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Abstract 

The probability of target detection in airborne-radar missions depends on the 

target signal-to-interference-plus-noise ratio. In order to maximize the probability of 

detection, it is necessary to maximize the target signal-to-interference-plus-noise ratio by 

suppressing the interference to an acceptable level. The type of interference encountered 

by airborne radars is of a distinctive nature; it spreads in both the spatial and the temporal 

dimensions, exhibiting a relationship between the amount of Doppler shift in the 

temporal dimension and the spatial direction of the echo source. In practical situations, 

the characteristics of the interference present are not known a priori; thus, they have to be 

estimated in real-time. The two-dimensional nature of the unknown interference dictates 

the use of two-dimensional adaptive filters to suppress it. Such filters are called space-

time adaptive filters. In practical situations, the amount of secondary training data needed 

to accurately compute the space-time adaptive filter weights is not available. Thus, it is 

necessary to develop algorithms that are able to suppress the unknown interference with 

limited amounts of training data. Many such algorithms have been developed over the 

past few decades, each with its own advantages and drawbacks. In this report, a new 

algorithm called “learning-based space-time adaptive processing” is proposed. The 

proposed algorithm transforms the filtering problem into a pattern classification problem, 

where the secondary data is used to train a classifier, instead of estimating the 

interference characteristics. The results show that the proposed algorithm achieves a 

higher target signal-to-interference-plus-noise ratio than space-time adaptive processing 

when the amount of secondary data is limited and the target power is not extremely low 

compared to interference power. The proposed system is able to overcome two more 

problems faced by space-time adaptive processing: target-cancellation and clutter 

variation. Finally, a cascaded system of space-time adaptive processing followed by 

learning-based space-time adaptive processing is proposed. The cascaded system offers a 

performance gain compared to the individual systems. 
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Chapter 1: Introduction 

1.1 Moving Target Indication (MTI) Overview 

Moving target indication refers to the utilization of radars in the detection of 

moving targets [1]. The probability of detection,   , mainly depends on two factors: the 

probability of false alarm,   , and the signal-to-interference-plus-noise ratio (SINR). 

Therefore, to maximize the probability of detection, it is necessary to maximize the SINR 

at the radar receiver output. 

The main focus of this report is airborne radar systems. For such systems, the 

interference that needs to be suppressed in order to maximize the SINR consists of two 

components: clutter and jamming. 

Jamming signals are correlated in the spatial dimension but uncorrelated in the 

temporal dimension. Therefore, they appear centered at a certain azimuth angle but 

spread over all frequencies. Jamming signals are easier to suppress than clutter signals; 

they can be filtered by placing a null in the radar array pattern in the direction of the 

jammer. 

Clutter refers to unwanted returns from the ground or sea that can be mistaken as 

a target. For airborne radars, these returns are Doppler-shifted as a consequence of the 

relative motion of the radar platform with respect to ground. This means that the clutter 

main lobe will no longer be centered at zero Doppler frequency; hence, if the clutter 

power is high enough, it will appear as a moving target. 

The geometry of the platform motion with respect to earth creates a dependency 

of the Doppler frequency of clutter returns on the azimuth angle of the clutter source 

(patch). The characteristics of clutter and the other signals at hand will be discussed in 

later sections; however, it is enough for now to note the 2D spatial-temporal nature of the 

clutter signal. This 2D nature brings about the need for 2D filters. 
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Space-time adaptive processing (STAP) refers to the technique employed in 

interference environments to achieve the required increase in SINR for target detection. 

As the name implies, STAP encompasses the use of 2D spatiotemporal digital filters, 

whose weights are adaptively computed in real-time in accordance with estimated 

parameters of an unknown changing interference [2]. In general, STAP algorithms 

estimate the covariance matrix of interference at a certain range gate (which corresponds 

to distance on the ground) from secondary data, and use the estimated matrix in the 

computation of the filter weights. The secondary data is obtained from adjacent range 

gates, assuming they have the same characteristics as the range gate under test. The 

output of the filter is compared to a threshold value and accordingly a decision is made 

on the presence of a target. 

1.2 Limitations of STAP 

The secondary data used by STAP in estimating the interference covariance 

matrix should satisfy the following conditions: 

a. They should be target-free (to avoid what is known as target-cancellation). 

b. They should have the same statistical properties as the range gate under 

test. 

The violation of these conditions will result in either a poor estimate of the 

interference covariance matrix, and accordingly a poor filter output, or the loss of the 

target as a consequence of target-cancellation. 

Moreover, according to the rule derived by Reed, Mallett and Brennan in their 

1974 paper [3], known as the RMB rule, the output SINR of STAP depends on the 

amount of secondary data used in the estimation of the interference covariance matrix. In 

many practical situations, the amount of secondary data needed to achieve an acceptable 

performance level is not available. 

1.3 Contributions of this Thesis 

Many variations to the original STAP algorithms have been developed to 

overcome the aforementioned limitations. These algorithms mainly aim to obtain a more 

accurate estimate of the interference, and to reduce the amount of secondary data needed 



15 

 

as well. Some of these algorithms will be discussed along with their own limitations as 

well in the coming sections. 

This thesis contributes the following: 

a. Developing a new algorithm for target detection based on pattern 

classification techniques. The proposed technique is given the name 

learning-based space-time adaptive processing (LBSTAP). It is shown 

in this report that the proposed method has the following advantages: 

i. It outperforms the original STAP algorithm in terms of 

SINR in cases where the amount of secondary data is 

limited. 

ii. It is able to overcome the problem of target-

cancellation. 

iii. It is more robust than STAP in changing clutter 

environments. 

These advantages are evident when the target power is not drastically 

lower than interference power (interference power should not be more 

than 20 dB higher than the target power; i.e.           ). 

b. Developing a cascaded system, where a variation of the proposed 

algorithm is used after STAP. The cascaded system is able to 

outperform both individual systems. The cascaded system is able to 

overcome the problem faced by LBSTAP in the detection of low-

power targets. 

1.4 Thesis Arrangement 

The rest of the thesis report is organized as follows. Chapter 2 provides a 

background on the original STAP algorithm, other variations of STAP and their 

limitations. Chapter 3 is an overview of pattern classification theory. Chapter 4 

introduces the proposed technique and the selected classifier. Chapter 5 presents 

simulation results comparing LBSTAP with the original STAP algorithm and shows the 

performance of the cascaded system as well. Finally, Chapter 6 concludes the thesis 

report. 
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Chapter 2: Space-Time Adaptive Processing 

In this chapter
*
, a basic STAP system will be presented. The system is mainly 

made of an array receiver, a down-convertor, a matched filter and an analogue-to-digital 

converter (ADC) for sampling. Models of the transmitted signal, clutter, jammers, noise 

and potential targets will be presented. 

After describing the basic STAP system, other STAP algorithms will be 

presented, such as reduced-rank STAP, knowledge-aided STAP and deterministic STAP. 

