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Learning-based Robust Motion Planning with

Guaranteed Stability:

A Contraction Theory Approach
Hiroyasu Tsukamoto and Soon-Jo Chung

Abstract—This paper presents Learning-based Autonomous
Guidance with RObustness and Stability guarantees (LAG-
ROS), which provides machine learning-based nonlinear motion
planners with formal robustness and stability guarantees, by
designing a differential Lyapunov function using contraction
theory. LAG-ROS utilizes a neural network to model a robust
tracking controller independently of a target trajectory, for which
we show that the Euclidean distance between the target and
controlled trajectories is exponentially bounded linearly in the
learning error, even under the existence of bounded external
disturbances. We also present a convex optimization approach
that minimizes the steady-state bound of the tracking error to
construct the robust control law for neural network training.
In numerical simulations, it is demonstrated that the proposed
method indeed possesses superior properties of robustness and
nonlinear stability resulting from contraction theory, whilst
retaining the computational efficiency of existing learning-based
motion planners.

Index Terms—Machine Learning for Robot Control, Ro-
bust/Adaptive Control, and Optimization & Optimal Control.

I. INTRODUCTION

In the near future of robotic exploration, teams of robots

are expected to perform complex decision-making tasks au-

tonomously in extreme environments, where their motions

are typically governed by nonlinear dynamics with exter-

nal disturbances. For such operations to be successful, they

need to compute optimal motion plans online while robustly

guaranteeing convergence to the target trajectory, both with

their limited onboard computational resources. Thus, this work

aims to propose a learning-based robust motion planning and

control algorithm that meets these challenging requirements.

Related Work: Learning-based control designs have been

an emerging area of research since the rise of neural networks

and reinforcement learning [1], [2]. Model-free approaches

learn optimal policies using data obtained in real-world en-

vironments, making them robust but not suitable for situations

where sampling large training datasets is difficult. Also, prov-

ing the robustness and stability properties of such data-driven

systems is challenging in general, although some techniques
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do exist [3], [4]. In contrast, model-based methods allow

sampling as much data as we want to design the policies by,

e.g., imitation learning [5], [6], reinforcement learning [7], [8],

or both [9]–[11]. However, the learned controller could yield

cascading errors in the real-world environment if its nominal

model poorly represents the true underlying dynamics [12].

Control theoretical approaches to circumvent such diffi-

culties include robust tube-based motion planning [13]–[26]

equipped with a tracking control law for robustness and

stability certificates. Among these are contraction theory-

based robust control [13]–[21], which tracks a target trajectory

computed externally by existing motion planners, and thereby

robustly keeps the system trajectories in a control invariant

tube that satisfies given state constraints. Although these prov-

able guarantees are promising, they still assume that the target

trajectory can be computed online solving some planning

problems, unlike the aforementioned learning frameworks.

Contributions: In this paper, we present Learning-based Au-

tonomous Guidance with RObustness and Stability guarantees

(LAG-ROS) as a novel way to bridge the gap between the

learning-based and robust tube-based motion planners. In par-

ticular, while LAG-ROS requires one neural network evalua-

tion to get its control input as in the learning schemes [5]–[11],

its contraction theory-based architecture still allows obtaining

formal robustness and stability guarantees as in [13]–[21]. This

framework depicted in Fig. 1 is summarized as follows.

1) Robustness and Stability Guarantees: The theoretical

foundation of LAG-ROS rests on contraction theory, which

utilizes a contraction metric to characterize a necessary and

sufficient condition of exponential incremental stability of non-

linear system trajectories [27]. The central result of this paper

is that, if there exists a control law which renders a nonlinear

system contracting, or equivalently, the closed-loop system

has a contraction metric, then LAG-ROS trained to model the

controller ensures the Euclidean distance between the target

and controlled trajectories to be bounded exponentially with

time, linearly in the learning error and size of perturbation.

This property helps quantify how small the learning error

should be in practice, giving some guidance in choosing design

parameters of neural net training. We further show that such

a contracting control law and its corresponding contraction

metric can be designed explicitly via convex optimization,

using the method of CV-STEM [15]–[17] to minimize a

steady-state upper bound of the LAG-ROS tracking error.

2) State Constraint Satisfaction: We further exploit the

computed bound on the tracking error in generating expert
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Fig. 1. Illustration of LAG-ROS: See Theorems 1 – 4 and Algorithm 1 for detailed explanation on each block of the LAG-ROS design. Note that LAG-ROS
requires only one neural net evaluation to get uL, and Theorem 1 provides its robustness and stability guarantees.

TABLE I
COMPARISON OF THE PROPOSED METHOD WITH THE LEARNING-BASED AND ROBUST TUBE-BASED MOTION PLANNERS.

Motion planning scheme Policy to be learned State tracking error ‖x− xd‖ Computational load

(a) Learning-based motion planner [5]–[11] (x,oℓ, t) 7→ ud Increases exponentially (Lemma 1) One neural net evaluation
(b) Robust tube-based motion planner [13]–[26] (x,xd ,ud , t) 7→ u∗ Exponentially bounded (Theorem 2) Computation required to get (xd ,ud)
(c) Proposed method (LAG-ROS) (x,oℓ, t) 7→ u∗ Exponentially bounded (Theorem 1) One neural net evaluation

demonstrations for training, so that the learned policy will

not violate given state constraints even with the learning error

and external disturbances. In this phase, LAG-ROS learns the

contracting control law independently of a target trajectory,

making it implementable without solving any motion planning

problems online unlike [13]–[26]. The performance of LAG-

ROS is evaluated in cart-pole balancing [28] and nonlinear

motion planning of multiple robotic agents [29] in a cluttered

environment, demonstrating that LAG-ROS indeed satisfies the

formal exponential bound as in [13]–[21] with its computa-

tional load as low as that of existing learning-based motion

planners [5]–[11]. In particular, LAG-ROS requires less than

0.1s for computation in all of these tasks and achieves higher

control performances and task success rates (see Sec. V-A3),

when compared with the existing motion planners in Table I

which outlines the differences of these schemes from our

proposed method.

