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Abstract

Learning-Based Methods for Comparing Sequences, with

Applications to Audio-to-MIDI Alignment and Matching

Colin Raffel

Sequences of feature vectors are a natural way of representing temporal data. Given

a database of sequences, a fundamental task is to find the database entry which

is the most similar to a query. In this thesis, we present learning-based methods

for efficiently and accurately comparing sequences in order to facilitate large-scale

sequence search. Throughout, we will focus on the problem of matching MIDI

files (a digital score format) to a large collection of audio recordings of music. The

combination of our proposed approaches enables us to create the largest corpus of

paired MIDI files and audio recordings ever assembled.

Dynamic time warping (DTW) has proven to be an extremely effective method for

both aligning and matching sequences. However, its performance is heavily affected

by factors such as the feature representation used and its adjustable parameters. We

therefore investigate automatically optimizing DTW-based alignment and matching

of MIDI and audio data. Our approach uses Bayesian optimization to tune system

design and parameters over a synthetically-created dataset of audio and MIDI pairs.

We then perform an exhaustive search over DTW score normalization techniques

to find the optimal method for reporting a reliable alignment confidence score, as

required in matching tasks. This results in a DTW-based system which is conceptually

simple and highly accurate at both alignment and matching. We also verify that this

system achieves high performance in a large-scale qualitative evaluation of real-world

alignments.



Unfortunately, DTW can be far too inefficient for large-scale search when se-

quences are very long and consist of high-dimensional feature vectors. We therefore

propose a method for mapping sequences of continuously-valued feature vectors to

downsampled sequences of binary vectors. Our approach involves training a pair

of convolutional networks to map paired groups of subsequent feature vectors to a

Hamming space where similarity is preserved. Evaluated on the task of matching

MIDI files to a large database of audio recordings, we show that this technique

enables 99.99% of the database to be discarded with a modest false reject rate while

only requiring 0.2% of the time to compute.

Even when sped-up with a more efficient representation, the quadratic complexity

of DTW greatly hinders its feasibility for very large-scale search. This cost can be

avoided by mapping entire sequences to fixed-length vectors in an embedded space

where sequence similarity is approximated by Euclidean distance. To achieve this

embedding, we propose a feed-forward attention-based neural network model which

can integrate arbitrarily long sequences. We show that this approach can extremely

efficiently prune 90% of our audio recording database with high confidence.

After developing these approaches, we applied them together to the practical task

of matching 178,561 unique MIDI files to the Million Song Dataset. The resulting

“Lakh MIDI Dataset” provides a potential bounty of ground truth information for

audio content-based music information retrieval. This can include transcription,

meter, lyrics, and high-level musicological features. The reliability of the resulting

annotations depends both on the quality of the transcription and the accuracy of

the score-to-audio alignment. We therefore establish a baseline of reliability for

score-derived information for different content-based MIR tasks. Finally, we discuss

potential future uses of our dataset and the learning-based sequence comparison

methods we developed.
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1

Chapter 1

Introduction

Sequences of feature vectors or symbols are a natural way of representing information

in a wide variety of fields, including multimedia, medicine, and natural language

processing. For examples of a few common types of data represented as sequences,

see figure 1.1. As the cost of storing data continues to decrease and more and more

aspects of our lives are recorded, databases of sequential data are becoming larger

and more prevalent. This motivates the need for methods to efficiently organize and

extract useful information from this data.

An exemplary domain is musical data. Digital audio is commonly represented

either as a sequence of sampled amplitude values corresponding to the sonic waveform,

or as a sequence of time-frequency spectra computed over short snippets of the audio

signal. Musical scores can also be conveniently represented digitally as a sequence of

notes played on a collection of instruments. This has allowed for extremely large

collections of musical audio recordings and scores to be assembled. The availability

of this data has facilitated the nascent field of music information retrieval (MIR),

which focuses on inferring high-level information from music through computational

means.
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The quick brown fox jumps over the lazy dog

A C A G T G T T C

t0 t1 t2 t3 t4 t5 t6 t7 t8

Figure 1.1: Examples of sequential data. From top to bottom: A
sentence, which can be considered a sequence of words; a signal, which
generally refers to a unidimensional real-valued sequence; a magnitude
spectrogram (sequence of spectra) of an audio recording of the word
“say”; a DNA sequence, which represents the order of nucleotides (G,
C, A, or T) in a DNA molecule; and a video, which is a sequence of
images.
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1.1 Large-Scale Sequence Retrieval

Perhaps the most fundamental task one can perform with a database is indexing or

nearest-neighbor retrieval, i.e. finding the entry in the database which is the most

similar to a query. Given a way of measuring similarity, the simplest way to index

a database is to compute the similarity between the query and every entry in the

database and simply choose the entry which has the highest similarity score. One

pervasive way of framing this problem is to represent database entries and queries as

vectors in a space where their similarity is encoded by a distance metric. This makes

item-to-item comparison simple and enables efficient nearest-neighbor retrieval.

In order to extend this method to sequential data, a natural approach would be

to compute the sum of the distances of co-occurring (i.e. appearing at the same time)

elements in two sequences. Figure 1.2 visualizes this method on two one-dimensional

sequences. While straightforward, this method is made impractical for most problems

of interest due to a few factors. First, it cannot be used to compare sequences which

differ in length, which is a natural problem in many domains. Second, even when

sequences have the same length, in many cases it is not necessarily true that two

sequences are similar only when co-occurring elements in the sequences are similar.

For example, the sentences “My favorite color is red” and “Red is my favorite color”

have the same meaning (i.e. are extremely similar) but have no co-occurring words.

These issues have prompted the use of warping or edit distance measures, which

allow for non-co-occurring elements of sequences to be compared when computing a

similarity score. Such measures find a correspondence or alignment between elements

of the two sequences being compared, and then compute the sum of the distances

between aligned sequence elements. The alignment is typically defined to find a

correspondence between sequence elements such that the total distance between

aligned elements is minimized, and is required to follow some set of constraints
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Figure 1.2: Comparing two equal-length sequences by summing the
distances between co-occurring elements in each sequence. Dashed
lines indicate which elements are being compared.

to ensure useful solutions. Because they enable comparison of non-co-occurring

elements, these methods can often be applied straightforwardly to sequences which

differ in length. In many cases, the number of possible alignments is exponential

in the lengths of the sequences being compared. However, in most cases of interest

(and used in practice), the optimal alignment can be found in time quadratic in

the sequence lengths using dynamic programming. An example of this kind of

comparison can be seen in figure 1.3.

While the application of dynamic programming makes many warping-based mea-

sures tractable, they can be made impractical in practice by a variety of factors. First,

quadratic complexity can still be prohibitive when comparing very long sequences.

This can be particularly problematic if sequences are oversampled, i.e. there is an
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Figure 1.3: Comparing two sequences which differ in length by
warping them to find an optimal alignment (under some constraints)
and summing the distances between aligned elements. Dashed lines
indicate which elements are being compared.

unnecessarily high correlation between consecutive sequence elements. Second, in

some cases comparing individual sequence elements is itself prohibitively expensive,

which is a necessary operation for any warping-based measure. Furthermore, in

some domains (e.g. multimodal data), there is no natural way to compare individual

sequence elements, which also precludes sequence comparison. Finally, if the database

being indexed is very large, comparing a query against every entry in it can be

prohibitively expensive.

A pervasive method for mitigating some of these issues is “pruning”. Pruning

describes the general technique of using a very cheap surrogate method to discard

most entries in a database and then applying a more expensive, but more accurate,
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method to the remaining entries. The effectiveness of a pruning method is quantified

by how much of the database it is able to discard without falsely rejecting the correct

match according to the more expensive operation.

One straightforward way to achieve pruning for indexing databases of sequential

data is to use an alternate representation for the sequences which accelerates the

warping similarity measure. This may include making the sequence shorter to

mitigate oversampling issues or transforming the individual feature vectors which

make up the sequence in such a way that comparing them is less expensive. Utilizing

a different representation can also facilitate the case when the query sequence, in its

raw form, is not comparable to entries in the database. To fit into the framework of

pruning, the transformed sequence representation can discard some information and

sacrifice some accuracy so long as it is substantially faster than the “native” warping

measure and rarely discards the correct match.

Many of these issues are caused by the fact that the data is sequential and a

warping measure must be used; they are not present when data is represented as fixed-

length vectors whose distance measures similarity. This motivates another pruning

method: Transform sequences of feature vectors to fixed-length vectors embedded

in a space where their distance approximates the warping measure. Provided that

the distance in the embedded space suitably approximates sequence similarity, these

methods can also serve as effective pruning techniques.

1.2 Matching and Aligning Scores and Audio Record-

ings

Many of these issues are exhibited in the task of finding the entry in a large database

of audio recordings which corresponds to a given musical score. Such a matching is of



1. Introduction 7

great utility in the field of content-based music information retrieval due to the large

amount of high-level information present in the score. This information can be used

as ground truth for content-based MIR algorithms, whose success is often dependent

on the quantity and quality of this data. Creating such ground truth by hand for a

given song typically requires person-hours on the order of the duration of the song,

and so training data availability is a frequent bottleneck in content-based MIR tasks.

Leveraging existing collections of scores could greatly facilitate the curation of this

data; through a large-scale web scrape, we obtained 178,561 unique MIDI files (a

common digital score format) – orders of magnitude larger than any available ground

truth dataset for MIR.

The mere existence of a large collection of scores is not enough: In order to use

information from a score as ground truth, it needs to be matched (paired with a

corresponding audio recording), aligned (adjusted so that the timing of the events in

the file match the audio), and relevant information must be inferred or extracted.

Given large corpora of audio recordings of music and scores, the task of matching

entries of each type may seem to be a simple matter of fuzzy text matching of the

files’ metadata. However, MIDI files almost never contain structured metadata, and

as a result the best-case scenario is that the artist and song title are included in

the file or directory name. While we found some examples of this in our collection

of scraped MIDI files, the vast majority of the files had effectively no metadata

information. Figure 1.4 shows a random sampling of directory and filenames from

our collection.

Since the goal of matching MIDI and audio files is to find pairs that have content

in common, we can in principle identify matches regardless of metadata availability

or accuracy. However, the task of matching a single MIDI file to a large corpus of

audio recordings exhibits all of the issues described in the previous section, for the
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J/Jerseygi.mid

V/VARIA18O.MID

Carpenters/WeveOnly.mid

2009 MIDI/handy_man1-D105.mid

G/Garotos Modernos - Bailanta De Fronteira.mid

Various Artists/REWINDNAS.MID

GoldenEarring/Twilight_Zone.mid

Sure.Polyphone.Midi/Poly 2268.mid

d/danza3.mid

100%sure.polyphone.midi/Fresh.mid

rogers_kenny/medley.mid

2009 MIDI/looking_out_my_backdoor3-Bb192.mid

Figure 1.4: Random sampling of 12 MIDI filenames and their parent
directories from our corpus of 178,561 unique MIDI files scraped from
the Internet.

following reasons: First, scores and audio recordings are not directly comparable

in their raw forms. Second, in order to capture relevant fine-grained temporal

information, time-frequency sequence representations of a typical length song may

consist of thousands of feature vectors. Furthermore, individual spectra in a time-

frequency representation are high-dimensional real-valued feature vectors, which

makes comparing them expensive. Given the size of our MIDI file collection, we

require a highly-efficient scheme to match the content of MIDI and audio files.

A given score which has been matched to an audio recording of the song it is

a transcription of often does not share the exact timing of the recording. In order

to fully leverage the information in a given score, a mapping between the timing

in the score and the audio recording must therefore be constructed. Fortunately,

score-to-audio alignment is a thoroughly studied research topic. However, most

systems are hand-designed to maximize performance on a single task or small corpus

of music. Comparison of the different alignment systems which have been proposed



1. Introduction 9

is greatly inhibited by the lack of a large corpus of known-correct alignments to

evaluate performance on. The creation of a task or dataset for evaluating score-to-

audio alignment systems would help determine which system design performs best

in general.

Finally, once matched and aligned, the relevant information for content-based

MIR must be extracted from the score. This can include transcription, meter, lyrics,

and high-level musicological features. Extracting score-derived ground truth requires

parsing the score’s format (e.g. the MIDI protocol) and then performing any post-

processing needed to derive higher-level information. The reliability of the resulting

annotations will depend both on the quality of the transcription and the accuracy of

the score-to-audio alignment. It would therefore be useful to establish a baseline of

reliability for score-derived information for different content-based MIR tasks.

1.3 Overview

The remainder of this thesis focuses on methods for efficient large-scale sequence com-

parison and tests them on the specific problem of matching scores to corresponding

audio recordings. Because this task exhibits all of the problematic characteristics of

large-scale sequence comparison problems, we consider it an appropriate benchmark

to evaluate the usefulness of the proposed methods. In addition, by developing an

effective system for matching a MIDI file to its corresponding entry in a database

of audio recordings, we will be able to leverage our large collection of MIDI files to

create valuable ground truth information for content-based MIR. Throughout, we

will focus on learning-based methods, i.e. algorithms which are optimized to achieve

high performance over a collection of exemplary data.

The rest of this thesis is organized as follows. First, in chapter 2, we present a

collection of “tools” which will be used throughout this thesis, including machine
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learning and signal processing methods. To motivate the central problem of this

thesis, in chapter 3 we discuss the various sources of information available in MIDI

files and provide a broad overview of the availability of this information in the 178,561

unique MIDI files we obtained through a large-scale web scrape. In chapter 4 we

propose a synthetic task to measure the performance of score-to-audio alignment

systems and use Bayesian optimization to choose a system design which has the best

general performance. We also address the problem of reporting a reliable alignment

confidence score and validate the resulting system on real-world data. Chapter 5

describes our first technique for pruning large-scale sequence similarity search. This

method learns a mapping from sequences of continuously-valued feature vectors to

downsampled sequences of binary vectors. The resulting sequences are orders of

magnitude faster to compare and only result in a small decrease in precision. We

propose a second pruning method in chapter 6 which maps sequences to fixed-length

vectors in a Euclidean space where their distance approximates sequence similarity.

This provides an estimate of the similarity of two sequences by an inexpensive

Euclidean distance calculation. Finally, chapter 7 utilizes all of these methods to

construct a large collection of MIDI files which have been matched and aligned to

corresponding audio recordings. We also address the practical question of the quality

of ground truth information extracted from MIDI files. To wrap up in chapter 8,

we enumerate our contributions, discuss future work, and outline some interesting

applications for our new dataset.

1.4 Notation

In this thesis, we will not make an explicit notational distinction between variables

with differing numbers of dimensions, but we will always state the dimensionality

of variables when they are introduced. For example, a real-valued scalar x would
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be introduced as x ∈ R, a vector y with N entries in a Hamming space (i.e. having

binary values) would be introduced as y ∈ H
N , and a natural number-valued matrix

z with dimensions M and N would be introduced as z ∈ N
M×N . To refer to entries

in these variables, we will use “indexing” notation, e.g. y[n] would denote the nth

entry of the just-introduced vector y. We will always count these entries starting

from one, e.g. y = [y[1], . . . , y[N ]]. On the other hand, when referring to members of

a collection of things, we will use subscript notation, e.g. a collection of K variables

might be denoted x1, x2, . . . , xK . Finally, we will use  to refer to the imaginary

number
√
−1 and use an overline to refer to complex conjugation, e.g. a+ b = a−b.

For visualization, we will use the following color palette:

In captions, we will refer to these colors (from left to right) as “blue”, “green”,

“gray”, “red”, and “orange”. When visualizing two-dimensional data, we will use the

following colormap:

These colors will reflect smaller to larger values from left to right respectively.
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Chapter 2

Tools

Throughout this thesis, we will use a common collection of tools to help solve

problems of interest. Broadly speaking, we will make use of techniques from the

fields of machine learning and signal processing. In this chapter, we give a high-level

overview of these fields and a more specific definition of the various techniques we

will utilize.

2.1 Machine Learning

Machine learning is broadly defined as a suite of methods for enabling computers

to carry out particular tasks without being explicitly programmed to do so. Such

methods make use of a collection of data, from which patterns or the desired

behaviors are automatically determined. In this sense, machine learning techniques

allow computers to “learn” the correct procedure based on the data provided. In

addition to data, machine learning algorithms also often require an objective which

quantifies the extent to which they are successfully carrying out a task. This objective

function allows them to be optimized in order to maximize their performance.
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Traditionally, machine learning techniques are divided into three types: Super-

vised, unsupervised, and reinforcement learning. Supervised learning requires a

collection of training data that specifies both the input to the algorithm and the

desired output. Unsupervised learning, on the other hand, does not utilize target

output data, and thus is limited to finding structure in the input data. Finally,

reinforcement learning refers to the broader problem of determining a policy to

respond to input data in a dynamic “environment” based on a potentially rare signal

which tells the algorithm whether it is successful or not. All of the problems in this

thesis fall into the category of supervised learning, so we will not discuss unsupervised

or reinforcement learning further.

2.1.1 Supervised Learning

In the supervised setting, our machine learning algorithm produces a function f

(called a model) which, given input x and the function’s parameters θ, produces an

output ŷ:

ŷ = f(x, θ) (2.1)

Supervised learning requires a training set S of input-target pairs

(x1, y1), (x2, y2), . . . , (x|S|, y|S|) (2.2)

where xn ∈ X (the input space) and yn ∈ Y (the target space). We assume that

these pairs are drawn from an unknown joint probability distribution p(x, y), of

which the only information we explicitly know is the training set S. The goal of a

supervised learning algorithm is to approximate the probability distribution p(x, y)

(or just salient characteristics of it) with f by adjusting the parameters θ based solely

on S.
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One way to formulate this goal is to state that for a sample from p(x, y) which is

not in S, the function f should produce the correct output. Of course, because we are

only given the samples in S, the parameters θ must be optimized solely according the

training pairs in S. This approach, where f is used directly to produce the predicted

value for y, is referred to as discriminative training. An alternative approach, called

generative or probabilistic training, is to use f to model p(x, y) by estimating p(y|x)

and then choosing the most probable y. In either case, adjusting the parameters

θ of f typically involves using a task-specific “loss function” L which computes a

lower-bounded scalar value which measures the extent to which the model’s output

ŷ agrees with the target y. Ideally, minimizing this loss over the training set by

adjusting θ will well-approximate the minimum over the underlying distribution.

The choice of a loss function will depend on the characteristics of the problem, in

particular the target space Y . For example, in classification problems, the targets y

may take one of K discrete values. A natural loss function in this case is the zero-one

loss

L(y, ŷ) =















1, ŷ = y

0, ŷ 6= y

(2.3)

In regression problems, the targets are continuously valued, and a common loss

function is the squared error

L(y, ŷ) = (y − ŷ)2 (2.4)

Note that in both cases when y = ŷ, L = 0; this is a common property of loss

functions.
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In general, a suitable goal for training a supervised learning algorithm is to adjust

θ to minimize the average loss over the training set:

1

|S|
∑

(x,y)∈S

L(y, f(x, θ)) (2.5)

Minimizing this average loss is equivalent to minimizing the empirical risk of f . A

common paradigm is to compute the derivative of the loss function L with respect to

the model parameters θ and use this derivative information to incrementally change

θ to make L smaller. In this case, it is beneficial to have a loss function which is

continuous and smooth, which precludes the use of loss functions like the zero-one

loss (equation (2.3)). A common solution to this problem is to use a surrogate loss

function which has the desired properties (e.g. smoothness) and whose minimization

approximates the minimization of L.

There are supervised learning methods which do not follow the above framework.

For example, k-nearest neighbors (Cover and Hart, 1967) is a classification algorithm

which labels its input by assigning it the most common y among the k points in

S which are closest to the input. This classifier has no loss function or indeed any

parameters other than k and S itself (i.e. it is nonparametric). However, all of the

methods we will utilize in this thesis follow the recipe of defining a model with

parameters θ which are adjusted by minimizing the average loss over S.

2.1.2 Sequential Data

A common scenario is that the data space X is fixed-dimensional, e.g. X ∈ R
D1×D2×···DN .

However, in some cases, one (or more) dimensions may vary in size. An important

example of this is sequential data, where a “temporal” dimension can differ between

examples. In addition, for real-world data the temporal dimension often contains
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strong dependencies and correlations. For some examples of common types of data

typically represented as sequences, see figure 1.1.

An illustrative example is text data where each datapoint is a sentence. Clearly,

the length of each sequence will vary (e.g. “I am happy.” and “This sentence is a

few words longer.” differ in length). In addition, there may be a strong dependency

between a given word in a sentence and the words that precede it. For example, “I

am hungry, please give me” is much more likely to be followed by the word “food”

than, say, “dirt”.

Different possible tasks involving sequential data can be broadly divided into

three categories: Sequence classification, embedding, and transduction. Sequence

classification involves applying a single label to entire sequences; for example, classi-

fying which of a finite number of people was speaking in an audio recording of an

utterance. Sequence embedding involves representing sequences as a single point

in a fixed-dimensional space with some desired properties. For example, instead of

classifying which person was speaking, we might instead embed audio recordings

as vectors in a Euclidean space such that recordings of the same speaker have a

small embedded distance and recordings of different speakers have a large distance.

Finally, sequence transduction involves converting an input sequence to a new se-

quence, potentially of different length and whose elements may lie in a different

space. Speech recognition is an exemplary case, where a sequence of discrete words

must be generated based on an audio recording.

2.1.3 Neural Networks

Most of the machine learning algorithms used in this thesis will come from a class of

models known as “neural networks”. Neural networks can be considered learnable

functions which consist of a sequence of nonlinear processing stages. First proposed
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in the 1940s (McCulloch and Pitts, 1943; Hebb, 1949), these models were designed

as an artificial model of the way the brain was understood to work at that time.

The modern understanding of the brain has diverged substantially from this model;

nevertheless, the name “neural network” has endured.

A predecessor to modern neural network models was the perceptron algorithm

(Rosenblatt, 1958). The perceptron is a simple linear model which can perform binary

classification of its input. Given an input feature vector x ∈ R
D, the perceptron

computes

f(x) =















1, w⊤x+ b > 0

0, otherwise

(2.6)

where w ∈ R
D and b ∈ R are the parameters of the model. These parameters are

adjusted so that the desired label (1 or 0) is produced given different inputs. A

common visualization of the perceptron is shown in figure 2.1.

The perceptron algorithm can only correctly classify its input when the data

is linearly separable by class. To remedy this, the “multilayer perceptron” was

proposed, which can be viewed as a sequence of perceptrons organized in “layers”,

each taking its input from the previous perceptron. In the multilayer perceptron,

each perceptron can output a vector of values rather a single value. Furthermore,

rather than producing a binary 1 or 0 depending on the sign of w⊤x+ b, the layers in

a multilayer perceptron may use any of a variety of nonlinear functions. In summary,

a given layer’s output is computed as

a = f(x) = σ(Wx+ b) (2.7)

where σ is a nonlinear “activation” function, x ∈ R
D is the layer’s input, W ∈ R

M×D

is the weight matrix, b ∈ R
M is the bias vector, a ∈ R

M is the layer’s output, and M
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x[1]

x[2]

x[3]

w[1]

w[2]

w[3
]

b

Figure 2.1: Diagram visualizing the perceptron of equation (2.6).
Each entry of x ∈ R

3 is multiplied by an entry of the weight vector w,
and the result is summed along with the bias b before being passed
into a Heaviside step function.

is the output dimensionality of the layer. The individual entries of a are referred to

as the layer’s “units”. The original perceptron is recovered when σ is the Heaviside

step function and M = 1. Under this generic definition, multilayer perceptrons are,

in fact, equivalent to what are now called feedforward networks; we will use this

terminology for the remainder of this thesis. Figure 2.2 shows a common schematic

used to represent feedforward networks.

In parallel seminal works (Cybenko, 1989; Hornik et al., 1989), it was shown

that feedforward networks with at least two layers with sufficiently many units

are universal function approximators when the activation function of each layer

is a “squashing” function (i.e. is monotonically increasing, limx→∞ σ(x) = 1 and

limx→−∞ σ(x) = 0). This implies that such models can approximate any function to

arbitrary precision.
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Figure 2.2: Schematic of a feedforward network (realized as a belt
buckle). Each column of nodes represents the number of units in
each layer; this particular diagram shows two input units, a single
hidden layer with three units, and a single output unit. Lines indicate
connections between units in each layer, i.e. entries of each weight
matrix. Aside from those in the input layer, each node indicates
summing of its input, adding a bias, and applying a nonlinearity.

Of course, the ability of a model to approximate any function is only valuable

when there is a reliable method to adjust its parameters so that the desired function

is suitably approximated. Currently, the most pervasive method to achieve this is

“backpropagation”, which computes the gradient of an error function which measures

the deviation between the network’s output and the target output with respect to the

model parameters (Rumelhart et al., 1986). We give a derivation of backpropagation

for feedforward networks in the following section. In the supervised learning context,

the error function computes the deviation between the network’s output and the

target for input-target pairs in the training set S. As a result, for supervised learning,

universal approximation only implies that the multilayer feedforward network can

“memorize” the target output for each input in the training set S but not that it
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can produce the correct y for x 6∈ S. This is referred to as “overfitting”, and is an

undesirable property of machine learning models.

Despite this issue, feedforward networks have proven to be extremely effective

models in a variety of machine learning tasks. This success is thanks to a suite

of methods and model designs which allow them to be trained effectively, over

potentially very large datasets, while avoiding overfitting. It has also led to the

development of variants which are more appropriate for sequential data (recurrent

networks) and data with local regularities (convolutional networks). In the following

sections, we give an overview of these different developments and approaches.

2.1.3.1 Backpropagation

Backpropagation is a method for efficiently computing the gradient of a loss function

applied to a neural network with respect to its parameters. These partial derivatives

can then be used to update the network’s parameters using gradient descent methods.

In truth, backpropagation is a special case of the more generic “reverse-mode

automatic differentiation” method. Deriving backpropagation involves numerous

clever applications of the chain rule for functions of vectors.

While originally introduced earlier, the widespread adoption of backpropagation

for training neural networks is largely thanks to Rumelhart et. al’s seminal paper

(Rumelhart et al., 1986). Backpropagation is so successful and widely applied that in

some sense the term “neural network” has become genericized to mean “a machine

learning model for which backpropagation is applicable”. Because it is fundamental

in many of the approaches proposed in this thesis, we give a full derivation of

backpropagation for a simple multilayer feedforward network in this section. A

similar, higher-level and more verbose derivation can be found in (Nielsen, 2015).
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By way of review, the chain rule is a way to compute the derivative of a function

whose variables are themselves functions of other variables. If L is a scalar-valued

function of a scalar z and z is itself a scalar-valued function of another scalar variable

w, then the chain rule states that

∂L
∂w

=
∂L
∂z

∂z

∂w
(2.8)

For scalar-valued functions of more than one variable (e.g. a scalar-valued function

of a vector), the chain rule essentially becomes additive. In other words, if L is a

scalar-valued function of a vector z ∈ R
N , whose entries are each a function of some

variable w, the chain rule states that

∂L
∂w

=
N
∑

i=1

∂L
∂z[i]

∂z[i]

∂w
(2.9)

In the following, we’ll discuss backpropagation through an L-layer feedforward

network, where Nn is dimensionality of layer n ∈ {0, . . . , L}. N0 is the dimensionality

of the input; NL is the dimensionality of the output. The mth layer, for m ∈

{1, . . . , L} has parameters Wm ∈ R
Nm×Nm−1 , the weight matrix, and bm ∈ R

Nm ,

the bias vector. Wm[i, j] is the weight between the ith unit in layer m and the jth

unit in layer m − 1. Each layer computes zm ∈ R
Nm , a linear mix of its inputs,

by zm = Wmam−1 + bm, and the activation am = σm(zm) where σm is the layer’s

nonlinear activation function. aL is the output of the network. We define the special

case a0 as the input of the network. We denote y ∈ R
NL as the target output,

treated as a constant. The loss function L(aL, y) is used to measure the error of the

network’s output compared to the target.

In order to train the network using a gradient descent algorithm, we need to know

the gradient of each of the parameters with respect to the loss function L; that is,
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we need to know ∂L/∂Wm and ∂L/∂bm. It will be sufficient to derive an expression

for these gradients in terms of the following terms, which we can compute based on

the neural network’s architecture: ∂L/∂aL, the derivative of the loss function with

respect to the output of the network, and ∂am/∂zm, the derivative of the nonlinearity

used in layer m with respect to its argument zm.