2.1 Problem Geometry 

A pulsed Doppler radar is mounted on a moving platform with velocity vp and at 

an altitude h. A uniform linear array (ULA) is used as a receiver and is made of N 

channels uniformly separated by a distance d. Figure 1 shows the geometry of the moving 

platform with respect to ground. θ represents the elevation angle, and φ represents the 

azimuth angle. The radar array illuminates a patch on the ground defined by the direction 

vector a, given by 

                              ,    (1) 

 

where i, j and k are unit vectors in the directions of the positive x-, y- and z-axes, 

respectively. 

 

 

 

 

* This chapter benefited from the technical report on STAP by Ward [2].  
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Figure 1 Radar problem geometry 

 

 

The array elements are assumed to have their reference point at the first channel, 

as shown in Figure 2. Accordingly, the N elements are labeled n = 0, 1, 2,…, N 1. Then, 

the distance of each element from the reference point is nd. Moreover, the array elements 

have the same radiation pattern.  

 

Figure 2 Array elements 
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The N receive channels provide N degrees of freedom for filtering in the spatial 

dimension (i.e. N degrees of freedom for the array pattern). 

As previously mentioned, a jammer signal appears at the radar receiver centered 

at a certain azimuth angle. Hence, if jamming was the only interference present, it can be 

filtered out using the N receive channels alone (given that the total number of 

independent jammers is less than or equal to N 1). If these conditions – jamming being 

the only interference present, and the number of spatial channels is greater than the 

number of independent jammers by at least one – hold, then maximizing the SINR at the 

receiver output is a matter of placing nulls in the array pattern at the azimuth/elevation 

angles of the jammers. This process is called spatial beamforming, and it will be 

explained in further details in the coming sections. 

Unfortunately, in MTI radars, jamming is never present without clutter. Hence, 

the use of 1D spatial filters is not sufficient. Still, understanding the 1D spatial filtering 

process is important for understanding the 2D filtering process – STAP. 

2.2 Signal Models 

The radar transmits a pulsed waveform at a fixed pulse repetition frequency 

(PRF). M pulses are sent per coherent processing interval (CPI). The total duration of 

each CPI is equal to MTr, where Tr refers to the pulse repetition interval (PRI). This 

concept is illustrated in Figure 3. 

The M pulses provide the filter with M temporal degrees of freedom. Therefore 

the total number of degrees of freedom in a fully-adaptive STAP system is equal to the 

total number of spatial receive channels, N, multiplied by the total number of pulses per 

CPI, M – that is, a total of NM degrees of freedom. 

The transmitter transmits at a carrier frequency        , where c is the speed of 

light and λo is the carrier wavelength. Each pulse has a bandwidth B. (Note that it is 

assumed that the radar’s instantaneous bandwidth, B, is less than fo, and at the same time 

larger than the pulse repetition frequency, PRF. This assumption is important, as it affects 

the way the signals are correlated in both the spatial and temporal dimensions). 
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The transmitted signal per CPI can be represented as follows: 

 

                           (2) 

 

                      ,      (3) 

 

where at is the signal amplitude, b is the pulse waveform, β is an arbitrary phase shift, ωo 

is the carrier frequency in radians per second and t represents time. 

 

 

Figure 3 CPI (rectangular pulses are used only for illustration) 

 

Given the geometry described earlier, the echo received at the n
th
 channel will be 

delayed with respect to the echo received by the reference channel by a time delay 

expressed by: 

               .       (4) 

 

Define the variable γ, called the spatial frequency, as: 

              .       (5) 
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Then, combining equations (4) and (5), the time delay at the n
th 

channel can be written as: 

        .        (6) 

 

From the time delay and frequency, the phase delay at the n
th

 channel, ρn, can be 

computed as: 

             .       (7) 

 

Moreover, the echo will have another delay caused by the path to the reflector (target or 

ground) and back. This delay is given by: 

       ,        (8) 

 

where R is the distance between the radar and the reflector. 

The received echo is Doppler-shifted according to the relative velocity of the reflecting 

surface (target or ground) with respect to the radar. The Doppler shift is given by: 

        ,        (9) 

 

where v is the surface’s relative velocity. The Doppler frequency is usually presented 

normalized. The normalized Doppler frequency is given by: 

 

        ,                 (10) 

 

where fr is the pulse repetition frequency (PRF). 

At each channel, the received signal goes through three stages. First, it is down-

converted to baseband. Next, the output from the down-conversion step is passed through 

a matched filter. Finally, the signal is sampled by an ADC at an appropriate sampling 

frequency. 
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Given the aforementioned formulations for the time delays and Doppler shift, the 

received signal at the output of each of the three stages can be defined as follows. The 

signal at the down-convertor output is given by: 

                              ,     (11) 

 

where ζ is a complex amplitude that includes the echo amplitude and all constant phase 

terms. 

Next, the signal passes through a filter matched to the original pulse waveform 

p(t). The output of this matched filter is given by: 

                                               (12) 

 

where χ is the waveform ambiguity function, given by: 

                               ,    (13) 

 

where 
*
 represents the conjugate operator. 

Finally, after the sampling stage, and looking at the reflector’s range gate, the 

signal at the n
th 

channel and m
th

 PRI interval simplifies to: 

                   .      (14) 

 

Looking at the samples from one PRI interval, the returns from the N spatial channels can 

be written as: 

                          ,      (15) 

 

where 
T
 is the matrix transpose. 
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Equation (15) can be written as: 

                       (16) 

 

where ts is an     vector called the spatial steering vector. For a given array size, ts 

depends on the spatial frequency, γ, which in turn depends on the azimuth and elevation 

angles of the look direction. The spatial steering vector is given by: 

 

         
                           

  
.       (17) 

 

Every range gate, l, is described by NM space-time samples. These samples are arranged 

in an      vector, called the space-time snapshot vector, which is given by: 

 

             
                                           

 
.     (18) 

 

Similar to the spatial steering vector, define an     temporal steering vector, as: 

 

          
                              

  
.      (19) 

 

Using equations (18) and (19), the space-time snapshot vector representing range gate l 

can be written as: 

                        ,     (20) 
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where   represents the Kronecker product operator. The space-time snapshot vector, 

then, can be divided into parts: a complex amplitude, ζ, and an      space-time 

steering vector, given by: 

                      .     (21) 

 

The ADC acquires a total of L samples per PRI. Each sample corresponds to a 

certain range gate (which corresponds to distance). Overall, there are    samples 

acquired per CPI. These samples are usually arranged in an       cube, called the 

CPI data cube. Figure 4 illustrates this concept. 

 

Figure 4 CPI data cube 

 

The CPI data cube and how it is used in the filtering process will be discussed in the 

coming sections. The characteristics of the different types of signals (target, noise, 

jammer, clutter) are now discussed. 
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2.2.1 Target. A target is characterized by five main variables: its azimuth and 

elevation angles, relative velocity with respect to the radar platform, range (distance to 

the radar) and target power. The azimuth and elevation angles make up the target’s 

spatial steering vector. Moreover, the relative velocity of the target determines its 

Doppler frequency, which in turn defines its temporal steering vector. The range of the 

target determines the time delay of the signal echo, which determines the position of the 

target in the range-gate dimension of the CPI data cube. Finally, the received target 

power depends on many variables defined in radar theory. These variables include the 

radar cross-section (RCS) of the target, the range of the target, the transmitted power, the 

array power gain, the radiation pattern, the radar’s operating frequency and the receiver 

noise. 

