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Abstract. The problem of imaging through thick scattering media is encountered in many disciplines of

science, ranging from mesoscopic physics to astronomy. Photons become diffusive after propagating through

a scattering medium with an optical thickness of over 10 times the scattering mean free path. As a result,
no image but only noise-like patterns can be directly formed. We propose a hybrid neural network for

computational imaging through such thick scattering media, demonstrating the reconstruction of image

information from various targets hidden behind a white polystyrene slab of 3 mm in thickness or 13.4

times the scattering mean free path. We also demonstrate that the target image can be retrieved with

acceptable quality from a very small fraction of its scattered pattern, suggesting that the speckle pattern

produced in this way is highly redundant. This leads to a profound question of how the information of the

target being encoded into the speckle is to be addressed in future studies.
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1 Introduction

Conventional optical imaging techniques work under the con-
dition that spherical wavelets emitting from a target to the en-
trance pupil cannot be severely distorted.1 Otherwise, they
cannot converge after passing through the lens system and form
the image. However, in applications ranging from in situ bio-
medical inspection in life sciences2 to free space optical com-
munication in cloudy and hazy environments,3 this condition
is not satisfied when scattering media exist between the target
and the optical system, distorting the propagation direction of
each wavelet in a random manner. When the distortion is weak,
one can use adaptive optical techniques to measure it and com-
pensate.4 However, when the distortion is strong, no image can
be formed as the photons are scattered many times randomly
inside the medium. The photon-scattering process is explicitly
deterministic (described by the so-called scattering matrix)
when the scattering medium is static, meaning that it is
reversible.5 Taking advantage of this property, many efforts have
been made to exploit imaging through scattering media using

either optical or computational techniques. In the optical do-
main, Goodman et al. have demonstrated that one can measure
the scattered wavefront distortion by using holography.6

Holography has been extended to produce a phase-conjugated
beam of the scattered one7 so that the distortion can be removed

when the beam propagates back through the scattering medium
once again, and to separate the ballistic photons by taking
the advantage of coherence gating.8 Furthermore, it has been
demonstrated that holography has the potential to image a three-
dimensional object behind a thin diffuser.9 Nevertheless, holog-

raphy only records the complex wavefront of the beam that
leaves the scattering medium, without any information about
the scattering process occurring inside. Alternatively, wavefront
shaping has been proposed to actively control the propagation of
the beam through the scattering medium.10–12 This can be phe-

nomenologically interpreted as the control of the photons so
that a certain amount of them can make their way through the
scattering medium in the eigenchannels. In this way, wavefront
shaping can be used to measure the transmission matrix (TM)

of scattering media,13 allowing the transmission of images
through opaque media.14 However, the state-of-the-art spatial
light modulators (SLMs) can neither shape the complex-valued
wavefront precisely nor measure the TM at the wavelength scale
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of a scattering medium of large volume due to the pixel size and
count, which imposes a limitation to the powerful wavefront-
shaping technique. Memory effect,15 on the other hand, prom-
ises noninvasive16 and single-shot imaging through a scattering
layer,17,18 and has been widely explored recently.19 However,
the memory effect range of the light field that passes through
the scattering slab drops very quickly to the wavelength scale
as the slab becomes thicker,20 imposing a strict limitation on
the field of view of the scattering imaging system.17,21

Here, we exploit the technique of deep learning and develop
a special hybrid neural network (HNN) architecture for imaging
through optically thick scattering media. It is well known that
machine learning techniques including deep learning have been
widely employed to solve the problems in recognition and
classification.22,23 It was not until recently that researchers
started to use them in the field of computational imaging.24–32

Horisaki et al.24 proposed to use the support vector regression
architecture to reconstruct the scattering images with a set of
human face data for training. Lyu et al.25 were the first to use
deep learning for imaging through scattering media. Li et al.30

proposed to use a convolutional neural network (CNN) to
achieve coherent imaging through thin ground glass, and Li
et al.31 proposed to use a residual neural network that is highly
scalable to both scattering medium perturbations and measure-
ment requirements. However, the works reported in Refs. 29 and
30 dealt with thin scattering layers like ground glass, through
which the relationship between the acquired speckle and the tar-
get is easy to model owing to the memory effect. This is not the
case when the scattering media become optically thick. In a pre-
vious study,25 we have demonstrated how to solve this problem
with deep neural network (DNN) architecture. But there were
three big issues when we applied it in imaging through a thick
scattering wall. First, in a DNN, every neuron in one hidden
layer is usually connected to every other neuron in the imme-
diate downstream layer, resulting in a parametric space that is
time-consuming to optimize. Second, even though the training
can converge eventually, overfitting is very likely to occur.25,33