To compute the gradient of our loss function L with respect to Wm[i, j] (a single

entry in the weight matrix of the layer m), we can first note that L is a function

of aL, which is itself a function of the linear mix output entries zm[k], which are

themselves functions of the weight matrices Wm and biases bm. With this in mind,

we can use the chain rule as follows:

∂L
∂Wm[i, j]

=

Nm
∑

k=1

∂L
∂zm[k]

∂zm[k]

∂Wm[i, j]
(2.10)

Note that by definition

zm[k] =

Nm
∑

l=1

Wm[k, l]am−1[l] + bm[k] (2.11)

It follows that ∂zm[k]/∂Wm[i, j] will evaluate to zero when k 6= i because zm[k] does

not interact with any elements in Wm except for those in the kth row, and we are

only considering the entry Wm[i, j]. When k = i, we have

∂zm[i]

∂Wm[i, j]
=

∂

∂Wm[i, j]

(

Nm
∑

l=1

Wm[i, l]am−1[l] + bm[i]

)

(2.12)

= am−1[j] (2.13)

→ ∂zm[k]

∂Wm[i, j]
=















0 k 6= i

am−1[j] k = i

(2.14)
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Combining equation (2.14) with equation (2.10) causes the summation to collapse,

giving

∂L
∂Wm[i, j]

=
∂L

∂zm[i]
am−1[j] (2.15)

or in vector form

∂L
∂Wm

=
∂L
∂zm

a⊤m−1 (2.16)

Similarly for the bias variables bm, we have

∂L
∂bm[i]

=

Nm
∑

k=1

∂L
∂zm[k]

∂zm[k]

∂bm[i]
(2.17)

As above, it follows that ∂zm[k]/∂bm[i] will evaluate to zero when k 6= i because

zm[k] does not interact with any element in bm except bm[k]. When k = i, we have

∂zm[i]

∂bm[i]
=

∂

∂bm[i]

(

Nm
∑

l=1

Wm[il]am−1[l] + bm[i]

)

(2.18)

= 1 (2.19)

→ ∂zm[k]

∂bm[i]
=















0 k 6= i

1 k = i

(2.20)

Combining equation (2.20) and equation (2.17) again causes the summation to

collapse to give

∂L
∂bm[i]

=
∂L

∂zm[i]
(2.21)

or in vector form

∂L
∂bm

=
∂L
∂zm

(2.22)
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Now, we must compute ∂L/∂zm[k]. For the final layer (m = L), this term is

straightforward to compute using the chain rule:

∂L
∂zL[k]

=
∂L

∂aL[k]

∂aL[k]

∂zL[k]
(2.23)

or, in vector form

∂L
∂zL

=
∂L
∂aL

∂aL
∂zL

(2.24)

The first term ∂L/∂aL is just the derivative of the loss function with respect to its

argument, whose form depends on the loss function chosen. Similarly, ∂am/∂zm (for

any layer m including L) is the derivative of layer m’s nonlinearity with respect to

its argument and will depend on the choice of nonlinearity. For other layers, we

again invoke the chain rule:

∂L
∂zm[k]

=
∂L

∂am[k]

∂am[k]

∂zm[k]
(2.25)

=





Nm+1
∑

l=1

∂L
∂zm+1[l]

∂zm+1[l]

∂am[k]





∂am[k]

∂zm[k]
(2.26)

=





Nm+1
∑

l=1

∂L
∂zm+1[l]

∂

∂am[k]

(

Nm
∑

h=1

Wm+1[l, h]am[h] + bm+1[l]

)





∂am[k]

∂zm[k]

(2.27)

=





Nm+1
∑

l=1

∂L
∂zm+1[l]

Wm+1[l, k]





∂am[k]

∂zm[k]
(2.28)

=





Nm+1
∑

l=1

W⊤
m+1[k, l]

∂L
∂zm+1[l]





∂am[k]

∂zm[k]
(2.29)

(2.30)
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Nonlinearity am = σm(zm) ∂am
∂zm

Logistic
1

1 + ezm
am(1− am)

tanh
ezm − e−zm

ezm + e−zm
1− (am)2

Rectifier max(0, zm)

{

0, zm < 0

1, zm ≥ 0

Table 2.1: Common nonlinearities σm(zm) used in neural networks
and their derivatives with respect to their input zm.

where the last simplification was made because by convention ∂L/∂zm+1 is a column

vector, allowing us to write the following vector form:

∂L
∂zm

=

(

W⊤
m+1

∂L
∂zm+1

)

◦ ∂am
∂zm

(2.31)

where ◦ is the element-wise (Hadamard) product.

We now have the ingredients to efficiently compute the gradient of the loss

function with respect to the network’s parameters: First, we compute ∂L/∂zL based

on the choice of loss function and ∂am/∂zm based on each layer’s nonlinearity. Then,

we recursively can compute ∂L/∂zm layer-by-layer based on the term ∂L/∂zm+1

computed from the previous layer (this is called the “backward pass”). Finally,

the resulting ∂L/∂zm terms are then used to compute ∂L/∂Wm and ∂L/∂bm using

equation (2.10) and equation (2.17) respectively. Using this recipe requires ∂L/∂zL
and ∂am/∂zm to be known ahead of time. By way of example, table 2.1 and table 2.2

list some common loss functions and nonlinearities and their appropriate derivatives.

In summary, backpropagation proceeds in the following manner for each training

sample: For the “forward pass”, given the network input a0, compute am for

m ∈ {1, . . . , L} recursively by am = σm(Wmam−1 + bm). For the ”backward pass”,
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Loss Function L(aL, y) ∂L
∂aL

Squared Error
1

2
(y − aL)

⊤(y − aL) y − aL

Cross-Entropy (y − 1) log(1− aL)− y log(aL)
aL − y

aL(1− aL)

Table 2.2: Common loss functions L(aL, y) used in neural networks
and their (sub)gradients with respect to their input aL.

compute

∂L
∂zL

=
∂L
∂aL

∂aL
∂zL

(2.32)

whose terms are all known a priori, then recursively compute

∂L
∂zm

=

(

W⊤
m+1

∂L
∂zm+1

)

◦ ∂am
∂zm

(2.33)

and use the resulting values to compute

∂L
∂Wm

=
∂L
∂zm

a⊤m−1 (2.34)

and

∂L
∂bm

=
∂L
∂zm

(2.35)

From this procedure, we can see why backpropagation is an efficient way to

compute these partial derivatives: By reusing terms, all of the partial derivatives

can be computed by a single forward and backward pass. For a feedforward network,

the computational cost of each of these passes is effectively L matrix multiplications.

A simple alternative would be to measure the change in L by adjusting each of

the parameters (i.e. individual elements of the weight matrices and bias vectors)

by a small amount. However, this would require a separate forward pass for each
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parameter. Modern neural networks contain millions of parameters, so clearly

backpropagation is an efficient choice.

2.1.3.2 Tricks

Combined with a gradient descent technique, backpropagation provides an effective

method for optimizing the parameters of a neural network (“training”) to minimize a

given loss function. However, training neural networks is made difficult in practice by

a variety of factors. First, the composition of the many nonlinear processing layers in

a neural network make the resulting loss function highly non-convex. Non-convexity

means that, when minimizing the network’s loss function with gradient descent

methods, there is no guarantee that a given stationary point is a global minimum. It

also implies that both the way the parameters are initialized prior to optimization

and the gradient descent technique used may have a very strong effect on the best

solution found during optimization.

As mentioned above, the universal approximation property of neural networks

can also have negative implications for their utility. The fact that a possible outcome

of training a neural network is the simple memorization of correspondences in the

training set means that the resulting model may be of little use in practice. As a

result, in many cases it is necessary to use some form of regularization when training

the network to prevent it from overfitting to the training set.

Finally, feedforward networks with many layers are also prone to the problem of

“vanishing and exploding gradients”. This issue is caused by the fact that as gradients

are backpropagated through layers, they are multiplied by each successive weight

matrix and the derivative of each nonlinearity (as shown in equation (2.31)). When

the spectral norm of the weight matrices and/or the gradients of the nonlinearities are

substantially greater than or less than one, the resulting backpropagated gradients



2. Tools 28

can become exponentially smaller or larger as they approach “early” layers in the

network. This can effectively prevent the parameters of the first few layers from

being adjusted, which can greatly inhibit learning.

Fortunately, there has been a great deal of development into methods for miti-

gating these issues. Collectively, these techniques have been dubbed “deep learning”

thanks to their applicability to networks with many layers. In this section, we

motivate and describe those techniques which are used in this thesis. Practical and

broader overviews can be found in (Bengio, 2012; LeCun et al., 2012, 2015).

Number and Size of Layers When designing a neural network model, one

of the first choices which must be made is the number of layers and their sizes

(output dimensionality). Because early theory proved that networks with a single

hidden layer could approximate any function arbitrarily well given that the layer

was sufficiently “wide” (having many units) (Cybenko, 1989; Hornik et al., 1989),

and because networks with many layers can be more difficult to train due to the

vanishing and exploding gradients problem (Glorot and Bengio, 2010; Erhan et al.,

2009), early applications of neural networks typically only used a single hidden layer.

However, recent results have shown that using many layers can help networks learn

a hierarchical transformation to more and more abstract representations which, for

real-world problems, can be highly beneficial (Bengio, 2009). Furthermore, it has

been shown that for some simple problems, networks with many hidden layers are

exponentially more efficient than networks with a single hidden layer with many

units (Bengio and Delalleau, 2011). Coupled with recent advances in training very

deep networks (Glorot et al., 2011; Glorot and Bengio, 2010; Bengio et al., 2007;

Hinton et al., 2006, 2012; Hinton and Salakhutdinov, 2006; Sutskever et al., 2013;

Ioffe and Szegedy, 2015; He et al., 2015; Ciresan et al., 2010), the paradigm of “deep”
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networks (having many layers) has come to dominate.

Regardless of depth, the dimensionality of each intermediate representation (the

“layer sizes”) must be chosen. While increasing the dimensionality may increase

modeling power, it also exacerbates overfitting and incurs a greater computational

loss. However, Graphics Processing Units (GPUs) have recently been used to

accelerate neural network models thanks to their ability to quickly perform large

matrix multiplications. As a result, in modern practice “wide” layers are used in

combination with regularization techniques (Bengio, 2012).

Nonlinearities A fundamental ingredient of neural networks is the elementwise

nonlinearity applied at each layer; without them, the network would only be able

to learn linear relationships between its input and output. Early work typically

used sigmoidal nonlinearities such as the logistic or hyperbolic tangent functions

(see table 2.1). However, these nonlinearities have a very small gradient for much of

their domain which can cause vanishing gradient problems particularly for networks

with many layers. Recently, the rectifier nonlinearity has become the standard for

deep networks due to its computational efficiency and tendency to produce sparse

representations (Jarrett et al., 2009; Glorot et al., 2011; Nair and Hinton, 2010).

The rectifier nonlinearity has zero gradient for half of its domain, which can hinder

training in some cases; as a result a number of variants have recently been proposed

which have been shown empirically to produce better results in some cases (Maas

et al., 2013; He et al., 2015).

Regularization Due to their tendency to overfit, some form of regularization is

typically necessary to ensure that the optimized neural network’s variance is not too

high. A common regularizer which is used in many machine learning models is to

include in the loss function a penalty on the norm of the model’s parameters. In
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neural networks, adding the L2 penalty λ
∑

i θ
2
i where λ is a hyperparameter and

θi are the model’s parameters (e.g. individual entries of the weight matrices and

bias vectors) is referred to as “weight decay” (Hanson and Pratt, 1989). This can

prevent the weight matrix of a given layer from focusing too heavily (via a very

large weight value) on a single unit of its input. A related term is λ
∑

i |θi| which

effectively encourages parameter values to be zero (Bengio, 2012).

A completely different regularization method which has recently proven popular

in neural networks is “dropout” (Hinton et al., 2012). In dropout, at each training

iteration each unit of each layer is randomly set to zero with probability p. After

training, the weights in each layer are scaled by 1/p. Dropout intends to prevent the

units of a given layer from being too heavily correlated with one another by randomly

artificially removing connections. More simply, it provides a source of noise which

prevents memorization of correspondences in the training set and has been shown

empirically and theoretically (Wager et al., 2013) to be an effective regularizer.

In practice, the technique of “early stopping” is almost always used to avoid

overfitting in neural network models (Prechelt, 2012). To utilize early stopping,

during training the performance on a held-out “validation set” (over which the

parameters of the network are not optimized by gradient descent) is computed.

Overfitting is indicated by performance degrading on the validation set, which

simulates real-world performance. As a result, early stopping effectively prevents

overfitting by simply stopping training once the performance begins to degrade. The

measure of performance and criteria for stopping my vary widely from task to task

(and practitioner to practitioner) but the straightforwardness and effectiveness of

this approach has led it to be nearly universally applied.

Of course, regularization can be rendered unnecessary when a huge amount of

training data is available. This is commonly simulated by applying hand-designed re-
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alistic deformations to the training data, which is referred to as “data augmentation”.

For example, applying elastic distortions to images can allow simple, unregularized

neural network models to match the performance of more complex architectures

(Ciresan et al., 2010). Data augmentation has also been explored in the domain of

audio and music signals (McFee et al., 2015a; Schlüter and Grill, 2015).

Parameter Initialization Because the objective functions used for training neural

networks tend to be highly non-convex, the way parameters are initialized prior

to training can have a substantial effect on the solutions found after optimization

(Sutskever et al., 2013). In fact, the recent success of neural network models was

prompted by a new method for setting parameter values prior to supervised training

called “unsupervised pretraining”. Unsupervised pretraining starts by training an

unsupervised model (e.g. a Restricted Boltzmann Machine (Hinton and Salakhutdinov,

2006; Hinton et al., 2006) or an autoencoder (Bengio et al., 2007; Erhan et al., 2009))

and then using the parameters from that model to initialize a supervised model.

Ideally, the unsupervised model will take care of disentangling factors of variation

and producing a more efficient representation of the input space. After initialization

with values from the unsupervised model, training of the model proceeds in the

normal supervised fashion. This can greatly accelerate learning, and is of particular

use when there is a great deal more unlabeled data available than labeled data.

It has more recently been shown that unsupervised pretraining can be skipped

(provided that there is a sufficient amount of labeled data) by carefully initializing

the network’s parameters. This typically involves sampling the values of the weight

matrices from zero-mean Gaussian distributions whose variances are set so that the

representation at each layer’s output has unit variance. The actual variances used

for the random variables depends on the input and output dimensionality as well as
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the nonlinearity; (Glorot and Bengio, 2010) provides a derivation for linear networks,

(He et al., 2015) for rectifier networks and (Mishkin and Matas, 2015) gives a generic

empirical procedure for any network architecture. An alternative is to use orthogonal

matrices (Saxe et al., 2013) or to use a sparse initialization so that a fixed number

of entries are non-zero (Sutskever et al., 2013).

Input Normalization Most of the analysis performed on neural networks in

order to determine how to facilitate training rely on the assumption that the feature

dimensions of the input to the network have zero mean and unit variance. A necessary

step in order to take advantage of many of these tricks is then to standardize the

feature dimensions of the input, typically using statistics computed on the training

set. An alternative which can also facilitate convergence is to whiten data using

Principal Component Analysis before presenting it to the network (LeCun et al.,

2012).

Model Architecture Beyond the simple feedforward network model we have

focused on thus far, a variety of more specialized models have been proposed

which intend to exploit different types of structure present in real-world data. For

example, presenting sequential data one step at a time to a feedforward network

assumes temporal independence, which is invalid for most real-world temporal data.

Other types of data, such as images, exhibit local dependencies which are invariant

to translation. Modeling this type of structure can be greatly facilitated by the

important choice of model architecture. We give an overview of the two most relevant

architectures for sequential data, recurrent and convolutional networks, in the next

two sections.



2. Tools 33

2.1.3.3 Recurrent Networks

A natural extension to feedforward networks are recurrent connections, which feed

the output of parts of the model back into their input. The resulting model can be

considered a learnable function which at each time step produces an output based

on its current input and previous output. This class of models, called recurrent

networks or RNNs, are well-suited for sequential data due to their ability to model

temporal dependencies.

Training of recurrent networks is typically accomplished using “backpropagation

through time” (BPTT) (Werbos, 1990). BPTT is a simple extension of backprop-

agation where, given a sequence of length T , the recurrent network is “unrolled”

over time and is treated as a feedforward network with T layers, each of which

corresponds to a single time step. While BPTT provides a straightforward way to

train recurrent networks, this approach can suffer dramatically from vanishing and

exploding gradients for large values of T for the same reasons that networks with

many layers do (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997; Pascanu

et al., 2013). The use of gating architectures (Hochreiter and Schmidhuber, 1997;

Cho et al., 2014), sophisticated optimization techniques (Martens and Sutskever,

2011; Sutskever et al., 2013), gradient clipping (Pascanu et al., 2013; Graves, 2013),

and/or careful initialization (Sutskever et al., 2013; Jaeger, 2012; Mikolov et al.,

2014; Le et al., 2015) can help mitigate this issue and has facilitated the success

of RNNs in a variety of fields (see e.g. (Graves, 2012) for an overview). However,

these approaches don’t solve the problem of vanishing and exploding gradients for

recurrent networks, and as a result these models are in practice typically only applied

in tasks where sequential dependencies span at most hundreds of time steps. Because

the representations used for audio data are typically at least thousands of time steps

in length, we will not use recurrent networks in this thesis, although we will use
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them as a point of comparison and motivation in some places.

2.1.3.4 Convolutional Networks

For many types of data (represented as multi-dimensional arrays), one or more

of the dimensions may have an explicit ordering. Most relevant to this thesis is

sequential data, which always has a temporal dimension. Traversing this dimension

corresponds to the passing of time; if one event occurred before another, it will appear

first. Similarly, images have “width” and “height” dimensions, which correspond

to left-right and top-bottom traversal. In many cases, the correlations along these

dimensions are highly localized. For example, in a text document the probability

that a given word appears in a certain place depends much more strongly on the

words appearing around it than it does on words which appeared hundreds of words

ago.

The “fully-connected” feedforward networks we have discussed so far cause the

output of each layer to depend on each unit of the layer’s input due to the fact that

the weight matrix has an entry which connects each input unit to each output unit.

This ignores the structure of data with an ordered dimension and may be inefficient

when most of the dependencies are local. The convolutional network architecture

is formulated specifically to take advantage of this common structure. As their

name suggests, rather than utilizing an affine transformation using a fully-connected

matrix, layers in these models convolve small filter “kernels” across their input.

Networks with this structure were first proposed by Fukushima (Fukushima, 1980)

and training them with backpropagation was popularized by LeCun et. al (LeCun

et al., 1989). Recently, convolutional networks have provided breakthroughs in a

variety of domains, including image classification (Krizhevsky et al., 2012; He et al.,

2015; Szegedy et al., 2015), speech recognition (Abdel-Hamid et al., 2012; Sainath
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et al., 2013), music information retrieval (Humphrey and Bello, 2012; Van den Oord

et al., 2013; Schlüter and Böck, 2014; Ullrich et al., 2014; McFee et al., 2015a; Schlüter

and Grill, 2015), and natural language processing (Kim, 2014; Zhang and LeCun,

2015).

In the two-dimensional case (as used in this thesis), a convolutional layer takes

as input x ∈ R
M×Ix×Iy and outputs y ∈ R

N×Jx×Jy by computing

y[n, jx, jy] = σ





M
∑

m=1

Kx
∑

kx=1

Ky
∑

ky=1

w[n,m, kx, ky]x[m, jx + kx, jy + ky] + b[n]



 (2.36)

where w ∈ R
N×M×Kx×Ky are the layer’s filters (also referred to as kernels), σ is

a nonlinearity, and b ∈ R
N are the layer’s biases. This operation is visualized in

figure 2.3. The first dimension of x and y is referred to as the “channels” and can be

considered different views or representations of the data (e.g. R, G, and B channels

in images or left and right channels in a stereo audio recording). The remaining

dimensions are feature dimensions, each of which is assumed to have an inherent

ordering which is exploited by the translation inherent in the convolution operation.

The exact form of equation (2.36) depends on a variety of design choices, such as the

convolution’s stride, whether the convolution is zero-centered, whether biases are

shared across input channels, whether a correlation or convolution is computed, and

whether the input will be zero-padded. We forgo a complete enumeration of these

differences here and instead refer to (Dumoulin and Visin, 2016), which provides a

thorough discussion of the arithmetic involved in convolutional networks.

From this definition, we can observe a number of beneficial properties of using

convolutional networks. First, the number of parameters per layer is potentially

dramatically decreased: Following the common practice of “flattening” dimensions,

a fully-connected layer with the same input and output dimensionality would have



2. Tools 36

Figure 2.3: Visualization of the convolution operation defined in
equation (2.36). The input and output are shown as 6×6 and 4×4 grids
of units respectively. The output unit highlighted in green depends on
the green input units via a 3× 3 filter. Convolution involves evaluating
this filtering operation at all possible positions in the input.

a weight matrix of shape NJxJy × IxIy, compared with N × M × Kx × Ky with

Kx < Jx ≤ Ix and Ky < Jy ≤ Ix. This is commonly referred to as “parameter

sharing”, because the same set of weights are applied at different locations in the

input rather than using a unique weight for each position. This property also gives

the convolutional layer translational invariance, i.e. the ability to detect a certain

pattern regardless of where it appears in the image. A final advantage to using a

convolution operation is that the layer can naturally handle inputs whose feature

dimensions vary in size – the kernels simply slide over the input regardless of its

shape. This makes convolutional networks well-suited for sequential data whose
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length varies.

An additional ingredient commonly found in convolutional networks are pooling

layers, which provide additional translational invariance by aggregating their input

over small regions. The most common pooling layer, and the only one used in this

thesis, is the max-pooling layer, which outputs the maximum value within each

input region. Given input x ∈ R
M×Ix×Iy , a max-pooling layer with stride p produces

y ∈ R
M× Ix

p
×

Iy

p by

y[m, jx, jy] = max
nx∈{1,...,p}
ny∈{1,...,p}

(x[m, pjx + nx, pjy + ny]) (2.37)

for jx ∈ 1, . . . , Ixp and jy ∈ 1, . . . ,
Iy
p . The value of p = 2 is almost uniformly used.

The max-pooling layer can thus be seen as indicating whether a given feature is

present or absent over a region of the input. Because pooling layers effectively

downsample their input, they can be used to increase the “receptive field” (region of

the input affecting a single unit of the output) of layers in networks consisting of

many convolutional and pooling layers.

Finally, in convolutional networks it is common for the last few layers to be

standard fully-connected layers. This gives the output of the network access to the

entire input region. In this framework, the series of convolutional and pooling layers

transform and downsample the input, providing appropriate invariances and often

learning a hierarchy of higher and higher-level representations (Zeiler and Fergus,

2014). In domains where none of the dimensions of the input vary from sample

to sample, all of the dimensions of the output of the convolutional portion of the

network are flattened prior to being passed to the fully-connected layers. When one

or more dimensions are variable in size, only the fixed-size dimensions are processed

by the fully-connected layers. For example, in sequences where the sequence length
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varies, the output of the convolutional layers for each time step are passed to the

fully-connected layers independently.

2.1.4 Stochastic Optimization

In modern practice, the datasets used for training neural networks are typically huge,

so optimizing their parameters over the entire training set is often inefficient and

sometimes infeasible. The prevailing solution is to train over a tiny subset of the

training set (called a “minibatch”) which is sampled randomly at each iteration.

This causes the objective to change stochastically at each iteration of optimization.

Beyond practical limitations, using a stochastic objective has also been shown to

help avoid stationary points because the objective surface is constantly changing

(LeCun et al., 2012).

So far, we have only alluded to the fact that the gradient information produced

by backpropagation is used to train a neural network. This is achieved using gradient

descent methods, which specify a formula to adjust the network’s parameters to

minimize an objective. In many problems, it is beneficial to leverage second-order

gradient information to estimate the local curvature of the objective function during

optimization (for intuition as to why this is true, see section 2.1.4.1). However, the

number of entries in the Hessian (matrix of second-order derivatives) is quadratic in

the number of parameters, which makes computing it infeasible for modern neural

network models which typically have millions of parameters. As a result, neural

networks are typically trained using gradient descent methods which only utilize

first-order gradient information.

A final difficulty in training neural networks is that changing different parameters

can have substantially different effects on the objective value. For example, even in

simple feedforward networks, adjusting a value in the final layer’s bias vector may
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induce a considerable change in typical outputs of the network while changing a

value in the first layer’s weight matrix may only produce a small effect in a limited

number of cases. This problem can be exacerbated when different structures are used

in different parts of the network, e.g. convolutional or recurrent layers. As a result,

it can be beneficial to update different parameters by different amounts according to

the extent to which they effect the objective value.

The stochastic objective arising from training on minibatches and the requirement

of only utilizing first-order gradients prompts the use of a special class of gradient

descent methods called stochastic optimization. Effective stochastic optimization

techniques typically include mechanisms for smoothing the updates, which helps

mitigate noise from stochasticity; for estimating second-order information, which

improves convergence; and for adaptively updating different parameters by different

amounts. In addition, most optimization methods have at least one hyperparame-

ter (i.e. a model parameter not adjusted by gradient descent); good optimization

techniques are able to be effective without being particularly sensitive to their hy-

perparameter values. In this section, we discuss some of the more popular stochastic

optimization methods, particularly those which are used or referenced to in this

thesis. Similar overviews are available in (Ruder, 2016; Bayer et al., 2015), and

(Schaul et al., 2013) provides a comparison of many of these techniques on a variety

of toy optimization problems.

In the following, we will use L to refer to the loss function being minimized. L

is typically a function of the target output, the input, and the parameters being

optimized; because all but the latter can be treated as a constant, we omit those

terms in this section. In addition, because the parameters change from iteration to

iteration we will use θt to denote the parameters of the model at iteration t. Finally,

∇L(θt) denotes the gradient of the loss function with respect to the parameters at
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iteration t.

2.1.4.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) simply updates each parameter by subtracting

the gradient of the loss with respect to the parameter, scaled by the “learning rate”

hyperparameter η:

θt+1 = θt − η∇L(θt) (2.38)

SGD provides the fundamental ingredient on which other stochastic optimization

methods are built. Provided that η is set correctly, SGD will decrease the loss

function at each iteration because it is adjusting the parameters in the negative

gradient direction. However, if η is too large, SGD can diverge (increase the loss

function or oscillate between increasing and decreasing it); if it’s too small, it will

decrease the objective value very slowly (LeCun et al., 2012). This sensitivity to

the setting of η is visualized in figure 2.4. In addition, when the loss surface is

ill-conditioned (i.e. the curvature of the loss surface is dramatically different along

different parameter axes), convergence can also be extremely slow because η must be

set small enough so that it does not diverge along any parameter axis. Nevertheless,

SGD can be effective when η is chosen correctly; a common heuristic is to choose

the largest value of η which does not cause divergence by starting with a large η and

decreasing it by a factor of 3 until optimization no longer diverges (Bengio, 2012).

2.1.4.2 Momentum

In SGD, the gradient ∇L(θt) often changes rapidly at each iteration due to the fact

that the loss is being computed over different data. It can therefore be beneficial to

smooth the updates at each iteration. This can be achieved by re-using the gradient

value from the previous iteration, scaled by a “momentum” hyperparameter µ, as
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Figure 2.4: Visualization of the sensitivity of gradient descent to the
learning rate η. The function being optimized is a simple quadratic
function represented as a blue line, and each iteration of optimization
is represented as a black dot with the initial point circled. In the top
left, the learning rate is set too high and the optimization will diverge.
In the top right, the learning rate is small enough that optimization
will eventually converge, albeit slowly due to oscillations around the
minimum. In the bottom left, the learning rate is set near-optimally
and the minimum has effectively been reached in two iterations. In the
bottom right, the learning rate is set too small and progress towards
the minimum is slow.

follows (Polyak, 1964):

vt+1 = µvt − η∇L(θt) (2.39)

θt+1 = θt + vt+1 (2.40)

In addition, it has been argued that including the previous gradient step has the

effect of approximating some second-order information about the gradient because

directions with low curvature will tend to persist across iterations and accumulate,

which can mitigate conditioning issues (Sutskever et al., 2013). In practice, µ is

often set close to 1; this will cause the gradient updates to change slowly from
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iteration to iteration. While early theory and intuition suggested that some of the

benefits of momentum are lost in the stochastic setting (LeCun et al., 2012), it can

be particularly beneficial in the early stages of learning before the loss function is

close to any minima.

2.1.4.3 Nesterov’s Accelerated Gradient

In Nesterov’s Accelerated Gradient (NAG) (Nesterov, 1983), the gradient of the loss

at each step is computed at θt + µvt instead of θt. The update rules are then as

follows:

vt+1 = µvt − η∇L(θt + µvt) (2.41)

θt+1 = θt + vt+1 (2.42)

In momentum, the parameter update could be written θt+1 = θt + µvt − η∇L(θt), so

NAG effectively computes the gradient at the new parameter location but without

considering the gradient term (i.e. using the first two terms of this update only). In

practice, this causes NAG to behave more stably than regular momentum in many

situations, and so it is often chosen over classical momentum. A more thorough

analysis can be found in (Sutskever et al., 2013).

2.1.4.4 Adagrad

Adagrad (Duchi et al., 2011) effectively rescales the learning rate for each parameter

according to the history of the gradients for that parameter. This is done by dividing
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each term in ∇L by the square root of the sum of squares of its historical gradient:

gt+1 = gt +∇L(θt)2 (2.43)

θt+1 = θt −
η∇L(θt)√
gt+1 + ǫ

(2.44)

where division is elementwise and ǫ is a small constant included for numerical

stability. Rescaling in this way effectively lowers the learning rate for parameters

which consistently have large gradient values, which can be particularly useful in

ill-conditioned settings. It also effectively decreases the learning rate over time,

because the sum of squares will continue to grow with the iteration. This can

prove beneficial as the loss function becomes close to a minimum, where only small

adjustments to the parameters are needed.

2.1.4.5 RMSProp

In its originally proposed form (Tieleman and Hinton, 2012), RMSProp is very

similar to Adagrad. The only difference is that the gt term is computed as an

exponentially decaying average instead of an accumulated sum. This makes gt an

estimate of the second moment of ∇L and prevents the learning rate from effectively

shrinking over time. The name “RMSProp” comes from the fact that the update

step is normalized by a decaying approximate root-mean-squared (RMS) of recent

gradients. The update is as follows:

gt+1 = γgt + (1− γ)∇L(θt)2 (2.45)

θt+1 = θt −
η∇L(θt)√
gt+1 + ǫ

(2.46)

In the original lecture slides where it was proposed, γ is set to .9, but it is most

commonly treated as a variable hyperparameter. In (Dauphin et al., 2015), it is shown
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that the
√
gt+1 term approximates (in expectation) the diagonal of the absolute

value of the Hessian matrix (assuming the update steps are N (0, 1) distributed). It

is also argued that the absolute value of the Hessian is better to use for non-convex

problems which may have many saddle points.

Alternatively, (Graves, 2013) defines RMSProp with an additional first moment

approximator mt and a momentum term vt:

mt+1 = γmt + (1− γ)∇L(θt) (2.47)

gt+1 = γgt + (1− γ)∇L(θt)2 (2.48)

vt+1 = µvt −
η∇L(θt)

√

gt+1 −m2
t+1 + ǫ

(2.49)

θt+1 = θt + vt+1 (2.50)

Including the first-order moment estimate in the denominator in this way causes the

learning rate to be effectively normalized by the standard deviation of ∇L in each

direction.

2.1.4.6 Adam

Adam (Kingma and Ba, 2015) is somewhat similar to Adagrad and RMSProp in

that it computes a decayed moving average of the gradient and squared gradient

(first and second moment estimates) at each time step. It differs mainly in two ways:

First, the separate moving average coefficients γ1 and γ2 are used for first and second

moments respectively (equation (2.52) and equation (2.53)). Second, because the

first and second moment estimates are initialized to zero, some bias-correction is used

to counteract the resulting bias towards zero (equation (2.54) and equation (2.55)).