For a target with parameters shown in Table 1, the component of the space-time 

snapshot vector (derived from the received signal) at the target range gate is given by: 

                           ,     (22) 

 

where                 ,           , and tt and ts are the temporal and spatial steering 

vectors respectively (d, λo and fr are the array spacing, the operating wavelength and the 

pulse repetition frequency, respectively). Simply put, a target vector (the target 

component of the space-time snapshot vector) has two components: target amplitude and 

target steering vector. 

 

Table 1 Target parameters 

Target power 

(assuming constant amplitude, i.e. not random) 

ζt
2 
 

Target azimuth angle φt 

Target elevation angle θt 

Target velocity vt 
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2.2.2 Jamming. Jamming signals are received from other airborne or ground 

transmitters. They aim to increase the background noise power level at the radar receiver 

to prevent target detection. For that reason, jamming signals usually have very high 

power. There are different types of jamming; each type has its own tactical advantages 

and disadvantages. In this report, only barrage jamming is considered. 

Barrage jamming cover all of the receiver’s frequency range [4]. This means that 

the jammer power will be divided over a range of frequencies, and hence will decrease at 

each single frequency. Nonetheless, it can still prevent the detection of targets, depending 

on the power difference between the target and the jamming signals. 

It is assumed that 1/B is large compared to the signal’s propagation time across 

the array (as mentioned earlier, B < fo); there is no decorrelation across the radar array. 

On the other hand, the instantaneous bandwidth is assumed to be larger than the pulse 

repetition frequency [2]; the signal decorrelates from pulse to pulse. In other words, 

jamming signals appear to be concentrated at one angle (spatially-correlated), while they 

appear like thermal noise in the frequency domain, covering all frequencies (temporally-

uncorrelated). 

Given a single jammer with the parameters shown in Table 2, its component in 

the space-time snapshot vector is formulated as follows. Since the jammer signal is 

spatially-correlated, its spatial form will be defined by the spatial steering vector, given 

by: 

 

          
                              

  
,      (23) 

 

where γu is the jammer’s spatial frequency, given by: 

                 .        (24) 
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Since the jammer signal is uncorrelated in the temporal domain, its contribution to the 

snapshot vector from PRI, m, will have a random amplitude ζum. Therefore, the total 

contribution of a single jammer to the space-time snapshot vector has the form: 

              ,        (25) 

 

where    is the jammer amplitude vector, given by: 

 

                 .        (26) 

 

Table 2 Jammer parameters 

Jammer power spectral density (W/Hz) Jo 

Jammer azimuth angle φu 

Jammer elevation angle θu 

 

Since a jammer is concentrated at one angle, it can be filtered out relatively easily 

by 1D filters (without the use of STAP). This can be done by placing a null in the array 

pattern in the estimated direction of the jammer. 

The total number of jammers that can be filtered is determined by the total 

number of spatial degrees of freedom (which is equal to the total number of spatial 

channels in fully-adaptive STAP systems). In theory, the total number of degrees of 

freedom should be at least one plus the total number of independent jammers. 

In the case of having Nj jammers, their total contribution to the space-time 

snapshot vector is given by: 

                                   (27) 

 

where       and       are the amplitude vector and spatial frequency, respectively, for the 

nj
th
 jammer. 
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2.2.3 Clutter. Clutter refers to signal returns (i.e. reflections) that are not 

considered of importance to the search/detection task of the radar. Accordingly, in an 

ideal situation, clutter signals should not appear at the radar output, due to their 

insignificance to the detection process. Therefore, the task of the processing stage at the 

radar receiver is to distinguish between actual targets and clutter returns, and 

consequently, filter the latter out.  

Clutter returns, which come from reflections off the ground or sea, are Doppler-

shifted due to the relative motion of the radar platform with respect to earth. Moreover, 

clutter power levels can sometimes be significantly higher than that of an actual target. 

This means that they can appear, and accordingly be mistakenly classified, as a moving 

target. Due to this, it is important to understand the nature of clutter signals, and be able 

to estimate their characteristics in real situations, in order to separate them from target 

signals. In this report, only ground clutter will be considered. 

The Doppler shift of clutter returns depends on the azimuth angle of the clutter 

source. This dependency results in the spreading of clutter returns in both spatial and 

temporal dimensions. The 2D nature of clutter signals makes them relatively difficult to 

filter out compared to jamming signals. 

Clutter signals are modeled as returns from discrete sources, called clutter 

patches; each of which has the same model as a target. For example, the clutter from a 

ring of radius r is modeled as Np discrete clutter patches evenly distributed in azimuth. 

Each patch will have its own azimuth angle and random amplitude. The total clutter 

returns from the ring, then, will be the sum of the clutter returns from the Np patches. 

The radar’s unambiguous range is given by: 

        ,        (28) 

 

and it refers to the range after which the returns from one pulse can be confused with the 

returns of the previous pulse, due to the fact that the time it takes for the two-way journey 

of a pulse will be more than the pulse repetition interval. 

Moreover, the radar horizon range is approximated by [2]: 

 



28 

 

        ,        (29) 

 

where re refers to the effective radius of earth (which can be assumed to be 4/3 the actual 

radius), and h  is the radar altitude. The horizon range refers to the range at which the line 

between the radar and earth (clutter patch) will be tangent to the surface of earth. Radar 

signals after this range will not be reflected back to the receiver. 

For a clutter ring at a range Rc (within the unambiguous range of the radar), one of 

two scenarios can take place: 

a)        

If this condition holds, the number of clutter rings that can contribute to the clutter 

signal is either zero (in the case that Rc is larger than Rh) or one only. In this case 

the clutter is said to be unambiguous in range. 

 

b)       

If this condition holds, Nr rings contribute to the total clutter signal, where Nr can 

be greater than one. In this case the clutter is said to be ambiguous in range. 

 

Note that the number of discrete rings is also governed by the range resolution, which is 

given by: 

       ,        (30) 

 

and that the number of discrete patches per ring is determined by the choice of Np in the 

chosen model. 

In general, the contribution of clutter from range Rc to the total space-time 

snapshot vector of the range gate corresponding to Rc is derived as follows. The total 

number of rings is Nr, each of which is made of Np discrete patches. Each patch is defined 

by an azimuth angle, φrp, elevation angle, θrp, and an amplitude, ζrp. 

                                          (31) 
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where     is the normalized Doppler frequency of the rp
th
 patch given by equation (9) 

(the relative velocity will be determined by the platform alone, since the earth is assumed 

to be stationary), and    is the spatial frequency of the rp
th
 patch given by equation (5). 

It can be shown from the geometry of the moving platform with respect to earth 

that the normalized Doppler frequency of the rp
th

 clutter patch is given by: 

                               (32) 

 

Substituting equation (5) into (32), the normalized Doppler frequency can be written in 

terms of the spatial frequency as: 

              .       (33) 

 

The dependency of the normalized Doppler frequency on the spatial of frequency 

of clutter results in a distinct shape for its spread over the 2D Doppler-azimuth space. If 

the clutter signal is plotted over the normalized Doppler and spatial frequency space, it 

will form what is known as clutter ridges. The clutter ridges have a slope given by: 

 

             .       (34) 

 

Depending on its slope, the clutter ridge can cover part or all of the Doppler 

frequency range (which extends from –PRF/2 to PRF/2). If the slope of the clutter ridge 

increases beyond the point where it covers the whole frequency range exactly one time, 

higher frequencies start to appear; however, they fold over into the PRF frequency range. 