Notation: For x ∈ R
n and A ∈ R

n×m, we let ‖x‖, δx, and

‖A‖, denote the Euclidean norm, infinitesimal variation of x,

and induced 2-norm, respectively. For a square matrix A, we

use the notation A≻ 0, A� 0, A≺ 0, and A� 0 for the posi-

tive definite, positive semi-definite, negative definite, negative

semi-definite matrices, respectively, and sym(A)= (A+A⊤)/2.

Also, I ∈ R
n×n denotes the identity matrix.

II. LEARNING-BASED ROBUST MOTION PLANNING WITH

GUARANTEED STABILITY (LAG-ROS)

In this paper, we consider the following nonlinear systems

with a controller u∈Rm ( f & B are known but d is unknown):

ẋ(t) = f (x(t), t)+B(x(t), t)u+d(x(t), t) (1)

ẋd(og, t) = f (xd(og, t), t)+B(xd(og, t), t)ud(xd(og, t),og, t) (2)

where t ∈ R≥0, f : Rn×R≥0 7→ R
n, B : Rn×R≥0 7→ R

n×m,

x : R≥0 7→ R
n is the state trajectory of the true system (1)

perturbed by the bounded disturbance d : Rn×R≥0 7→ R
n s.t.

supx,t ‖d(x, t)‖= d̄, og ∈Rg is a vector containing global envi-

ronment information such as initial and terminal states, states

of obstacles and other agents, etc., and xd : Rg×R≥0 7→ R
n

and ud : Rn×R
g×R≥0 7→ R

n are the target trajectories given

by existing motion planning algorithms, e.g., [13]–[26].

A. Problem Formulation of LAG-ROS

We seek to find u that is computable with one neural

network evaluation and guarantees exponential boundedness of

‖x−xd‖ in (1) and (2), robustly against the learning error and

external disturbances. The objective is thus not to develop new

learning-based planners that compute (xd ,ud), but to augment

them with formal robustness and stability guarantees. To this

end, let us review the following existing planning techniques:

(a) Learning-based motion planner [5] or [6]–[11]:

(x,oℓ(x,og), t) 7→ ud(x,og, t), modeled by a neural net-

work, where oℓ : Rn × R
g 7→ R

ℓ with ℓ ≤ g is local

environment information extracted from og ∈ R
g [5].

(b) Robust tube-based motion planner [13] or [14]–[26]:

(x,xd ,ud , t) 7→ u∗(x,xd ,ud , t), where u∗ is a contraction

theory-based tracking controller, e.g., in Theorem 2.

The robust tube-based motion planner (b) ensures that the

perturbed trajectories x of (1) stay in an exponentially bounded

error tube around the target trajectory xd of (2) [13]–[21] (see

Theorem 2). However, it requires the online computation of

(xd ,ud) as an input to their control policy, which is not realistic

for systems with limited computational resources.

The learning-based motion planner (a) circumvents this

issue by modeling the target policy (x,oℓ, t) 7→ ud by a

neural network. In essence, our approach, to be proposed in

Theorem 1, is for providing (a) with the contraction theory-

based stability guarantees (b). We remark that (a) can only

assure the tracking error ‖x−xd‖ to be bounded by a function

which exponentially increases with time, as to be shown in

Lemma 1 for comparison with LAG-ROS of Theorem 1.
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B. Stability Guarantees of LAG-ROS

The approach of LAG-ROS bridges the gap between (a)

and (b) by ensuring that the distance between the target and

controlled trajectories to be exponentially bounded.

(c) Proposed approach (LAG-ROS, see Fig. 1):

(x,oℓ(x,og), t) 7→ u∗(x,xd(og, t),ud(xd(og, t),og, t), t) with

oℓ of (a), modeled by a neural network uL of Theorem 1,

where u∗ of (b) is viewed as a function of (x,oℓ, t).

Theorem 1: Suppose that (1) is controlled to track (2) by

the LAG-ROS uL = uL(x,oℓ(x,og), t), learned to satisfy

‖uL−u∗(x,xd(og, t),ud(xd(og, t),og, t), t)‖ ≤ εℓ, ∀x,og, t (3)

where εℓ ∈ [0,∞) is the learning error, u∗ is the robust control

policy of (b) (to be designed in Theorem 2), and (xd ,ud) is

given by the robust motion planner (b) (to be discussed in

Theorem 3). Now consider the following virtual system of

y(µ, t) parameterized by µ ∈ [0,1], which has y(µ = 1, t) = x

of (1) and y(µ = 0, t) = xd of (2) as its particular solutions:

ẏ = ζ (y,x,xd ,ud , t)+dy(µ,x,xd ,ud ,og, t) (4)

where ζ is parameterized by y to verify ζ |y=x = f (x, t) +
B(x, t)u∗(x,xd ,ud , t) and ζ |y−xd