Given hyperparameters γ1, γ2, λ, and η, and setting m0 = 0 and g0 = 0, the update
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rule is as follows:

mt+1 = γ1mt + (1− γ1)∇L(θt) (2.51)

gt+1 = γ2gt + (1− γ2)∇L(θt)2 (2.52)

m̂t+1 =
mt+1

1− γt+1
1

(2.53)

ĝt+1 =
gt+1

1− γt+1
2

(2.54)

θt+1 = θt −
ηm̂t+1

√

ĝt+1 + ǫ
(2.55)

The use of the estimated first and second moments ensure that, in most cases, the

step size is ≈ ±η and that in magnitude it is less than η. However, as θt approaches

a true minimum, the uncertainty of the gradient will increase and the step size will

decrease. It is also invariant to the scale of the gradients. These properties make it

well-suited for neural network architectures, and as a result Adam has seen rapid

adoption.

2.1.5 Bayesian Optimization

From the discussion above, it is clear that beyond the parameters of neural network

models which are optimized by gradient descent (weight matrices, bias vectors,

etc.), there are additional “hyperparameters” which govern specifics of the model

architecture, loss function, and training. These hyperparameters are so called because

they are not optimized through gradient descent with the rest of the parameters.

Nevertheless, the success or failure of training a given model will often heavily depend

on these hyperparameters being set appropriately.

This problem fits into the general framework of black-box optimization, where we

would like to maximize an objective function which produces different values based
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on different parameter settings. In this framework, we assume that we do not have a

way to compute an analytical solution or have access to gradient information about

the function and thus can only make decisions about what parameter settings to try

based on the history of function evaluation results for different settings. For example,

the function may be a mapping between hyperparameters governing the structure of

a neural network model (number and width of layers, weight initialization scheme,

etc.), its loss function (which loss function to use, whether to include regularization),

and training procedure (which stochastic optimization technique to use, each of

which has its own hyperparameters such as the learning rate) and the objective value

could be the trained model’s accuracy on a held-out validation set. Alternatively, one

could consider the process of baking a cake in this framework, where the parameters

are the amount and quantity of each ingredient as well as the baking temperature

and time and the objective value is how good the cake tastes.

In practice, this type of problem is often tackled by adjusting parameters by hand

based on a series of trials of different settings. This approach can be extremely time

consuming and expensive and may produce suboptimal results, so various approaches

for automating this process have been proposed. A popular choice is “grid search”,

which first quantizes any continuously-valued parameters and then exhaustively tries

all combinations of all settings. This approach is only feasible when there are few

parameters and possible settings due to the exponential number of trials which must

be run. In addition, it has been shown that grid search is often less efficient than

simply randomly trying different parameter values, particularly when the setting of

one or more parameters does not have a strong effect on the objective value (Bergstra

and Bengio, 2012). While grid search and random search can be effective, neither

utilize the results of previous trials to inform subsequent parameter settings.
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A valuable alternative is Bayesian optimization, which utilizes all of the informa-

tion available in previous trials to produce a probabilistic model of the black-box

function being optimized. This requires more computation than methods which only

use local approximations of the function, but can produce good solutions to highly

non-convex functions after making only a small number of function evaluations. This

is particularly valuable when the function itself is expensive to evaluate, as is the case

when training machine learning models which take hours, days, or weeks (or when

baking cakes, due to the price of ingredients). The use of a probabilistic model of

the black-box function being optimized both allows for candidate parameter settings

to be chosen in a principled way and for prior information to be integrated into the

optimization process. We utilize Bayesian optimization techniques throughout this

thesis for black-box optimization of different algorithms and systems. This section

provides a brief overview of Bayesian optimization; for more thorough treatments see

(Brochu et al., 2010; Snoek et al., 2012). A visualization of Bayesian optimization is

shown in figure 2.5.

2.1.5.1 Gaussian Processes

Utilizing Bayesian optimization requires first choosing a prior over functions which

expresses beliefs about the behavior of the function being optimized. A common

choice are Gaussian processes, which associate every point in the (continuous)

parameter space with a normally distributed random variable. An alternative

definition is that every finite collection of points in the parameter space induces a

multivariate Gaussian distribution. In the setting of Bayesian optimization, this

corresponds to assuming that the objective values are characterized by Gaussian

distributions.

More formally, given parameter settings θ ∈ Θ where Θ is the parameter space,
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Objective

Expected improvement

Figure 2.5: Visualization of Bayesian optimization of a synthetic one-
dimensional objective function, shown as a blue line. Points at which
the objective has been evaluated are shown as black dots. The gray
shaded area shows the posterior estimate of the function, modeled by
a Gaussian process with a squared exponential kernel. The acquisition
function, calculated using expected improvement, is shown in green.
Due to the locations of the objective evaluations, the posterior estimate
has failed to account for the true maximum at the right of the plot.

a Gaussian process is characterized by a mean function m : Θ → R and covariance

function k : Θ×Θ → R. The mean function is (without loss of generality) typically

assumed to be zero, while the choice of the covariance function allows strong as-

sumptions to be made about the function being estimated. A common choice is the

squared exponential kernel

k(θi, θj) = exp

(

− 1

2ω2
‖θi − θj‖2

)

(2.56)

where ω is a hyperparameter controlling the width of the kernel. (Snoek et al.,

2012) argues that this kernel is too smooth for practical optimization problems and
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recommends the use of the Matérn 5/2 kernel instead. In general, the covariance

function should be defined so that it approaches 1 as its arguments get closer together

and 0 as they get farther apart. The hyperparameters of the covariance function

function can either be set according to prior beliefs about the function being modeled,

or can be estimated by optimizing the marginal likelihood of the observed function

evaluations under the Gaussian process.

Once mean and covariance functions have been chosen, the Gaussian process

can be fit to training data and a posterior can be obtained by the following process:

Denoting the t parameter settings and observed objective values as θT = {θ1, . . . , θt}

and yT = {y1, . . . , yt} respectively and an unseen evaluation of the objective function

yn, the joint marginal likelihood of yn and the observed objective values is given by

p(yT , yn) = N






0,







KT×T K⊤
n×T

Kn×T k(θn, θn)












(2.57)

where

KT×T =













k(θ1, θ1) · · · k(θ1, θt)

...
. . .

...

k(θt, θ1) · · · k(θt, θt)













∈ R
t×t (2.58)

Kn×T =

[

k(θn, θ1) · · · k(θn, θt)

]

∈ R
1×t (2.59)

(2.60)

This can be used to obtain the predictive distribution (see (Rasmussen, 2006) for a

derivation)

p(yn|yT , θT , θn) = N (µT (θn), σ
2
T (θn)) (2.61)
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where

µT (θn) = Kn×TK
−1
T×T













y1
...

yt













(2.62)

σ2
T (θn) = k(θn, θn)−Kn×TK

−1
T×TK

⊤
n×T (2.63)

Note that the covariance matrix of the joint marginal likelihood of yn and yT will

have 1 all along its diagonal because any point is perfectly correlated with itself.

This is an invalid assumption in the presence of noise, so a common modification to

include a term σ2
noise for the variance of the noise in the covariance, which yields the

predictive distribution

p(yn|yT , θT , θn) = N (µT (θn), σ
2
T (θn) + σ2

noise) (2.64)

µT (θn) = Kn×T (KT×T + σ2
noiseI)

−1













y1
...

yt













(2.65)

σ2
T (θn) = k(θn, θn)−Kn×T (KT×T + σ2

noiseI)
−1K⊤

n×T (2.66)

2.1.5.2 Acquisition Functions

We now have a recipe for predicting the mean and variance of the objective function’s

value at any point based on observed values. In order to perform optimization, we

also need a principled approach for selecting new parameter settings to evaluate the

function at, both in hopes of achieving higher objective values and for obtaining

a better estimate of the objective function. This is achieved through acquisition

functions, which utilize the predictive distribution to construct a function whose
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maximum corresponds to the point at which the objective function should be

evaluated at next. Acquisition functions can be considered a proxy function which

can be optimized to estimate the objective function’s maximum value under certain

assumptions. Importantly, sampling values from acquisition functions is potentially

much cheaper than evaluating the objective function at new parameter values, which

is one of the core reasons that Bayesian optimization is beneficial. To facilitate

optimization, acquisition functions should appropriately balance exploration and

exploitation, i.e. the trade-off between reducing uncertainty and finding the absolute

best value.

Probability of Improvement An intuitive choice is to maximize the probability

that a given point is larger than the best observed value, which we denote ybest =

max(yT ). This probability can be computed as

PI(θ) = Φ

(

µT (θ)− ybest
σT (θ)

)

(2.67)

where Φ is the normal cumulative distribution function. In the case that σT (θ) = 0,

PI(θ) is set to 0. This strategy will always choose the θ which has the highest

probability of yielding a larger objective value regardless of whether this value will

provide more information about the function, i.e. it is completely exploitation-based.

A simple way to mitigate this is to add an exploration trade-off parameter ξ to

instead compute

PI(θ) = Φ

(

µT (θ)− ybest + ξ

σT (θ)

)

(2.68)

Expected Improvement Instead of simply choosing the point which is most

likely to yield an improvement, we can also consider the expected magnitude of the

improvement. This can be encapsulated using an “improvement function” which is
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positive when the objective value for the predicted value of θ is larger than ybest.

Maximizing the expectation of this improvement function has a closed-form solution,

yielding

EI(θ) = (µT (θ)− ybest)Φ

(

µT (θ)− ybest
σT (θ)

)

+ σ(θ)φ

(

µT (θ)− ybest
σT (θ)

)

(2.69)

where φ is the normal probability density function. (Snoek et al., 2012) claims that

Expected Improvement yielded the best performance among acquisition functions

for hyperparameter optimization of machine learning systems.

Upper Confidence Bound An alternative approach, which is also conceptually

simple, is to maximize the upper confidence bound

UCB(θ) = µT (θ) + κσT (θ) (2.70)

κ ≥ 0 is a hyperparameter which scales the confidence limits and therefore balances

exploration and exploitation.

2.2 Digital Signal Processing

The field of signal processing encompasses the analysis, modification, and generation

of “signals”. Signals are broadly defined as sequential data, i.e. data where at

least one dimension has an implicit ordering (for some examples, see figure 1.1). A

digital signal is a sequence of numbers or vectors where each number represents

the amplitude of the signal in a given dimension at a given point in time. In this

setting, signals can be processed computationally, which allows for the development

of algorithms to automatically manipulate, generate, and extract information from

signals.
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2.2.1 Audio Signals and Psychoacoustics

In this thesis, we will mainly deal with audio signals. An example audio signal,

consisting of a series of notes played on an acoustic guitar, can be seen in figure 2.6.

In the physical world, an audio signal is a time-varying change in air pressure called

a sound wave. We “hear” sounds when our ear converts these sound waves into

neural stimuli. The exact manner in which we perceive a sound wave is influenced by

a wide variety of factors, including our sensory system and the brain’s psychological

response. The field of psychoacoustics attempts to measure and codify these factors,

and the results can provide useful guidelines about the representation and processing

of audio signals. In this section, we present a small overview of some important

psychoacoustic principles; a more thorough treatment can be found in (Cook, 1999;

Bosi and Goldberg, 2012).

Three of the most important psychoacoustic characteristics of audio signals are

the pitch, loudness, and timbre.

Pitch The pitch of a signal mainly depends on its periodicity (e.g. how often the

signal repeats itself); if a signal is has no periodic components, it might not be

perceived as having a pitch. The longest periodicity, or the slowest vibration, is

referred to as the fundamental frequency f0 of a sound. Generally, we can perceive

frequencies from 20 Hz to 20,000 Hz, although these limits depend on a variety

of factors including the number of independent frequencies in a signal and the

healthiness of the listener’s auditory system. Below 20 Hz, we begin to hear the

periodicities of an audio signal as distinct events rather than as a “pitch”.

An additional important characteristic of pitch perception is that it is roughly

logarithmic, i.e. we perceive the “distance” between signals with fundamental fre-

quencies f0 and 2f0 to be about the same as 2f0 and 4f0. This may be one reason
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Figure 2.6: Audio signal of a few notes played on an acoustic guitar.
The peaks of amplitude correspond to each individual note being
plucked.

that the spacing between pitches (called semitones) in Western music is defined on a

logarithmic scale. In addition, our inner ear has different regions which are sensitive

to different ranges of frequencies, which are also spaced roughly on a logarithmic scale.

This helps our auditory system distinguish between sources sounding simultaneously

which differ in pitch. Whether or not a given signal is perceived as having multiple

pitches or sources (e.g. in the case of multiple notes being played simultaneously on

a single musical instrument) depends both on the characteristics of the signal and

on psychological factors.

Loudness Loudness corresponds to how “strong” a sound is perceived as being

and most directly depends on the signal’s sound pressure level (SPL). The SPL is
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Figure 2.7: Equal loudness curve from the ISO 226 specification,
along which all frequencies are perceived to have approximately the
same loudness. These curves reveal important characteristics about
our sensitivity to different frequencies; for example, in order for a
low-frequency sound to be perceived loudly, they must have a relatively
high sound pressure level.

computed as the logarithm of the ratio of a signal’s pressure and a reference level of

20 microPascals and is measured in decibels (dB). As a result, perception of loudness

is closer to logarithmic than linear in amplitude. Beyond the SPL, perception of

loudness is also heavily frequency-dependent; for example, a 20 dB SPL signal with

a fundamental frequency 1 kHz will be perceived to have the same loudness as a 100

Hz signal at about 45 dB SPL. This relationship is typically characterized by equal

loudness curves, which relate the required sound pressure level for each frequency to

be perceived as the same loudness. An example curve can be seen in figure 2.7.



2. Tools 56

0.0 6.25 12.5 18.75 25.0
Time (ms)

1.0

0.5

0.0

0.5

1.0
Am

pl
itu

de

Figure 2.8: Waveforms of a few periods of the same note being played
on a piano (blue) and a viola (green) at the same loudness. These two
signals will be perceived as having the same pitch and loudness, but
are distinguishable due to differences in the distribution and change
over time of the frequencies present.

Timbre Even when pitch and loudness are matched, there is an unlimited possible

variety of sound events. The remaining characteristics of a sound which cause it

to be perceived differently from other sounds are referred to using the ambiguous

catch-all term “timbre”. The distinctions between sounds generally depend on their

energy distribution in time and frequency. Being sensitive to these factors can help

us distinguish between the voices of different people and notes played on different

musical instruments. Figure 2.8 shows waveforms of a piano and a viola playing the

same note at the same volume; despite having the same pitch and loudness, these

sounds are easily distinguishable.
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2.2.1.1 Sampling Frequency

Typically, the temporal spacing between subsequent elements in a digital signal is

fixed and is determined by the signal’s sampling frequency fs. This is in contrast to

continuous-time signals encountered in the real world, such as sonic waves, which

can be considered functions of a continuous timebase. A fundamental relationship

between the content of signals and their sampling frequency is codified in the Sampling

Theorem. This theorem states that any continuous-time signal can be perfectly

reconstructed from discrete-time samples at sampling frequency fs as long as it has

no frequency content above fs/2.

Due to our hearing range, in audio we are mostly interested in reproducing signals

up to 20,000 Hz. Following the sampling theorem, this implies that in order to

perfectly perceptually reconstruct audio signals, we should utilize a sampling rate of

at least 40,000 Hz. In practice, a common sampling rate for audio signals is 44,100

Hz, which is utilized on compact discs and other recorded audio formats. Because

our sensitivity to high frequencies is limited, for analysis purposes it is common to

use a lower sampling rate. Throughout this thesis, we will utilize a sampling rate of

22,050 Hz.

2.2.2 Time-Frequency Analysis

In many cases, it is useful to decompose a signal into the combination of simpler

signals. An extremely common method is the Fourier Transform, which is capable

of representing any signal as a sum of sinusoids. This representation is well-suited

for signals from the natural world which are produced by vibrating objects such

as musical instruments. In addition, as mentioned above, our inner ear performs a

similar decomposition because its different regions vary in their sensitivity to different
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frequencies. (Smith, 2011, 2007) give a comprehensive discussion of time-frequency

analysis of audio signals.

For a discrete-time length-N single-dimensional signal x, the Discrete Fourier

Transform (DFT) is computed as

X[k] =

N
∑

n=1

x[n]e−2π(k−1)(n−1)/N , k ∈ {1, . . . , N} (2.71)

The resulting complex values X[k] are called the Fourier coefficients of x, and the

collection of coefficients X is called the Fourier spectrum (or, simply, the spectrum)

of x. From its definition, it is clear that the DFT can be computed in O(N2) time;

in practice, the DFT is computed using the Fast Fourier Transform (FFT) algorithm,

which runs in O(N log(N)) time.

For real-valued signals (the only kind encountered in this thesis) where N is even,

the Fourier coefficients are Hermitian symmetric so that

X[k] = X[N − k + 2], k ∈ {2, . . . , N/2 + 1} (2.72)

For this reason, the DFT of real-valued signals of even length N is typically only

computed for k ∈ {1, . . . , N/2 + 1}. If the real-valued input signal has sampling rate

fs, then the kth Fourier coefficient (also called a “frequency bin”) corresponds to a

frequency of

(k − 1)fs
N

, k ∈ {1, . . . , N/2 + 1} (2.73)

The DFT provides us with a decomposition of a signal in the form of complex-

valued coefficients (i.e. magnitude and phase) for sinusoids of varying frequency.

However, for most audio signals, the human auditory system is much more sensitive

to the magnitude of different frequencies than it is to the phase of these components.
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Figure 2.9: Magnitude spectrum of the audio recording of an acoustic
guitar shown in figure 2.6. The tall peaks correspond to the dominant
frequencies; for example, the largest peak around 440 Hz corresponds
to an A note which is played frequently and loudly in the recording. For
clarity, only the portion of the spectrum corresponding to frequencies
up to 2000 Hz is shown.

For this reason, for analysis tasks the phase of the Fourier coefficients X[k] is typically

discarded and the magnitude |X[k]| is used instead. As an example, the magnitude

spectrum of the audio signal shown in figure 2.6 is shown in figure 2.9.

2.2.2.1 The Short-Time Fourier Transform

In many cases, we are most interested in the way the frequency content of a signal

changes over time. The DFT as defined above can only provide a global summary

in the form of a spectrum computed across the entire duration of a signal. This

prompts the use of the Short-Time Fourier Transform (STFT), which computes a
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series of spectra over short, potentially overlapping “frames” of the signal x ∈ R
N :

S[n, k] =
M
∑

m=1

w[m]x[m+ nR]e−2π(k−1)(m−1)/M (2.74)

k ∈ {1, . . . ,M} (2.75)

n ∈
{

1, . . . ,

⌈

N −M + 1

R

⌉}

(2.76)

where w ∈ R
M is a “window” function and R is the “hop” size which determines

how much (if at all) subsequent frames overlap. The resulting STFT S will consist

of spectra with M Fourier coefficients.

The STFT is useful for audio signals because we are generally interested in how

the audio content changes over time. For example, in music analysis we might be

interested in where notes played in a recording start and stop. This information is

hidden in the phase of the Fourier transform of an entire recording, but the individual

spectra which encompass the start and end of notes retain this information in a

localized manner. When the phase in the subsequent spectra in an STFT is discarded

leaving only the magnitude, the resulting time-frequency representation is commonly

called a spectrogram. The magnitude spectrogram of the guitar recording from

figure 2.6 is shown in figure 2.10.

Important considerations when computing the STFT include the frame length

M , the window function w, and the hop size R.

Frame Length Increasing the frame length M will result in higher-resolution

spectra due to the fact that the frequencies corresponding to each bin are spaced

according to equation (2.73). However, it will also result in lower time resolution, due

to the fact that if multiple events happen within a single frame then it is impossible

to determine their ordering by inspecting the magnitude spectrum. Choosing M is
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Figure 2.10: Magnitude spectrogram of the audio recording of an
acoustic guitar shown in figure 2.6. As in figure 2.9, we only display
frequencies up to 2,000 Hz. The horizontal tracks correspond to
different notes which were played.

therefore a trade-off of time and frequency resolution, i.e. we would like to be able

to resolve differences of frequency and the timing of events which are relevant to the

task. A more practical consideration is that the FFT is optimized for frame lengths

which are a power of two. Based on these constraints, a common choice is to utilize

a frame size of 2048 samples at a 22,050 Hz sampling rate, which corresponds to 92.8

milliseconds with a 10.8 Hz resolution.

Window Function The choice of window function is generally a trade-off between

the resolution and the sensitivity of the individual spectra. For example, given a

signal which consists of a pure tone (i.e. a sinusoid) at some frequency f0, using a

windowing function with low resolution would result in spectral energy being spread

amongst the frequency bins around the one corresponding to f0. On the other hand,

using a window function with low sensitivity will result in the inability to detect

low-amplitude signals in the presence of noise or other high-amplitude signals. The

rectangular window

w[m] = 1,m ∈ {1, . . . ,M} (2.77)
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has the highest-possible resolution, but has poor sensitivity due to “spectral leakage”.

Spectral leakage manifests itself as periodic “side lobes“ in the frequency domain

which decay away from each peak in the spectrum. For spectra with high-energy

bins, this leakage can prevent the accurate detection of other peaks, which decreases

the resulting sensitivity.

Leakage is caused by truncating each frame immediately to zero at the window

edges. A common method for mitigating this is to use a window which tapers to

zero. The Hann window

w[m] =
1

2

(

1− cos

(

2πm

M

))

,m ∈ {1, . . . ,M} (2.78)

provides a good trade-off between resolution and sensitivity; it has half of the

resolution of the rectangular window but decreases side-lobe level and decay by a

few orders of magnitude. As a result, we will use the Hann window throughout this

thesis.

Hop Size Typically, there is some overlap between subsequent frames in an STFT.

This is a necessity when using windows which taper to zero in order to avoid loss of

information. For the Hann window in particular, in order to retain all information

without distortion the hop size is typically set no larger than half of the frame size.

Using more overlap provides smooth interpolation of temporal variations in the

STFT, an easy way to achieve finer temporal resolution at higher computational

cost. We therefore utilize a hop size of 1024 samples throughout this thesis which

corresponds to 46.4 milliseconds at 22,050 Hz; this temporal resolution captures

most of the perceptual significance of a sound’s variation in time.
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Figure 2.11: Log-magnitude spectrogram of the audio recording of
an acoustic guitar shown in figure 2.6, for frequencies up to 2,000 Hz.

2.2.2.2 Log-Magnitude

As discussed in section 2.2.1, our sensitivity to loudness is closer to logarithmic than

linear in amplitude. The magnitude spectrograms we have studied so far report

the amplitude of different frequencies across time. We can make this representation

more similar to our perception by using log-magnitude spectra, i.e. computing the

logarithm of the magnitude in each frequency bin so that, for example, a doubling

in amplitude corresponds to the same-size “step” regardless of initial level. While

sound pressure level is defined on a specific scale based on a reference SPL of 0 dB

corresponding to the quietest perceptible sound, it is unimportant for the scale to be

calibrated in analysis tasks which are scale invariant.

A log-magnitude version of the spectrogram from figure 2.10 is shown in figure 2.11.

Note that this representation shows much more energy in higher frequencies. These

higher-frequency signals are the harmonics of the notes played, which were much

less apparent in figure 2.10 where notes appeared almost as pure tones. These

harmonics are an important factor in our ability to distinguish different sounds, and

so a perceptually accurate representation must reflect their perceived relevance.
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2.2.2.3 Constant-Q Transforms

An additional way in which the spectrograms we have discussed so far do not match

perception is that they are linear in frequency (as defined by equation (2.73)). This

is in contrast to our roughly logarithmic perception of pitch, as well as the spacing

of semitones in the common Western music scale. As a result, it can be beneficial

to use a time-frequency representation which is also logarithmic in frequency. A

common choice is a constant-Q transform (CQT), which has frequency bins which

are logarithmically spaced and all have equal center frequencies-to-bandwidth ratios

(Brown, 1991). Fortunately, like the DFT, fast algorithms exist for computing the

CQT (Brown and Puckette, 1992; Schörkhuber and Klapuri, 2010).

In this thesis, we will utilize the transform proposed by (Schörkhuber and Klapuri,

2010), which is defined as follows:

S[n, k] =
1

Mk

Mk
∑

m=1

wk[m]x[m−Mk/2 + nR]e2πmfk/fs (2.79)

where fk is the center frequency of each of the k bins, R is the hop size, wk ∈ R
Mk

is a window function, fs is the sampling frequency, and

Mk =
fs

fk(
B
√
2− 1)

(2.80)

where B is the number of frequency bins per octave. For music signals, it is common

to set B to 12 because there are 12 semitones per octave in the Western music scale

and to set fk to a sequence of subsequent semitone frequencies. Note that there

is a different window size for each frequency bin; this is what allows the center

frequency-to-bandwidth ratio to remain constant across bins. The choice of wk

depends on the desired time-frequency resolution trade-off. In this thesis, we set wk
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Figure 2.12: Log-magnitude constant-Q spectrogram of the audio
recording of an acoustic guitar shown in figure 2.6. The constant-Q
transforms are computed over logarithmically-spaced bins from C2 to
B5 (65.4 to 987.8 Hz), with 12 bins per octave.

to the length-Mk Hann window, which provides a good balance for analysis tasks.

An important consideration when computing this formulation of the constant-Q

transform is the hop size. If the hop size R is larger than mink(Mk) (the window

size of the highest frequency bin), it is possible that a portion of the signal will not

be analyzed, and furthermore if R > mink(Mk)/2 then some distortion may result.

The simplest way to mitigate this is to set R < mink(Mk)/2. However, if mink(Mk)

is by necessity very small, this can result in excessive oversampling. An alternative,

advocated by (Schörkhuber and Klapuri, 2010), is to compute the high-frequency

CQT bins at multiple offsets within each window and aggregate the results.

As with the DFT, the CQT produces complex-valued coefficients, and a more

more perceptually accurate transform can be obtained by computing a log-magnitude

CQT. For comparison, the log-magnitude CQT of the audio signal in figure 2.6 is

shown in figure 2.12.

2.2.3 Dynamic Time Warping

A common task in signal processing is measuring the similarity between two sequences

of feature vectors. For example, given a collection of recorded speech utterances with
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word labels, we could perform rudimentary speech recognition by computing the

similarity between a query utterance and all database entries and choosing the word

corresponding to the most similar entry. In many domains, time-varying differences

in phase can complicate direct comparison of sequences. For word utterances, this

is realized by different speakers speaking different parts of words more quickly or

slowly. As a result, it is often effective to use a warping similarity measure which

allows for non-co-occuring sequence elements to be compared.

One such measure which will see extensive use in this thesis is dynamic time

warping (DTW). First proposed for in our exemplary domain of comparing speech

utterances (Sakoe and Chiba, 1978), DTW uses dynamic programming to find a

monotonic alignment such that the sum of a distance-like cost between aligned

feature vectors is minimized. Because DTW produces an optimal alignment, it is

also useful in tasks where the actual correspondence between sequence elements is

required, as in the problem of audio-to-MIDI alignment explored in chapter 4. In

this section, we give an overview of DTW; a more thorough treatment can be found

in (Müller, 2007).

Suppose we are given two sequences of feature vectors X ∈ R
M×D and Y ∈ R

N×D,

where D is the feature dimensionality and M and N are the number of feature vectors

in X and Y respectively. DTW produces two nondecreasing sequences p, q ∈ N
L

which define the optimal alignment between X and Y , such that p[i] = m, q[i] = n

implies that the mth feature vector in X should be aligned to the nth in Y . Finding

p and q involves globally solving the following minimization problem:

p, q = argmin
p,q

L
∑

i=1

‖X[p[i]]− Y [q[i]]‖2 (2.81)
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The constraint of monotonicity is enforced by only allowing certain “step patterns”,

the simplest and most common being

p[i+ 1] = p[i] + 1, q[i+ 1] = q[i] + 1 (2.82)

or p[i+ 1] = p[i] + 1, q[i+ 1] = q[i] (2.83)

or p[i+ 1] = p[i], q[i+ 1] = q[i] + 1 (2.84)

although many others have been proposed (Müller, 2007; Sakoe and Chiba, 1978).

This minimization can be solved in O(MN) time using dynamic programming

(Sakoe and Chiba, 1978). A common equivalent way to frame this problem which

fits straightforwardly into the framework of dynamic programming is to construct a

pairwise distance matrix C ∈ R
M×N by computing C[i, j] = ‖X[i]− Y [i]‖2 and then

finding the lowest-cost path (subject to appropriate constraints) through the matrix.

This perspective prompts path entries where p[i+ 1] = p[i] + 1, q[i+ 1] = q[i] + 1 to

be referred to as “diagonal moves”.

DTW is often constrained so that p and q span the entirety of X and Y , i.e.

p[1] = q[1] = 1 and p[L] = M ; q[L] = N . However, this constraint is inapplicable

when subsequence alignment is allowed in which case it is required that either

gmin(M,N) ≤ p[L] ≤ M or gmin(M,N) ≤ q[L] ≤ N where g ∈ (0, 1] (the “gully”)

is a parameter which determines the proportion of the subsequence which must be

successfully matched. In addition, the path is occasionally further constrained so

that

p[i]− q[i] +R ≤ M, q[i]− p[i] +R ≤ N

for i ∈ {1, . . . , L} where R = gmin(M,N) is the “radius”, sometimes called the

Sakoe-Chiba band (Sakoe and Chiba, 1978). An alternative way to encourage the
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alignment to favor “diagonal” paths is to add a penalty to equation (2.81):

p, q = argmin
p,q

L
∑

i=1

‖X[p[i]]−Y [q[i]]‖2+















φ, p[i] = p[i− 1] or q[i] = q[i− 1]

0, otherwise

(2.85)

where φ is a tuneable parameter controlling how much to discourage non-diagonal

path entries.