Beyond this point, the clutter is said to be ambiguous in Doppler. Figures 5 and 6 

illustrate the concept of ambiguity of clutter in Doppler. 
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Figure 5 Unambiguous-in-Doppler clutter 

 

 

Figure 6 Ambiguous-in-Doppler clutter 

 

2.2.4 Noise. Noise in this report refers to thermal noise inside the receiver 

elements only. Since each receiver channel processes the received signal separately at the 

first stages (down-converter, matched filter and sampling), the noise signal is assumed to 

be uncorrelated from one channel to another. Moreover, the noise samples are temporally 

uncorrelated (i.e. from pulse to pulse). This means that the noise will have a covariance 

matrix equal to an       identity matrix multiplied by the noise power. The noise 

power, η, is determined from the noise power spectral density, No, and the receiver 

bandwidth B as: 

               (35) 
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2.3 Fully-Adaptive STAP 

In this section, the fully-adaptive STAP algorithm and architecture are described. 

Fully-adaptive STAP refers to STAP algorithms where all the degrees of freedom 

provided by the system are used in the filtering process. 

So far, the need for 2D spatiotemporal filters has been justified by the nature of 

clutter returns. Next, the need for an adaptive system is discussed. 

 A radar array acquires     space-time samples corresponding to a certain 

range gate. If the properties of interference present are known a priori, the filtering 

process can be done as follows. Suppose that the only interference present is caused by Nj 

jammers. No clutter is present. Moreover, suppose that the space-time snapshot vectors 

describing the spatial-temporal position of each of the Nj jammers are known. Then, the 

2D filter weights can be calculated by solving a set of independent equations for the 

values of the NM weights. 

Define the filter weights as: 

                                     .   (36) 

 

Moreover, let the space-time steering vector for jammer Jn be given by: 

 

             
                                              

 
,     (37) 

 

where    and    refer to the spatial and normalized Doppler frequencies of jammer Jn 

respectively. 

Then, the filtering process reduces to placing nulls in the array pattern in the known 

directions of the Nj jammers. This can be done by setting the filter weights to the values 

found by solving the following set of equations: 

 

        ,       (38) 
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      ,       (39) 

           

                (40)       ,       (41) 

 

where   denotes conjugate transpose, and    is the space-time steering vector describing 

the position of the target in the spatial-temporal 2D space. Thus, the described set of 

equations is solved for the weight values that maximize the output of the receiver array in 

the direction of the target, while, simultaneously, placing nulls in the directions of the 

target. In fact, the filter in this case does not make use of the M temporal degrees of 

freedom. Therefore, the maximum number of independent jammers that can be filtered is    . 

The same concept can be extended to include clutter-contaminated data. However, 

in practical situations, the clutter and jamming properties are not known a priori, and thus 

need to be estimated adaptively from the surrounding environment; here comes the need 

for space-time adaptive processing. 

A STAP algorithm uses the data provided by a CPI data cube to filter the space-

time snapshot vector representing a certain range gate. Let the target be present at range 

gate lt. The target range gate is represented by one slice of the CPI data cube containing     space-time samples. Likewise, each of the adjacent slices of the data cube 

corresponds to a certain range on the ground away from the target range. 

The snapshot vector representing the target range gate can be written as: 

                ,     (42) 

 

where   ,    and    refer to the snapshot vectors representing noise, clutter and jamming 

respectively. As mentioned earlier, the task of the filter is to maximize the output target 

SINR, and thus maximize the probability of detection. The filter output SINR can be 

written as: 
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                       ,      (43) 

 

where xi refers to the sum of clutter, jamming and noise signals. Noise and interference 

signals are random variables; therefore, the expectation of the output noise and 

interference power is used. 

The weight vector w is not a random variable. Thus, equation (43) can be written as: 

                         .      (44) 

 

Furthermore, the expectation given by: 

                (45) 

 

is the noise-plus-interference covariance matrix, R. 

 

Therefore, the task of maximizing the filter output SINR reduces to the solving the 

following optimization problem: 

                   .       (46) 

 

This maximization problem given by (46) is solved for the optimum filter weights, w, and 

the solution is given by: 

       ,       (47) 

 

where s refers to the target space-time steering vector. 

 The filter weights are optimum for an exact covariance matrix. However, as 

mentioned earlier, the exact covariance matrix is not known, and an estimate of it has to 

be used. Thus, the weight vectors in this case will be referred to as suboptimum weights. 
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The covariance matrix is estimated using the rest of the range gates in the CPI 

data cube, excluding a few guard cells on either side of the target range gate (see Figure 

7), since exact target range is not known in advance, and only an approximate location is 

available. Moreover, the target returns show range side lobes. Therefore, the guard cells 

are left out of the covariance matrix estimation process to avoid target-cancellation. The 

covariance matrix is estimated by: 

                     ,     (48) 

 

where     refers to the secondary (training) data obtained from the rest of the CPI data 

cube, and Ne refers to the total number of training range gates used. The accuracy of the 

covariance matrix estimate (the degree with which it resembles the actual noise and 

interference present at the target range gate) depends on the number of training range 

gates used in the estimation process. 

Reed, Mallett and Brennan (RMB) derived a quantitative description of the effect 

of the estimation accuracy of the covariance matrix on the output SINR [3]. The ratio 

between the expected SINR, using an estimated covariance matrix, and the optimum 

SINR, using the exact covariance matrix, is given by: 

                ,       (49) 

 

where      refers to the number of degrees of freedom, and Ne refers to the number of 

range gates used in the estimation. Equation (49) holds if the following conditions are 

satisfied: 

a) The training range gates are target-free. 

b) The training range gates are independent and identically distributed (i.i.d) 

Gaussian random variables, having the same statistical characteristics as the range 

gate under test. 

Equation (49), also known as the RMB rule, predicts that for a 3dB SINR loss (compared 

to the optimum SINR) approximately     training range gates satisfying the above 
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conditions are needed for the covariance matrix estimation. It can be seen that as the 

number of training range gates approaches infinity, the ration, ρ, approaches 1 (optimum 

SINR).  

 

 

Figure 7 Training and guard range gates 

 

After estimating the covariance matrix, the suboptimum weight vector 

corresponding to the direction defined by the space-time steering vector s is computed 

using equation (47). Then, the output of the filter is computed as: 

        .        (50) 

 

The magnitude of the output,    , is compared to a threshold value, Th, to decide on the 

presence of a target. In other words, the system has to choose one of the following two 

hypotheses: 

a) H0: Target is present (               ). 

b) H1: Target is not present (            ). 
Note that the weight computed according to equation (47), and consequently the output 

value and the decision made, all correspond to one point on the 2D azimuth-Doppler 

space and one range gate. In reality, a radar array scans a range of azimuth angles. The 

target velocity (and consequently its Doppler frequency) is not known in advance. 