= f (xd , t) + B(xd , t)ud (see,

e.g., (10)), dy = µ(B(x, t)(uL(x,oℓ(x,og), t)−u∗(x,xd ,ud , t))+
d(x, t)), and x, xd , ud , and d are as defined in (1) and (2). Note

that y(µ = 1, t) = x and y(µ = 0, t) = xd are indeed particular

solutions of (4). If ∃b̄∈ [0,∞) s.t. ‖B(x, t)‖≤ b̄, ∀x, t, and if u∗

satisfies the following contraction conditions [30] with respect

to y, for a contraction metric M(y,x,xd ,ud , t) = Θ
⊤

Θ≻ 0 and

α,ω,ω ∈ (0,∞):

Ṁ+2sym

(

M
∂ζ

∂y

)

�−2αM, ∀y,x,xd ,ud , t (5)

ω−1I �M � ω−1I, ∀y,x,xd ,ud , t (6)

then we have the following for e(t) = x(t)− xd(og, t), ∀og:

‖e(t)‖ ≤R(0)
√

ωe−αt +
b̄εℓ+ d̄

α

√

ω

ω
(1− e−αt) = rℓ(t) (7)

where R(t) =
∫ x

xd
‖Θδy‖ for M = Θ

⊤
Θ, xd = xd(og, t), and

ud = ud(xd(og, t),og, t).
Proof: Let V =

∫ x
xd

δy⊤Mδy =
∫ x

xd
‖Θδy‖2 for (xd ,ud) in

(7). Since ‖∂dy/∂ µ‖ ≤ b̄εℓ+ d̄ = d̄εℓ , ∀µ,x,og, t, for dy in (4)

with such (xd ,ud), the contraction condition (5) gives

V̇ ≤
∫ x

xd

δy⊤
(

Ṁ+2sym

(

M
∂ζ

∂y

))

δy+2d̄εℓ

∫ x

xd

‖Mδy‖

≤−2αV +(2d̄εℓ/
√

ω)R(t).

Since d(‖Θδy‖2)/dt = 2‖Θδy‖(d‖Θδy‖/dt), this implies that

Ṙ ≤ −αR + d̄εℓ/
√

ω . Therefore, applying the comparison

lemma [31, pp.102-103, pp.350-353] (i.e., if v̇1 ≤ h(v1, t) for

v1(0)≤ v2(0) and v̇2 = h(v2, t), then v1(t)≤ v2(t)), along with

the relation R(t)≥ ‖e(t)‖/
√

ω , results in (7)

Theorem 1 implies that the bound (7) decreases linearly

in the learning error εℓ and disturbance d̄, and (1) con-

trolled by LAG-ROS is exponentially stable when εℓ = 0 and

d̄ = 0, showing a great improvement over (a) which only

gives an exponentially diverging bound as to be derived in

Lemma 1 [5]–[11]. This property permits quantifying how

small εℓ = 0 should be to meet the required guidance and

control performance, giving some intuition on the neural

network architecture (see Sec. V). Also, since we model u∗

by uL(x,oℓ, t) independently of xd , it is indeed implementable

without solving any motion planning problems online unlike

the robust motion planners (b) [13]–[26], as outlined in Table I.

If we can sample training data of u∗ explicitly considering the

bound (7), the LAG-ROS control enables guaranteeing given

state constraints even with the learning error εℓ and external

disturbance d(x, t), as will be seen in Sec. III and IV.

Remark 1: εℓ of (3) can only be found empirically in

practice, and thus we propose one way to generate training

data with (7) and use the test error of uL as εℓ (see Sec. IV-B

and Sec. V). Note that models f (x, t) learned by system

identification for a more accurate description of the nominal

dynamics, e.g., [32], is still utilizable in (4) as long as the

learned system is contracting [3], and the modeling error is

bounded. Other types of perturbations, such as stochastic or

parametric uncertainty, could be handled using [17], [33].

To appreciate the importance of the guarantees in The-

orem 1, let us additionally show that (a), which models

(x,oℓ, t) 7→ ud , only leads to an exponentially diverging bound.

Lemma 1: Suppose that u of (1) is learned to satisfy

‖u(x,oℓ(x,og), t)−ud(x,og, t)‖ ≤ εℓ, ∀x,og, t (8)

for ud of (2) with the learning error εℓ ∈ [0,∞), and that ∃b̄
s.t. ‖B(x, t)‖ ≤ b̄, ∀x, t. If fcℓ = f (x, t)+B(x, t)ud(x,og, t) is

Lipschitz, i.e., ∃L f ∈ [0,∞) s.t. ‖ fcℓ(x1,og, t)− fcℓ(x2,og, t)‖≤
L f ‖x1−x2‖, ∀x1,x2 ∈R

n, then we have the following bound:

‖e(t)‖ ≤ ‖e(0)‖eL f t +L−1
f (b̄εℓ+ d̄)(eL f t −1). (9)

where e= x− xd , and x, xd , and d̄ are given in (1) and (2).

Proof: Integrating (1) and (2) for u in (8) yields ‖e(t)‖ ≤
‖e(0)‖+L f

∫ t
0 ‖e(τ)‖dτ +(b̄εℓ+ d̄)t. Applying the Gronwall-

Bellman inequality [31, pp. 651] gives

‖e(t)‖ ≤‖e(0)‖+ d̄εℓt +L f

∫ t

0
(‖e(0)‖+ d̄εℓτ)e

L f (t−τ)dτ

where d̄εℓ = b̄εℓ+ d̄. Thus, integration by parts results in the

desired relation (9).