Third, the trained network is hard to generalize. In this paper,
we demonstrate that the above drawbacks can be overcome
using an HNN model. In the conceptual demonstration, we de-
velop an HNN that can retrieve the coherent images of various
targets behind a 3-mm-thick white polystyrene slab from the
corresponding speckle pattern acquired with a digital camera.
Furthermore, our experimental results suggest that the speckle
pattern contains redundant information, as the target image can
be reconstructed from as little as 0.1% information content
possessed by the acquired speckle pattern. This suggests great
potential for the compression and storage of the information-
carrying speckle patterns and their transmission through wired
or wireless communication channels.

2 Method

2.1 Experimental Setup

The optical setup used in our experiments is schematically
illustrated in Fig. 1(a). The laser we used was a linearly polar-
ized optically pumped semiconductor laser (Verdi G2 SLM,
Coherent Inc.) irradiating at 532 nm. A collimated and ex-
panded laser beam was shone on an amplitude-only liquid crys-
tal SLM after passing through the linear polarizer P1 and Iris 1,
which were used to control the polarization state and width of

the beam. The amplitude-only SLM was a Holoeye Pluto-Vis
with a maximum pixel count of 1920 × 1080 and a pixel size
of 8.0 μm × 8.0 μm. The target images were displayed on
the SLM to modulate the incident beam. The targets we used
were images of handwritten digits from the MNIST database34

with a size of 28 × 28 pixels. We first resized these images
18 times to 504 × 504 and zero-padded them to 1920 × 1080
before displaying them on the SLM. As a result, the physical
size of the handwritten digit was about 2 mm × 2 mm
(calculated by counting the number of pixels used to represent
the digits). The image-carrying beam reflected from the SLM
was then shone onto a 3-mm-thick white polystyrene slab
(EDU-VS1/M, Thorlabs Inc.), after a distance d1 ¼ 290 mm
of propagation in free space. At the other side of the slab, a
camera (Andor Zyla 4.2 PLUS sCMOS with a 4.2-megapixel
sensor) was placed at a distance d2 ¼ 35 mm to collect the
speckle pattern generated by light scattering inside the slab.
To obtain amplitude modulation, we placed a linear polarizer
P2 whose polarization direction was perpendicular with respect
to P1 in the reflected beam. An iris (Iris 2) was also used,
to select the first-order reflection. In the experiments, we acti-
vated only the central 512 × 512 pixels of the camera for
speckle data acquisition.

2.2 Challenges of the Problem

To visually display the scattering power of the 3-mm-thick poly-
styrene slab, we first project an image directly on the front sur-
face of the slab, and see how it looks at the back surface. The
results are shown in Figs. 1(b) and 1(c), respectively. As can be
seen, the image is very clear at the front surface but becomes
highly diffusive at the other side of the slab, in contrast to
the case of passing through thin ground glass.16,17 This is
because the light has been scattered many times on the way
through the slab. Indeed, the measured optical depth of the
scattering slab is about 13.40 (see Appendix A), so the light
is in the diffusive regime.2

Nevertheless, the speckle pattern I captured by the camera is
related to the target O through the TM.35 Our purpose is then to
retrieve the target imageO from the speckle pattern I. Note that,
for weak scattering layers such as a ground glass, their relation
is reduced to the convolution UðRÞ ¼