Therefore, at each azimuth angle, the system has to compute a suboptimum weight vector 
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that maximizes the output SINR for each of the possible Doppler frequencies. The range 

of Doppler frequencies extends from –PRF/2 to PRF/2, and the number of Doppler bins 

is usually set to M (the number of degrees of freedom in the temporal dimension). After 

that, an output value that corresponds to each of the possible Doppler bins is computed 

using equation (50). Comparing the M outputs to the threshold value, the decision can be 

made on the Doppler frequency (and velocity) of the target (if present). This process is 

repeated at every azimuth angle scanned, and at every range gate searched. 

 Figure 8 shows a summary of a fully-adaptive STAP algorithm. From the CPI 

data cube, the target space-time snapshot vector and the secondary (training) data are 

extracted. The training data are used to estimate the covariance matrix at the target range 

gate. Next, the estimated covariance matrix is fed to the weight computation block. Note 

that the diagram illustrates the process for one weight computation only. In reality, this 

block carries many computations to find the suboptimum weights for all the Doppler 

bins. Accordingly, the next block computes the output for all the Doppler bins. All 

outputs are compared to a threshold value to decide on the velocity of the target (if 

present at the azimuth angle represented by the CPI data cube). 
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Figure 8 STAP summary 

 

A plot of the output power (in dB) is usually plotted over the Doppler-range space as 

shown in Figure 9. The plot shows a target at a range of around 138 km and with a 

Doppler frequency of  80 Hz. 
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Figure 9 Normalized output power plot 

 

2.4 Literature Review 

Since the early work done on STAP by Brennan and Reed in the 1970s [5], much 

research has been conducted to overcome three major difficulties. The three difficulties, 

which have been touched upon earlier in the report, are: 

a. The amount of secondary data needed for an acceptable estimate of the 

interference covariance matrix is usually unavailable. As mentioned earlier, 

fully-adaptive STAP requires 2NM secondary training range gates for an 

output SINR within 3 dB of the optimum SINR (which is achieved using the 

exact covariance matrix). For example, a 224-dimensional snapshot vector 

requires the use of 448 secondary range gates. Depending on the operating 

frequency and the sampling rate, this number of range gates translates to tens 

of kilometers on the ground – and this leads to the second difficulty. 

b. The secondary data has to be homogenous (having the same statistical 

properties as the range gate under test) and target-free. This requirement is 

usually not completely satisfied, due to different sources that result in clutter 
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heterogeneity. These sources include internal clutter motion (such as sea 

echoes), weather conditions, discrete clutter sources, moving clutter sources, 

and other sources [6]. Clutter heterogeneity results in inaccurate interference 

covariance matrix estimation from secondary data.  

c. The third difficulty is the computational load involved in fully-adaptive 

STAP. The computational complexity of fully-adaptive STAP is of the order 

O(N 
3
M 

3
) [7]. 

2.4.1 Reduced-Rank STAP. Many reduced-rank STAP algorithms have been 

proposed over the past years to alleviate the effects of these difficulties. The general idea 

involved is the transformation of the data snapshot vectors and all the subsequent 

processing to a lower-dimensional space using a transformation matrix T [2]. The design 

of the transformation matrix, T, has been the main subject of reduced-rank STAP 

research. For a given snapshot vector, x, the reduced-rank snapshot vector,   , is given by: 

              (51) 

 

The transformation matrix is a      matrix, where P is desired to be significantly less 

than NM. Accordingly, a reduced-rank,     covariance matrix,   , is estimated from the 

transformed secondary snapshot vectors using the same procedure applied in full-rank 

STAP. The rest of the steps then will follow in the same way: compute the reduced-

dimensional weight vectors and apply them to the reduced dimension test snapshot 

vector, and finally, compare the output to a threshold value. 

The effectiveness of reduced-rank techniques is brought about by the fact that the 

interference covariance matrix is generally low-rank [2]. This low-rank nature of the 

covariance matrix is sometimes reduced by Eigen spectrum spreading, which can be 

caused by internal clutter motion, receiver instabilities and diffused multipath [8]. 

However, in general, studies show that reduced-rank STAP can outperform full-rank 

STAP when the amount of secondary data is limited [9], though this can come at the 

expense of some loss in adaptivity [2] and/or interference cancellation performance [7]. 



40 

 

The amount of secondary data needed for reduced-rank algorithms depends on the 

interference rank and not the snapshot vector dimension. Thus, assuming low-rank 

interference, the amount of secondary data needed is reduced. This reduction also reduces 

the computational load on the processor. Moreover, it can be seen that the effect of 

heterogeneity in clutter increases as the amount of secondary data increases (since the 

range covered on ground would increase). Thus, for dimensionality reduction techniques, 

the three difficulties appear to be correlated; they are overcome together. 

The design of the transformation matrix, T, can be divided into two types: data-

dependent and data-independent. Data-dependent techniques achieve better results than 

the latter; however, this comes at the expense of computational complexity [9]. One of 

the first data-dependent techniques used was using principle component (PC) analysis. In 

PC STAP, the data vectors are projected onto a lower dimensional subspace based on the 

Eigen decomposition of the interference-plus-noise covariance matrix [7]. The dominant 

Eigen vectors define the interference subspace [10]. Adaptivity can take place in the 

interference subspace [11] [12], or in the complementary subspace [13]. Other data-

dependent algorithms include the parametric adaptive matched filter [14] [15] and the 

multistage Wiener filter [16]. 

Data-independent reduced-rank algorithms include joint domain localization 

(JDL) algorithms [7]. In general, JDL algorithms work to transform the received data to 

the angle-Doppler space using only a few angular and Doppler bins centered around the 

desired angle-Doppler direction [17]. In this way, the data vectors are reduced from NM-

dimensional to NaMd-dimensional vectors, where Na and Md are the number of bins in the 

angular and Doppler dimensions, respectively. Accordingly, the amount of secondary 

data needed is reduced. 

2.4.2 Diagonal Loading. Loaded sample matrix inversion (LSMI) or diagonal 

loading refers to the addition of a weighted NM-dimensional identity matrix to the full-

rank interference covariance matrix. LSMI has a close behavior to reduced-rank STAP 

[9]; specifically, it works similar to PC algorithms [18]. However, diagonal loading 

results in less-deep interference nulls compared to PC methods [18]. 

 



41 

 

2.4.3 Knowledge-Aided STAP. It is important to note that there is no one “best” 

technique to use out of the abovementioned techniques; each technique has its own pros 

and cons [17]. Knowledge-aided STAP (KA-STAP) refers to the utilization of a priori 

knowledge of the interference environment and data from other sensors and information 

sources to enhance the filtering process [19] [20]. The filtering process can be enhanced 

by selecting the most suitable algorithm based on such knowledge. Moreover, a priori 

knowledge and sensor data can be used to adjust the probability of false alarm, PRF and 

other parameters, depending on the environment [17]. 

One problem faced by KA-STAP algorithms is the negative effect of inaccurate a 

priori knowledge. Assuming a priori knowledge is given in terms of an interference 

covariance matrix, it is necessary to search for the optimum combination of the a priori 

covariance matrix and the estimated covariance matrix obtained using secondary data 

[21] [22]. The combination is done to alleviate the effects on the filtering process in the 

case of having inaccurate a priori knowledge. In other words, it is important to maximize 

the gain obtained from a priori knowledge and, at the same time, minimize the risk 

arising from the knowledge being potentially-inaccurate. 