Lemma 1 indicates that if there exists either a learning error

εℓ or external disturbance d, the tracking error bound grows

exponentially with time, and thus (9) becomes no longer useful

for large t. Section V demonstrates how the computed bounds

of (7) (limt→∞ e−αt = 0) and (9) (limt→∞ eL f t = ∞) affect the

control performance in practice.

III. CONTRACTION THEORY-BASED ROBUST AND

OPTIMAL TRACKING CONTROL

Theorem 1 is subject to the assumption that we have a

contraction theory-based robust tracking control law u∗, which

satisfies (5) and (6) for a given (xd ,ud). This section thus

delineates one way to extend the method called ConVex

Optimization-based Steady-state Tracking Error Minimization

(CV-STEM) [15]–[17] to find a contraction metric M of

Theorem 1, which minimizes an upper bound of the steady-

state error of (7) via convex optimization. Minimizing the
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bound renders the tube-based planning of Theorem 3 to be

given in Sec. IV for sampling training data less conservative,

resulting in a better optimal solution for (xd ,ud).
In addition, we modify the CV-STEM in [15] to derive

a robust control input u∗ which also greedily minimizes the

deviation of u∗ from the target ud , using the computed con-

traction metric M to construct a differential Lyapunov function

V = δy⊤Mδy. Note that u∗ is to be modeled by a neural

network which maps (x,oℓ, t) to u∗ implicitly accounting

for (xd ,ud) as described in Theorem 1, although u∗ takes

(x,xd ,ud , t) as its inputs (see Sec. IV-B).

A. Problem Formulation of CV-STEM Tracking Control

For given (xd ,ud), we assume that u∗ of Theorem 1 can be

decomposed as u∗(x,xd ,ud , t) = ud +K(x,xd ,ud , t)(x−xd), the

generality of which is guaranteed by the following lemma.

Lemma 2: Consider a general tracking controller u de-

fined as u = k(x,xd ,ud , t) with k(xd ,xd ,ud , t) = ud , where

k : Rn×R
n×R

m×R≥0 7→ R
m. If k is piecewise continuously

differentiable, then ∃K : Rn ×R
n ×R

m ×R≥0 7→ R
m×n s.t.

u = k(x,xd ,ud , t) = ud +K(x,xd ,ud , t)(x− xd).
Proof: We have u = ud +(k(x,zd , t)−k(xd ,zd , t)) for zd =

(xd ,ud) due to k(xd ,zd , t) = ud . Since k(x,zd , t)−k(xd ,zd , t) =
∫ 1

0 (dk(cx+(1− c)xd ,zd , t)/dc)dc, choosing K as
∫ 1

0 (∂k(cx+
(1− c)xd ,zd , t)/∂x)dc gives the desired relation.

Lemma 2 implies that designing optimal k of u∗ =
k(x,xd ,ud , t) reduces to designing optimal K(x,xd ,ud , t) of

u∗ = ud +K(x,xd ,ud , t)(x−xd). When (1) is controlled by the

LAG-ROS uL of Theorem 1 with such u∗, the virtual system

of (1) and (2) which has y = x and y = xd as its particular

solutions can be given by (4), where ζ is defined as follows:

ζ =ẋd +(A(x,xd ,ud , t)+B(x, t)K(x,xd ,ud , t))(y− xd) (10)

where A is the State-Dependent Coefficient (SDC) form of

the dynamical system (1) given by Lemma 2 of [17], which

verifies A(x,xd ,ud , t)(x− xd) = f (x, t)+B(x, t)ud − f (xd , t)−
B(xd , t)ud . Note that ζ indeed satisfies ζ |y=x = f (x, t) +
B(x, t)u∗ and ζ |y=xd

= f (xd , t)+B(xd , t)ud for such A, to have

y = x and y = xd as the particular solutions to (4).

B. CV-STEM Contraction Metrics as Lyapunov Functions

The remaining task is to construct M so that it satisfies (5)

and (6). The CV-STEM approach suggests that we can find

such M via convex optimization to minimize an upper bound

of (7) as t → ∞ when α of (5) is fixed. Theorem 2 proposes

using the metric M designed by the CV-STEM for a Lyapunov

function, thereby augmenting u∗ with additional optimality to

greedily minimize ‖u∗−ud‖2 for ud in (2).

Theorem 2: Suppose that f and B are piecewise continu-

ously differentiable, and let B = B(x, t) and A = A(x,xd ,ud , t)
in (10) for notational simplicity. Consider a contraction metric

M(x,xd ,ud , t) = W (x,xd ,ud , t)
−1 ≻ 0 given by the following

convex optimization (CV-STEM) [15]–[17] to minimize an

upper bound on the steady-state tracking error of (7):

J∗CV = min
ν>0,χ∈R,W̄≻0

b̄εℓ+ d̄

α
χ s.t. (12) and (13) (11)

with the convex constraints (12) and (13) given as

− ˙̄W +2sym(AW̄ )−2νBR−1B⊤ �−2αW̄ , ∀x,xd ,ud , t (12)

I � W̄ (x,xd ,ud , t)� χI, ∀x,xd ,ud , t (13)

where α,ω,ω ∈ (0,∞), ν = 1/ω , χ = ω/ω , W̄ = νW , and

R = R(x,xd ,ud , t)≻ 0 is a weight matrix on the control input.