Once an optimal alignment path is found, a rough similarity measure can be

obtained as the sum of the pairwise distances between aligned sequence elements

from X and Y . In addition, to achieve alignment one sequence can be adjusted (via

resampling or otherwise) so that so that tX [p[i]] = tY [q[i]], ∀i ∈ {1, . . . , L}, where

tX ∈ R
M , tY ∈ R

N are the times corresponding to the feature vectors in X and Y

respectively. An example visualization of DTW on two one-dimensional sequences

can be seen in figures 2.13 and 2.14.
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Figure 2.13: Example DTW alignment between two one-dimensional
sequences. The determined correspondences between elements of the
two sequences is shown as dashed lines.
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Figure 2.14: The pairwise distance matrix C and the lowest-cost
path through it for the sequences shown in figure 2.13, which defines
the optimal DTW alignment. The x- and y-axes of the distance matrix
correspond to sequence indices in the green and blue sequences in
figure 2.13 respectively.
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Chapter 3

MIDI Files

MIDI (Music Instrument Digital Interface) is a hardware and software standard for

communicating musical events. First proposed in 1983 (International MIDI Asso-

ciation, 1983), MIDI remains a highly pervasive standard both for storing musical

scores and communicating information between digital music devices. Its use is

perhaps in spite of its crudeness, which has been lamented since MIDI’s early days

(Moore, 1988); most control values are quantized as 7-bit integers and information

is transmitted at the relatively slow (by today’s standards) 31,250 bits per second.

Nevertheless, its efficiency and well-designed specification make it a convenient way

of formatting digital music information.

In this thesis, we will make extensive use of on MIDI files, which in a simplistic

view can be considered a compact way of storing a musical score. MIDI files are

specified by an extension to the MIDI standard (International MIDI Association,

1988) and consist of a sequence of MIDI messages organized in a specific format. A

typical MIDI file contains timing and meter information in addition to a collection of

one or more “tracks”, each of which contains a sequence of notes and control messages.

The General MIDI standard (International MIDI Association, 1991) further specifies
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a collection of 128 instruments on which the notes can be played, which standardizes

the playback of MIDI files and has therefore been widely adopted.

When paired with a General MIDI synthesizer, MIDI files have been used as

a sort of semantic audio codec, with entire songs only requiring a few kilobytes of

storage. The early availability of this “coding method”, combined with the expense of

digital storage in the 90s, made MIDI files a highly pervasive method of storing and

playing back songs before the advent of the MP3. Even after high-quality perceptual

audio codecs were developed and storage prices plummeted, MIDI files remained in

use in resource-scarce settings such as karaoke machines and cell phone ringtones. As

a result, there is an abundance of MIDI file transcriptions of music available today;

through a large-scale web scrape, we obtained 178,561 MIDI files with unique MD5

checksums. Given their wide availability, we believe that MIDI files are underutilized

in the music information retrieval community. The core motivating problem of this

thesis is the question of how we can leverage this huge amount of data. To put

this problem in context, this chapter provides an introduction to the sources of

information available in MIDI files and discusses steps necessary for utilizing them.

3.1 Information Available in MIDI Files

While various aspects of MIDI files have been used in MIR research, to our knowledge

there has been no unified overview of the information they provide, nor a discussion

of the availability and reliability of this information in MIDI transcriptions found “in

the wild”. We therefore present an enumeration of the different information sources

in a typical MIDI file and discuss their applicability to different MIR tasks. Because

not all MIDI files are created equal, we also computed statistics about the presence

and quantity of each information source across our collection of 176,141 MIDI files;



3. MIDI Files 73

0 5 10 15 20
Number of instruments

0

5

10

15

20

25

30
Th

ou
sa

nd
s 

of
 M

ID
I f

ile
s

Figure 3.1: Histogram of the number of instruments per MIDI file in
our collection. While many files contained only a single instrument,
the majority were multi-voice transcriptions.

the results can be seen in figures 3.1 to 3.8 and will be discussed in the following

sections.

3.1.1 Transcription

MIDI files are specified as a collection of “tracks”, where each track consists of a

sequence of MIDI events on one of 16 channels. Commonly used MIDI events are

note-on and note-off messages, which together specify the start and end time of notes

played at a given pitch on a given channel. Various control events also exist, such as

pitch bends, which allow for finer control of the playback of the MIDI file. Program

change events determine which instrument these events are sent to. The General
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Figure 3.2: Histogram of the number of occurrences of different
program numbers for non-drum instruments across all files in our MIDI
file collection. Most common is program 0, corresponding to “acoustic
grand piano”, which is the default instrument on many keyboards
and transcription software programs. Program numbers above 96 are
relatively uncommon, and correspond to “Synth Effects”, “Ethnic”,
“Percussive”, and “Sound Effects” instruments.
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MIDI standard defines a correspondence between program numbers and a predefined

list of 128 instruments. General MIDI also specifies that all notes occurring on MIDI

channel 10 play on a separate percussion instrument, which allows for drum tracks

to be transcribed. The distribution of the total number of program change events

(corresponding to the number of instruments) across the MIDI files in our collection

and the distribution of these program numbers are shown in figure 3.1 and figure 3.2

respectively. The four most common program numbers (shown as the four tallest

bars in figure 3.2) were 0 (“Acoustic Grand Piano”), 48 (“String Ensemble 1”), 33

(“Electric Bass (finger)”), and 25 (“Acoustic Guitar (steel)”).

This specification makes MIDI files naturally suited to be used as transcriptions

of pieces of music, due to the fact that they can be considered a sequence of notes

played at different “velocities” (intensities) on a collection of instruments. As a result,

many MIDI files are transcriptions and are thus commonly used as training data for

automatic transcription systems (see (Turetsky and Ellis, 2003) for an early example).

This type of data also benefits score-informed source separation methods, which

utilize the score as a prior to improve source separation quality (Ewert et al., 2014).

An additional natural use of this information is for “instrument activity detection”,

i.e. determining when certain instruments are being played over the course of a piece

of music. Finally, the enumeration of note start times lends itself naturally to onset

detection, and so MIDI data has been used for this task (Bello et al., 2005).

3.1.2 Music-Theoretic Features

Because many MIDI files are transcriptions of music, they can also be used to

compute high-level musicological characteristics of a given piece. Towards this end,

the software library jSymbolic (McKay and Fujinaga, 2006) includes functionality

to extract a wide variety of features, including instrumentation, rhythm, and pitch
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Figure 3.3: Histogram of the number of tempo change events per file
in our collection. The vast majority (over 126,000) were transcribed
at a fixed tempo.

statistics. Similarly, music21 (Cuthbert and Ariza, 2010) provides a general-purpose

framework for analyzing collections of digital scores (including MIDI files). Comput-

ing these features on a collection of MIDI transcriptions is valuable for computational

musicology and can enable data-driven corpus studies. For example, (Cuthbert et al.,

2011) discusses the use of music21 and jSymbolic to extract features from scores

and uses them to distinguish music from different composers and musical traditions.

3.1.3 Meter

Timing in MIDI files is determined by two factors: The MIDI file’s specified “res-

olution” and tempo change events. Each event within the MIDI file specifies the
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Figure 3.4: Histogram of tempos across all files in our MIDI file
collection. Unlike the other histograms in this chapter, each bar
corresponds to a range of values.

number of “ticks” between it and the preceding event. The resolution, which is

stored in the MIDI file’s header, sets the number of ticks which correspond to a

single beat. The amount of time spanned by each tick is then determined according

to the current tempo, as set by tempo change events. For example, if a MIDI file has

a resolution of 220 ticks per beat and the current tempo is 120 beats per minute,1

each tick would correspond to 60/(120 ∗ 220) = 0.00227 seconds. If a MIDI event in

this file is specified to occur 330 ticks after the previous event, then it would occur

330 ∗ 0.00227 = .75 seconds later.

The timing in a MIDI file can vary over time by including many tempo change

1Actually, tempo change events specify the number of microseconds per quarter beat, but this

can be readily converted to beats per minute.
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Figure 3.5: Histogram of the number of time signature change events
per file in our collection. Although these events can be omitted, almost
all of our MIDI files had at least one.

events. In practice, as shown in figure 3.3, most MIDI files only contain a single

tempo change and are therefore transcribed at a fixed tempo. However, there are

many MIDI files in our collection which have a large number of tempo change events

(as indicated by the rightmost bars in figure 3.3). We have found that this is a

common practice for making the timing of a MIDI transcription closely match that

of an audio recording of the same song. Despite the fact that the default tempo for

a MIDI file is 120 beats per minute, figure 3.4 demonstrates that a wide range of

tempos are used. In practice, we find that this is due to the fact that even when a

single tempo event is used, it is often set so that the MIDI transcription’s tempo

approximates that of an audio recording of the same song.
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Figure 3.6: Histogram of different time signatures found in all files in
our MIDI file collection. Surprisingly, a substantial number of non-4/4
time signatures were found.

Time signature change events further augment MIDI files with the ability to

specify time signatures, and are also used to indicate the start of a measure. By

convention, MIDI files have a time signature change at the first tick, although

this is not a requirement. Because time signature changes are relatively rare in

western popular music, the vast majority of the MIDI files in our collection contain

a single time signature change, as seen in figure 3.5. Despite the fact that 4/4 is

the default time signature for MIDI files and is pervasive in western popular music,

a substantial portion (about half) of the time signature changes were not 4/4, as

shown in figure 3.6.

Because MIDI files are required to include tempo information in order to specify
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Figure 3.7: Histogram of the number of key change events per MIDI
file in our collection. Like time signature changes, these events are
optional, but the majority of our MIDI files had at least one.

their timing, it is straightforward to extract beat locations from a MIDI file. By

convention, the first (down)beat in a MIDI transcription occurs at the first tick.

Determining the beat locations in a MIDI file therefore involves computing beat

locations starting from the first tick and adjusting the tempo and time signature

according to any tempo change or time signature change events found. Despite this

capability, to our knowledge MIDI files have not been used as ground truth for beat

tracking algorithms. However, (Mauch and Dixon, 2012) utilized a large dataset of

MIDI files to study drum patterns using natural language processing techniques.
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Figure 3.8: Histogram of different keys found in all MIDI files in our
collection. An unrealistically large number of C major key annotation
were found.

3.1.4 Key

An additional useful event in MIDI files is the key change event. Any of the 24 major

or minor keys may be specified. Key changes simply give a suggestion as to the tonal

content and do not affect playback, and so are a completely optional meta-event.

As seen in figure 3.7, this results in many MIDI files omitting key change events

altogether. A further complication is that a disproportionate number (about half)

of the key changes in the MIDI files in our collection were C major, as shown in

figure 3.8. This disagrees with corpus studies of popular music, e.g. (Carlton, 2012)

which found that only about 26% of songs from the Billboard 100 were in C major.

We believe this is because many MIDI transcription software packages automatically
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insert a C major key change at the beginning of the file.

3.1.5 Lyrics

Lyrics can be added to MIDI transcriptions by the use of lyrics meta-events, which

allow for timestamped text to be included over the course of the song. This capability

enables the common use of MIDI files for karaoke; in fact, a separate file extension

“.kar” is often used for MIDI files which include lyrics meta-events. Occasionally, the

generic text meta-event is also used for lyrics, but this is not its intended use. In our

collection, we found 23,801 MIDI files (about 13.3%) which had at least one lyrics

meta-event.

3.1.6 What’s Missing

Despite the wide variety of information sources available in MIDI files outlined in the

previous sections, there are various types of information which are not possible (or

not common) to store in MIDI files. While the General MIDI specification includes

the vocal instruments “Choir Aahs”, “Voice Oohs”, “Synth Choir”, “Lead 6 (voice)”

and “Pad 4 (choir)”, in practice there is no specific program number (or numbers)

which is consistently used to transcribe vocals. As a result, in a given MIDI file there

is no reliable way of determining which instrument is a transcription of the vocals in

a song. Furthermore, because a substantial portion of MIDI files were designed for

karaoke, the vocals may not be transcribed at all.

While the MIDI specification does include “track name”, “program name”, and

“instrument name” meta-events, they are not standardized and so are not used

consistently. It follows that there is no simple way to retrieve the “melody” from a

MIDI transcription, although the fact that all instruments are transcribed separately

can make its estimation more straightforward than for audio files. For example,
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(Tang et al., 2000) explores the use of simple features such as the average velocity

and note range within a track to predict whether it is a melody, and also finds that

in a small dataset the track name reliably indicates a melody track 44.3% of the

time. Similarly, (Ponce de León Amador et al., 2008) uses heuristic features and a

random forest classifier to predict with high accuracy whether a track is a melody.

There is also no explicit way for MIDI files to include chord labels or structural

segmentation boundaries (e.g. “verse”, “chorus”, “solo”). While this would in

principle be possible thanks to the generic MIDI “text” meta-event, we have yet to

find any MIDI files which store this information. Nevertheless, estimating chords in

particular is greatly facilitated by the presence of a ground truth transcription. Both

music21 (Cuthbert and Ariza, 2010) and melisma (Sleator and Temperley, 2001)

include functionality for estimating chord sequences from symbolic data. Rhodes et

al.(Rhodes et al., 2007) also proposed a symbolic chord estimation method using

Bayesian Model Selection, which was shown to outperform melisma on a dataset of

Beatles MIDI files in (Ewert et al., 2012).

While text meta-events could also be used to store song-level metadata (song

title, artist name, etc.) in a MIDI file, we seldom encountered this. There is no

standardized way to store this metadata in a MIDI file, although we found that a

minority of the filenames in our collection indicated the song title and occasionally

the artist name. The lack of a metadata specification also inhibits the attribution of

MIDI transcriptions to the person who transcribed them.

3.2 Utilizing MIDI Files as Ground Truth

Utilizing MIDI files as ground truth information for audio content-based MIR tasks

requires the following: First, the compact low-level binary format used by MIDI files

must be parsed so that the information can be readily extracted. Second, the artist
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and song of a MIDI file must be determined so it can be paired with a corresponding

audio recording. Finally, for many uses, the MIDI file must be aligned in time with

its matching audio.

3.2.1 Extracting Information

The information sources enumerated in Section 3.1 are not readily available from

MIDI files due to fact that they follow a low-level binary protocol. For example, in

order to extract the time (in seconds) of all onsets from a given instrument in a MIDI

file, note events which occur on the same track and channel as program change events

for the instrument must be collected and their timing must be computed from their

relative ticks using the global tempo change events. Fortunately, various software

libraries have been created to facilitate this process. pretty_midi (Raffel and Ellis,

2014), discussed in section B.3, simplifies the extraction of useful information from

MIDI transcriptions by taking care of most of the low-level parsing needed to convert

the information to a more human-friendly format. It contains functions for retrieving

beats, onsets, and note lists from specific instruments, and the times and values of

key, tempo, and time signature changes. It also can be used to modify MIDI files,

as well as to convert them to synthesized audio or a spectrogram-like piano roll

representation. The aforementioned jSymbolic contains an extensive collection of

routines for computing musicological features from MIDI files. Finally, both music21

and melisma are capable of inferring high-level music information from symbolic

data of various types, including MIDI.

3.2.2 Matching

Apart from metadata-agnostic corpus studies such as (Mauch and Dixon, 2012),

determining the song a given MIDI file represents is usually required. Matching a
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given MIDI file to, for example, a corresponding entry in the Million Song Dataset

(Bertin-Mahieux et al., 2011) can be beneficial even in experiments solely involving

symbolic data analysis because it can provide additional metadata for the track

including its year, genre, and user-applied tags. Utilizing information in a MIDI

file for ground truth in audio content-based MIR tasks further requires that it be

matched to an audio recording of the song, but this is made difficult by the lack of a

standardized method for storing song-level metadata in MIDI files (as discussed in

Section 3.1.6). Content-based matching offers a solution; for example, early work by

Hu et al. (Hu et al., 2003) assigned matches by finding the smallest dynamic time

warp (DTW) distance between spectrograms of MIDI syntheses and audio files across

a corpus. However, this approach is prohibitively slow for very large collections of

MIDI and/or audio files.

3.2.3 Aligning

There is no guarantee that a MIDI transcription for a given song was transcribed so

that its timing matches an audio recording of a performance of the song. For the many

types of ground truth data that depend on timing (e.g. beats, note transcription, or

lyrics), the MIDI file must therefore have its timing adjusted so that it matches that

of the performance. Fortunately, score-to-audio alignment, of which MIDI-to-audio

alignment is a special “offline” case, has received substantial research attention. A

common method is to use DTW or another edit-distance measure to find the best

alignment between spectrograms of the synthesized MIDI and the audio recording;

see (Raffel and Ellis, 2016b) or (Ewert et al., 2012) for surveys.

In practice, audio-to-MIDI alignment systems can fail when there are overwhelm-

ing differences in timing or deficiencies in the transcription, e.g. missing or incorrect

notes or instruments. Ideally, the alignment and matching processes would automat-
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ically report the success of the alignment and the quality of the MIDI transcription.

We do not know of any research into automatically determining the quality of a

MIDI transcription.

3.2.4 Roadmap

Given our extremely large collection of MIDI files and the possibility of leveraging

the sources of information available in them outlined in section 3.1, the remainder

of this thesis focuses on matching and aligning this collection to the Million Song

Dataset (MSD) (Bertin-Mahieux et al., 2011). Due to the scale of this problem, we

will develop a suite of learning-based methods for efficient large-scale comparison

of sequences. We will then demonstrate how the combination of these approaches

allows us to rapidly match and align our huge MIDI file collection to the MSD and

discuss some possible applications for the resulting data.
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Chapter 4

Optimizing Dynamic Time

Warping

The central application of this thesis is the problem of matching musical scores

to corresponding audio recordings in a large database. This is motivated by our

collection of 178,561 unique MIDI transcriptions which, as we explored in chapter 3,

can provide a bounty of ground truth data for content-based music information

retrieval tasks. To maximize its value, a given MIDI file must be both matched

and aligned in time to a corresponding music audio file. In both scenarios, it is of

great value to produce a confidence score which can communicate both how well the

content in a MIDI file matches a given audio file and the quality of the transcription.

Most previous research has focused on systems meant for either alignment or

matching but not both. In the context of MIDI-to-audio alignment, a wide variety

of techniques have been proposed to determine a correspondence between discrete

times in the audio and MIDI files. While some approaches use edit distance measures

such as Smith-Waterman (Ewert et al., 2012) and Needleman-Wunsch (Grachten

et al., 2013), the most common approach is dynamic time warping (DTW) which
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we described in section 2.2.3. Because DTW produces monotonic alignments, it

is well-suited for audio-to-MIDI alignment when we expect that the MIDI is an

accurate continuous transcription (i.e. without out-of-sequence or incorrect sections).

The total distance between aligned pairs of feature vectors produced by DTW

provides a single global value which can be used as a natural measure of the “similarity”

between two sequences. In fact, DTW has seen extensive use as a way of measuring

sequence similarity in the data mining literature (Berndt and Clifford, 1994).

Despite its widespread use, DTW’s success is dependent on its parametrization

as well as system design choices such as the feature representation used for sequence

elements. To our knowledge, there has been no large-scale quantitative comparison of

different DTW-based alignment systems. This is likely due to the fact that evaluating

a given system’s performance would require either a large collection of MIDI and

audio pairs for which the correct alignment is already known (which does not exist) or

manual audition and rating of the output of the systems (which is time-consuming).

This chapter aims to remedy this by searching across a large space of DTW designs

to optimize both alignment accuracy and confidence reporting. First, we enumerate

some common design choices in DTW-based alignment systems in section 4.1. In

section 4.2, we propose a method for creating a synthetic dataset of MIDI-audio pairs

by applying realistic corruptions to MIDI files, allowing us to create an arbitrary

amount of data where we know a priori the correct alignment. We then tune

parameters for alignment using Bayesian optimization (section 4.3) and for confidence

reporting using an exhaustive search (section 4.4). Finally, in section 4.5 we perform

a large-scale qualitative evaluation of our proposed alignment system on real-world

data and discuss possibilities for improvement.
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4.1 DTW-Based Alignment

From the discussion in section 2.2.3, it is clear that there are many parameters which

govern the behavior of DTW. In addition, because DTW involves aligning sequences

of feature vectors, domain-specific considerations such as the data representation will

also affect its outcome. In general, there is no consensus as to what parameter settings

generally work best for MIDI-to-audio alignment. The following list enumerates some

of the more relevant parameters which must be tuned in DTW-based audio-to-MIDI

alignment systems and references prior works to give example settings. For reference,

we follow the notation used in section 2.2.3.

Feature representation (X and Y ): Prior to alignment, audio and MIDI data

must be converted to an intermediate representation where their distance can

be computed. This is often done by synthesizing the MIDI file to obtain an

audio signal and computing a common spectral transform of the audio recording

and synthesized MIDI audio. Chroma vectors, which represent the amount

of energy in each semitone summed across octaves (Fujishima, 1999) are a

common choice (Hu et al., 2003; Ewert et al., 2012). The constant-Q transform

(CQT) (discussed in section 2.2.2.3), which represents the amount of energy in

logarithmically spaced bins (Brown, 1991) has also been used (Raffel and Ellis,

2015b; Dixon and Widmer, 2005; Ellis, 2013). Occasionally, log-magnitude

features are used in order to more closely mimic human perception (Raffel and

Ellis, 2015b; Ellis, 2013; Turetsky and Ellis, 2003). In (Turetsky and Ellis, 2003)

and (Hu et al., 2003) it is noted that Mel-Frequency Cepstral Coefficients result

in poor performance for music signals because they obscure pitch information.

Time scale (tX and tY ): Feature vectors are frequently computed over short, over-

lapping frames of audio (Dixon and Widmer, 2005; Turetsky and Ellis, 2003;
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Hu et al., 2003). Note that the spacing between feature vectors must be

sufficiently small compared to the auditory temporal resolution (e.g. tens of

milliseconds (Blauert, 1997)) in order for a perceptually accurate alignment to

be possible. Occasionally, beat-synchronous feature vectors are used (Raffel

and Ellis, 2015b; Ellis, 2013), which can reduce computation time and can

produce accurate alignments provided that the beat tracking is correct.

Normalization: In (Rakthanmanon et al., 2012), it is argued that z-scoring (stan-

dardizing) the feature sequences is critical for data mining applications of

DTW, which was used in audio-to-MIDI alignment in (Hu et al., 2003). In

addition, various normalizations have been applied to the feature vectors in X

and Y before computing their local distances. A common choice is normalizing

each vector by its L2 norm, which is equivalent to using the cosine distance

(Turetsky and Ellis, 2003; Ewert et al., 2012; Raffel and Ellis, 2015b; Ellis,

2013).

Penalty (φ): In many applications of DTW to audio-to-MIDI alignment, no additive

penalty is used, which corresponds to setting φ = 0. However, as long as the

MIDI and audio files have consistent tempos, non-diagonal moves should be

discouraged. In addition, it has been argued (Raffel and Ellis, 2015b) that

when subsequence alignment is allowed, an additive penalty can be crucial to

ensure that the entire subsequence is used, and so φ is set to the 90th percentile

of the distances ‖X[n]− Y [m]‖22 for m ∈ {1, . . . ,M};n ∈ {1, . . . , N}. In (Ellis,

2013), a fixed value of φ = .5 is used.

Gully (g) and band path constraint: The “gully” and band path constraint are

also often omitted, which corresponds to setting g = 1. A value of g which is

close to 1 will afford some tolerance to the possibility that the beginning or
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end of the MIDI transcription is incorrect (e.g. a fade-out or lead-in), so (Ellis,

2013) sets g = .7 and (Raffel and Ellis, 2015b) sets g = .95. In data mining

applications (Ratanamahatana and Keogh, 2004) it is argued that the band

radius path constraint both reduces computational complexity and results in

more reliable alignments by avoiding paths with many non-diagonal moves.

4.2 Creating a Synthetic Alignment Dataset

The list above defines a large space of parameter settings/design choices for DTW-

based audio-to-MIDI alignment systems. Previous research has typically involved

manually tuning alignment parameters based on a modest-sized test set of MIDI/audio

pairs and informally auditioning the aligned MIDI data. Because this method only

facilitates small-scale comparisons, there is an obvious question of what parameter

settings would yield the best general-purpose alignment system. Unfortunately,

manual audition of even a tiny subset of possible parameter settings on a modestly-

sized collection of paired MIDI and audio files is infeasible, let alone a collection large

enough to make substantive judgements about the general performance of a given

system. Furthermore, automatic evaluation has been blocked by the lack of a large

ground truth dataset of “correct” alignments. We therefore propose a method for

synthetically creating MIDI/audio pairs with known alignments by applying a series

of corruptions to MIDI files to resemble real-world conditions. When applying the

corruptions, we keep track of the adjustments needed to correctly align the corrupted

MIDIs, which allows us to rapidly and automatically evaluate a huge number of

possible systems.

To create this dataset, we first collected 1,000 MIDI files which were transcriptions

of Western popular music songs. We then applied the following series of transforma-

tions, based on our experience with common differences between MIDI transcriptions
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and audio recordings: First, to simulate differences in tempo, we adjusted the timing

in each MIDI file by a low-frequency length-N random signal r, defined as

s[m] ∼ N (0, σt),m ∈ {1, . . . , N + 1} (4.1)

R[k] =















s[k]e−k+1, k ∈ {1, . . . , N + 1}

R[2N − k + 1], k ∈ {N + 2, . . . , 2N}
(4.2)

r[n] =
2N
∑

k=1

R[k]ejπ(k−1)(n−1)/N , n ∈ {1, . . . , N} (4.3)

i.e. the inverse discrete Fourier transform of an exponentially decaying Gaussian-

distributed random spectrum with standard deviation σt. Second, the first 10%

and last 10% of the transcription were each cropped out with probability 50%,

which simulates the MIDI file being an incomplete transcription. In addition, 1% of

each transcription was cut out at a random location with 10% probability, which

simulates a missing measure. Third, because it is common for a MIDI transcription

to be missing an instrument (for example, karaoke renditions in which the lead

vocal line has been deleted are frequently distributed as MIDI files), we removed

each instrument track in each MIDI file with probability pr, making sure never to

remove all instruments. Fourth, in all MIDI files, we randomly added 1 or -1 to the

program number of each instrument. This simulated the fact that when comparing

a synthesized MIDI file to an audio recording, the timbre of a synthesized MIDI

instrument is always somewhat different from its real-world counterpart. Finally,

for each note in each instrument, we multiplied the velocity by a random number

sampled from N (1, σv) while keeping it in the MIDI velocity range [1, 127]. This

was meant to further simulate differences in instrument characteristics in real-world

vs. synthesized songs, and also simulated missing notes for large σv. All MIDI data
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Figure 4.1: Constant-Q spectrograms of a synthesized MIDI file
before (top) and after (bottom) undergoing the corruption process
described in section 4.2. After synthesis, log-magnitude spectrograms
with L2-normalized spectra were computed every 46.4 milliseconds,
with frequencies from MIDI note C2 (65.4 Hz) to B6 (987.8 Hz). This
corruption was achieved using the parameters from the “hard” dataset,
i.e. σt = 20, pr = .5, σv = 1.

manipulations were realized with pretty_midi (Raffel and Ellis, 2014). Example

constant-Q spectrograms of a synthesized MIDI file before and after undergoing this

corruption process can be seen in figure 4.1. In addition, the timing offset curve

which produced this corruption is shown in figure 4.2.

As described above, a DTW-based alignment system can serve two purposes:

First, to align a MIDI transcription in time to an audio recording, and second, to

produce a confidence score denoting the quality of the transcription or whether the

MIDI file is a transcription of the recording at all. We therefore produced two sets

of corrupted versions of the 1,000 MIDI files we collected, one to measure alignment

performance, and one to evaluate confidence reporting. For the first (“easy”) set,
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Figure 4.2: Warping offset curve which produced the time distortion
in the corrupted MIDI file visualized in figure 4.1. The low-frequency
variation is due to the random signal r (equation (4.3)) while the
sudden jump around 125 seconds is caused by 10% of the MIDI file
being cropped out. In our synthetic alignment task, the goal is to
reverse this timing distortion over a large dataset of corrupted MIDI
files.



4. Optimizing Dynamic Time Warping 95

we focused on corruption parameters corresponding to real-world conditions for a

high-quality transcription, setting σt = 5, pr = .1, σv = .2. For the second (“hard”),

we set σt = 20, pr = .5, σv = 1 so that the alignment task is sufficiently difficult

to result in a significant number of incorrect alignments, which allows us to test

whether an alignment system can automatically report failure.

4.3 Optimizing DTW-Based Alignment

Given a dataset of MIDI/audio pairs with known correct alignments, we can evaluate

a given alignment scheme via the mean absolute alignment error across the set. The

mean error quantifies the extent to which the alignment was able to remove the

timing distortions (random warping and cropping) described in section 4.2. When

the alignment has failed for a portion of the song, the error between the mapped

times and the correct times may be very large, so we clip the absolute error to .5

seconds (which essentially denotes an error threshold above which all local alignment

discrepancies are equally incorrect). Thus, our error metric is:

1

L

L
∑

i=1

min(|tX [p[i]]− t̂X [q[i]]|, 0.5) (4.4)

where t̂X is the ground truth “warped” time scale. We average this measure across

the test set. The resulting error |tX [p[i]]− t̂X [q[i]]| from aligning the spectrograms

shown in figure 4.1 using our “gold standard” system (described later in section 4.4.1)

is shown in figure 4.3.

Rapid calculation of this precise metric (over the “easy” test set) allows us to

perform large-scale comparisons of different parameter settings. To decide which

settings to try, we use Bayesian optimization, which approximates the relationship

between parameter settings and objective values as a Gaussian process. Using
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Figure 4.3: Absolute error between the true warping (shown in fig-
ure 4.2) and the estimated warping found by aligning the spectrograms
in figure 4.1 using the system described in section 4.4.1. The error is
clipped at .5 seconds, above which point we consider all discrepancies
equally bad. The spike of largest error around 125 seconds is caused
by the estimated warping not perfectly correcting the missing 10% of
the corrupted MIDI which was randomly cropped out.
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this formulation, Bayesian optimization can automatically propose new alignment

systems based on the performance of previously-evaluated systems. A more thorough

description of Bayesian optimization can be found in section 2.1.5. We utilized the

framework and software proposed in (Snoek et al., 2012) in all of our experiments. For

an acquisition function, we utilized the Expected Improvement (see section 2.1.5.2).

Based on the design choices outlined in section 4.1, we chose to optimize over

the following parameter space:

Feature representation: We used either chroma vectors or constant-Q spectra.

The constant-Q spectra spanned 4 octaves, starting from MIDI note C2 (65.4

Hz) with 12 bins per octave. In preliminary experiments, we found that all of

the best-performing alignment systems used log-magnitude features regardless

of whether chroma vectors or constant-Q spectra were used, so we computed

log-magnitude features in all experiments.