2.4.4 Direct Data Domain (D3). Direct data domain methods were developed to 

overcome the problem of nonhomogeneous interference environments [17] [23]. D
3 

methods are non-statistical methods that work on data from the range gate of interest 

only, and thus, they overcome the problem of limited secondary data. 

D
3
 algorithms assume exact knowledge of the target Doppler frequency and angle 

[24]. Given this knowledge, the phase shift from one spatial channel to another, ps, and 

the phase shift from one pulse to another, pt, can be found. Assuming that the total signal 

at the m
th

 pulse and the n
th

 channel is xnm, the signals given by: 

                     (52)                     (53) 
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should be interference-plus-noise signals. Accordingly, D
3
 algorithms work to minimize 

the power in these signals and, at the same time, maximize the power in the target 

direction [17]. 

D
3 

algorithms are effective in suppressing interference from discrete sources and 

quickly-varying clutter. However, given their non-statistical nature, they are not as 

effective in suppressing homogenous interference [17]. Moreover, D
3
 algorithms 

significantly deteriorate in cases of the inaccurate target information [24]. 
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Chapter 3: Pattern Classification 

In this chapter, an overview of pattern classification theory is provided. The 

different stages involved in the design of a pattern classification system are presented. 

After that, linear classifiers are introduced. The chapter is concluded by a description of 

two dimensionality-reduction techniques: principle component analysis (PCA) and Fisher 

discriminant analysis (FDA). 

3.1 Overview of Pattern Classification Systems 

In general, pattern classification refers to the task of recognizing discriminating 

patterns in objects and, accordingly, classifying these objects into separate groups (called 

classes) based on their defining properties (called features). The applications of pattern 

classification techniques extend into numerous fields. They are used in biomedical 

applications, military applications, industrial applications, security checks, speech 

recognition and many other applications. 

The design of a general pattern classification system consists of the following 

stages: 

a. Data collection. 

b. Pre-processing. 

c. Feature extraction. 

d. Classifier selection. 

e. Training. 

f. Testing. 

The data collection stage is the first step. In this stage, the raw data that will be 

used in the training and testing stages is collected. This set of data has to be 

representative for each class. Subsequently, in the pre-processing stage, the useful data is 

separated from the rest of the data. After that, in the feature extraction stage, the features 

that will be used in designing the classifier are extracted. The features have to be 
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discriminating attributes. That is, they must have the capability to distinguish the 

different classes from each other. Moreover, they have to be as few as possible, to reduce 

the computational complexity of the system. Figure 10 illustrates the distribution of two 

classes (represented by blue and pink dots) using two features. As seen in the plot on the 

left, Feature 1 is not a suitable feature for discriminating between the two classes shown. 

On the other hand, Feature 2 offers a clear discrimination capability for the two classes. 

 

 

Figure 10 Class distributions 

 

For each data sample, the features are arranged in one vector called the feature 

vector. Hence, all processing after the feature extraction stage will not deal with the 

actual physical objects, but with feature vectors describing the data samples. 

After choosing the appropriate classifier, the classifier is trained using the training 

data and then tested used a different set of data. A different set of data is used in the 

testing stage to ensure that the classifier can also attain a high classification rate for data 

not used in the training stage. 

The following example clarifies these stages further. Suppose that a system is 

required to recognize 20 different persons using their facial information. The data 

collection stage then is a set of pictures of faces for each person in varying environments 

(light, background, angle, etc…). In the pre-processing stage, the faces are separated 

from the background (segmented). The discriminating features can be chosen by an 

expert (if they are easy to recognize, such as length, weight, etc…) or using 

dimensionality-reduction techniques, which select the dimensions of the feature space 

that exhibit the highest discrimination capacity. The data set is then split into two sets: 

training set and testing set. Finally, the two sets are used as shown in Figure 11, to train 

and test the chosen classifier.  
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Figure 11 Classifier design 

 

Classification methods fall into different categories: parametric and non-

parametric methods. In parametric methods, the shape of the distribution of the different 

classes in the feature space is known a priori. In such a case, the training data is used to 

estimate the parameters of the distributions of the classes using parameter estimation 

techniques such as maximum likelihood (ML). In other cases, the parameters of the 

distributions are also given a priori. If so, then the training phase can be eliminated and 

an optimum classifier can be designed using Bayesian theory. 

On the other hand, many applications (such as the subject of this report) fall into 

the second category and require non-parametric methods for designing an appropriate 

classifier. In such cases, no information is given about the distributions of the classes a 

priori; the only given is the data samples themselves. The data samples can be sometimes 

given without any information about their corresponding classes. These cases fall under 

what is known as unsupervised learning [25], where clustering techniques have to be used 

to estimate the number of classes from the given data and assign the data samples to the 

different classes. 

In non-parametric methods, the data samples can be used to estimate the class 

distribution [26], and based on the estimated distributions design the classifier using 

parametric methods. If x is the pattern that is to be classified, then a discriminant function 

can be defined as “a function of the pattern x that leads to a classification rule” [27]. Each 

discriminant function represents a class. The shape of the discriminant functions are 
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either known a priori or selected by assumption. Accordingly, training a classifier in non-

parametric techniques reduces to finding the parameters of the discriminant functions. 

Estimating the parameters of discriminant functions is less complex than estimating the 

shape and parameters of class distributions. And thus, in many applications, using 

discriminant functions is favored over using distribution functions. 

The simplest discriminant function is the linear discriminant function. Therefore, 

the first step in designing a classifier based on discriminant functions is to attempt to use 

a linear machine (a classifier that uses linear discriminant functions [27]). A linear 

classifier is optimum for Gaussian-distributed classes with equal covariance matrices. 

However, it can be used for other distributions as long as the classification rate is 

acceptable. If it is not, then nonlinear discriminant functions can be used to increase the 

classification rate. 

3.2 Linear Classifier 

The application of classification techniques to MTI radars falls under non-

parametric classification. In this section, the theory for a linear classifier is provided. 

Nonlinear classifiers will be introduced in the next chapter. 

Linear classifiers assume that the classes are linearly-separable. In a linear 

classifier, each class is represented by a linear discriminant function of the form: 

            ,      (54) 

 

where x represents a feature vector, w is a weight vector and wo is a constant bias value. 

Equating the discriminant functions representing two classes, the decision boundary 

separating them is found. 

 Figure 12 illustrates the use of a linear classifier in a two-class problem, where 

the feature space is two-dimensional. 
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Figure 12 Linear classifier 

 

The decision boundary in this example is a line. For a one-dimensional, two-class 

problem, the decision boundary would be a point. For a three-dimensional feature space, 

it would be a plane. For higher-dimensional spaces, the decision boundary would be a 

hyperplane. 