Suppose also that u∗ of Theorem 1 is designed as u∗ = ud +
K∗(x,xd ,ud , t)e, where e = x− xd , and K∗ is found by the

following convex optimization for given (x,xd ,ud , t):

K∗ = arg min
K∈Rm×n

‖u−ud‖2 = arg min
K∈Rm×n

‖K(x,xd ,ud , t)e‖2 (14)

s.t. Ṁ+2sym(MA+MBK(x,xd ,ud , t))�−2αM. (15)

Then M satisfies (5) and (6) for ζ defined in (10), and thus

(7) holds, i.e., we have the exponential bound on the tracking

error ‖x− xd‖ when the dynamics (1) is controlled by the

LAG-ROS control input uL of Theorem 1. Furthermore, the

problem (14) is always feasible.

Proof: Since the differential dynamics of (4) with (10)

is given as δ ẏ = (∂ζ/∂y)δy = (A−BK)δy, substituting this

into (5) verifies that (5) and (15) are equivalent. For K̄ =
−R−1B⊤M, (15) can be rewritten as

ν−1M(− ˙̄W +2sym(AW̄ )−νBR−1B⊤)M �−2αν−1MW̄M.

Since this is clearly feasible as long as M satisfies the condition

(12), this implies that the problem (14) is always feasible.

Also, multiplying (6) by Ws s.t. W =W 2
s with Ws≻ 0 from both

sides gives (13) [15]. These facts indicate that the conditions

(5) and (6) are satisfied for M and u∗ constructed by (11) and

(14), respectively, and thus we have the exponential bound (7)

as a result of Theorem 1. Furthermore, the problem (11) indeed

minimizes an upper bound of (7) as t→∞ due to the relation

0≤
√

ω/ω =
√

χ ≤ χ . We remark that (11) is convex as the

objective is affine in χ and (12) and (13) are linear matrix

inequalities in terms of ν , χ , and W̄ .

Remark 2: (11) and (14) are convex in terms of their respec-

tive decision variables and thus can be solved computationally

efficiently [34, pp. 561]. For systems with a known Lyapunov

function (e.g. Lagrangian systems [35, pp. 392]), we could

simply use it to get robust tracking control u∗ in Theorem 2

without solving (14), although optimality may no longer be

guaranteed in this case.

Remark 3: The contraction metric construction itself can be

performed using a neural network [16]–[18], [33], leading to

an analogous incremental stability and robustness results to

those of Theorem 1 [33], [36].

IV. GENERATING EXPERT DEMONSTRATIONS

This section presents how to sample training data, i.e., the

target trajectory (xd ,ud) of (2) and corresponding perturbed

state and CV-STEM robust control (x,u∗), so that x of (1)

controlled by the LAG-ROS control uL will stay in given

admissible state space as long as we have ‖uL− u∗‖ ≤ εℓ as

in (3) of Theorem 1. To be specific, since u∗ of Theorem 2

solves (11) to obtain an optimal error tube around xd , i.e.,

(7) of Theorem 1, we exploit it in the tube-based motion

planning [13] for generating training data, which satisfies
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Fig. 2. Illustration of state sampling in robust bounded error tube.

given state constraints even under the existence of the learning

error εℓ and disturbance d in (7) and (11). Note that the

learning error εℓ and disturbance upper bound d̄ of Theorem 1

are assumed to be selected a priori [32].

A. Tube-based State Constraint Satisfaction in LAG-ROS

Given the learning error εℓ and disturbance upper bound d̄ of

Theorem 1, we sample (xd ,ud) of (2) by solving the following

tube-based global motion planning problem, for each element

in a training set containing randomized og of (1):

min
x̄=x̄(og,t)

ū=ū(x̄,og,t)

∫ T

0
c1‖ū‖2 + c2P(x̄, ū, t)dt (16)

s.t. ˙̄x = f (x̄, t)+B(x̄, t)ū, x̄ ∈ X̄ (og, t), and ū ∈ Ū (og, t)

where c1 ≥ 0, c2 ≥ 0, P(x̄, ū, t) is some performance-based

cost function, T > 0 is a given time horizon, X̄ is robust ad-

missible state space defined as X̄ (og, t) = {v(t) ∈Rn|∀ξ (t) ∈
{ξ (t)|‖v(t)− ξ (t)‖ ≤ rℓ(t)}, ξ (t) ∈ X (og, t)}, X (og, t) is

given admissible state space, rℓ(t) is the right-hand side of

(7) in Theorem 1, and ū∈ Ū (og, t) is an input constraint. The

following theorem shows that the LAG-ROS control ensures

the perturbed state x of (1) to satisfy state constraints x ∈X ,

due to the contracting property of u∗ in Theorem 2.

Theorem 3: If the solution of (16) yields (xd ,ud) of (2),

the LAG-ROS control uL of Theorem 1, where M and u∗ are

designed by Theorem 2, ensures the perturbed solution x(t) of

(1) to stay in the admissible state space X (og, t), i.e., x(t) ∈
X (og, t),∀t, even with the learning error εℓ of uL in (3).

Proof: Since xd ∈ X̄ , we have ξ ∈X for all ξ ∈ S(xd) =
{ξ |‖xd−ξ‖ ≤ rℓ} by the definition of X̄ . Also, if we control

(1) by uL, we have ‖x− xd‖ ≤ rℓ, or equivalently, x ∈ S(xd).
These two statements indicate that x ∈X .