Time scale: We either computed feature vectors every 46.4 milliseconds or utilized

beat-synchronous features.

Normalization: We optionally z-scored the feature vectors, and normalized them

by their L1, L2, L∞ (max) norm, or not at all.

Penalty: For the penalty, we optimized a scale in [0, 3] to apply to the median

distance between all pairs of feature vectors in X and Y . Using the median

distance made this penalty adaptive to different feature representations and

normalization schemes.

Gully and band path constraint: We allowed the gully to take any value in [0, 1]

and optionally enforced the band path constraint.
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This space subsumes most of the systems discussed in section 4.1. All feature

extraction was realized with librosa (McFee et al., 2015b,c).

When performing Bayesian optimization, it is helpful to “seed” the optimization

with objective values for many randomly-chosen parameter settings to ensure that

the optimization thoroughly explores the possible parameter space. We therefore

computed the accuracy for 10,000 randomly configured alignment systems and seeded

the optimizer with the 100 systems which achieved the lowest mean error. In order

to avoid local minima in the parameter space, we carried out 10 differently initialized

Bayesian optimization runs with 100 trials each, resulting in 1,000 total trials.

The best-performing alignment system achieved an objective value of 0.0181,

meaning that the average absolute error across the entire dataset was about 18

milliseconds. This is both close to the limit of the auditory temporal resolution and

less than half of the time-scale resolution used for non-beat-synchronous feature

vectors, so attaining a higher accuracy is likely unrealistic. A one-sample t-test was

performed to determine which systems gave alignment quality statistically equivalent

to the best performance. Testing the per-pair scores rather than the mean error

across all pairs gave better robustness to outliers. Using a p-value of 0.05 as the

threshold returned 51 configurations of indistinguishable quality.

As a high-level overview of these systems, none used beat-synchronization or a

path constraint and all of them used log-magnitude constant-Q spectra as a feature

representation and set both the penalty median scale and “gully” close to 1. Almost

all of these systems used L2 normalization (resulting in a cosine distance for local

feature comparisons); a few used L1 normalization. There was no clear trend in the

use of z-scoring. Table 4.1 displays the parameter settings and the mean absolute

error achieved by the 10 best-performing alignment systems. Interestingly, a relatively

wide range (about 0.9 to 1.0) of median scale values for the additive penalty φ were
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φ Median Scale Standardize? Gully g Mean Error

1.035070 Yes 0.967203 0.0180094
0.840218 No 0.970180 0.0180690
0.944247 No 0.967956 0.0181160
0.822652 No 0.974826 0.0181264
0.929215 No 0.971404 0.0181429
0.920111 Yes 0.962121 0.0181909
0.947526 No 0.973988 0.0181951
0.893840 Yes 0.963922 0.0181988
0.906607 Yes 0.965711 0.0182004
0.937798 Yes 0.969747 0.0182236

Table 4.1: Parameters and mean absolute errors of the 10 systems
which achieved the best performance on aligning the “easy” synthetic
dataset. All of these systems utilized constant-Q transforms, normal-
ized feature vectors by their L2 norm, did not beat-synchronize, and
did not use a band mask constraint.

effective. We propose that this indicates a relative insensitivity to this parameter

setting, i.e. as long as φ is close to the distance matrix median the alignment system

can produce high-quality alignments.

4.4 Optimizing Confidence Reporting

Having found alignment systems which achieve high accuracy on the “easy” dataset,

we move on to the question of computing reliable alignment confidence scores. As

described in section 2.2.3, DTW provides a “raw” score as the sum of distances

between all aligned feature vectors, such that a small distance denotes high confidence.

This measure is inappropriate, however, when the number of aligned feature vectors

varies from song to song; in this setting, the mean distance is usually used instead

of the total distance. Furthermore, it’s not clear whether the non-diagonal path

penalties φ should be included in this distance. Finally, (Raffel and Ellis, 2015b)
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advocates further normalizing this distance by

1

L2

max(p)
∑

i=min(p)

max(q)
∑

j=min(q)

‖X[i]− Y [j]‖2 (4.5)

i.e. the mean distance between all pairs of frames over the entire aligned portion of

both feature sequences. This is intended to help normalize out global differences

between different distance matrices; for example, if a MIDI synthesis’ timbre does

not closely match an audio recording, entries in the resulting distance matrix will

tend to be larger which would inflate the DTW distance.

To choose an optimal score normalization scheme, we first aligned all of the

MIDI/audio pairs in both the “hard” and “easy” datasets using every alignment

system generated during our Bayesian optimization trials. Then, for each system

we computed the normalized DTW distance for every MIDI/audio pair using all

combinations of the normalization schemes listed above (with and without length

normalization, diagonal penalties, and mean distance normalization) resulting in 8

scores per file pair. Finally, we computed the Kendall rank correlation coefficient

(Kendall, 1938) between each score and the mean absolute error produced by all

alignment systems for every pair in both datasets. A high correlation indicates that

the system is able to accurately report the quality of its alignments.

Among our 51 highest-accuracy systems, the highest correlation was 0.710. In

general, the high-accuracy systems all produced rank correlations close to this value.

All of the systems achieved the highest correlation when including the penalties in

the score calculation, normalizing by the path length, and normalizing by the mean

distance across the aligned portions. This suggests that these steps are all helpful for

producing a reliable score. We visualize the normalized DTW distances and mean

errors for each alignment produced by the system which had the best performance
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Figure 4.4: Scatter plot of alignment errors (x-axis, log-scaled) and
normalized DTW distance (y-axis) produced by the highest-performing
alignment system using the DTW distance normalization scheme which
produced the highest correlation between the two axes. Ideally, align-
ments with a small normalized distance will have a small mean error,
indicating that the score can reliably predict when alignment was
successful. The group of points in the top right correspond to align-
ments which were globally wrong (resulting in a mean error of .5, the
maximum value).

on the “easy” dataset in figure 4.4.

4.4.1 Choosing Easily-Reproducible Parameters

As a final step in producing a “gold standard” alignment system, we decided to

find parameter settings that were easy to report and implement but nevertheless

produced alignments and confidence scores which were not significantly different than

the best systems. We chose the following design: For a feature representation, we
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used log-magnitude constant-Q transforms computed on the non-beat-synchronous

time scale described in section 4.3. We normalized the spectra by their L2 norm

and did not z-score them. We set the penalty φ to the median distance between

all pairs of feature vectors in X and Y and used a gully parameter g of 0.96. This

system achieved a mean absolute alignment error on the “easy” dataset of 0.0188,

with alignment errors which were not significantly different from the best-performing

system. By normalizing the DTW distance (including penalties) by the path length

and the mean distance across aligned portions, we achieved a rank correlation between

confidence and accuracy of 0.700. This “gold standard” system is straightforward to

implement, and will be used for the remainder of this thesis.

4.5 Qualitative Evaluation on Real-World Data

In the experiments described above, we have found a system which can provide both

high accuracy and a useful confidence measure on synthetic data. To determine its

applicability outside of synthetic contexts, we performed a large-scale qualitative

evaluation on real-world data. Our dataset consisted of 500 MIDI files which had

artist and song title information in their filename, which allowed us to hand-match

them to entries in the Million Song Dataset (Bertin-Mahieux et al., 2011). This

collection comprises MIDI files with a full range of transcription qualities, and includes

some pairs which are incorrectly matched due to metadata errors. By manually

evaluating whether each resulting alignment was successful, we can determine how

accurately the “gold standard” system performs alignments and how reliable the

reported confidence scores are.

Conveniently, the vast majority of the normalized DTW distances for our real-

world alignments fell into the range [0.5, 1.0]. In order to more intuitively report this
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measure as a “confidence score”, we decided to re-scale it as follows:

c = max(0,min(2(1− s), 1)) (4.6)

where s is the normalized DTW distance and c is the resulting confidence score.

This maps the range to [0, 1] where, ideally, 0 indicates a failure and 1 indicates a

potential perfect alignment. We will use this re-scaled score for the remainder of

this thesis.

After aligning all pairs in this dataset, we synthesized the resulting aligned MIDI

files and created stereo recordings with the aligned synthesized MIDI audio in one

channel and the original audio recording in the other. We then listened to each

aligned MIDI pair and annotated a score from 1-5 as follows:

1. MIDI and audio file are incorrectly matched

2. Alignment failed due to major differences

3. Alignment was mostly successful with minor issues

4. Perfect alignment with minor transcription issues

5. Perfect alignment and transcription

For example, if a MIDI transcription was matched and successfully aligned to the

correct song but was missing an instrument, a rating of 4 would be given; if the

missing instrument caused the alignment to sound “sloppy”, the rating would be 3

instead. Ideally, alignments with high confidence scores will be given higher ratings,

and vice versa. To prevent biasing the results, we did not have access to the reported

confidence score while rating a given aligned pair. For further analysis, we also

recorded notes about any interesting qualitative characteristics of each alignment.
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Rating Confidence Score Note

1 0.520807 Audio sounds like a remix
2 0.497009 Audio is remix
3 0.313761 Remix?
2 0.219259 Audio is remix
2 0.21846 Audio is remix/wrong section
1 0.16089 Audio is remix/live
2 0.146482 Different versions (remix?)
2 0.126939 Audio is remix
2 0.0978644 Very sloppy/audio is remix?
1 0.0739608 Audio is remix
1 0.0687189 Audio may be remix
1 0.0610702 Audio is probably remix
2 0.0484973 Different versions (remix?)
1 0.0431807 Audio is remix?
2 0.0353811 Audio is remix
1 0.0259135 Audio is remix
1 0.015929 Audio is remix
2 0.0117205 Audio is remix? Very sloppy
2 0.0116941 Audio is remix
1 0 Audio is a remix
2 0 Very sloppy/remix?

Table 4.2: Ratings, confidence scores, and annotations for real-world
alignments where we thought the audio recording was a remix of the
song the MIDI file was a transcription of. Because remixes tend to
have substantial differences in structure and instrumentation, it is
likely that alignment will fail.

For example, table 4.2 lists all of the ratings and confidence scores of alignments

where we annotated that the audio recording was likely a remix (alternate version)

of the song that the MIDI file is a transcription of.

Figure 4.5 shows the distributions of confidence scores for pairs assigned each of

the five ratings. Apart from encountering some incorrect pairs (rated 1), we also found

that various transcription issues prevented successful alignments. A common issue for

those pairs rated 2 was that the wrong section of the MIDI transcription was matched
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Figure 4.5: Violin plot (box plot with rotated kernel density esti-
mates) showing the distribution of confidence scores for each rating
in our qualitative evaluation. A smaller confidence score indicates a
more successful alignment. The area of each violin corresponds to the
number of pairs which had a given rating. Box plots in each violin
show the median and upper and lower quartiles.

to the audio, often due to different instrumentation, keys, or versions (e.g. the audio

was a remix). Any pairs rated 3 either had multiple missing instruments, many

musical embellishments, or mismatched tempos. In addition, the overlap between

the confidence scores for pairs rated 4 and 5 indicates that our confidence score is

largely invariant to minor transcription issues. The most common transcription issue

for pairs rated 4 was a single missing instrument or minor embellishments, most

often on the vocal track.

Overall, our “gold standard” alignment system was able to successfully align

most correctly-matched pairs and produced a reliable confidence score. Considering
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pairs rated 3-5 as “correct” matches, the resulting confidence scores achieve an area

under the receiver-operator characteristic curve of 0.981 (95% confidence interval

[.973, .989], calculated by 1000-sample bootstrap), indicating a high quality measure.

Unfortunately, there were a few pairs rated 1 or 2 which were not assigned small

confidence scores; without these outliers, we could use a wider range of thresholds

to obtain high-confidence alignments. The most important remaining flaw is the

relative insensitivity to missing instruments and embellishments.

4.6 Discussion

In summary, large-scale optimization over synthetic data has delivered a DTW-

based system which is simple to implement and achieves accurate and reliable

results for both alignment and matching. We demonstrated that on real-world data,

our alignment system produced a confidence score which provided a trustworthy

indicator of whether the alignment was successful or not. Nevertheless, there was

some overlap between the confidence score distributions for each rating. This implies

that our system cannot detect fine-grained issues such as missing instruments or

minor alignment errors.

We believe this is caused by the fact that alignment and confidence reporting

have somewhat different goals which result in different requirements of the feature

representation. For example, alignment benefits from a representation which is

invariant to missing instruments so that it can still be successful when a transcription

is incomplete. On the other hand, it would be helpful to have a confidence score

which was sensitive to whether or not a transcription is missing instruments. Given

that the framework we have explored requires that the representation is the same

for both tasks, it is unsurprising that there are minor alignment issues which our

confidence score is insensitive to. We therefore propose that exploring systems which
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utilize different representations for alignment and confidence reporting would be a

fruitful research direction.

We also note that there are other design choices and parameters for audio-to-MIDI

alignment systems which we have not explored. These include larger selections of

possible step sizes such as those described in (Müller, 2007; Sakoe and Chiba, 1978),

different feature representations, and even completely different alignment methods

such as Smith-Waterman (Ewert et al., 2012) and Needleman-Wunsch (Grachten

et al., 2013). In addition, there are additional avenues to be explored for creating

realistic synthetic data, such as utilizing different synthesis programs, modifying

pitch bend and other control change messages, and applying realistic acoustic noise

and nonlinearities (McFee et al., 2015a). Our proposed framework for creating

alignment datasets and optimizing system design using Bayesian optimization could

be straightforwardly extended to accommodate these new directions.

Given the success of our system at discriminating between correct and incorrect

matches, it would appear that it is a viable method for matching MIDI transcriptions

to corresponding audio recordings in a database. Specifically, we could compute the

alignment and confidence score between a query MIDI file and every recording and

assign matches according to those recordings which produced high confidence scores.

Unfortunately, the proposed method is much too inefficient for searching all but the

smallest databases. We explore this issue and develop methods for mitigating it in

the following chapters.
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Chapter 5

Learning an Efficient

Representation for Dynamic

Time Warping

The system developed in chapter 4 produces a confidence score which proved to be

extremely reliable at determining whether or not a MIDI file was a transcription of a

given audio file. The goal of this thesis is to match a large collection of 178,561 MIDI

files to corresponding audio recordings. We cannot rely on any source of metadata

from these MIDI files (see section 1.2), so we must instead utilize a content-based

comparison scheme like the one proposed in chapter 4. To maximize the chances

of finding a matching audio recording for a given MIDI file, we need to use a large

and comprehensive pool of audio files. We use the 994,960 7digital preview clips

(Schindler et al., 2012) corresponding to the Million Song Dataset (MSD) (Bertin-

Mahieux et al., 2011), which consist of (typically) 30 second portions of recordings

from the largest standard research corpus of popular music. A complete search for

matches could thus involve 994,960 alignments for each of our 178,561 MIDI files,
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resulting in 177,661,052,560 comparison.

The method proposed in chapter 4 is much too inefficient to be used in this

manner. Under this approach, aligning a typical-length MIDI file to a single audio

recording from the MSD takes on average about 247 milliseconds on an Intel Core i7-

4930k processor when using an extremely efficient LLVM-compiled DTW routine and

the optimized distance matrix calculation of scipy (Jones et al., 2014). Matching our

entire collection of MIDI files using this approach would therefore take approximately

(.247 seconds)(178,561 MIDI files)(994,960 audio files)

(60 seconds)(60 minutes)(24 hours)(365 days)
≈ 1,391 years (5.1)

Clearly, a more efficient approach is warranted.

In fact, the problem of finding the sequence in a large database (here, a collection

of audio recordings) which is most similar under DTW distance to a query (here,

a MIDI file) is common in the field of data mining (Berndt and Clifford, 1994).

Unsurprisingly, a variety of methods have been proposed for speeding up this task

to make it feasible for very large databases. A pervasive framework is “pruning”,

where a computationally efficient operation is used to discard a large portion of

the database and the remaining entries are compared using a more expensive, but

highly accurate, method. Under certain assumptions, there are methods which can

achieve exact pruning (i.e. without ever erroneously discarding the correct match) of

large-scale nearest-neighbor DTW search. (Rakthanmanon et al., 2012) provides a

thorough overview of these techniques and shows that for some problems they can

allow exact search of databases with trillions of data points. However, one of the

core assumptions of these methods is that the query is always a subsequence of its

correct match, and equivalently that the length of the aligned sequence is known

a priori, which does not hold in the setting of MIDI-to-audio matching. In fact,
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because the 7digital MP3s are truncated preview clips and MIDI files are usually

complete transcriptions, for our problem we nearly always have the opposite case

where the correct match is a subsequence of the query. We therefore cannot leverage

these pruning methods for our problem.

One of the reasons DTW-based search is so expensive is that it has O(MN)

complexity, where M and N are the lengths of the two sequences being compared.

Clearly, then, DTW can be made quadratically more efficient by decreasing the

number of elements in the sequences being compared. For example, (Keogh et al.,

2001; Yi and Faloutsos, 2000) proposed downsampling sequences by computing

their average over non-overlapping blocks, which for some tasks provided orders of

magnitude speedup without dramatically affecting accuracy. Similarly, (Salvador

and Chan, 2007) propose an iterative procedure for making DTW more efficient

which starts by finding the alignment path based on a low-resolution estimate of

the sequences being compared, and then refines this estimate at higher and higher

resolutions. The appropriateness of downsampling depends partially on the extent to

which the sequences are oversampled (i.e. having an unnecessarily high correlation

between consecutive sequence elements).

Computing the DTW distance between two sequences also potentially involves

computing the pairwise Euclidean distance between all of their elements. In data

mining tasks, entries in sequences are often one-dimensional, so the cost of this

operation is usually not considered independent of the overall cost of DTW. For

the time-frequency representation we utilize in chapter 4, our sequences consist of

48-dimensional feature vectors. As a result, in our problem setting computing the

pairwise distance matrix is actually more expensive than finding the lowest-cost path

through it because each entry in the distance matrix requires at least D operations,

where D is the feature dimensionality. Computing the distance matrix similarly
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receives quadratic speed gains when the sequences are downsampled, but also can

be made faster by using a lower-dimensional or otherwise more efficient feature

representation.

In addition, the “raw” representation in which data is initially provided may not

produce the most effective measure of similarity under the Euclidean distance utilized

by DTW. More concretely, while the audio-to-synthesized MIDI CQT comparison

utilized in chapter 4 proved effective, it may be that we are able to transform the

individual feature vectors to a space where similarity is better represented so that

matching MIDI files and audio recordings have a smaller DTW distance. Recently,

the framework of “representation learning” has proven to be effective for this type

of problem (Bengio et al., 2013). Representation learning utilizes prior knowledge,

such as a collection of pairs of known-similar and dissimilar elements, to learn a

mapping to a more effective transformed space. This process is also capable of

producing “multimodal” mappings, i.e. transformations which allow the comparison

of heterogeneous data.

From the above discussion, it is clear that mapping very long sequences of

high-dimensional feature vectors to shorter, lower-dimensional sequences such that

similarity is preserved would provide substantial gains when comparing sequences

with DTW. Motivated by this possibility, in this chapter we propose a system with

the following capabilities:

Maps to a Hamming space: By replacing continuous-valued feature vectors with

binary vectors in an embedded Hamming space, computing the distance be-

tween a pair of feature vectors simplifies to an exclusive-or followed by a

single POPCNT SSE4.2 operation (Intel, 2007), which substantially speeds up

distance matrix calculation.
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Downsamples sequences: Rather than creating a one-to-one correspondence be-

tween the original feature vectors and mapped binary vectors, groups of subse-

quent feature vectors are mapped to a single binary vector, giving a quadratic

increase in efficiency.

Preserves similarity: The system is trained with an objective which seeks to

produce a mapping where aligned feature vectors from matching sequences

have a small Hamming distance in the embedded space, and non-matched

feature vectors have a large distance.

Learns its representation: Our approach is entirely data-driven, which allows it

to adapt to different problem settings including multimodal data, as we show

in section 5.2.3.

In the following section, we describe our model and training approach in detail.

In section 5.2, we test our system’s accuracy on the task of matching MIDI files

to the Million Song Dataset. Finally, we discuss possibilities for improvement in

section 5.3.

5.1 Learning to Downsample and Hash

As a high-level overview, our system will learn a mapping from sequences of feature

vectors to downsampled sequences of binary vectors in a Hamming space where

similarity is preserved based on a training set of matched and aligned sequences.

This training set can be constructed by obtaining a collection of sequences in which

matching pairs are known, and then using DTW to find the optimal alignment

of feature vectors in matching sequences. From this data, we extract groups of

sequentially co-occurring feature vectors to construct P, such that (x, y) ∈ P

indicates that x is a group of feature vectors which is aligned to the group y from a
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matching sequence. For example, in the context of MIDI to audio matching, x will

be subsequent constant-Q spectra of a synthesized MIDI which are aligned in time

to y, consisting of co-occurring constant-Q spectra from a matching audio recording.

We then construct N , a set of “dissimilar” pairs, by repeatedly randomly choosing

two pairs (x1, y1), (x2, y2) ∈ P and swapping to obtain (x1, y2), (x2, y1) ∈ N .

Given this training data, our goal is to map sequences of feature vectors to

sequences of binary vectors in a Hamming space where groups of sequentially co-

occurring vectors in P have a small distance and groups in N have a large distance.

Motivated by the multimodal hashing technique of (Masci et al., 2014), we use the

following objective function to measure the quality of the mapping:

L =
1

|P|
∑

(x,y)∈P

‖f(x)− g(y)‖22 +
α

|N |
∑

(a,b)∈N

max(0,m− ‖f(a)− g(b)‖2)2 (5.2)

where f and g are learned nonlinear functions, α is a parameter to control the impor-

tance of separating dissimilar items, and m is a target separation of dissimilar pairs.

The first term in the loss function encourages the embedded distance between similar

pairs to be small and the second term encourages dissimilar pairs to have a distance

of at least m. More specifically, if x, y ∈ R
G×D where G is the number of subsequent

feature vectors which are grouped together (and therefore the downsampling ratio)

and D is the feature dimensionality, then f(x), g(y) ∈ H
E where HE is the Hamming

space of dimensionality E. This system is then optimized over P and N to adjust the

parameters of f and g such that equation (5.2) is minimized. The use of two different

functions f and g allows for different mappings to be learned for different types of

data; we expect this to be beneficial for our problem setting because synthesized

MIDI CQTs and real-world audio CQTs may have different characteristics. This

also allows us to experiment with multimodal data, i.e. cases where x and y come
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from different, and potentially non-comparable, feature spaces. A visualization of

this process is shown in figure 5.1.

After minimizing equation (5.2) on a training set, sequences of feature vectors in

either modality can then be mapped to downsampled sequences of hash vectors using

f and g. Once mapped, we can perform DTW much more efficiently to compute a

distance between hash sequences, where the Euclidean distance calculation inherent

in DTW has been replaced by Hamming distance. More specifically, we expect a

speedup by a factor of up to G2D, because we have effectively downsampled both

sequences by a factor of G and have replaced the D-operation Euclidean distance

with a Hamming distance calculation. In practice, the resulting binary vectors can

be represented efficiently as unsigned integers, whose Hamming distance can be

computed with an exclusive-or operation followed by a call to the POPCNT SSE4.2

instruction (Intel, 2007). The exclusive-or compares bit-by-bit whether the entries of

the binary vectors are equal, and the POPCNT implements a “population count” or

“hamming weight” calculation, which simply counts the number of nonzero bits in the

result. This process is visualized in figure 5.2. Ideally, utilizing DTW to compare

sequences which have been mapped to this efficient representation will effectively

recover matching and non-matching sequences.

Given our training procedure, we now need to choose appropriate models for

the hashing functions f and g. Neural networks are an attractive choice, because

they can in principle be optimized with respect to unusual loss functions like the one

defined in equation (5.2). In addition, the suite of tricks discussed in section 2.1.3.2

can help ensure effective results.

In (Masci et al., 2014), dense feed-forward neural networks are used for the

learnable functions f and g. We could potentially utilize this type of network for

our hashing and downsampling procedure by concatenating input x, y ∈ R
G×D into
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f

g

Figure 5.1: Diagram visualizing how subsequent groups of feature
vectors are mapped to binary vectors. Matching sequences of feature
vectors which have been aligned in time are shown at the top and
bottom. Co-occurring groups of feature vectors, highlighted in light
boxes, are passed through two learned nonlinear functions f and g
(visualized as neural network diagrams). The functions then output
a single hash vector each, which are ideally close together in the
embedded Hamming space because they represent co-occurring feature
vectors from matched and aligned sequences. For groups of feature
vectors from non-matching sequences, the networks are trained to
output binary vectors with a large Hamming distance.
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POPCNT( ) = 9

Figure 5.2: Computing the Hamming distance between two binary
vectors via an exclusive-or followed by a POPCNT instruction. The
exclusive-or of the top two vectors produces the bottom vector, which
is 1 where the input vectors differ and 0 where they match. The result
of the exclusive-or is passed to the POPCNT SSE4.2 instruction, which
simply counts the number of non-zero bits in its input. These two
steps therefore can produce the distance between two binary vectors
in two machine instructions.

single-dimensional vectors in R
GD. However, we argue that convolutional networks

(discussed in section 2.1.3.4) are a better choice for sequential data for the following

reasons: Sequential data has at least one ordered (temporal) dimension, and in most

natural data, the strongest dependencies along the temporal axis are localized. This is

exactly the kind of structure convolutional networks are designed to efficiently exploit.

Furthermore, the pooling layers which are a common ingredient in convolutional

networks provide a natural method of downsampling the sequences. They also allow

the network’s output a given point in time to depend on a large “receptive field” of

the input. In our problem setting, this means that a given hash vector produced by

f or g will be affected not only by the corresponding group of G feature vectors but

also on a window of feature vectors surrounding it. For the above reasons, we utilize

convolutional networks for the rest of this chapter.
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5.2 Experiment: MIDI to MSD Matching

To determine the effectiveness of this approach on the task of matching MIDI files

to the MSD, we evaluated its effectiveness on a smaller surrogate problem. As an

overview, this experiment proceeded as follows: First, we assembled a collection of

known-correct MIDI-MSD matches. We then aligned these pairs using the “gold-

standard” system described in section 4.4.1 and used a subset of the matched and

aligned pairs to train our hashing model. Finally, we utilized the trained model

to produce hash sequences for the entire MSD and a held-out subset of MIDI files

from our collection of known-correct matches. Our approach was then evaluated

based on how accurately it was able to recover the correct match in the MSD

by nearest-neighbor DTW search utilizing the downsampled hash sequences. To

explore the ability of our approach to handle multimodal data, we repeated this

experiment using piano roll matrices to represent MIDI files rather than constant-Q

spectrograms. We also compared our technique to a simple baseline, to ensure that

our learning-based approach is beneficial.

5.2.1 Preparing Data

For evaluation, we need a collection of ground truth MIDI-audio pairs which are

correctly matched. To train our hashing model, we further require a collection of

aligned MIDI and audio files, to supply the matching groups of feature vectors from

each domain that will be used to train our model. To obtain MIDI-audio pairs, we

first separated a subset of MIDI files from our 178,561-file collection for which the

directory name corresponded to the song’s artist and the filename gave the song’s

title. The resulting metadata needed additional canonicalization; for example, “The

Beatles”, “Beatles, The”, “Beatles”, and “The Beatles John Paul Ringo George”

all appeared as artists. To normalize these issues, we applied some manual text
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processing and resolved the artists and song titles against the Freebase (Bollacker

et al., 2008) and Echo Nest1 databases. This resulted in a collection of 17,256 MIDI

files for 10,325 unique songs, which we will refer to as the “clean MIDI subset”.

We will leverage the clean MIDI subset in two ways: First, to obtain ground truth

pairings of MSD/MIDI matches, and second, to create training data for our hashing

scheme. The training data does not need to be restricted to the MSD, and using other

sources to increase the training set size will likely improve our hashing performance,

so we combined the MSD with three benchmark audio collections: CAL500 (Turnbull

et al., 2007), CAL10k (Tingle et al., 2010), and uspop2002 (Berenzweig et al., 2004).

To match these datasets to the clean MIDI subset, we used the Python search engine

library whoosh2 to perform a fuzzy matching of their metadata. This resulted in

25,707 audio/MIDI file pairs corresponding to 5,249 unique songs.

Fuzzy metadata matching is not enough to ensure that we have MIDI and audio

files with matching content; for instance, the metadata could be incorrect, the

fuzzy text match could have failed, the MIDI could be a poor transcription (e.g.,

missing instruments or sections), and/or the MIDI and audio data could correspond

to different versions of the song. We therefore utilized the alignment technique

developed in section 4.4.1, which was empirically shown to produce a confidence

score which reliably reports whether the content of a MIDI file matches a given audio

file. Conveniently, utilizing an alignment system to verify matches also provides the

aligned sequences we need for training our hashing system. Based on the real-world

results presented in section 4.5, we decided to consider a match “correct” when its

confidence score was above 0.5; for the 500 alignments annotated in section 4.5, this

produced the correct label for all but 1 of the failed matches and for the majority of

1http://developer.echonest.com/docs/v4
2https://github.com/dokipen/whoosh
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the correct matches. Retaining all alignments with confidence scores higher than

this threshold resulted in 10,094 successful matches.

For a fair evaluation, we exclude items used in training from the evaluation of

our system, thus we split the successful alignments into three parts: 60% to use as

training data, 5% as a validation set used for rapid evaluation of models as they

are being trained, 10% as a “development set” to tune the content-based matching

system, and the remaining 25% to use for final evaluation of our system. Care was

taken to split based on songs, rather than by entry (since some songs appear multiple

times).

5.2.2 System Specifics

Training the hashing model involves presenting training examples and backpropagat-

ing the gradient of equation (5.2) through the model parameters; we therefore need

to specify the data format, model architecture, and training process. As a feature

representation, we used the same one chosen in section 4.4.1, i.e. log-magnitude

constant-Q spectrograms consisting of spectra with 12 bins per octave from MIDI

note C2 (65.4 Hz) to B6 (987.8 Hz) computed every 46.4 milliseconds. We utilized

pretty_midi (Raffel and Ellis, 2014) and fluidsynth3 to synthesize MIDI files and

librosa (McFee et al., 2015b,c) to compute features. Because utilizing a cosine

distance for comparing spectra was consistently beneficial for alignment (see sec-

tion 4.3), we L2-normalized each feature vector. In order to improve convergence,

we also standardized the feature dimensions of all data utilizing statistics from the

training set.