R

OðrÞhðr;RÞd2r, where
R measures the position on the surface of camera sensor and
r measures the position on the surface of the SLM, within
the isoplanatic angle. The captured speckle pattern IðRÞ ¼
UðRÞUðRÞ�. The memory effect16 allows us to reconstruct
the target image by phase retrieval because the autocorrelation
of I is approximately equal to the autocorrelation of jOj2.
However, when the scattering medium is sufficiently thick, as
in our study, the memory effect is destroyed and the isoplanatic
angle tends to zero.36 This means that the spherical wavelets
emitted from any two points of a target, although separated
by a very small distance, will effectively experience two distinct
scattering processes, resulting in two elemental speckle patterns
that are totally uncorrelated. One can imagine that the final
speckle pattern corresponding to the whole target is produced
by the superposition of many of these uncorrelated elemental
patterns. As a consequence, one will not expect that an image
of the target can be reconstructed using the memory-effect-
based techniques. In the case of imaging through static scatter-
ing media, one may choose to use TM-based techniques,13,14

because the TM is deterministic. However, it is unfeasible in
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our case here, because the TM should be measured in the wave-
length scale and across a large area, whereas current SLM
technologies are not ready for that yet.

2.3 HNN Model

The deep-learning-based method that we propose here to image
through optically thick media is a data-driven solution. This
means that we need a large set of input–output measurements
to train the neural network model so as to learn how the speckle
patterns are related to the targets.

Even though the universal approximation theorem37,38 states
that a two-layer network can uniformly approximate any con-
tinuous function to arbitrary accuracy, such a two-layer network
will require a huge amount of neurons, making it difficult to
train. Therefore, a neuron network with more layers and fewer
neurons in each layer is more favorable. Note that a typical CNN
architecture is translation equivariance.22 But the system we are
encountering now becomes spatially variant due to the presence
of the thick scattering medium. As a result, attempting to build
a spatially invariant neural network to mimic a spatially variant
imaging system will take a lot of effort. On the contrary, a fully
connected network such as the DNN can be spatially variant.
But the training is usually time-consuming and the resulting

network architecture is hard to generalize as aforementioned.25,33

It typically takes many hours or even days to train depending on
the size of the training set and the geometry of the network. For
example, the fully connected DNN model that we developed for
imaging through scattering25 took us 18 h to train with a Tesla
K20c GPU. Thus, an HNN composed of a few layers of DNN
and a few layers of CNN is more desirable.

The HNN architecture we report here has five two-dimen-
sional (2-D) convolutional layers, two reshaping layers, one
pooling layer, three densely connected layers, and five dropout
layers, as schematically shown in Fig. 2. The three densely con-
nected layers were sandwiched between the five convolutional
layers, two upstream and three downstream. For demonstration,
we arbitrarily took a block of 64 × 64 pixels out of each 512 ×
512-pixels speckle pattern acquired by the camera as the input
to the network. The two upstream layers were used to extract
32 feature maps of the input speckle, resulting in a 32 × 32 ×
32-pixel feature cube. Then it was reshaped to a 1 × 32,768 vec-
tor and served as the input to the three sequential densely
connected layers, which has 1024, 784, and 784 neurons, re-
spectively. Then another reshaping layer r2 was used to shape
the 1 × 784 vector back to a 28 × 28-pixel image for the sake
that we could use the raw handwritten digits from the MNIST
database directly to calculate the loss function. Three 2-D

Fig. 1 (a) Experimental setup for imaging through scattering media, SLM represents an ampli-

tude-only SLM, P1 and P2 are linear polarizers and the slab is a 3-mm-thick white polystyrene.

The images captured at the (b) front and (c) back surfaces of the scattering medium. (d) The side

view and (e) the top view of the polystyrene.
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convolutional layers with the kernel of 3 × 3, 2 × 2, and
1 × 1 pixels, respectively, were used to calculate the feature
maps in three different abstraction levels. The output of the net-
work was a 28 × 28-pixel image. In the proposed HNN, the ac-
tivation function was the rectified linear units,39 which allowed
fast and effective training of the network compared with the
sigmoid.38 We used the mean square error (MSE) as the loss
function, and Adam40 as the strategy to update the weights in
the training process. To reduce overfitting, dropout layers41 were
used throughout the HNN architecture.

To train the HNN, we used images of 3990 handwritten digits
downloaded from the MNIST handwritten digit database34 as the
training sets. In the experiment, we sequentially displayed them
on the amplitude-only SLM shown in Fig. 1 and captured the
corresponding speckle patterns. As aforementioned, we used
only the central 512 × 512 pixels of the sCMOS camera for data
acquisition. More specifically, the training set was created by
pairing up the 3990 28 × 28-pixel handwritten digits with the
corresponding 64 × 64 speckle patterns, which were randomly

taken out of the 512 × 512 speckle patterns acquired by the
camera. The set of 3990 pairs’ input–output data was fed into
the HNN model to optimize the connection weights and biases
of all the neurons. The program was implemented on the Keras
framework with Python 3.5, and sped up by a GPU (NVIDIA
Quadro P6000). The training was converged after only 1 epoch
of about 194 s. The time it took to reconstruct an image from its
speckle was 0.78 s in our experiment.