Remark 4: Theorem 3 implies that if xd is sampled by (16),

the perturbed trajectory (1) controlled by LAG-ROS uL of

Theorem 1 will not violate the given state constraints as long

as LAG-ROS uL of Theorem 1 satisfies (3). This helps greatly

reduce the need for safety control schemes such as [37].

B. Learning Contraction Theory-based Robust Control

To meet the learning error requirement (3) for the sake

of robustness and state constraint satisfaction proposed in

Theorems 1 and 3, we should also sample x to get training

data for the CV-STEM robust control inputs u∗ of Theorem 2.

Theorem 4: If (3) of Theorem 1 is satisfied ∀x(t) ∈ S(xd) =
{ξ ∈Rn|‖xd(og, t)−ξ‖ ≤ rℓ(t)} and ∀og, t instead of ∀x,og, t,
then uL with such a constraint still guarantees (7). Also, if we

always choose x(0) = xd(og,0) for the perturbed state x in (1),

the radius of the tube S(xd) is bounded ∀og, t.

Proof: Following the proof of Theorem 1, we still get (3)

for all x(t) ∈ S(xd(og, t)), and (3) implies that the perturbed

state x of (1) indeed lies in S(xd(og, t)). When x(0) = xd(og,0),
i.e., R(0) = 0 in (7), rℓ(t) is independent of the state x and

thus the radius of the tube S(xd) is bounded.

Using Theorem 4, we can sample x in the bounded error

tube S(xd(og, t)) with x(0) = xd(og,0) to obtain training data

for the CV-STEM robust control u∗ by (14) of Theorem 2.

These samples are to be used for training the LAG-ROS neural

network, so we can satisfy the condition (3) of Theorem 1 for

the pre-defined learning error εℓ.
Remark 5: The localization method in [5] allows extracting

oℓ of (a) by og of (16), to render LAG-ROS applicable to

different environments in a distributed way (see Sec. V).

The pseudocode for the offline construction of the LAG-

ROS control of Theorem 1 is presented in Algorithm 1 (see

Fig. 1 for its visual description). Once we get uL(x,oℓ, t) by

Algorithm 1, u = uL in (1) can be easily computed by only

evaluating the neural net uL for a given (x,oℓ, t) observed at

(x, t), whilst ensuring robustness, stability, and state constraint

satisfaction due to Theorems 1, 2, and 3.

Algorithm 1: LAG-ROS Algorithm

Inputs : Random environment information {(og)i}N
i=1

Contraction metric M of Theorem 2

Motion planner P

Learning error εℓ and disturbance bound d̄

Outputs: LAG-ROS control uL of Theorem 1

for i← 1 to N do
Solve (16) of Theorem 3 for (og)i using P and

obtain a target trajectory and environment

observation history (xd ,ud ,og,oℓ, t)i

Sample D robust CV-STEM control {(x,u∗)i j}D
j=1

using Theorems 2 and 4 (see Fig. 2)

Model (x,oℓ, t)i j 7→ u∗i j by a neural net to satisfy

‖uL−u∗‖ ≤ εℓ as in (3) of Theorem 1 (see Fig. 1)

V. SIMULATION

Our proposed LAG-ROS framework is demonstrated us-

ing multiple motion planning problems under external dis-

turbances (https://github.com/astrohiro/lagros). CVXPY [38]

with the MOSEK solver [39] is used to solve optimization

problems in Theorems 2 and 3 for sampling training data.

A. Simulation Setup

The maximum admissible control time interval is selected to

be ∆tmax = 0.1(s). The computational time of each framework

is measured for the Macbook Pro laptop (2.2 GHz Intel Core

i7, 16 GB 1600 MHz DDR3 RAM), and each simulation result

is the average of 50 simulations for each random environment

and disturbance realization.

1) Neural Network Training: We use a neural network

uL with 3 layers and 100 neurons. The network is trained

using stochastic gradient descent with training data sampled

by Theorems 2–4, and the loss function is defined as ‖uL−u∗‖

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on June 24,2021 at 23:38:26 UTC from IEEE Xplore.  Restrictions apply. 



2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2021.3091019, IEEE Robotics

and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

to satisfy the learning error bound εℓ of Theorem 1. We use

50000 training samples and select εℓ = 0.01 for all the tasks,

but these numbers can be modified accordingly depending on

situations, considering the required performance for the error

bound (3) in Theorem 1. Note that we can guarantee (3) only

empirically, using the test error computed with a given test set

as in standard neural network training.

2) Environment Information: og of (2) is selected as initial

states, target terminal states, and states of obstacles and other

agents, if any. In Sec. V-C, the deep set framework [40] is

used to extract local information oℓ of (a) from og as in [5].

3) Performance Measure: The objective function of The-

orem 3 for sampling (xd ,ud) of (2) is selected as
∫ T

0 ‖ū‖2dt.

Since LAG-ROS is not for proposing a new trajectory opti-

mization solver but for augmenting it with the formal guar-

antees of Theorem 1, one could use any other objective, e.g.,

information-based cost [41], as long as (xd ,ud) is obtainable.

We define success of each task as the situation where

the agent reaches, avoiding collisions, if any, a given target

terminal state x f within a given time horizon T ≥ T , i.e.

∃t∗ ∈ [0,T ] s.t. ‖x(t∗)− x f ‖ ≤ rℓ(t
∗) for rℓ in (7), where the

value for rℓ is to be defined in the subsequent sections. The

success rate is computed as the percentage of successful trials

in the total 50 simulations. Also, we evaluate the performance

of each planner, (a), (b), and (c) in Sec. II, by the objective

function
∫ t∗

0 ‖u‖2dt if the task is successfully completed, and
∫ T

0 ‖u‖2dt otherwise, where T is the nominal time horizon.