For efficiency, we trained the networks using minibatches of training examples;

each minibatch consisted of 50 sequences obtained by choosing a random offset for

3http://fluidsynth.org



5. Learning an Efficient Representation for Dynamic Time Warping 120

each training sequence pair and cropping out the next 100 spectra. For N , we simply

presented the network with length-100 subsequences chosen at random from different

songs. Each time the network had iterated over minibatches from the entire training

set (one epoch), we repeated the random sampling process. For optimization, we

used RMSProp (Tieleman and Hinton, 2012), described in section 2.1.4.5. After

each 100 minibatches, we computed the loss over the validation set. If the validation

loss was less than 99% of the previous lowest, we trained for 1000 more iterations

(minibatches).

While the loss computed over the validation set is a reasonable indicator of

network performance, its scale will vary depending on the α and m regularization

hyperparameters. To obtain a more consistent metric, we also computed the distribu-

tion of distances between the hash vectors produced by the network for the pairs in P

and those in N . We then used the Bhattacharyya coefficient (Bhattacharyya, 1943)

to compute the separation of these distributions to obtain a more direct measure of

network performance.

In each modality, the hashing networks have the same architecture: A series of

alternating convolutional and pooling layers followed by a series of fully-connected

layers. While the exact specification of this architecture will affect performance,

the most impactful design choice for our problem setting is the extent to which the

temporal axis is downsampled by pooling layers. Following the common convention

of pooling by 2, each pooling layer will result in sequence lengths being halved and

the resulting DTW calculation being faster by up to a factor of 4. However, too

much downsampling may result in a loss of precision, particularly if the resulting

sequences become extremely short. We therefore chose to utilize a total of three

pooling layers, which corresponds to downsampling by a factor of 8. This resulted

in the 30-second 7digital preview clips being mapped to length-80 hash sequences,
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which provided enough information for high precision while still achieving up to a

factor of 64 speedup when computing DTW.

For the convolutional front-end of our networks, we experimented with a variety

of architectures and chose the following: Each of the three max-pooling layers were

preceded by two convolutional layers, each with 3×3 filters (where the first dimension

is time and the second is constant-Q frequency bin). The use of a larger number of

smaller convolutional filters is advocated by Simonyan and Zisserman (Simonyan and

Zisserman, 2014), who argue that this structure improves the network’s modeling

capabilities while maintaining receptive field size and requiring fewer parameters.

The convolutional layers in each of the three “groups” had 16, 32, and 64 filters,

respectively. We padded the input to each convolutional layer so that the output

size was the same as the input size. All of the max-pooling layers utilized 2 × 1

pooling with a stride of 2. The pooling size of 2× 1 is advocated for spectrograms in

(Humphrey and Bello, 2012) and results in only the temporal axis, not the frequency

axis, being downsampled; we found this to work better than the more standard 2× 2

pooling commonly used in image processing networks.

After the convolutional layers, we utilized two dense layers with 2048 units each,

followed by the output layer. The fully-connected layers were applied independently

over the temporal axis to the output of the convolutional portion of the network. In

our networks, all layers except the output use rectifier nonlinearities; as in (Masci

et al., 2014), the output layer uses a hyperbolic tangent. We can then obtain binary

hash vectors by testing whether each output unit is greater or less than zero. We

chose 32 bits as the dimensionality of our embedded Hamming space, since 32 bit

values are efficiently manipulated as unsigned integers. For initial weight parameter

values, as suggested in (He et al., 2015), we used normally-distributed random

variables with a mean of zero and a standard deviation of
√

2/nin, where nin is the
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number of inputs to each layer. All bias values were initialized to 0. Our model was

implemented using theano (Bergstra et al., 2010; Bastien et al., 2012; Al-Rfou et al.,

2016) and lasagne (Dieleman et al., 2015).

For regularization, we found it beneficial to add a squared L2 penalty to the

network’s output prior to thresholding. This effectively encourages the network to

produce values near 0, which we believe improves convergence due to the fact that

the gradient of the hyperbolic tangent nonlinearity vanishes away from 0. This is

in contrast to the intuition provided in (Masci et al., 2014) for using a hyperbolic

tangent, where it is argued that saturating the nonlinearity will more closely simulate

a binary embedding. To control the amount of regularization, we multiplied this L2

penalty by a scalar hyperparameter β before adding it to equation (5.2).

To ensure good performance, we optimized all model hyperparameters using the

Bayesian optimization framework proposed in (Snoek et al., 2012). We optimized

over the convolutional/pooling layer architecture, the RMSProp learning rate and

decay parameters, and the α, β and m regularization parameters of the loss function

and the output L2 penalty. As a hyperparameter optimization objective, we used

the Bhattacharyya coefficient as described above. The best performing network

had the structure we described above, a learning rate of 10−5 with an RMSProp

decay parameter of 0.26, α = 5.33, m = 4, and β = 0.05. This hyperparameter

configuration achieved a Bhattacharyya coefficient of 0.385.

Beyond those described above, we also experimented with a number of other

regularizers, model architectures, and optimization schemes. For posterity, we report

those here:

• We experimented with a larger 5 × 12 filter size in the first layer as used in

(Raffel and Ellis, 2015b) with single 3× 3 convolutional in the second and third
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layers, but found this structure resulted in slightly worse performance despite

having a similar receptive field.

• We tested the use of dropout (Hinton et al., 2012) in the fully-connected layers,

but it slightly decreased performance.

• We tried adding a “stress” (Kruskal, 1964) term to the loss function to encourage

the networks’ outputs to preserve the distances of their input, but found it

hurt performance.

• We also tried the hash entropy-encouraging loss term proposed in (Yang

et al., 2015, equation (3)) but it did not significantly affect the resulting hash

distribution.

• In early experiments, we utilized fully-connected networks with no convolutional

layers, but quickly achieved better results after including the convolutional

front-end.

• We experimented with a variety of architectures for the fully-connected portion

of the network, including using 1, 2, or 3 hidden layers, with 256, 512, 1024,

2048, or 4096 layers; 2 layers with 2048 units was the largest configuration

which could fit in memory and incidentally produced the best performance.

• Apart from RMSProp, we also experimented with Nesterov’s accelerated

gradient (Nesterov, 1983) and Adam (Kingma and Ba, 2015) (see section 2.1.4.3

and section 2.1.4.6) but found that RMSProp produced the best results.

5.2.3 Adapting to Multimodal Data

Our proposed system is structured to learn mappings from two different modalities

thanks to the fact that two separate networks f and g are trained. Utilizing the
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shared constant-Q spectrogram representation described in the previous section

does not test the multimodal capabilities of our model because it allows MIDI files

and audio recordings to be directly compared (as demonstrated in chapter 4). We

therefore also evaluated the use of a “piano roll” representation for the MIDI data. A

piano roll matrix P is constructed such that P [i, j] = v, where v is the total velocity

of all notes on all instruments playing with pitch j at the time corresponding to the

ith feature vector. This representation can be readily extracted from the MIDI file

itself (i.e. without synthesis), and contains substantially less information than the

CQT. It is, however, still a “time-frequency” matrix, so it is not truly multimodal in

the strictest sense.

For ease of comparison, we utilized the exact same system as outlined in sec-

tion 5.2.2 except that we replaced the constant-Q spectrograms of synthesized MIDI

files with piano roll matrices, computed over the same timebase and range of semi-

tones. Specifically, after matching and aligning files from the clean MIDI subset, we

computed piano roll matrices using the get_piano_roll method of the pretty_midi

library (Raffel and Ellis, 2014). As with the constant-Q spectrograms, we also L2

normalized each feature vector in the piano roll matrices and standardized the feature

dimensions using statistics from the training set. We then carried out a separate

hyperparameter optimization, because we don’t necessarily expect the same system

design to perform best using both feature representations. The best performance

was attained with a learning rate of 0.00011, an RMSProp decay parameter of 0.90,

α = 5.72, and m = 5, and β = 0.036, producing a Bhattacharyya coefficient of 0.428.

5.2.4 Baseline

In order to verify whether our hashing system is beneficial, we also evaluated a

simple learning-free baseline method. This approach is inspired by the “piecewise
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aggregate approximation” approach proposed in (Keogh et al., 2001; Yi and Faloutsos,

2000), which downsamples a sequence by computing the average of feature vectors

within non-overlapping blocks of fixed length. Given a constant-Q spectrogram, our

baseline method first computes the average spectrum over non-overlapping blocks of

8 spectra, which achieves the same downsampling ratio as our convolutional network

models. In order to produce binary vectors, we first computed the mean value in

each feature dimension among all sequences in our training set, and then thresholded

the downsampled sequences about this value. More explicitly, given a sequence

X ∈ R
M×D which consists of M D-dimensional feature vectors, we compute

X̂[n, d] =























1,





1

G

G(n+1)
∑

m=Gn

X[m, d]



 ≥ X̄[d]

0, otherwise

(5.3)

where G is the downsampling factor (8 in our experiments), n ∈ {1, . . . , ⌊MG ⌋},

X̂ ∈ H
⌊M
G
⌋×D is the resulting downsampled hash sequence, and

X̄[d] =
1

|S|

|S|
∑

k=1

1

Mk

Mk
∑

m=1

Xk[m, d] (5.4)

where X1, . . . , X|S| ∈ S is the training set of sequences with Xk ∈ R
Mk×D. After

thresholding our constant-Q spectrograms, this resulted in binary vectors in H
48.

For more direct comparison, and to enable the use of exclusive-or and POPCNT to

measure Hamming distance, we simply discarded the bottom and top eight entries

in each of the resulting binary vectors so that they instead were embedded in H
32.

Intuitively, the resulting downsampled hash sequences represent whether a given

semitone had more or less energy than average over subsequent blocks of 8 frames

(corresponding to 371.5 milliseconds).
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5.2.5 Matching MIDI Files to the MSD

After training our hashing system as described above, the process of evaluating

the effectiveness of matching MIDI files to the MSD proceeds as follows: First,

we precompute downsampled hash sequences for every 7digital preview clip and

every MIDI file in the test and development sets for which we know a priori the

correct match(es) in the MSD. Then, we compute the DTW distance as described in

section 2.2.3 between every audio and MIDI hash sequence, except that the Euclidean

distance of equation (2.81) is replaced with Hamming distance. Ideally, for a given

MIDI file the correct match in the MSD will have the smallest DTW distance. For

brevity, we will refer to the CQT-to-CQT hashing model of section 5.2.2 as “DHS”

(for downsampled hash sequence), the piano roll-to-CQT model of section 5.2.3 as

“DHS-piano”, and the baseline system of section 5.2.4 as “TPAA” (for thresholded

piecewise aggregate approximation).

We tuned the parameters of the DTW cost calculation to optimize results over our

“development” set of successfully aligned MIDI/MSD pairs. We found it beneficial to

use a smaller value of g = 0.9. In chapter 4, we utilized the median pairwise distance

for the “non-diagonal move” penalty for CQT-based distance matrices, but we found

that this median was consistent across Hamming-distance matrices. Using a fixed

value for the additive non-diagonal move penalty φ avoids the median calculation, so

we chose a fixed φ = 15, the median distance we observed. Similarly, we found that

normalizing by the average distance value as defined in equation (4.5) did not help,

so we skipped this step.
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Figure 5.3: Example constant-Q spectrograms (top) and downsam-
pled hash sequences (bottom) for a matched MSD entry (left) and
MIDI transcription (right) of the song “I Wanna Be Your Lover” by
Prince, which appeared in our development set. The downsampled
hash sequences were created using the trained “DHS” model described
in section 5.2.2. As utilized in our experiments, the constant-Q spec-
trograms are log-magnitude and L2-normalized. For the spectrograms,
the feature dimension corresponds to semitones; for the hash sequence,
the Hamming space dimensions have no explicit meaning. The spectro-
gram utilizes a timebase of 46.4 milliseconds per sequence step, which
the hash sequence downsamples by a factor of 8 to 371.5 milliseconds.

5.2.6 Results

5.2.6.1 Qualitative

Before diving into the empirical performance of our system, it is useful to get a

qualitative idea of its behavior. By way of example, we show our model’s output

for an example pair of matching sequences from our development set in figure 5.3.

While the hash sequences are not directly interpretable, they do appear to match the

overall structure of the constant-Q spectrograms. The pairwise distance matrices and

DTW path for these constant-Q spectrogram and downsampled hash sequence pairs

can be seen in the first and second row of figure 5.4 respectively. Visualized in this

manner, the hash sequence distance matrix clearly shows the structure of the song,

including local repetitions as well as the two choruses at around 1/3 and 2/3 of the
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way through the song. Furthermore, the hash sequence DTW operation recovered the

same alignment path. The distance matrix produced by the “multimodal” system,

shown in the third row, has similar structure although the DTW alignment chose the

first rather than second chorus. At the bottom is the baseline TPAA distance matrix,

which has less obvious structure than the other hash sequence representations.

An intuitive surrogate for performance is the distribution of distances between

matching and non-matching pairs. Ideally, the distance between aligned feature

vectors or embedded binary vectors in matched MIDI and audio files will be small,

and will be large for non-matching pairs. The extent to which the distributions

of matching and non-matching distances overlap is measured by our objective, the

Bhattacharyya coefficient, but it is also useful to inspect the distributions themselves

before and after undergoing downsampling and hashing for the various techniques

we are evaluating. These distributions, for the raw CQT-to-CQT, piano roll-to-CQT,

and each of the Hamming-space representations produced by the DHS, DHS-piano,

and TPAA approaches are shown in figure 5.5.

The overlap between the matching and non-matching distributions of CQT-to-

CQT distances in the top left shows that there is certainly some room for improvement

in this representation. Below this, the distributions for the piano roll-to-CQT

distances show that comparing these two representations is substantially less effective,

although there is some trend towards smaller distances for matching feature vectors.

At the bottom left, the distributions for raw (pre-thresholding) distances are shown.

This plot gives a clear picture that representation learning is helpful, because there is

virtually no overlap between matching and non-matching distances, and furthermore

the Euclidean distance in the embedded space for matching sequence elements is

generally very small. The effect of thresholding this representation is shown in the

bottom right; thresholding clearly limits some of the discriminative power of the
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Figure 5.4: Distance matrices and DTW alignment paths (shown as
dashed white lines) between the MSD entry and MIDI transcription
shown in figure 5.3 utilizing different representations. At the top is
the standard synthesized MIDI CQT-to-audio CQT distance matrix,
as utilized in chapter 4. The second row shows the distance matrix for
the downsampled hash sequences shown at the bottom of figure 5.3,
produced by the DHS system. Below that is the distance matrix for
hash sequences created utilizing the DHS-piano system. Finally, the
bottom distance matrix was computed using the TPAA method.
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Figure 5.5: Distributions of distances for matching and non-matching
sequence elements from our validation set for a variety of represen-
tations. Real-valued (squared Euclidean) distance distributions for
matching and non-matching pairs are shown in red and orange respec-
tively; Hamming distance distributions are shown in blue and green.
From top left to bottom right are distance distributions for vectors
produced by synthesized MIDI CQT-to-audio recording CQT, the
TPAA method, MIDI piano roll-to-audio CQT, the thresholded output
of the DHS-piano model using this “multimodal” data, the DHS model
prior to thresholding, and the DHS model after thresholding.
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representation, but nevertheless there is much less overlap in the distributions than

there was for the “raw” CQT feature representation. Above, the Hamming distance

distributions are shown for the model which learned to embed piano roll vectors;

the separation of the distributions almost matches the CQT-to-CQT-based model,

showing that our system is adaptable to differing input representations. Finally, in

the top right, we show the distributions for our baseline TPAA method. Clearly,

there is substantially move overlap between matching and non-matching embeddings

in this representation.

5.2.6.2 Ranking Metrics

To evaluate our system using the known MIDI-audio pairs of our test set, we ranked

MSD entries according to their hash sequence DTW distance to a given MIDI file,

and determined the rank of the correct match. Because some MIDI files were matched

to multiple MSD entries due to duplicates in the MSD, we made the forgiving choice

of utilizing the best (i.e. smallest) rank among all correct matches for a given MIDI

file. We also ignored all resulting hash sequences with less than 30 sequence elements;

these generally corresponded to corrupt MP3 files and occasionally confounded the

results. The mean reciprocal rank (MRR) across the test set for the three methods

we evaluated is shown in the first row of table 5.1. This metric makes it clear that

our learning-based system outperforms our baseline, producing a MRR of 0.704

compared to 0.270. We also observe a modest, but significant, drop in performance

to an MRR of 0.580 when using piano rolls instead of constant-Q spectrograms of

MIDI syntheses.

While the MRR provides a compact measure of performance, we believe a more

intuitive empirical measure is the proportion of MIDI files in the test set whose

correct match ranked under a certain threshold. We plot this proportion against the
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Metric DHS DHS-piano TPAA

Mean Reciprocal Rank 0.704 0.580 0.270
95% Rank Threshold 98 518 25,944

Table 5.1: Metrics measuring the performance of the different ap-
proaches we tried for creating downsampled hash sequences. The first
row shows the mean reciprocal rank of the correct match across all
entries in our test set. The second shows the threshold below which
95% of the test set had a smaller rank.

rank threshold in figure 5.6. A high-performance metric will yield a curve which

approaches 100% very quickly, meaning that the majority of the correct matches

in the test set were ranked highly. From a high level, then, we can see that our

proposed method substantially outperforms the baseline, due to the fact a much

larger proportion of the test set was highly ranked.

Nevertheless, using our learning-based approach for creating downsampled hash

sequences resulted in only about 59.2% of the matches in our test set having the

smallest DTW distance (i.e. having rank 1). This implies that we can’t rely on the

correct entry appearing as the top match among all the MSD tracks in practice.

Some degree of inaccuracy can be attributed to the fact that our hashing model is

not perfect (as shown in figure 5.5) and that the MSD is very large, containing many

possible decoys. In a relatively small proportion of cases, the MIDI hash sequence

ended up being very similar to many MSD hash sequences, pushing down the rank

of the correct entry.

Given that we cannot reliably assume the top hit is the correct MSD entry, it is

more realistic to look at our system as a pruning technique; that is, it can be used

to discard MSD entries which we can be reasonably confident do not match a given

MIDI file. We therefore propose that a useful metric is to find the rank threshold

below which we can be highly confident that the correct match appears, which we
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Figure 5.6: Percentage of MIDI files in the test set whose correct
match in the MSD ranked better than a given threshold, using each of
the methods we evaluated.

report for our different methods in the second row of table 5.1. Specifically, we

computed the threshold N at which 95% of the correct matches in the test set had a

rank better (i.e. lower) than N . Given this high-confidence rank threshold N , we

can compute the hash sequence DTW distance between a query MIDI and all MSD

entries, discard all entries in the MSD except those with the N -smallest distances,

and then perform the more precise and more expensive method of chapter 4 to find

the best match in the remaining candidates. Inspecting the resulting values of N

for the methods we evaluated, we see that we can discard the vast majority (all but

98 entries, or over 99.99%) of the MSD with high confidence using the DHS model.

Once again, utilizing piano roll matrices incurs a modest decrease in precision, and

the baseline TPAA method has substantially worse performance.
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5.3 Discussion

Pruning methods are valuable only when they are substantially faster than performing

the original computation; fortunately, our approach is orders of magnitude faster:

On an same Intel Core i7-4930k processor, calculating a Hamming distance matrix

between downsampled hash sequences is on average about 1,500 times faster than

computing the CQT cosine distance matrix (142 microseconds vs. 225 milliseconds)

and computing the DTW score is about 62 times faster (371 microseconds vs. 23

milliseconds). These speedups can be attributed to the fact that computing an

exclusive-or and a POPCNT is much more efficient than computing the cosine

distance between two vectors and that, thanks to downsampling, our hash-based

distance matrices have 1
64 of the entries of the CQT-based ones. In summary, a

straightforward way to describe the success of our system is to observe that we can,

with high confidence, discard over 99.99% of the entries of the MSD by performing a

calculation that takes about as much time as matching against 0.2% of the MSD.

In addition, our learning-based approach provides a huge improvement over simply

thresholding the raw feature values.

We identify a variety of potential avenues for improving our approach. First,

our simple method of randomly swapping matching pairs to construct our dissimilar

pair set N may not be the most effective approach. Preferentially choosing pairs

on which our model is having difficulty, as done in (Schroff et al., 2015), or using a

curriculum learning approach which presents more and more difficult examples to

the network over time (Bengio et al., 2009) could prove beneficial. Furthermore, we

are interested in trying the various other loss functions which have been proposed

for similarity-preserving embedding, such as the “coscos” loss from (Kamper et al.,

2016) or the k-means style loss from (Hershey et al., 2016).

Despite our system’s efficiency, we estimate that comparing each of the MIDI files
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in our 178,561 file collection to the entire the MSD would still take about 1,000 days.

We therefore still require an even more efficient technique. The main bottleneck

is that it still requires DTW to compare hash sequences; if we could avoid this

quadratic-complexity operation we could potentially develop an even faster pruning

method. We explore this possibility in the following chapter.
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Chapter 6

Pruning Subsequence Search by

Embedding Sequences

The DTW-based approaches for computing sequence similarity we have discussed so

far have quadratic complexity in the sequence length because they involve multiple

pairwise operations between each element in the sequences being compared. While

the downsampling and binary embedding approach proposed in chapter 5 can make

DTW much more efficient by lowering the number of sequence elements and making

the pairwise comparisons faster, it is nevertheless still quadratic in complexity.

When datapoints can be represented as single fixed-length vectors, rather than as

sequences of vectors, comparing two datapoints is effectively linear-time in the vector

dimensionality. This makes the task of matching a query to its most similar entry in

a database extremely efficient. An obvious question, then, is whether we can avoid

the operation of comparing sequences for the majority of the database by comparing

fixed-length vector surrogates for the sequences whose distance approximates their

similarity.

Motivated by this question, we propose a learning-based system for mapping
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variable-length sequences of feature vectors to a fixed-length embedded space where

sequence similarity is approximated by Euclidean distance. This allows us to pre-

compute embeddings for all entries in a large database of sequences, and rapidly

estimate similarity by embedding a query sequence and computing its Euclidean

distance to all of the database embeddings. As a result, this operation does not

become less efficient for longer or higher-dimensional sequences, i.e. it is effectively

invariant to sequence length and feature vector dimensionality. Our approach utilizes

a novel attention-based neural network model which can adapt to any problem

setting according to the training data provided.

In the next section we discuss embedding and attention-based neural networks,

which we use to motivate our proposed model. In section 6.2, we evaluate the

effectiveness of our approach on our exemplary task of matching MIDI files to

entries in the Million Song Dataset. Finally, we discuss results and possibilities for

improvement in section 6.3.

6.1 Embedding Sequences with Attention

6.1.1 Embedding

The idea behind “embedding” is attractive: Given data in a representation which

is either inefficient or does not readily reveal factors of interest, can we produce

a mapping to fixed-length vectors that possess these desired properties? Because

many simple machine learning methods are particularly effective given data where

Euclidean distance corresponds to some notion of similarity, embedding can make

data more amenable to learning and comparison.

As a concrete example, in (Schroff et al., 2015), a neural network architecture

is used to embed images of faces such that images of the same person have small
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pairwise distances in the embedded space and images of different people have large

distances. The authors were able to achieve state-of-the-art results on the “labeled

faces the wild” dataset by simply thresholding the resulting distances to denote

“same person” or “different person”. In addition, the embedded representation

produced qualitatively useful results when performing unsupervised clustering using

k-means. Alternatively, (Yang et al., 2015) proposed a supervised method for learning

Hamming-space embeddings for images which reflect salient characteristics of the

images being embedded. This allows for rapid “semantic” nearest neighbor queries

to be made over large image databases.

For text, a striking application is word2vec, which is a family of models for

mapping words to a Euclidean space with desirable properties (Mikolov et al., 2013).

For example, the difference between “China” and “Beijing” in the embedded space is

roughly equivalent to the difference between “Rome” and “Italy”. These embeddings

are typically learned in a unsupervised manner based on a word’s context.

Most relevant to this thesis, embedding has been applied to the task of large-scale

DTW search: (Papapetrou et al., 2011) proposes a technique which maps variable-

length sequences of feature vectors to a fixed-length embedded space where DTW

distance is approximated by Euclidean distance. The embedding is constructed

by pre-computing the DTW distance between each sequence in the database and

a small collection of “reference” sequences that are chosen to optimize retrieval

accuracy. Then, to match a query sequence to the database, its DTW distance is

computed against the reference sequences, and the resulting vector of DTW distances

is matched against the database of embeddings using a standard Euclidean distance-

based nearest-neighbor search. The resulting algorithm is approximate, but provided

state-of-the-art results both in terms of accuracy and speed. This technique relies on

the assumption that the query is a subsequence of its correct match, and the training
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procedure involves repeatedly aligning a training set of sequences to the database.

These restrictions make it invalid in some cases, such as our MIDI-to-MSD matching

problem where the correct database entry may be a subsequence of a given query

and where it is computationally unreasonable to repeatedly align sequences to the

entire database in the training process.

The idea of embedding has also been utilized in other sequential data problems.

For fixed-length sequences, the same type of feed-forward model used for fixed-size

input can be used. For example, (Kamper et al., 2016; Bengio and Heigold, 2014)

learn to embed spoken utterances of a fixed length in a Euclidean space where

utterances of the same word are close together.

For variable-length sequences, it is common to use a model with some form of

temporal awareness. A natural example are recurrent networks (see section 2.1.3.3)

whose hidden state can be treated as a learned embedding of the input sequence up

to a given point in time. Notably, in (Sutskever et al., 2014), a recurrent network

was trained to map a sequence of words in a source language to a fixed-length vector,

which was then used to generate a sequence of words in a target language, resulting

in a quality translation of the original sentence. The resulting source-sentence

embeddings encoded high-level linguistic characteristics, such as invariance to word

order in sentences with the same meaning. In the audio domain, (Hershey et al.,

2016) propose training a recurrent network to embed time-frequency “pixels” in

spectrograms of acoustic mixtures so that sources can be separated using clustering

techniques.

6.1.2 Attention

While recurrent networks have proven to be an effective method for embedding

variable-length sequences, they have difficulty in modeling long-term dependencies
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when trained with backpropagation through time (Bengio et al., 1994; Hochreiter

and Schmidhuber, 1997; Pascanu et al., 2013) (see section 2.1.3.3 for a discussion).

In the embedding setting, this may result in the end of the sequence having a greater

impact on the embedding than the beginning. A recent technique for mitigating

this issue has been dubbed “attention” (Bahdanau et al., 2014). Conceptually, an

attention-based model includes a mechanism which learns to assign a weight to each

sequence step based on the current and previous states. When used with recurrent

networks, the addition of attention has proven effective in a wide variety of domains,

including machine translation (Bahdanau et al., 2014), image captioning (Xu et al.,

2015), and speech recognition (Chan et al., 2015; Bahdanau et al., 2015); see (Cho

et al., 2015) for an overview. Attention can also be seen as analogous to the “soft

addressing” mechanisms of the recently proposed Neural Turing Machine (Graves

et al., 2014) and End-To-End Memory Network (Sukhbaatar et al., 2015) models.

More specifically, following the definition from (Bahdanau et al., 2014), given a

length-T sequence h, attention-based models compute a series of “context” vectors

ct as the weighted mean of the sequence h by

ct =
T
∑

j=1

ωt[j]h[j] (6.1)

where ωt ∈ R
T is a vector of weights computed at each time step t, with an entry

for each sequence step in h. These context vectors are then used to compute a new

sequence s, where st depends on st−1, ct and the model’s output at t − 1. The

weightings ωt[j] are computed by

et[j] = a(st−1, h[j]) (6.2)

ωt[j] =
exp(et[j])

∑T
k=1 exp(et[k])

(6.3)
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where a is a learned function which can be thought of as computing a scalar

importance value for h[j] given the value of h[j] and the previous state st−1. This

formulation allows the new sequence s to have more direct access to the entire

sequence h.

6.1.3 Feed-Forward Attention

While previous work on attention-based models has focused on recurrent networks,

in the present work we will use feed-forward networks for the following reasons: First,

even with attention, recurrent networks have difficulty modeling very long-term

dependencies. The constant-Q spectrogram representation we have been using can

result in sequences with thousands of timesteps, which is prohibitively long even

for sophisticated models such as long short-term memory networks (Hochreiter and

Schmidhuber, 1997). Second, feed-forward networks are much more efficient to train

and evaluate than recurrent networks because their operations can be completely

parallelized, whereas recurrent networks must evaluate each time step sequentially.

Finally, attention provides its own form of temporal modeling because it integrates

over the entire sequence.

We therefore propose a “feed-forward” variant of attention, which computes a

weighting for each sequence step independent of all other steps as follows:

e[t] = a(h[t]) (6.4)

ω[t] =
exp(e[t])

∑T
k=1 exp(e[k])

(6.5)

c =
T
∑

t=1

ω[t]h[t] (6.6)

Conceptually, this attention mechanism can be thought of as using the learned

nonlinear function a to compute scalar “importance” values for each sequence step
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Figure 6.1: Diagram visualizing our feed-forward attention mech-
anism. Given a length-T input sequence h, the learned nonlinear
function a computes a weighting ω[t] for each sequence element h[t].
The resulting probability vector ω ∈ R

T is used to compute a weighted
average c of h.

in h, which are then normalized using the softmax function and used to compute

a weighted mean c over all sequence elements in h. Clearly, this mechanism will

produce a single fixed-length vector regardless of the length of the sequence, which is

what is necessary in sequence embedding. A schematic of our feed-forward attention

mechanism is shown in figure 6.1.

The main difference between this formulation and the one proposed in (Bahdanau

et al., 2014; Cho et al., 2015) (stated in the previous section) is that here we are

only producing a single weighting ω and context vector c rather than a different

ωt and context vector ct at each time step. This is primarily because our goal in
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embedding is to produce a single vector for the entire sequence whereas previous

applications of attention have mainly focused on sequence-to-sequence transduction.