3 Results

To test the performance, we experimentally obtained 10 speckle
patterns corresponding to 10 other digits from the MNIST data-
base but not in the training set and sent them to the trained
neural network. These 10 test speckle patterns are shown in
Fig. 3(a). The images reconstructed by the proposed HNN
are shown in Fig. 3(b). In comparison with the ground-truth im-
ages shown in Fig. 3(c), all the visible features, and particularly
the edges of the targets, have been retrieved successfully. Unlike

Fig. 2 The diagram of the proposed HNN model.

Fig. 3 The reconstructed results. (a) The speckle patterns (64 × 64 pixels) cropped from the raw

acquired scattered pattern (512 × 512 pixels), (b) the reconstructed images by using the proposed

HNN, (c) the ground-truth images, and (d) the reconstructed images by using memory effect.
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the images reconstructed using the phase conjugation,7 wave-
front shaping,10,11 or transmission matrix,13 the background of
the images retrieved using the HNN is very clean. We also plot
the images reconstructed using the memory-effect-based
method in Fig. 3(d) for comparison. One can see that nothing
but noise is reconstructed in this case. This result is expected,
and consistent with the theoretical prediction,15 as the range of
memory effect is about 0.01 deg measured by using the standard
technique,20,35 whereas the angular extent of the digits displayed
on the SLM is about 0.4 deg.

Usually, a neural network produces a better result if the fea-
ture of a test image is closer to that of the training images.27

Surprisingly, in the case of imaging through thick scattering me-
dia, we found that the HNN trained by the digital images alone
can retrieve the images of handwritten English letters, which
were manually written by one of the authors. The experimen-
tally reconstructed results are shown as the five letter columns
[right-hand side of Fig. 3(b)].

4 Analysis and Discussion

4.1 Comparative Analysis of the Performance

Now let us compare the proposed HNN with the CNN and DNN
architectures in terms of imaging performance. To do that, we
first need to make a CNN and a DNN. For the sake of fairness in
comparison, all the networks should have the same number of
layers, even though it is not possible to make them the same
width. Thus, we changed the three densely connected layers
in the proposed HNN to convolutional layers and made it a
CNN and changed all the convolutional layers to the densely
connected layers to establish a DNN. The 10 reconstructed test
images are shown in Fig. 4. One can see from the results that the
DNN can reconstruct the handwritten digits with an acceptable

quality (except the digit “5”), but it failed in the case of English
letters. This means that the trained DNN has limited generali-
zation. The CNN performed even worse, as only the digit “6”

can be reconstructed.

4.2 Information Content of the Speckle

It is instructive to understand where the information of the target
is stored in the speckle patterns and how well it can be com-
pressed. To quantify our analysis, we first define the information
content (IC) according to Shannon’s information theory:42

IC ¼ np log2ðNsÞ; (1)

where np is the total number of image elements (pixels), and Ns

is the signal’s distinguishable intensity level, which is represented
by gmax − gmin, where gmax and gmin are the maximum gray level
and minimum gray level of the captured images. For most of
the speckle patterns captured by the camera np ¼ 512 × 512;
gmax ¼ 216 − 1 ¼ 65,535; and gmin ¼ 16,729 instead of 0, be-
cause they were not regularized with respect to the background.