To train a linear classifier, the decision boundaries separating the classes have to 

be determined. This can be done by different optimization methods. One method is to use 

a gradient descent algorithm, to find the weight vector that minimizes the error between a 

target output vector and the actual output vector of the classifier. For example, the target 

output vector for a class-1 data point can be assigned an output vector         , and          for 

a class-2 data point. The error that has to be minimized is the difference between the 

target output vector and the actual output vector constructed from the values of the 

discriminant functions of the two classes for the current weight vector and data point. 

Another method for designing a linear classifier is to minimize the mean-squared error 

(MSE) using the pseudoinverse of the matrix constructed from the feature vectors [26]. 

This method is presented in Section 4.2. 

3.3 Dimensionality Reduction 

Dimensionality reduction refers to the transformations applied on a vector space 

to reduce its dimension. Dimensionality reduction can be done for representation 
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purposes or for the goal of extracting discriminating feature subspace from the full 

feature space. 

3.3.1 Principle Component Analysis (PCA). Principle component analysis 

transforms the feature space into a lower-dimensional subspace that provides the most 

accurate representation of the data samples, given the new dimension. PCA does not 

incorporate class information in finding the new subspace. Thus, it is not always the best 

dimensionality reduction technique to use for feature extraction. 

PCA is done through Eigen decomposition of the data covariance matrix. A PCA 

algorithm projects the sample data points (irrespective of their class) onto a lower-

dimensional space defined the by the vectors pointing in the direction of greatest variance 

in the data. In other words, PCA projects the data points onto the subspace defined by the 

Eigen vectors corresponding to the largest Eigen values. 

3.3.2 Fisher Discriminant Analysis (FDA). Fisher discriminant analysis is a 

dimensionality reduction technique that is designed for classification purposes. Unlike 

PCA, FDA incorporates class information in the computation of the lower-dimensional 

space. The class information included is the mean and variance of the each class. Thus, 

FDA ensures that the new subspace maximizes the distances between class means and, at 

the same time, minimizes the variance of each class. This ensures that the classes are 

centered at distant points and, at the same time, concentrated about their centers. 

The main drawback of FDA is that it limits the dimension of the new subspace by 

one less than the number of classes. Therefore, even though PCA is not designed for 

pattern classification, it can outperform FDA in cases where the data is so complex that it 

cannot be represented by the subspace dimension allowed by FDA. 
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Chapter 4: Learning-Based Space-Time Adaptive Processing 

In this chapter, the proposed learning-based space-time adaptive processing 

(LBSTAP) system architecture will be described. First, a description of how the problem 

is transformed into a classification problem is provided. Next, a comparison between 

different classifiers and dimensionality-reduction techniques is provided. Finally, a 

description of the proposed cascaded system (STAP followed by LBSTAP) is provided. 

4.1 From STAP to LBSTAP 

The main task of the processing stage, be it STAP or LBSTAP, is to maximize the 

SINR, in order to increase the probability of detection. In STAP, this translates into a 

filtering process, where secondary data is used to estimate the present noise and 

interference, and accordingly suppress them. This is not the case in LBSTAP. 

LBSTAP transforms the filtering process into a classification problem. This is 

done as follows. Testing one range gate for the presence of a target and identifying its 

Doppler frequency (if present) translates, using pattern classification terminology, into 

classifying the range gate under test into one class out of all the possible classes. As the 

radar receiver scans over a range of azimuth angles, at each angle, the number of classes 

is equal to the number of Doppler frequency bins covering the range from –PRF/2 to 

PRF/2. The number of frequency bins is set equal to the number of pulses per coherent 

processing interval (CPI), M.  This value is chosen because it is equal to the number of 

temporal degrees of freedom. And thus, having a higher number of classes will not 

contribute to having better differentiation ability; it will only increase the smoothness of 

the output. In other words, it is the highest Doppler resolution possible, given a fixed 

PRF. 

Each class represents one Doppler frequency bin out of the possible bins. An extra 

class is added to represent the case where no target is present. Thus, the first hypothesis, 

H0, symbolizing the presence of a target, is represented by M classes covering the 
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Doppler frequency range. The second hypothesis, H1, symbolizing the absence of a target 

is represented by one class. 

The training phase entails the modeling of these classes. Each class (except the 

target-free class) is made of two parts: a target and interference-plus-noise. High-power 

targets are artificially-generated, using a point-target model, with different frequencies 

corresponding to their designated classes. The number of training vectors used per class 

is limited by the amount of secondary data available in the CPI data cube. The secondary 

data is divided among the different classes to represent the interference-plus-noise part. 

That is, each training vector representing any class (with the exception of the target-free 

class) will be the sum of an artificially-generated target, with a Doppler frequency falling 

within the range of frequencies covered by that class, and a space-time snapshot vector 

coming from the secondary range gates to represent interference-plus-noise. 

These training vectors are stacked together, each as a row vector, in one data 

matrix Xtr. A target matrix, Ytar, is constructed from binary row vectors, with each vector 

corresponding to one class. For example, the target vector representing class 5 out of 8 

available classes will have the form:  

           .     (55) 

 

Having defined the data matrix and the target matrix, the training can be 

completed, using an appropriate classifier, to determine the outcome of the training 

phase: the weight matrix W.  

After the training phase is completed, the space-time snapshot vector 

corresponding to the range gate under test is passed through the classifier. The output of 

the classifier is a value representing the degree with which the test vector fits into each of 

the classes modeled in the training phase. Similar to the final step in STAP, the outputs 

are compared to a threshold value to decide on the presence of a target and, if present, its 

Doppler frequency. 
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4.2 LBSTAP Training and Testing 

In this section, the training and testing stages of LBSTAP are described, assuming 

a linear classifier is used. The application of nonlinear classifiers will be discussed in the 

next section of this chapter. 

Let the secondary data in a CPI data cube be represented by: 

 

        
                    

  
,        (56) 

 

where    (       ) are      column vectors, each representing one range gate 

of the secondary data. Thus,     is an       matrix, representing the interference-

plus-noise part of the training data. 

Using the target model, given by: 

                           ,     (57) 

 

Nt target space-time snapshot vectors are generated. The target amplitudes,   , are chosen 

such that the targets have high power relative to the interference-plus-noise present in the 

environment. The spatial frequency,   , is defined by the current look-direction (elevation 

and azimuth angles) of the radar array. The normalized Doppler frequency,   , changes 

from one class to another, covering the frequency range between –PRF/2 and PRF/2. 

Supposing that the frequency range is divided into M Doppler bins, each class will be 

represented by approximately 
      training vectors, where the extra one in the 

denominator is added to represent the target-free class. If the target-free class is 

represented by Nf training vectors, then, 

         ,        (58) 
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and 

       ,        (59) 

 

where Nc is the number of training vectors per target-containing class. Accordingly, the 

target-free class will be represented by        training vectors. 

The complete data matrix used for training can now be written as: 

                     ,      (60) 

 

where      is an       matrix containing the artificially-generated targets as row 

vectors, and is given by: 

 

     
   
   
   
                                                    

   
   
 
,       (61) 

 

where         is one of the nc artificially-generated      target space-time snapshot 

vectors representing class m. 

To train a linear classifier, a target matrix, Yta, has to be constructed. Yta will be defined as 

an          binary matrix. The ne
th
  row in Yta represents the target outputs for each 

of the classes, corresponding to the training vector in the  ne
th

  row of the training data 

matrix,    . 
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 For example, let Nc, M, Ne, Nt  and Nf  be defined by Table 3. 