4) External Disturbances: As shown in Lemma 1 and

Theorem 1, the tracking error bound of learning-based motion

planners (a) increases exponentially with time, whilst it de-

creases exponentially for the proposed approach (c). To make

such a difference clear, we consider the situations where d(x, t)
of (1) is non-negligible, and thus (a) tends to fail the task of

Sec V-A3 due to Lemma 1. This is not to argue that (a) [5]–

[11] should be replaced by (c), but to imply that they can be

improved further to have the guarantees of Theorem 1.

5) Computational Complexity: Since (a) and LAG-ROS (c)

are implementable with one neural net evaluation at each t,

their performance is also compared with (b) which requires

solving motion planning problems to get its control input.

Its time horizon is selected to make the trajectory optimiza-

tion [42] solvable online considering the current computational

power, for the sake of a fair comparison. We denote the compu-

tational time as ∆t in this section, and it should be less than the

maximum control time interval ∆tmax, i.e., ∆t ≤∆tmax = 0.1(s).

B. Cart-Pole Balancing

We first consider the cart-pole balancing task in Fig. 3 to

demonstrate the differences of (a) – (c) summarized in Table I.

Its dynamics is given in [28], [33], and we use g = 9.8, mc =
1.0, m = 0.1, µc = 0.5, µp = 0.002, and l = 0.5.

1) LAG-ROS Training: T , T , and x f in Sec. V-A3 are

selected as T = T = 9(s) and x f = [p f ,0,0,0]
⊤ for x in

Fig. 3, where p f is a random terminal position at each episode.

We let R(0) = 0 and d̄ε = b̄εℓ + d̄ = 0.75 in (7), and train

the neural net of Sec. V-A1 to have (d̄ε/α)
√

χ = 3.15 with

α = 0.60 using Algorithm 1. The performance of LAG-ROS

u
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Fig. 3. Cart-pole balancing task: x = [p,θ , ṗ, θ̇ ]⊤, x and xd are given in (1)
and (2), (a) – (c) are given in Sec. II, and rℓ is given in (7). The shaded area
denotes the standard deviation (+1σ and −0.5σ ).

TABLE II
CONTROL PERFORMANCES FOR CART-POLE BALANCING (d̄ε = 0.75).
NOTE THAT THE NOTATIONS ARE AS GIVEN IN SEC. V-A3 AND V-A5.

Success rate (%)
∫ ‖u(t)‖2dt ∆t (s)

(a) 40.0 4.79×102 3.01×10−2

(b) 100.0 5.19×102 1.00×10−1

(c) 100.0 5.67×102 3.01×10−2

(c) is compared with the learning-based planner (a) and robust

tube-based planner (b).

2) Simulation Results and Discussions: Note that the robust

tube-based motion planner (b) (i.e. u∗ of Theorem 1) is

computable with ∆t ≤ ∆tmax (see Sec. V-A5) in this case,

and thus we expect that the performance of LAG-ROS (c)

should be worse than that of (b), as (c) is a neural net model

that approximates (b). The right-hand side of Fig. 3 shows

the tracking error ‖x− xd‖ of (1) and (2) averaged over 50

simulations at each time instant t. It is still interesting to

see that LAG-ROS of (c) and u∗ of (b) indeed satisfies the

exponential bound (7) of Theorem 1 given as

rℓ(t) = R(0)
√

ω +(d̄ε/α)
√

χ(1− e−αt) = 3.15(1− e−0.60t)

for all t with a small standard deviation σ , unlike learning-

based motion planner (a) with a diverging bound (9) and

increasing deviation σ , as can be seen from Fig. 3. Contraction

theory enables such quantitative analysis on robustness and

stability of learning-based planners, which is one of the major

advantages of our proposed technique.

Table II shows the control performance and computational

cost of (a) – (c), which is a good summary of their differences

and trade-offs aforementioned in Sec. II and in Table I:

• (a) approximates ud of (1), and thus requires lower

computational cost ∆t = 0.03(s) with a smaller objective

value
∫ ‖u‖2dt = 479, but robustness is not guaranteed

(Lemma 1) resulting in a 40% success rate.

• (b) computes u∗ of Theorem 2, and thus possesses ro-

bustness as in Fig. 3 resulting in a 100% success rate,

but requires larger ∆t = 0.1(s) to compute xd .

• (c) approximates u∗ independently of xd , and thus pos-

sesses robustness of Theorem 1 as in Fig. 3 resulting in

a 100% success rate, even with ∆t = 0.03(s) as small as

that of (b). It yields 9.2% larger
∫ ‖u‖2dt than (b) as it

models (x,oℓ, t) 7→ u∗, not (x,oℓ, t) 7→ ud .

It is demonstrated that LAG-ROS indeed possesses the robust-

ness and stability guarantees of u∗ as in Theorem 1, unlike (a),

with significantly lower computational cost than that of (b) as

expected.
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C. Multi-Agent Nonlinear Motion Planning

The advantages of (c) demonstrated in Sec. V-B are more

appreciable in the problem settings where the robust tube-

based motion planner (b) is no longer capable of computing

a global solution with ∆t ≤ ∆tmax (see Sec. V-A5). We thus

consider motion planning and collision avoidance of multiple

robotic simulators [29] in a cluttered environment with exter-

nal disturbances, where the agents are supposed to perform

tasks based only on local observations oℓ of (a). Note that its

nonlinear equation of motion is given in [29] and all of its

parameters are normalized to 1.