4.2.1 Image reconstruction with randomly selected parts
of the speckle pattern

It is well known that holograms contain the whole wavefront of
the objects.1 Even a small fraction can reconstruct the object
wavefront, although noise arises. In the case of coherent imag-
ing through a thick scattering medium, the speckle acquired by
the camera is formed by the interference of light taking many
possible paths inside the medium. The motivation here is to
study if the speckle formed by the diffusive light holds the same
property. In fact, since we only use part of raw scattering im-
ages, it is suggested that our neural network can reconstruct
the object from partial information. We arbitrarily select three

Fig. 4 Comparison of reconstruction performance. (a) The speckle patterns cropped from the raw

scattered patterns. The images reconstructed by (b) the HNN, (c) a DNN, and (d) a CNN. (e) The

ground-truth images.
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small blocks (marked by a1, a2, and a3) of 64 × 64 pixels out of
each captured raw speckle patterns of 512 × 512 to train the
HNN network, as shown in Fig. 5. The results are shown in
Fig. 6. It is clearly seen that both the digits and the English
letters are retrieved successfully, although there are some distor-
tions in the results of English letters.

Surprisingly, we could even randomly pick 4096 pixels,
not necessarily in a continuous block, out of each raw speckle
pattern, and arbitrarily arrange them to form a new 64 × 64
speckle-like pattern. Then, we paired it up with the associated
handwritten digit, although they are not directly physically re-
lated to each other. Following the same process (picking the pix-
els at the same positions and rearranging them in the same way),
we obtained 3990 pair data of this type and used them to train
the HNN. Then, we generated some test speckle patterns in the
same way and used them to test the HNN. The results, as shown
in Fig. 7, suggest that the information about the target does
spread across the whole speckle pattern, similarly to the holo-
gram. And it does not matter which part of the recorded speckle
pattern is used.

A significant concern is to determine how small the fraction
of the speckle can be to faithfully reconstruct the target image.
To explore this possibility, we took out blocks of six different
sizes (8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128, and
256 × 256) from each speckle pattern and paired them up with
the corresponding targets to train the network. Of course, the
network width should be changed accordingly, since the size
of the input speckle that the network will process is different.
When the networks were well trained, we used them to process
the test speckle patterns of the corresponding size; the recon-
structed images are shown in Fig. 8. The results suggest that
as the size of speckle reduces, the quality of the reconstructed
image degrades. Specifically, the reconstructed image is still
recognizable if the input speckle is 32 × 32 pixels. But the
reconstructed image is severely distorted when we use only
256 or fewer pixels of the recorded speckle.

The results suggest that the speckle pattern produced in
this way is indeed highly redundant. The information of
the target is actually encoded everywhere across the speckle
pattern.

Fig. 5 The positions of the three 64 × 64-pixel blocks randomly selected from the acquired

scattered patterns of 512 × 512 pixels.

Fig. 6 The images reconstructed by using the subspeckle pattern located at A1, A2, and A3.
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4.2.2 Image reconstruction with less bit depth

Now we go further to see if it is possible to reconstruct the image
by using less bit depth from the 64 × 64-pixel subspeckle pat-
tern. The sCMOS camera we used has a bit depth of 16 bits,
quantifying the pixel value of the speckle pattern to the range
of 0 to 65,535. We examined the effect in two ways. First, we
only used a subrange of the pixel value of the test speckle pat-
terns to reconstruct the target images. For example, we used the
pixels with the values in the range of 25,000 to 30,000, setting
the value of the pixel to 0 if it is <25,000 and to 65,535 if it is
>30,000, and as-is if it is in the range of 25,000 to 30,000.
The reconstructed results are shown in Fig. 9(G1). One can
see that it is distorted in both the cases of handwritten digits

and English letters. Similarly, when we used the pixels in the
range of 35,000 to 40,000 and 40,000 to 45,000 as the input,
we have the results that are shown in Figs. 9(G2) and 9(G3),
respectively. One can see that the reconstructed digits are rec-
ognizable, whereas the English letters are distorted, suggesting
the limited ability of generalization in this case. The difference
in quality between the images reconstructed using the pixels in
different ranges is mainly due to the probability density function
of the speckle intensity.43 Since the pixel values are mainly in the
range of 25,000 to 45,000, we are unable to reconstruct the tar-
get images by using the pixels whose values are below 25,000 or
above 45,000 alone. Second, we examined an extreme case of
binarizing the test speckle patterns by setting all the pixel values

Fig. 7 The images of handwritten digits and English letters reconstructed from the randomly se-

lected pixels. (a) The subspeckle patterns formed by the randomly selected 3096 pixels from the

512 × 512 raw scattered patterns, (b) the reconstructed images, and (c) the ground-truth images.