As a result, equation (6.6) does not contain any terms for a previous attention vector

or a previous hidden state, because in the present contexts these quantities do not

exist. The main disadvantage to using attention in this way is that it ignores temporal

order by computing an average over the entire sequence. However, computing an

order-agnostic integration of sequence has in fact been shown to be highly effective

in the domain of music information retrieval. A common technique is to summarize

a sequence of feature vectors by the mean, variance, and occasionally covariance of

feature dimensions, which has been used for genre classification (Tzanetakis and

Cook, 2002), instrument classification (Deng et al., 2008), artist recognition (Mandel

and Ellis, 2005), and similarity rating prediction (Foster et al., 2014).

6.2 Experiment: MIDI to MSD Matching

Recall that the goal of this chapter is to prune large-scale sequence similarity searches

by embedding sequences in a fixed-dimensional space where Euclidean distance

approximates sequence similarity. Towards this end, we will utilize embeddings as

follows: First, given a training set of matching sequences, we will train a feed-forward

network with attention to embed sequences in a Euclidean space where matching

pairs have a small distance and non-matching pairs have a large distance. Then, we

will utilize this network to pre-compute embeddings for all sequences in a database.

In order to match a query sequence, we will compute the distance between its

embedding and all pre-computed embeddings from the database. Before proceeding,

then, we need to specify the structure of our embedding model, our loss function, and

our evaluation technique. In fact, this problem setting is remarkably similar to the

previous chapter, and we will evaluate it on the same task and data. The primary
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difference is that rather than embedding groups of aligned feature vectors in a shared

Hamming space, we are embedding entire unaligned sequences as fixed-length vectors.

For our loss function, we can actually re-use equation (5.2) exactly, which we

re-print here for convenience:

L =
1

|P|
∑

(x,y)∈P

‖f(x)− g(y)‖22 +
α

|N |
∑

(a,b)∈N

max(0,m− ‖f(a)− g(b)‖2)2 (6.7)

where P and N are collections of matching and non-matching sequences respectively,

f and g are learned functions, and m and α are hyperparameters controlling the

importance of non-matching pairs having a large embedded distance. In the present

context, the learned embedding functions f and g will produce a single vector, and

their input will be entire unaligned sequences rather than short groups of aligned

feature vectors. In order to produce a single vector from an entire sequence, we

will utilize the feed-forward attention mechanism described in the previous section.

Specifically, we will utilize two different embedding networks for f and g, each of

which will include a feed-forward attention mechanism. For the attention mechanisms’

learned adaptive weighting function a, we use the standard architecture of a small

neural network with one hidden layer:

a(x) = v⊤ tanh(Wx+ b) (6.8)

where x ∈ R
D is a single feature vector from the input sequence and W ∈ R

D×D,

b ∈ R
D, and v ∈ R

D are parameters.

6.2.1 Experiment Specifics

As training data, we use the same collection assembled in section 5.2.1. However,

we will solely use the matches as ground truth, not the alignments, because our
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system needs to be able to produce similarity-preserving embeddings regardless of

whether the input sequences are aligned. We use the same feature representation, i.e.

log-magnitude constant-Q spectrograms consisting of spectra with 12 bins per octave

from MIDI note C2 (65.4 Hz) to B6 (987.8 Hz) computed every 46.4 milliseconds.

We also use the same exact training, validation, development, and test splits, and

utilize the statistics from the training split to standardize feature vectors.

For our networks, we fed the sequences first into a convolutional layer with

32 3 × 3 filters followed by a 2 × 2 max-pooling layer, followed by the attention

mechanism of equation (6.6) with the weighting function of equation (6.8), followed

by two fully-connected layers with 2048 units each, followed by a 128-dimensional

output layer. We utilized rectified linear nonlinearities throughout, except on the

final output layer and the weighting function which both used a hyperbolic tangent

nonlinearity. All weights were initialized using He et. al.’s method (He et al., 2015)

and all biases were initialized to zero. The networks were optimized with respect to

equation (6.7) using RMSProp with mini-batches of 20 similar and dissimilar pairs.

As in chapter 5, we assembled N by randomly choosing non-matching pairs which

were re-sampled every time we had iterated over the training set. Minibatches were

constructed by randomly choosing matching and non-matching pairs of sequences and

cropping them to the minimum length within the minibatch. Every 200 minibatches,

we computed the mean loss on the held-out validation set; when it was less than

.99 times the previous lowest validation loss, we trained for 1000 more minibatches.

We implemented our model using lasagne (Dieleman et al., 2015), which is built

on theano (Bergstra et al., 2010; Bastien et al., 2012; Al-Rfou et al., 2016). A

visualization of our model structure is shown in figure 6.2.

To choose hyperparameter settings, we once again used the Bayesian optimization

framework proposed in (Snoek et al., 2012). We optimized the learning rate and
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Figure 6.2: Visualization of the structure of our feed-forward net-
work with attention. The network first processed the input with a
convolutional and pooling layer, followed by our proposed feed-forward
attention mechanism which integrates the entire sequence to a single
fixed-length vector, followed by a series of fully-connected layers which
produce the embedding.
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RMSProp decay parameter, and the loss parameters α and m. As an objective,

we computed the Bhattacharyya coefficient (Bhattacharyya, 1943) between the

distributions of embedded distances between matching and non-matching pairs in the

validation set. The best-performing network configuration achieved a Bhattacharyya

coefficient of 0.393 and used a learning rate of 5 · 10−6, an RMSProp decay of 0.999,

α = 3.342 and m = 1.055.

Before arriving at this system design, we also tried:

• Using more or fewer convolutional/pooling layers at the input of the network,

including using no convolutional and pooling layers at all, a 5×12 convolutional

layer followed by a variable number of 2 × 2 max-pooling layers and 3 × 3

convolutional layers, or using the same front-end as in chapter 5.

• Using 2× 1 pooling layers as in chapter 5 and (Humphrey and Bello, 2012);

we found 2× 2 max-pooling worked better for embedding networks.

• Using up to four “parallel” attention mechanisms, whose output was concate-

nated before being processed by the fully-connected layer; this produced no

performance gains.

• The output L2 penalty from chapter 5 as well as the hash entropy-encouraging

loss term proposed in (Yang et al., 2015, equation (3)), but neither were

beneficial.

• Using dropout in the fully-connected layers, which hurt performance.

• Using more or fewer fully-connected layers of different sizes; two 2048-unit

layers produced the best results.
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• For optimization, Nesterov’s accelerated gradient (Nesterov, 1983) and Adam

(Kingma and Ba, 2015) (see section 2.1.4.3 and section 2.1.4.6) but found that

RMSProp was most effective.

6.2.2 Baseline Method

As in chapter 5, we also evaluated a simple learning-free baseline method to make

sure that our approach was beneficial. For our baseline, we followed the tradition

of (Tzanetakis and Cook, 2002; Deng et al., 2008; Mandel and Ellis, 2005; Foster

et al., 2014) and others by summarizing spectrograms by their mean and standard

deviation across feature dimensions and concatenating the resulting statistics into a

fixed-length embedding. Specifically, given a sequence X ∈ R
M×D which consists of

M D-dimensional feature vectors, we compute

µX [d] =
1

M

M
∑

m=1

X[m, d] (6.9)

σX [d] =

√

√

√

√

1

M

M
∑

m=1

(X[m, d]− µX [d])2 (6.10)

e =







µX

σX






(6.11)

where e ∈ R
2D is the resulting embedding. We compute this statistics-based embed-

ding over the same log-magnitude, L2 normalized spectrograms used throughout this

thesis. This resulted in a 96-entry embedded vector for each spectrogram.

6.2.3 Results

Some qualitative intuition about our system’s behavior can be gained by inspect-

ing the embeddings resulting from matching and non-matching pairs of sequences.
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Figure 6.3: Example embeddings for two pairs of matching sequences
produced by our feed-forward attention model after training. The first
two rows display pairs of matching constant-Q spectrograms, with
synthesized MIDI on the left and MSD entry on the right. For both
pairs, the right sequence matches a subsequence of the left. The last
two rows show their resulting embeddings. Dashed arrows denote
which embedding corresponds to which sequence.

Embeddings for two different matching sequence pairs from the validation set can

be seen in figure 6.3. Among the four embeddings displayed, the pairs of matched

embeddings resulted in squared Euclidean distances of 0.0189 and 0.00738, while

non-matching pairs had distances of 0.300 and 0.228. While these distances indicate

the appropriate behavior, i.e. matching pairs result in a much smaller embedded

distance, a more complete picture can be obtain by looking at the distributions

of distances between matching and non-matching pairs in our validation set. We

visualize these distributions for our proposed feed-forward attention system and

for the baseline feature statistics-based method in figure 6.4. From this figure, we

can see that our proposed approach produces embeddings which better differentiate

between matching and non-matching pairs.

Because our proposed feed-forward attention system is a novel architecture,

we are interested in getting some insight into its learned behavior. One way to

accomplish this is to look at the attention weighting values ω over the course of an
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Figure 6.4: Distributions of embedded distances for matching (blue)
and non-matching (green) sequences from our validation set. At the
top are the distances produced by our proposed feed-forward attention
model after training; at the bottom are distances based on the baseline
proposed in section 6.2.2. Note that the x-axes are log-scaled.
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Figure 6.5: Example attention weighting values ω (bottom) produced
by our MIDI embedding network for a synthesized MIDI spectrogram
(top) from our validation set. The raw attention values are shown in
light green; because they are noisy, we also display a median filtered
version (with a window size of 15 frames) in blue.

input sequence. We visualize this for our MIDI spectrogram embedding network in

figure 6.5. One clear pattern from this visualization is that the attention mechanism

tends to downweight the portion of the song with strong low-frequency transients

(frames 350 to 800). In addition, in one region of mostly high attention (frames 100

to 350) there are two regions where the attention drops; these regions also have a

sudden burst of energy in a low-frequency bin.

Another generally applicable visualization technique is DeepDream (Mordvintsev

et al., 2015), which refers to the technique of optimizing the input of a pre-trained

model, rather than the parameters, in order to minimize an objective. We utilized

this technique to see what kind of inputs the attention mechanism in each of our
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networks weights very highly. To achieve this, we optimized a randomly-initialized

input to minimize the entropy of the attention weights ω. This effectively tells the

network to generate an input for which a small region is given the maximum attention

and the rest of the input is ignored. As advocated in (Mordvintsev et al., 2015),

we initialized with zero-mean, unit-variance Gaussian noise and utilized standard

gradient descent with gradients normalized to have unit norm. In addition, we

enforced the constraint that the input feature vectors stay L2-normalized. We plot

40 frames of the resulting input surrounding the maximal-attention region for both

of our networks in figure 6.6. Most apparently, there is a clear lack of high-frequency

content in the high-attention regions. In addition, the regions of low attention appear

to be basically noise. This suggests that our attention mechanism may be most

interested in steady-state regions with little high-frequency content.

For empirical evaluation, we follow the procedure of section 5.2.5 exactly, except

that rather than comparing sequences using downsampled hash sequences, we will be

embedding them and computing the distance between their embedded representations.

More specifically, we first computed embeddings of constant-Q spectrograms for all

of the short (30 to 60 second) preview recordings of each entry in the MSD provided

by 7digital (Schindler et al., 2012). Then, we computed a constant-Q spectrogram

and its embedding for each MIDI file in the test set. To determine performance,

we computed the Euclidean distance between the embedding of each MIDI file and

the embeddings of every entry in the MSD and determined how many entries had a

distance that was smaller than the correct match. We carried out this procedure both

for our proposed attention-based embedding technique (referred to as “PSE”, for

pairwise sequence embedding) and for the feature statistics-based baseline approach

described in section 6.2.2 (referred to as “statistics”).

We plot the resulting proportion of MIDI files in the test set whose correct
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Figure 6.6: Inputs generated by minimizing the entropy of the re-
sulting attention weights ω produced by our trained MIDI embedding
(left) and audio embedding (right) networks. Shown are 40 frames of
each generated input, centered around the region of maximal attention.

match ranked under a certain threshold in figure 6.7. To borrow the evaluation from

chapter 5, we also computed the threshold N at which 95% of the correct matches

in the test set had a rank better than N . For PSE, N can be set to 70,445, while

the baseline would require 242,573. This means that we can used our proposed

embedding method to prune over 90% of the database with high confidence, whereas

the simple learning-free baseline would only allow us to discard about 75%.
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Figure 6.7: Percentage MIDI files in the test set whose correct match
in the MSD fell below a given rank, using the attention-based PSE
method and our baseline statistics method described in section 6.2.2.

6.3 Discussion

Comparing to figure 5.6, our embedding approach is clearly much less precise than

any of the hash sequence-based methods. This is to be expected due to the fact that

we are representing sequences of potentially thousands of 48-dimensional vectors

as a single 128-dimensional vector. Fortunately, it is also much faster: Computing

the million embedding distance calculations required to compare a MIDI file to

the entire MSD only takes about 400 milliseconds (i.e. about 400 nanoseconds per

MIDI-to-MSD entry comparison) on our Intel Core i7-4930k CPU. This means that

we can discard over 90% of the MSD with high confidence with an operation which

is over 1,000 times faster than the downsampled hash sequence-based methods of
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chapter 5 and is over 600,000 times faster than a brute-force approach using the

DTW system from chapter 4.

To improve performance of our proposed method we are interested in investigating

the same ideas discussed in section 5.3, i.e. different loss functions and methods of

sampling negative examples. In addition, as more and more methods are developed

for making recurrent networks able to handle very long-term dependencies (some

of which are mentioned in section 2.1.3.3), we are interested in testing whether

recurrence could become applicable to our problem.

In summary, we have proposed a novel feed-forward attention mechanism which

is capable of integrating arbitrary-length sequences to individual vectors in a fixed-

dimensional embedded space where sequence similarity is approximated as Euclidean

distance. We showed that using this model for pruning large-scale similarity search

produces a system which can extremely efficiently rule out a large proportion of the

database. Utilizing this technique alongside the systems proposed in chapter 5 and

chapter 4 provides a “cascade” of techniques where we are able to discard more and

more of the database with more and more expensive operations until we obtain a

high-confidence match. In the following chapter, we put this approach to use on the

task of identifying matches in the MSD for our entire 178,561 MIDI file collection.
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Chapter 7

Assembling a Collection of

MIDI Files Matched to the

Million Song Dataset

Combining the results of chapters 4 to 6, we now have all the ingredients required to

efficiently match MIDI files to the Million Song Dataset. Taken together, these three

techniques present a cascade of matching methods, each of which achieves more

precision at higher computational cost than the last. This allows us to quickly discard

the vast majority of the dataset before utilizing the expensive, but accurate, DTW

operation of chapter 4. While our main application in this thesis is MIDI-to-audio

matching, all of these techniques are learning-based and data-adaptive, so we are

optimistic they will be effective in other domains.

In this chapter, we finally utilize these techniques to match our collection of

178,561 MIDI files to the MSD. In the following section, we discuss the practical

implementation of this process, perform a small experiment to verify its performance,

and give an overview of the results. Then, in section 7.2, we quantify the reliability
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of annotations for content-based MIR extracted from this data by comparing them

to human-annotated ground truth.

7.1 Matching MIDI Files

As an overview, our method for matching MIDI files to the MSD will proceed

as follows: Given a query MIDI file, we first synthesize it using pretty_midi’s

fluidsynth method. Then, we compute the log-magnitude, L2-normalized, constant-

Q spectrogram representation utilized throughout this thesis. Using the pre-trained

DHS and PSE models from chapters 4 and 6, we compute the MIDI file’s downsampled

hash sequence and embedding. We then compute the pairwise distance between

the resulting embedding and all pre-computed embeddings of entries in the MSD,

rank the entries according to their distance, and discard all but the top NPSE .

We perform a similar pruning with the downsampled hash sequences, computing

the DTW distance between the query and the MSD entries which remain after

the embedding-based pruning step, ranking by hash sequence DTW distance, and

discarding all but the top NDHS . Finally, we align the MIDI file to the remaining

NDHS entries utilizing the “gold-standard” system of section 4.4.1.

Before proceeding, we must first decide the pruning thresholds NPSE and NDHS .

Choosing these thresholds directly trades off precision and computation, because

setting larger thresholds will decrease the likelihood of discarding a valid match but

will result in more comparisons being made downstream. Based on the results of

section 5.2.6.2 and section 6.2.3, we chose NPSE = 100, 000 and NDHS = 250. This

corresponds to pruning 90% of the MSD in the first step, then pruning 99.75% of

the remaining entries, so that in the end the expensive DTW comparison is only

performed on 0.025% of the MSD. According to our test-set results, this results in a

false-reject rate of approximately 3.5% for the embedded distance pruning and 3.2%
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for the downsampled hash sequences. If false rejects occur in each step independently,

we can expect a combined false reject rate of up to 6.6%.

7.1.1 Shortcuts

Overall, we will follow the matching processes of sections 4.4.1, 5.2.2 and 6.2.1, except

for the following two changes made for efficiency:

First, we utilize an exact pruning method when comparing downsampled hash

sequences. Assuming we are computing the DTW distance as defined in section 2.2.3

between two sequences, one of length M and one of length N with M ≤ N , then the

normalized DTW distance will never be smaller than T if there are not at least M

pairwise distances less than T . Given this, while computing the pairwise distance

matrix for downsampled hash sequences, we can (with a minor performance penalty)

keep track of the number of entries which are smaller than T , where T is set to the

smallest normalized DTW distance which has been encountered so far. If fewer than

M entries are less than T , we can skip computing the DTW alignment path because

we can guarantee that the resulting normalized DTW distance will not be smaller

than T . In practice, this avoids the expensive operation of computing the DTW

distance for many candidates whose distance matrices dictate that they cannot be

the correct match.

Second, instead of utilizing the median pairwise distance for the CQT-to-CQT

DTW additive penalty as suggested in section 4.4.1, we will use the mean distance

because in practice it is cheaper to compute than the median. We justify this

decision based on the discussion in section 4.3 which suggests that small changes

to the additive penalty will not affect alignment quality. In practice, we found the

mean and median pairwise distance to be extremely close, so this change likely has a

negligible effect on the results aside from a small speed-up.
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7.1.2 Measuring Performance

Prior to performing the matching of our full collection of MIDI files to the MSD, it

is useful to get an idea of the expected accuracy of the process described above. We

therefore utilized this approach on the same evaluation task used in chapters 5 and 6,

i.e. measuring the accuracy of matching our test set of known-correct MIDI-MSD

pairs. Specifically, we utilized the DHS and PSE methods of chapters 5 and 6 to prune

all but 100,000 and 250 entries respectively and then computed the match confidence

score for the remaining 250 entries using the gold-standard alignment system of

section 4.4.1. For evaluation, we ranked the remaining 250 entries according to their

resulting confidence scores. If the correct match in the MSD was pruned incorrectly,

we assigned a rank 1,000,000, because this effectively results in the correct matching

being unrecoverable by our system. For full details of this evaluation task, refer to

section 5.2.

The proportion of pairs for which the correct entry was ranked under a given

threshold is shown in figure 7.1. For comparison, we also plot the curves obtained

using the DHS and PSE approaches from chapters 5 and 6. Using the combined

method, the correct match in the MSD had the highest confidence score 78.2% of the

time, and for 94.6% of the test set the correct match ranked in the top 5. Beyond

this point, the performance is effectively constant - this is because for 94.7% of the

test set, the pruning steps discarded the correct match. This is within our expected

upper limit for the false reject rate of 6.6%. We could in theory further verify the

source of these false rejects by also evaluating the final slow-but-accurate DTW step

alone, but running this evaluation over our entire test set would take about nine

years of CPU time, so we skipped this experiment. That our high-precision approach

only ranked the correct match first 78.2% of the time is also expected because the

MSD contains many duplicates and alternate versions of songs (Bertin-Mahieux and
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Figure 7.1: Percentage of MIDI files in the test set whose correct
match in the MSD ranked better than a given threshold, using the DHS
model of chapter 5, PSE model of chapter 6, and their combination
with our best-performing DTW system described section 4.4.1.

Ellis, 2012). It’s also important to note that these figures do not necessarily reflect

real-world performance because, due to the way it was constructed, our test set

consists only of ground truth matches which could successfully be recovered by our

DTW-based system of section 4.4.1. Nevertheless, it does demonstrate the extent to

which our combination of pruning approaches causes false rejects.

Of course, our approach’s precision is only beneficial if it is also efficient. On

average, matching a MIDI file to the MSD using this cascade of techniques takes

about 109 seconds utilizing a single core of an Intel Core i7-4930k CPU. Of this,

on average roughly 500 milliseconds is spent pruning all but 100,000 entries using

the embedding approach, 46 seconds is spent pruning down to 250 entries using the
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downsampled hash sequence approach, and 62 seconds is spent computing confidence

scores for the remaining 250 entries. Most of the remaining 500 milliseconds is the

time required to compute all of the necessary representations for the MIDI file prior

to matching. Compared to the approximately 2.8 days it would take to match a

single MIDI file to the MSD using the DTW approach from section 4.4.1 on its

own, we consider the 5.4% false reject rate a small price to pay for this increase in

efficiency. Of course, we could increase precision substantially by raising the pruning

thresholds in exchange for a drop in efficiency, but we consider this to be a good

trade-off.

7.1.3 The Lakh MIDI Dataset

Now that we have empirically validated our approach, we proceed to matching

our collection of 178,561 MIDI files to the MSD. To do so, we simply followed the

approach of the previous section exactly, except that we matched our entire collection

against the MSD instead of just our test set. Based on the fact that matching a

single file takes roughly 109 seconds on average, performing this matching for all

178,561 MIDI files would take about 225 days of compute time. To speed things up,

we ran this process in parallel across 32 processors, resulting in a total run time of

about 7 days. While performing the match, we discovered 5,602 MIDI files which

were corrupt or otherwise unparsable by pretty_midi. In addition, in order to avoid

spurious matches and incomplete transcriptions, we discarded all MIDI files which

were less than 30s in length. In the end, we therefore searched for matches in the

MSD for a total of 160,603 MIDI files.

An informative way to report the extent to which we successfully found matches

in the MSD is to plot the number of MIDI files in our collection which had at least

one MSD entry against which the DTW confidence score was below a threshold. We
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Figure 7.2: Number of MIDI files which had at least one entry in
the MSD whose DTW confidence score was above a given threshold.
For example, just under 50,000 MIDI files had at least one MSD entry
whose match confidence score was above 0.5.

plot this curve in figure 7.2. Choosing 0.5 as the threshold above which a confidence

score denotes a match (as we did in section 5.2.1 based on the results of section 4.5),

we found 45,612 MIDI files which had at least one match in the MSD, and a total of

118,661 MIDI-to-MSD pairings. Many MIDI files were matched to multiple MSD

entries due to duplicates, covers, and alternate versions; for example, one MIDI

transcription of “Imagine” by John Lennon was matched to six original renditions,

ten covers, one hip-hop song which sampled it (“Image” by Nas), and one song which

used an identical chord progression (“Bringin’ Down Dinner” by Neil Young).

Of course, the main purpose of creating this dataset is to facilitate MIR research

by sharing it. Following the example of the Million Song Dataset, we name this
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collection the “Lakh MIDI Dataset” (LMD), because depending on how you count we

are providing about 100,000 MIDI files. Towards this end, we make it available online1

in the following formats: First, the entire collection of 178,561 unique MIDI files,

unmodified, along with all potential metadata available from their filenames (referred

to as “LMD-full”). Second, a mapping between each of these MIDI files to MSD

entries they were successfully matched to, along with the resulting DTW confidence

score (referred to as “LMD-matched”). Third, for each successful MIDI-MSD pair, a

pre-aligned MIDI file utilizing our “gold standard” system from section 4.4.1 (referred

to as “LMD-aligned”). By distributing it in these varying levels of granularity, we

also allow future researchers to improve upon our matching and alignment processes.

In addition, we note that should a new collection of MIDI files become available, our

process could easily be re-run and the resulting datasets expanded. Alternatively, we

could also easily leverage other digital score formats for which many transcriptions

are available such as MusicXML (Good, 2001) or GuitarPro.2

7.2 Measuring a Baseline of Reliability for MIDI-Derived

Information

Based on the discussion in section 3.1, our dataset can potentially be used to

produce ground truth annotations for audio content-based MIR. For example, beat

annotations for a given 7digital preview recording could be obtained by utilizing

the time signature and tempo change events in the corresponding aligned MIDI file.

However, the validity of a given annotation will depend on both the transcription

quality as well as the success of the alignment process. Ideally, our alignment

confidence score will reflect whether or not a given annotation is to be trusted. To

1http://colinraffel.com/projects/lmd
2http://www.guitar-pro.com

http://colinraffel.com/projects/lmd
http://www.guitar-pro.com
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investigate further, we now focus on measuring the reliability of ground truth data

extracted from aligned MIDI transcriptions.

A straightforward way to evaluate the quality of MIDI-derived annotations is

to compare them with hand-made annotations for the same songs. Given a MIDI

transcription and human-generated ground truth data, we can extract corresponding

information from the MIDI file and compare using the evaluation metrics employed

in the Music Information Retrieval Evaluation eXchange (MIREX) (Downie, 2008).

We therefore leveraged the Isophonics Beatles annotations (Mauch et al., 2009)

as a source of ground truth to compare against MIDI-derived information. MIDI

transcriptions of these songs are readily available due to The Beatles’ popularity.

Our choice in tasks depends on the overlap in sources of information in the

Isophonics annotations and MIDI files. Isophonics includes beat times, song-level

key information, chord changes, and structural segmentation. As noted in Section

3.1, beat times and key changes may be included in MIDI files but there is no

standard way to include chord change or structural segmentation information. We

therefore performed experiments to evaluate the quality of key labels and beat

times available in MIDI files. Fortuitously, these two experiments give us an insight

into both song-level timing-agnostic information (key) and alignment-dependent

timing-critical information (beats). To carry out these experiments, we first manually

identified 545 MIDI files from LMD-full3 which had filenames indicating that they

were transcriptions of one of the 179 songs in the Isophonics Beatles collection; we

found MIDI transcriptions for all but 11. The median number of MIDI transcriptions

per song was 2; the song “Eleanor Rigby” had the most, with 14 unique transcriptions.

3The Million Song Dataset does not contain any Beatles songs, so we were unable to source these

files from LMD-matched or LMD-aligned.



7. Assembling a Collection of MIDI Files Matched to the MSD 165

7.2.1 Key Experiment

In our first experiment, we evaluated the reliability of key change events in MIDI

files. We followed the MIREX methodology for comparing keys (Ehmann et al.,

2016), which proceeds as follows: Each song may only have a single key. All keys

must be either major or minor, e.g. “C# Major” and “E minor” are allowed but “D

Mixolydian” is not. An estimated key is given a score of 1.0 when it exactly matches

a ground truth key, 0.5 when it is a perfect fifth above the ground truth key, 0.3

when it is a relative major or minor, 0.2 when it is a parallel major or minor, and

0.0 otherwise (Ehmann et al., 2016). We utilized the evaluation library mir_eval

(Raffel et al., 2014) to compute this score.

The Isophonics annotations mostly follow this format, except that 21 songs

contained multiple key annotations and 7 others contained non-major/minor keys.

To simplify evaluation, we discarded these songs, leaving 151 ground truth key

annotations. Of our 545 Beatles MIDIs, 221 had no key change event and 5 had more

than one, which we also omitted from evaluation. This left 223 MIDI files for which

we extracted key annotations and compared them to valid Isophonics annotations.

Because of the preponderance of C major key change events noted in Section 3.1.4,

we also evaluated MIDI-derived C Major and non-C major instances separately to

see whether they were less reliable.

As a baseline, we also extracted keys using the QM Vamp Key Detector plugin

(Cannam et al., 2015) whose underlying algorithm is based on (Noland and Sandler,

2007) which finds the key profile best correlated with the chromagram of a given

song. This plugin achieved the highest score in MIREX 2013, and has been the only

key detection algorithm submitted in 2014 and 2015. This gives us a reasonable

expectation for a good audio content-based key estimator. To determine the extent

to which human annotators agree on key labels, we also collected key annotations for
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Source Score Comparisons

MIDI, all keys 0.400 223
MIDI, C major only 0.167 146
MIDI, non-C major 0.842 77
QM Key Detector 0.687 151
whatkeyisitin.com 0.857 145

Table 7.1: Mean scores achieved, and the number of comparisons
made, by different datasets and algorithms compared to Isophonics
Beatles key annotations.

Beatles’ songs from whatkeyisitin.com. As with the Isophonics key annotations,

some songs had multiple and/or modal key labels; we discarded these and ended up

with 145 labels for songs in the Isophonics dataset.

The mean scores resulting from comparing each dataset to the Isophonics anno-

tations can be seen in Table 7.1. At first glance, the mean score of 0.4 achieved by

MIDI key change messages is discouraging. However, by omitting all MIDI files with

C major key events (which achieved a mean score of 0.167), the mean score jumps

to 0.842. This is comparable to the human baseline, and is substantially higher than

the algorithmically estimated score. We therefore propose that non-C major MIDI

key change events are as reliable as hand-annotated labels, but that C major key

annotations in MIDI files are effectively useless.

7.2.2 Beat Experiment

Utilizing many of the sources of information in MIDI files depends on the precise

alignment of a given MIDI file to an audio recording of a performance of the same

song. We therefore performed an additional experiment to evaluate the quality

of MIDI-derived beat annotations, which are evaluated on the scale of tens of

milliseconds. Producing valid beat annotations from a MIDI file requires not only
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that the file’s meter information is correct, but also that it has been aligned with

high precision. To align our Beatles MIDI files to corresponding audio recordings,

we used our best-performing DTW system from section 4.4.1 exactly, except that

we computed spectrograms with a hop size of 23.2 milliseconds rather than 46.4

milliseconds. This finer timescale is more appropriate for the beat evaluation metrics

we will use, which have tolerances measured in tens of milliseconds.

We used pretty_midi’s get_beats method to extract beat times from our 545

Beatles MIDI files, and adjusted each beat’s timing according to the MIDI file’s

alignment to corresponding audio recordings. For evaluation, we used the F-measure,

Any Metric Level Total, and Information Gain metrics described in (Davies et al.,

2009), as implemented in mir_eval. As a baseline, we also computed beat locations

using the DBNBeatTracker from the madmom software library,4 which is based on

the algorithm from (Böck et al., 2014). This represents a state-of-the-art general-

purpose beat tracker which, on the Beatles data, can reliably produce high-quality

annotations. If MIDI-derived beat annotations are to be taken as ground truth, they

must achieve scores similar to or higher than the DBNBeatTracker.