1) LAG-ROS Training: We select T , T , and x f in

Sec. V-A3 as T = 30(s), T = 45(s), and x f = [px f , py f ,0,0]
⊤,

where (px f , py f ) is a random position in (0,0)≤ (px f , py f )≤
(5,5). We let R(0) = 0, and train the neural network of

Sec. V-A1 by Algorithm 1 to get (d̄ε/α)
√

χ = 0.125 with

α = 0.30 in (7). In particular, the following error tube (7):

rℓ(t) = (d̄ε/α)
√

χ(1− e−αt) = 0.125(1− e−0.30t)

is used for sampling (xd ,ud) by Theorem 3 with an input

constraint ui ≥ 0, ∀i to avoid collisions with a random number

of multiple circular obstacles (0.5m in radius) and of other

agents, even under the learning error and disturbances. When

training LAG-ROS, the input constraint is satisfied by using

a ReLU function for the network output, and the localization

technique [5] is used to extract oℓ of (a) from og of (1) for

its distributed implementation, with the communication radius

2.0m. Its performance is compared with (a), (b), and a cen-

tralized planner (d) which is not computable with ∆t ≤ ∆tmax,

where ∆t is given in Sec. V-A5:

(d) Centralized robust motion planner:

(x,xd ,ud , t) 7→ u∗, offline centralized solution of (b).

2) Remarks on Sub-optimal Trajectories: Multi-agent prob-

lems have sub-optimal solutions with optimal values close to

the global optimum [43], and thus (c) does not necessarily

take the same xd as that of the centralized planner (d) in the

presence of disturbances, as depicted in Fig. 5. However, it

implicitly guarantees tracking to its own (sub-)optimal xd due

to Theorem 1, which means we can still utilize their objective

value
∫ ‖u‖2dt and success rate to evaluate their performance.

3) Implication of Simulation Results: Figure 4 shows one

example of the trajectories of the motion planners (a) – (d),

under external disturbances with d̄ = supx,t ‖d(x, t)‖= 0.4.

• For (a), the tracking error accumulates exponentially with

time due to d̄ (Lemma 1), which necessitates the use

of safety control for avoiding collisions [5]. Such non-

optimal control inputs also increase the error in (9) as

(a) does not possess any robustness guarantees.

• For (b), robustness is guaranteed by Theorem 2 but can

only obtain locally optimal (xd ,ud) of (2), as its time

horizon has to be small enough to make the problem

solvable within ∆t ≤ ∆tmax = 0.1(s), and the agent only

has access to local information. This renders some agents

stuck in local minima as depicted in Fig. 4.

• LAG-ROS (c) tackles these two problems by providing

formal robustness and stability guarantees of Theorems 1

– 4, whilst implicitly knowing the global solution (only

TABLE III
COMPUTATIONAL TIME OF EACH MOTION PLANNER FOR MULTI-AGENT

NONLINEAR MOTION PLANNING.

(a) (b) (c) (d)

∆t (s) 4.63×10−2 1.53×10−1 4.66×10−2 1.12×103

from the local information oℓ as in [5]) without comput-

ing it online. It satisfies the given state constraints due to

Theorem 3 as can be seen from Fig. 4

4) Simulation Results and Discussions: Figure 5 and Ta-

ble III summarize the simulation results which corroborate the

arguments of Sec. V-C3 implied by Fig. 4:

• (a) satisfies the requirement on the computational cost

since we have ∆t ≤ ∆tmax = 0.1(s) as shown in Ta-

ble III, but its success rate remains the lowest for all

d̄ = supx,t ‖d(x, t)‖ due to the cumulative error (9) of

Lemma 1, as can be seen in Fig. 5 and Table III. Although

its objective value is the smallest for d̄ ≤ 0.6 since it

models ud , it gets larger for larger d̄, due to the lack of

robustness to keep x around xd .

• (b) has a success rate higher than that of (a), but still

lower than 50% as it can only compute sub-optimal xd

under the limited computational capacity. In fact, we have

∆t ≥ ∆tmax in this case, which means it requires a slightly

better onboard computer. Also, it uses excessive control

effort larger than 103 due to such sub-optimality.

• (c) achieves more than 90% success rates for all d̄, and its

objective value remains only 1.64 times larger than that

of the centralized planner (d), even without computing

(xd ,ud) of (2) online. Its computational cost is as low as

that of (a), satisfying ∆t ≤ ∆tmax = 0.1(s) while retaining

a standard deviation smaller than (a).

These results imply that LAG-ROS indeed enhances learning-

based motion planners (a) with robustness and stability guaran-

tees of contraction theory as in (d) (and (b)), thereby bridging

the technical gap between them.

VI. CONCLUSION

In this work, we propose a new learning-based motion plan-

ning framework, called LAG-ROS, with the formal robustness

and stability guarantees of Theorem 1. It extensively utilizes

contraction theory to provide an explicit exponential bound

on the distance between the target and controlled trajectories,

even under the existence of the learning error and external

disturbances. Simulation results demonstrate that it indeed

satisfies the bound in practice, thereby yielding consistently

high success rates and control performances in contrast to the

existing motion planners (a) and (b). Note that other types of

disturbances can be handled, using [17] for stochastic systems

and [33] for parametric uncertain systems.
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