Based on the heterogeneous industrial net-

work, we formulated an energy-efficient resource management

decision-making problem (joint network selection, subchan-

nel assignment and power management) as a MDP, and a

new deep PDS-ERT learning algorithm is proposed to learn

the optimal policy for the intelligent resource management

in heterogeneous industrial networks, which accelerates the

learning rate and improves the learning efficiency. Simulation

results verified the effectiveness of the presented heteroge-

neous RF/VLC industrial network and also showed that the

proposed deep PDS-ERT learning algorithm outperforms other

existing algorithms.
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