We visualize the resulting scores in Figure 7.3. Because we don’t expect beats

to be extracted accurately from MIDI files that are poor transcriptions or when

alignment failed, we plotted each MIDI file as a single point whose x coordinate

corresponds to the alignment confidence score and whose y coordinate is the resulting

evaluation metric score achieved. Ideally, all points in these plots would be clustered

in the bottom left (corresponding to failed alignments with low confidence scores) or

top right (corresponding to a successful alignment and beat annotation extraction

with a high confidence score). For reference, we plot the mean score achieved by the

DBNBeatTracker as dotted lines for each metric. From these plots, we can see that

4https://github.com/CPJKU/madmom
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Figure 7.3: Beat evaluation metric scores (compared to Isophonics
beat annotations) and alignment confidence scores achieved by different
audio-to-MIDI alignments of Beatles MIDI files, with each shown as a
blue dot. Mean scores for each metric achieved by the DBNBeatTracker
(Böck et al., 2014) are shown as dashed lines.
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in many cases, MIDI-derived annotations achieve near-perfect scores, particularly

for the F-Measure and Any Metric Level Total metrics. However, there is no reliable

correspondence between high confidence scores and high evaluation metric scores.

For example, while it appears that a prerequisite for an accurate MIDI-derived beat

annotation is a confidence score above .5, there are many MIDI files which had high

confidence scores but low metric scores (appearing in the bottom-right corner of the

plots in Figure 7.3).

We found that this undesirable behavior was primarily caused by a few issues:

First, it is common that the alignment system would produce alignments which

were slightly “sloppy”, i.e. were off by one or two frames (corresponding to 23.2

milliseconds each) in places. This had less of an effect on the F-measure and Any

Metric Level Total metrics, which are invariant to small temporal errors up to a

certain threshold, but deflated the Information Gain scores because this metric

rewards consistency even for fine-timing errors. Second, many MIDI files had tempos

which were at a different metric level than the annotations (e.g. double, half, or

a third of the tempo). This affected the Any Metric Level Total scores the least

because it is invariant to these issues, except for the handful of files which were

transcribed at a third of the tempo. Finally, we found that the confidence score

produced by the alignment system is most reliable at producing a low score in the

event of a total failure (indicated by points in the bottom left of the plots in Figure

7.3), but was otherwise insensitive to the more minor issues that can cause beat

evaluation metrics to produce low scores.

7.2.3 Motivationg Future Work

These results suggest that the use of MIDI-derived annotations may come with a few

caveats. We therefore believe that developing better methods to leverage all of the



7. Assembling a Collection of MIDI Files Matched to the MSD 170

information present in them is a tantalizing avenue for obtaining reliable ground truth

data for music information retrieval. For example, while C major key annotations

cannot be trusted, developing a highly reliable C major vs. non-C major classification

algorithm for symbolic data (which would ostensibly be much more tractable than

creating a perfect general-purpose audio content-based key estimation algorithm)

would enable the reliable usage of all key change messages in MIDI files. Further

work into robust audio-to-MIDI alignment is also warranted in order to leverage

timing-critical information, as is the neglected problem of alignment confidence

score reporting. Novel questions such as determining whether all instruments have

been transcribed in a given MIDI file would also facilitate their use as ground truth

transcriptions. Fortunately, all of these tasks are made easier by the fact that it is

straightforward to extract musical information from MIDI files.
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Chapter 8

Conclusion

To summarize, we have studied learning-based methods for large-scale sequence

retrieval, with the specific application of matching a collection of MIDI files to

the Million Song Dataset. We began by enumerating the sources of information

available in MIDI files as they pertain to content-based music information retrieval

in chapter 3. Then, in chapter 5, we optimized DTW-based audio-to-MIDI alignment

system design over a novel synthetic task to produce an alignment scheme which was

both accurate and able to report a reliable confidence score. This system was too

slow for large-scale applications, so in chapter 5 we developed a method for learning a

similarity-preserving mapping from sequences of continuously-valued feature vectors

to downsampled sequences of binary vectors. For further speed-up, we also designed

an attention mechanism which can learn to map entire sequences of feature vectors

to single vectors in an embedded space where similarity is preserved, described in

chapter 6. The combination of these methods allowed us to efficiently assemble the

largest collection of MIDI files which have been paired and aligned to corresponding

audio recordings, which we discuss in chapter 7.

Our specific contributions are as follows:
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Chapter 2 We define and give background information for all of the tools and tech-

niques used in this thesis, including neural networks, stochastic optimization,

Bayesian optimization, time-frequency analysis, and dynamic time warping.

Section 3.1 We present a unified overview of the events in MIDI files which are

relevant to music information retrieval and measure their availability in MIDI

files found “in the wild”.

Section 3.2 We itemize the steps necessary for leveraging MIDI files in music

information retrieval tasks.

Section 4.1 We give a thorough review of system design choices and parameter

settings used in DTW-based audio-to-MIDI alignment systems.

Section 4.2 We design a method for generating synthetic ground truth alignments

for evaluating the accuracy of a given alignment system.

Section 4.3 We optimize DTW system design over synthetically-generated data to

obtain a simple-to-implement system which is accurate and produces a score

which reliably indicates whether an alignment has failed. We also verified

that this system performs well on real-world data by manually auditioning

alignments.

Section 5.1 We propose the novel approach of using a pair of convolutional networks

to map groups of subsequent feature vectors to binary vectors. The implicit

downsampling provides quadratic speedup to DTW and the use of binary vectors

allows us to compute pairwise distances by a single exclusive-or followed by a

POPCNT instruction.

Section 5.2 We show that, on the task of matching MIDI files to the Million

Song Dataset, this approach can discard over 99.99% of the database with
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95% confidence and is about 500 times faster than naive application of DTW.

We also show that our model is applicable in settings where the raw data

representation is not directly comparable using Euclidean distance.

Section 6.1 We use the paradigms of embedding and attention to motivate a novel

feed-forward network structure which can learn to embed sequences in a fixed-

dimensional space where similarity is approximated by Euclidean distance.

Section 6.2 On the same MIDI-to-MSD matching experiment, we show that our

embedding technique can discard over 90% of the database with 95% confidence,

and is about 600,000 times faster than naive DTW.

Section 7.1 We combine the above techniques to enable the full-scale matching of

our collection of 178,561 MIDI files to the MSD, which yields about 50,000

MIDI files which have been successfully matched and aligned to entries in

the MSD, the largest collection of its type. We make the collection available

online.1

Section 7.2 We perform a quantitative evaluation of whether information extracted

from MIDI files can be used as ground truth information for content-based

music information retrieval by comparing MIDI-derived annotations to human-

annotated ground truth.

Chapter B We make available all of the code used in this thesis.

8.1 Next Steps

The main product of this thesis is the Lakh MIDI Dataset, described in section 7.1.3.

On its own, the collection of 178,561 unique MIDI files (“LMD-full”) itself is most

1http://colinraffel.com/projects/lmd

http://colinraffel.com/projects/lmd
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applicable to corpus studies of music structure and patterns which are “metadata-

agnostic”. For example, (Mauch and Dixon, 2012) analyzed a smaller corpus of MIDI

files to determine common drum patterns. Similar analyses could be performed

on other aspects of the transcriptions, such as common chord progressions and

melodic patterns. While LMD-full cannot be used on its own to obtain ground

truth for audio content-based MIR tasks, MIDI files themselves provide a useful

mechanism of obtaining synthetic data, as demonstrated in chapter 4 and utilized

for onset detection in (Bello et al., 2005). In addition, there are ways in which

non-matched, non-aligned transcriptions can be used to benefit content-based MIR

tasks. For example, in automatic transcription systems it is common to smooth

predictions with a “musical language model” which can predict the probability of

a given candidate transcription (Poliner and Ellis, 2007; Sigtia et al., 2015). Such

language models only require a large amount of transcriptions, not transcriptions

matched to corresponding audio recordings. Of course, there is no guarantee that all

of the MIDI files in LMD-full are actually full transcriptions because MIDI files are

also sometimes used to store short snippets of music or even example riffs and drum

beats for composition.

In contrast, we can say with high confidence that files in LMD-matched are

transcriptions of songs. This greatly augments the information available for those

MSD entries which have been matched to transcriptions. For example, in the past

large-scale musicological studies have been undertaken using estimated pitch features

(Serrà et al., 2012; Bertin-Mahieux et al., 2010). These results are potentially

confounded by the fact that these features only represent a noisy and potentially

error-prone approximation of the actual transcription. We expect that similar corpus

studies utilizing the matched transcriptions will produce more reliable results. The

transcriptions can also provide a stronger signal for query-by-humming retrieval
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systems. On the other hand, by being matched to the MSD, the MIDI files themselves

are augmented with a great deal of additional metadata, including the song’s release

year, lyrics, user listening preferences (Jansson et al., 2015), and human-annotated

tags and genre labels (Schreiber, 2015).

Finally, we hope that LMD-aligned becomes a source for annotations for training

audio content-based music information retrieval systems. However, as we discussed

in section 7.2.3, some novel problems must be tackled before annotations derived

from these aligned MIDI files can be fully leveraged. We hope that the release of the

Lakh MIDI Dataset prompts further research into these problems, so that all of the

information sources in MIDI files may be wholly utilized.

Beyond these potential uses for our new dataset, we also are interested in

extending the techniques and applications we proposed in this thesis. We are most

interested in fusing the different approaches we explored. For example, we believe a

representation learning approach like the one used in chapter 5 could make DTW

more effective in the final audio-to-MIDI alignment step. This is prompted by our

observation in section 4.6 that the best representation for alignment is not necessarily

the best for confidence reporting. The success of representation learning in chapter 5

in creating a more efficient and similarity-preserving representation for DTW suggests

this approach may also be beneficial in the final high-precision alignment.

An issue with the training process utilized in chapter 5 is that it requires

training data in the form of pre-aligned sequences. More broadly, this method of

training does not optimize DTW performance directly, but instead optimizes the

representation without considering the effect on the DTW alignment or distance.

A more principled approach, then, would be to learn both the representation and

the alignment procedure together as part of a larger system. Recently, a variety of

approaches have been proposed to learn alignment as part of either the model’s loss
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function (e.g. the Connectionist Temporal Classification loss (Graves et al., 2006))

or model architecture (e.g. attention models (Bahdanau et al., 2014) or pointer

networks (Vinyals et al., 2015)). We are interested in applying these methods to

jointly learning a representation and a procedure for alignment.

In this thesis we developed a cascade of methods of varying precision and efficiency

for large-scale sequence similarity searches. Each step was developed independently,

which may be suboptimal. A better approach may be to simultaneously learn

more and more efficient representations by repeatedly downsampling to coarser

timescales, as is done in FastDTW (Salvador and Chan, 2007). However, rather

than downsampling by simply computing the average of non-overlapping groups of

subsequent feature elements as in (Salvador and Chan, 2007), we could utilize the

same learning procedure of chapter 5 to produce efficient data-driven approximations

at each timescale. We expect that this hierarchical approach would allow for even

more efficient pruning.

Finally, we are interested in testing these techniques in domains outside of music.

We suspect they will be beneficial in large-scale sequence comparison problems where

sequences are oversampled, consist of high-dimensional feature vectors, and/or have

elements which are not directly comparable by Euclidean distance. We hope the

results and methods proposed in this thesis prompt novel research into learning-based

methods for efficiently and effectively comparing sequences.
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Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th International Conference on Machine Learning,
pages 41–48, 2009. (Cited on page 134.)

Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013. (Cited on page 111.)

Adam Berenzweig, Beth Logan, Daniel P. W. Ellis, and Brian Whitman. A large-scale
evaluation of acoustic and subjective music-similarity measures. Computer Music
Journal, 28(2):63–76, 2004. (Cited on page 118.)

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research, 13(1):281–305, 2012. (Cited on
page 46.)

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio.
Theano: a CPU and GPU math expression compiler. In Proceedings of the 9th
Python in Science Conference, pages 1–7, 2010. (Cited on pages 122, 145, and 200.)

Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in
time series. In AAAI Workshop on Knowledge Discovery in Databases, volume 10,
pages 359–370, 1994. (Cited on pages 88 and 109.)

Thierry Bertin-Mahieux and Daniel P. W. Ellis. Large-scale cover song recognition
using the 2D fourier transform magnitude. In Proceedings of the 13th International
Society for Music Information Retrieval Conference, pages 241–246, 2012. (Cited
on page 159.)

Thierry Bertin-Mahieux, Ron J. Weiss, and Daniel P. W. Ellis. Clustering beat-
chroma patterns in a large music database. In Proceedings of the 11th International
Society for Music Information Retrieval Conference, pages 111–116, 2010. (Cited
on page 174.)

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Society for Music
Information Retrieval Conference, pages 591–596, 2011. (Cited on pages 85, 86,
102, 108, and 198.)

Anil Kumar Bhattacharyya. On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta
Mathematical Society, 35:99–109, 1943. (Cited on pages 120 and 147.)

Jens Blauert. Spatial hearing: the psychophysics of human sound localization. MIT
press, 1997. (Cited on page 90.)



Bibliography 180
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Appendix A

Relevant Publications

Much of the work presented in this thesis has been previously published in peer-

reviewed venues. However, in various places the experiments have been improved

and results have been subsequently updated. In this appendix, we reference these

publications in approximate order of appearance in this thesis and outline how the

work presented here differs.

Extracting Ground-Truth Information from MIDI Files

Chapter 3 and section 7.2 appear together in a paper to appear at the 17th

International Society for Music Information Retrieval conference (Raffel and

Ellis, 2016a). They are presented in this thesis largely unchanged, except for

some editing to make them better fit into the storyline.

Optimizing DTW-Based Audio-to-MIDI Alignment and Matching

Much of chapter 4 was published in a paper at the 41st International Conference

on Acoustics, Speech, and Signal Processing (Raffel and Ellis, 2016b). For

better explanation of the results, we added figures 4.1 to 4.4 and tables 4.1

and 4.2. We also added the normalized DTW distance re-scaling step defined
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in equation (4.6), which makes it more readily interpretable as a confidence

score.

Large-Scale Content-Based Matching of MIDI and Audio Files

The approach of chapter 5 was originally proposed in a paper at the 16th

International Society for Music Information Retrieval Conference (Raffel and

Ellis, 2015b). However, it is presented in this thesis with many improvements.

First, in (Raffel and Ellis, 2015b), beat-synchronous spectrograms are used

(i.e. the beats of the music signal are estimated and frames in the spectrogram

within each beat are aggregated). This caused issues when the beats of a

given MIDI file were estimated differently than its correct match. We therefore

forewent beat synchronization and instead used a finer, fixed timescale. This

prompted the use of three maxpooling-by-2 layers, resulting in downsampling

in time by 8, rather than the two maxpooling layers used in (Raffel and Ellis,

2015b). Second, we utilized the “gold standard‘ system of section 4.4.1 to

create the training data rather than the alignment scheme proposed in (Raffel

and Ellis, 2015b) for consistency and due to its better performance. Third,

we used 32-bit binary vectors rather than 16-bit, which potentially gives them

more expressive power. It also resulted in the use of the POPCNT instruction

being more efficient than the pre-computed table look-up used in (Raffel and

Ellis, 2015b). Finally, we experimented with a wider variety of system designs,

all of which are documented in section 5.2.2. This included the output L2

penalty, 2 × 1 pooling, and the larger number of small 3 × 3 convolutional

layers, rather than the 5× 12 input filter size. Taken together, these changes

resulted in dramatic increases in precision; specifically, we were improved our

high-confidence pruning threshold from 10,000 to 250. In addition, for better

framing of our results, we added the baseline learning-free approach described
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in section 5.2.4.

Accelerating Multimodal Sequence Retrieval with Convolutional Networks

In chapter 5, we also include the “multimodal” variant of the experiment

which was first explored in a paper at the 2015 Workshop on Multi-Modal

Machine Learning (Raffel and Ellis, 2015a). We improved upon this approach

in the same way as that of (Raffel and Ellis, 2015b), which also resulted in

substantial performance gains.

Pruning Subsequence Search with Attention-Based Embedding

Our feed-forward attention-based sequence embedding model was first proposed

in a paper at the 41st International Conference on Acoustics, Speech, and Sig-

nal Processing (Raffel and Ellis, 2016c). As presented in chapter 6, it is largely

unchanged, except that we present a broader overview of previous work on

attention and embedding and remove sections which are redundant with chap-

ter 5. We also re-performed the hyperparameter optimization and experimented

with various other system design choices as outlined in section 6.2.1.
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Appendix B

Software Prepared

Over the course of my PhD, I wrote over 50,000 lines of Python code, all of which

are open-source and publicly available online.1 This includes the requisite code for

running the experiments in this thesis and my other research projects, in addition

to contributions to more generally-applicable software libraries. This is arguably

the main product of my PhD work, so in this appendix I give an overview of the

software utilized in this thesis which I developed or helped develop.

B.1 midi-dataset

The repository midi-dataset2 is a collection of code which implements all of the

experiments in chapters 5 to 7. Specifically, it includes the following scripts, in order

of their intended use:

create_msd_cqts.py Pre-computes constant-Q spectrograms for all of the 7digital

preview clips (Schindler et al., 2012) from the entire Million Song Dataset

1http://github.com/craffel
2http://github.com/craffel/midi-dataset

http://github.com/craffel
http://github.com/craffel/midi-dataset
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(Bertin-Mahieux et al., 2011) in the format described in section 5.2.2 and used

throughout this thesis.

create_whoosh_indices.py Builds search indices for the Python library whoosh

of all datasets used in these experiments (the MSD, the “clean MIDI subset”,

uspop2002, CAL10k, and CAL500) to allow for the fuzzy text-based matching

utilized in section 5.2.1.

text_match_datasets.py Runs fuzzy text matching of the clean MIDI subset

against each of the aforementioned audio datasets using whoosh in order

to obtain candidate matches.

align_text_matches.py Runs the audio-to-MIDI alignment process described in

section 4.4.1 on all of the text matches to find true ground truth MIDI-audio

matches as described in section 5.2.1.

split_training_data.py Creates the fixed train/validation/development/test split

by song of the ground truth MIDI-audio matches.

experiments A collection of experiments for evaluating all of the matching tech-

niques we proposed and described. Each experiment optionally includes a script

parameter_search.py which optimizes the parameters of the system using the

training and validation sets. All experiments include scripts precompute.py

and match_msd.py which respectively pre-compute all necessary data for the

experiment (for example, fixed-length embeddings of the entire MSD and clean

MIDI test set) and evaluate the matching on the test set. Experiments included

are:

dhs for the learning-based method for creating downsampled hash sequences

described in section 5.2.2.
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dhs_piano for the corresponding experiment using piano rolls as a MIDI repre-

sentation rather than synthesized spectrograms, described in section 5.2.3.

tpaa for the “thresholded piecewise aggregate approximation” baseline de-

scribed in section 5.2.4.

pse for the learning-based method for producing similarity-preserving em-

beddings of variable-length sequences using a feed-forward network with

attention described in section 6.2.

stats for the feature statistics-based embedding baseline described in sec-

tion 6.2.2.

combined for the experiment from chapter 7 evaluating the performance of the

combination of the above learning-based methods and the DTW-based

matching system described in section 4.4.1.

match.py Matches one or more MIDI files to the Million Song Dataset quickly and

accurately using the cascade of methods proposed in this thesis, as described

in chapter 7.

Also included are experiment_utils.py, feature_extraction.py, and whoosh-

_search.py which contain shared helper functions for the experiments, extracting

features, and text-based matching respectively.

B.1.1 dhs

To facilitate its usage in contexts outside of the experiments in this thesis, the code

for the learning-based downsampled hash sequence technique proposed in chapter 5 is

factored out in a separate library called dhs.3 dhs includes the following functionality:

3http://github.com/craffel/dhs

http://github.com/craffel/dhs


B. Software Prepared 200

train.py Given a dataset of sequential data with known-matching pairs and an

un-trained pair of neural network models, train the networks by optimizing

the similarity-preserving loss equation (5.2).

match.py Given hash sequences represented as lists of integers, rapidly compute the

pairwise distance matrix using exclusive-or and POPCNT operations and the

DTW distance corresponding to the lowest-cost path through this matrix.

utils.py Tools for iterating over sequential data and constructing “dissimilar” pairs

by randomly swapping matching pairs.

This library makes use of theano (Bergstra et al., 2010; Bastien et al., 2012; Al-Rfou

et al., 2016) and lasagne (Dieleman et al., 2015) to construct the loss function,

automatically compute its derivative, and optimize the networks’ parameters with

respect to it. It also utilizes numba4 to rapidly compute the DTW distance and

cython5 to access the SSE 4.2 POPCNT instruction directly from Python code.

While thus far this library has only been used for the experiments in this thesis, we

hope it will be facilitate research into other problem settings.

B.1.2 pse

In the same vein as dhs, pse6 is a library which covers the pairwise sequence

embedding approach of chapter 6. In general, it has very similar functionality to

the dhs library except that it utilizes non-aligned pairs of sequences, it expects the

networks to produce a single vector for each input sequence, and it does not contain

functionality for matching the resulting embeddings because this can be achieved by

4http://numba.pydata.org
5http://cython.org
6http://github.com/craffel/pse

http://numba.pydata.org
http://cython.org
http://github.com/craffel/pse
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a simple Euclidean distance calculation. It also includes an implementation of the

feed-forward attention mechanism described in section 6.1.3.

B.2 alignment-search

Our code is also available online for the experiments in chapter 4.7 This includes

the following scripts, in order of their intended usage:

create_data.py Given a collection of MIDI files, creates “easy” and “hard” artificial

synthetic corrupted versions as described in section 4.2.

parameter_experiment_random.py and parameter_experiment_gp.py Optimize

DTW system hyperparameters over the “easy” synthetic dataset, first randomly

and then using Bayesian optimization, as described in section 4.3.

find_best_aligners.py Finds the best-performing alignment system produced by

hyperparameter optimization and all of the systems which were not significantly

worse.

confidence_experiment.py Given these high-performing systems, determine which

of the confidence score reporting schemes discussed in section 4.4 best correlates

with alignment error over both the “easy” and “hard’ datasets.

align_real_world.py Aligns a collection of real-world data using the “gold stan-

dard” system of section 4.4.1 for the qualitative evaluation in section 4.5.

It also includes the collections of utility functions corrupt_midi.py, align-

_dataset.py, and db_utils.py respectively for applying synthetic corruptions to

MIDI files, aligning a collection of MIDI files given DTW system parameters, and

for storing and loading results.

7http://github.com/craffel/alignment-search

http://github.com/craffel/alignment-search
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B.3 pretty_midi

Because MIDI files utilize a low-level binary protocol to represent musical scores,

manipulating MIDI data directly can be cumbersome. In addition, the timing of an

event in MIDI is represented by tempo-dependent “ticks” relative to the previous

event, making direct interpretation in terms of absolute time (in seconds) difficult.

We believe that the most intuitive representation is a hierarchical one, consisting of

a list of instruments, each of which contains a sequence of events (notes, pitch bends,

etc.). This is analogous to a per-instrument piano roll, the visualization commonly

used for manipulating MIDI data in digital audio workstations.

Most software libraries for dealing with MIDI files either represent MIDI data in

a lower-level (directly corresponding to the bit-level representation) or a higher-level

manner (only as musical features). This can make simple manipulations and analysis

either require a great deal of source code and expertise or, in the case of modifications

to aspects not supported by an abstract library, impossible. For example, in the

python-midi module,8 shifting up the pitch of all notes in a MIDI file by 2 semitones

takes only a few lines of code. However, constructing a piano roll representation can

take a few hundred lines of code because MIDI ticks must be converted to time in

seconds, note-on events must be paired with note-offs, drum events must be ignored,

and so on.

Based on these issues, we created the Python module pretty_midi9 for creating,

manipulating and analyzing MIDI files. It is intended to make the most common

operations applied to MIDI data as straightforward and simple as possible. The

module includes functionality for parsing and writing MIDI files, creating and

manipulating MIDI data, synthesis, and information extraction.

8http://github.com/vishnubob/python-midi
9http://github.com/craffel/pretty-midi

http://github.com/vishnubob/python-midi
http://github.com/craffel/pretty-midi
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pretty_midi represents MIDI data as a hierarchy of classes. At the top is the

PrettyMIDI class, which contains global information such as tempo changes and

the MIDI resolution. It also contains a list of Instrument class instances. Each

Instrument is specified by a program number and a flag denoting whether it is a

drum instrument. Instrument class instances also contain three lists, one each for

Note, PitchBend, and ControlChange class instances. The Note class is a container

for MIDI notes, with velocity, pitch, and start and end time attributes. Similarly,

the PitchBend and ControlChange classes simply have attributes for the bend or

control change’s time and value.

The top-level PrettyMIDI class can be instantiated with a path to an existing

MIDI file, in which case the class will be populated by parsing the file. It can also

be instantiated without a pre-existing file for creating MIDI data from scratch. For

output, the PrettyMIDI class has a write function which exports its data to a valid

MIDI file.

PrettyMIDI class instances have functions for performing analysis on the data

they contain, some of which have a corresponding function in the Instrument class.

Some of the implemented functions include:

get_tempo_changes Returns a list of the times and tempo (in beats per minute) of

all MIDI tempo change events

estimate_tempo Returns an empirical tempo estimate according to inner-onset

intervals, as described in (Dixon, 2001).

get_beats Returns a list of beat locations based on the MIDI tempo change events.

get_onsets Returns a list of all of the onsets (start times) of each MIDI note.

get_piano_roll Returns a piano roll matrix representation of MIDI notes, as used

in section 5.2.3.
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get_chroma Computes chroma features (also known as pitch class profile) (Fujishima,

1999) of the MIDI data based on the piano roll representation.

In pretty_midi, MIDI data can be synthesized as audio using either the syn-

thesize or fluidsynth methods. synthesize uses a periodic function (e.g. sin)

to synthesize the each note, while fluidsynth utilizes the fluidsynth program10

which performs General MIDI synthesis using a SoundFont file. Both methods return

arrays of audio samples at some specified sampling rate.

pretty_midi also has utility functions for converting between representations of

MIDI notes (name, note number, frequency in Hz, and drum name for percussion

instruments), program number and instrument name/class (according to the General

MIDI standard) and pitch bend value and semitones. Each PrettyMIDI class instance

can also readily convert between MIDI ticks and absolute seconds. These functions

allow for semantically meaningful creation and representation of MIDI data.

10http://www.fluidsynth.org

http://www.fluidsynth.org

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Large-Scale Sequence Retrieval
	1.2 Matching and Aligning Scores and Audio Recordings
	1.3 Overview
	1.4 Notation

	2 Tools
	2.1 Machine Learning
	2.1.1 Supervised Learning
	2.1.2 Sequential Data
	2.1.3 Neural Networks
	2.1.3.1 Backpropagation
	2.1.3.2 Tricks
	2.1.3.3 Recurrent Networks
	2.1.3.4 Convolutional Networks

	2.1.4 Stochastic Optimization
	2.1.4.1 Stochastic Gradient Descent
	2.1.4.2 Momentum
	2.1.4.3 Nesterov's Accelerated Gradient
	2.1.4.4 Adagrad
	2.1.4.5 RMSProp
	2.1.4.6 Adam

	2.1.5 Bayesian Optimization
	2.1.5.1 Gaussian Processes
	2.1.5.2 Acquisition Functions


	2.2 Digital Signal Processing
	2.2.1 Audio Signals and Psychoacoustics
	2.2.1.1 Sampling Frequency

	2.2.2 Time-Frequency Analysis
	2.2.2.1 The Short-Time Fourier Transform
	2.2.2.2 Log-Magnitude
	2.2.2.3 Constant-Q Transforms

	2.2.3 Dynamic Time Warping


	3 MIDI Files
	3.1 Information Available in MIDI Files
	3.1.1 Transcription
	3.1.2 Music-Theoretic Features
	3.1.3 Meter
	3.1.4 Key
	3.1.5 Lyrics
	3.1.6 What's Missing

	3.2 Utilizing MIDI Files as Ground Truth
	3.2.1 Extracting Information
	3.2.2 Matching
	3.2.3 Aligning
	3.2.4 Roadmap


	4 Optimizing Dynamic Time Warping
	4.1 DTW-Based Alignment
	4.2 Creating a Synthetic Alignment Dataset
	4.3 Optimizing DTW-Based Alignment
	4.4 Optimizing Confidence Reporting
	4.4.1 Choosing Easily-Reproducible Parameters

	4.5 Qualitative Evaluation on Real-World Data
	4.6 Discussion

	5 Learning an Efficient Representation for Dynamic Time Warping
	5.1 Learning to Downsample and Hash
	5.2 Experiment: MIDI to MSD Matching
	5.2.1 Preparing Data
	5.2.2 System Specifics
	5.2.3 Adapting to Multimodal Data
	5.2.4 Baseline
	5.2.5 Matching MIDI Files to the MSD
	5.2.6 Results
	5.2.6.1 Qualitative
	5.2.6.2 Ranking Metrics


	5.3 Discussion

	6 Pruning Subsequence Search by Embedding Sequences
	6.1 Embedding Sequences with Attention
	6.1.1 Embedding
	6.1.2 Attention
	6.1.3 Feed-Forward Attention

	6.2 Experiment: MIDI to MSD Matching
	6.2.1 Experiment Specifics
	6.2.2 Baseline Method
	6.2.3 Results

	6.3 Discussion

	7 Assembling a Collection of MIDI Files Matched to the Million Song Dataset
	7.1 Matching MIDI Files
	7.1.1 Shortcuts
	7.1.2 Measuring Performance
	7.1.3 The Lakh MIDI Dataset

	7.2 Measuring a Baseline of Reliability for MIDI-Derived Information
	7.2.1 Key Experiment
	7.2.2 Beat Experiment
	7.2.3 Motivationg Future Work


	8 Conclusion
	8.1 Next Steps

	Bibliography
	Appendix A Relevant Publications
	Appendix B Software Prepared
	B.1 midi-dataset
	B.1.1 dhs
	B.1.2 pse

	B.2 alignment-search
	B.3 pretty`midi