Fig. 8 The images of handwritten digits and English letters reconstructed from the subspeckle

patterns of six different sizes.
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<35,000 to 0, and otherwise to 65,535. Experimental results
show that the target images can be reconstructed even in this
case, as shown in the Fig. 9(G4).

4.2.3 Compression ratio of the speckle

The results presented in Secs. 4.2.1 and 4.2.2 suggest that the
speckle patterns generated in this way are highly redundant and
therefore compressible in both the spatial and the bit depth do-
mains. To measure the redundancy of the speckle pattern, we can
calculate the information content according to Eq. (1). For the
raw speckle pattern directly captured by the camera, the infor-
mation capacity is IC ¼ ð512 × 512Þlog2ð65,535 − 16,729Þ ≈
4.1 × 106 bits. And for the speckle patterns of minimal size
and bit depth that contain sufficient information to reconstruct
the target image with acceptable quality, the information content
is reduced to IC ¼ ð64 × 64Þlog2ð2Þ ¼ 4096 bits. Thus the
compression ratio is given as

C ¼
4096

4.1 × 106
≈ 0.1%: (2)

This means that only 0.1% of the information contained by
the captured speckle pattern is sufficient to reconstruct the target
image with the proposed HNN.

From the information theory point of view, this result is
reasonable because the information content of the handwritten
digits is <4096. But no other method except properly designed
neural networks can be used to reconstruct the target image from
such a small fraction of the recorded speckle, to the best of our
knowledge.

5 Conclusions

We have proposed a deep learning method for imaging through
thick scattering media. Specifically, we experimentally demon-
strated the faithful reconstruction of a image of the target hidden
behind a 3-mm-thick polystyrene slab with an optical depth of
13.4. The proposed HNN architecture is composed of fully con-
nected layers and convolutional layers so that it has the advan-
tages of both the DNN and the CNN, and thus gives better
performance. As a learning-based method, it requires a large
set of labeled data for training. But it just needs to be trained
once. The collection of the training data set is also required
for the techniques of wavefront shaping and TM measurement.
But the requirement of the training data in the proposed method
is not as strict as in the other two, which should be a set of spatial
modes15 in wavefront shaping, and a set of plane waves with
different spatial frequencies36 in the TM method. In addition,
it does not need to measure the complex amplitude but only
the input–output intensities so that the experimental system
can be more simple and concise. Furthermore, it does not need
to use any microscopic objective to demagnify the images
displayed on the SLM to fit the size of the eigenchannel.11,15

This means that the trained HNN may not reveal any physical
details about the transmission matrix of the scattering slab.
Nevertheless, it opens up a new possibility for exploring optical
imaging through more general complex systems. Finally, we
have also demonstrated that the speckle patterns acquired by
the camera are highly redundant. Experimentally, we demon-
strated that the use of only 0.1% of the information content
of the captured speckle pattern is sufficient to reconstruct the
target image, meaning that the information-carrying speckle is
highly compressible.

Fig. 9 The result of the digits and English letters with different gray intervals. The images in the

first row are the speckle images with different gray-level intervals, the second row shows the

predicted objects by the HNN model, images in the third row are the ground-truth images.

(G1) Images with gray value interval (25,000 to 30,000), (G2) images with gray value interval

(35,000 to 40,000), (G3) images with gray value interval (40,000 to 45,000), and (G4) images

with gray value threshold of 35,000.
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6 Appendix A: Measuring Optical Depth

The optical depth ds of scattering sample is defined as44

ds ¼ − ln

�

Ib

Ii

�

; (3)

where Ib is the intensity of the ballistic light and Ii is the inten-
sity of the incident light. We used the experimental system
shown in Fig. 10 to measure the optical depth. Two variable
irises with the diameter D ¼ 8 mm were used to adjust the size
of the beam. The distance d between the slab and the power
meter was 600 mm. First, we measured the incident power Ii
to be 8.599 mW. This was done without the slab. Then, we mea-
sured the scattered light power Is ¼ 17.32 nW by placing the
slab in the light path. Finally, we placed a metal plate behind
Iris 2, in order to block the ballistic light, and measured
the background noise In ¼ 4.05 nW. Then, the ballistic light
Ib ¼ Is − In ¼ 13.27 nW. In our experiments, the optical depth
of the white polystyrene slab is 13.40, according to Eq. (3).
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