 

Table 3 LBSTAP parameter values 

Parameter Value 

Nc 2 

M 4 

Ne 10 

Nt 8 

Nf 2 

 

Then, the first row vector in Ytar, given by: 

                       ,       (62) 

 

represents the target vector for a class-1 space-time snapshot vector. Thus, it is 

constructed of a “1” for the first element and “0”s for the rest. Defining the rest of the 

rows of Ytar using equation (62), the complete target matrix for the example defined by 

Table 3 becomes: 

 

     
   
   
   
                                                      

   
   
 
.      (63) 

 

 The training data matrix and the target matrix are used to compute the weight 

matrix, W. For a linear classifier, this is done by solving: 

                 (64) 
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for W, where Xtre is defined as: 

                     .       (65) 

 

The vector of ones is added to the original data matrix to allow for the computation of 

constant bias values in the weight matrix. In general, Xtre is not a square matrix. Thus, W 

is computed by: 

            ,       (66) 

 

where      
 denotes the pseudo-inverse of     , and is given by: 

                         
.     (67) 

 

After computing the weight matrix, the next step in LBSTAP is to compute the 

outputs corresponding to the range gate test under test. The output for a test range gate, 

xlt, is given by: 

           .        (68) 

 

The output vector, y, contains values corresponding to the degree with which the test 

vector fits each class. The outputs are compared to a threshold value, T, to decide on the 

class of the test vector. 

 As done in STAP, a plot of the output power (in dB) is generated to visually 

represent the position of a target (if present) on the Doppler-range space (see Figure 9). 

 The formulations in this section were done for a linear classifier. Next, the 

concept will be extended to a type of nonlinear classifiers called polynomial classifiers. 
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4.3 Polynomial Classifier 

According to the Weierstrass approximation theorem, “every real-valued 

continuous function on a finite closed interval [a, b] can be uniformly approximated by 

polynomials with real coefficients” and “every complex-valued continuous function on a 

finite closed interval [a, b] can be uniformly approximated by polynomials with complex 

coefficients” [28]. Based on this theorem, polynomial classifiers can be thought of as 

“universal approximators to the optimal Bayes classifier” [29].  

The training process using the polynomial classifier is illustrated in Figure 13. 

 

 

Figure 13 Polynomial classifier training 

 

where Xp is the polynomial expansion of X. To demonstrate what is meant by polynomial 

expansion, suppose that X is composed of three, 2-dimensional vectors, as shown in 

equation (69). 

                              (69) 

 

Then, Xp is given by: 

 

                                                                    .           (70) 

 

The polynomial expansion defined by equation (70) is the second order (quadratic) 

expansion. After determining the weight matrix W, the snapshot vector of the range gate 
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under test is expanded in the same way to its polynomial expansion,    . Finally, the 

output vector is determined by: 

        .       (71) 

 

4.4 Classifier Selection 

The classifier selected for use in LBSTAP is the polynomial classifier. The linear 

classifier was tried first, but showed unsatisfactory results. The use of multilayer neural 

networks was attempted as well. However, given that the number of classes and feature-

vector dimensionalities are typically high, the computational complexity of multilayer 

neural networks becomes infeasible for MTI applications. Polynomial classifiers were 

found to achieve the best results among the studied classifiers, at an acceptable 

computational cost. 

In this report, the space-time snapshot vectors are 224-dimensional. Hence, their 

polynomial expansion results in very-high-dimensional vectors (more than 25000-

dimensional). Therefore, the polynomial expansion stage is followed by a dimensionality 

reduction step, where, using principle component analysis (PCA), the snapshot vectors 

are reduced to dimensions between 30 and 400, depending on the size of the CPI data 

cube. The variability in the dimension of the reduced vectors is dictated by computational 

limitations of the PCA algorithm used; the maximum dimension that can be achieved 

cannot exceed the number of training range gates. 

Although PCA is not designed for pattern classification, it was found to achieve 

better results than FDA. This is because the number of classes throughout this report is 

set to 17. Thus, FDA reduces the dimensionality of the feature vectors to a maximum of 

16. The results show that using these low-dimensional feature vectors, the separability of 

the classes is significantly diminished. 
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4.5 Cascaded System 

The use of a cascaded system (STAP followed by LBSTAP) can outperform 

STAP and LBSTAP when used separately. The cascaded system has the following 

architecture in the training phase: 

 

 

 

Figure 14 Cascaded system 

 

After the training phase is complete, the space-time snapshot vector of the range 

gate under test is passed through STAP and then the output is passed through LBSTAP, 

to obtain an output vector. The output vector is compared to a threshold value to decide 

which Doppler bin contains a target (if present). 

4.5.1 Note on Computational Complexity. It must be said that no system can be 

superior in all situations and from all aspects. As such, it should be noted that although 

the cascaded system outperforms both STAP and LBSTAP, it suffers from high 

computational complexity compared to the individual systems. However, this high 

computational complexity is balanced by the high performance it provides (see Chapter 5 

for the results). 
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Chapter 5: Results 

5.1 Note on Thresholds and Decision-Making 

Although the description given in this report defines the decision-making process 

by a comparison between an output value and a threshold value, it should be noted that 

this is not actually done in the simulations presented in this report. The outputs presented 

here are normalized and the position of the maximum output is compared to the known 

target position, to decide if the processing algorithms were able to correctly locate the 

target. Moreover, the difference between the maximum and the rest of the outputs in 

power is used as a measure of effectiveness, alongside the output SINR at the target range 

gate. 

Also note that in LBSTAP, the target-free class outputs are discarded. That is, the 

output plots shown in this chapter show only the classes falling within the Doppler range 

(target-present classes). Since the position of the actual target is already known in the 

simulations presented, the decision and performance evaluation can be made using the 

technique described above. However, in real situations, an appropriate threshold has to be 

calculated and used to decide on the presence of a target in each class. Still, the target-

free class output would be discarded, as the failing of all target-present class outputs to 

exceed the threshold would imply the absence of a target, without the need to check the 

target-free class output. 

5.2 STAP vs. LBSTAP 

In this section, the performance of STAP will be compared to that of polynomial 

LBSTAP in scenarios where the number of training range bins is limited. Table 4 shows 

the parameters used throughout the results section. Target and jammer powers are given 

relative to clutter power. 
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Table 4 Simulation parameters 

Parameter Value 

Number of spatial channels (N) 14 

Number of PRIs per CPI (M) 16 

Jammer azimuth angle -10° 

Jammer power 10 dB 

Target azimuth 30° 

Target Doppler frequency -80 Hz 

PRI 1.6 ms 

 

The target power in the first scenario is  20 dB, and the number of training range 

bins available is limited to 96. Figure 15 shows the unprocessed data. 

 

 

Figure 15 Unprocessed data 

 

The clutter is mostly present with Doppler frequencies between 100 Hz and 250 

Hz, as can be seen from the unprocessed data. The target is present around a range of 137 

km. Figure 16 shows the output of STAP. 



60 

 

 

 

Figure 16 STAP output 

 

It is seen from Figure 16 that STAP was able to maximize the output power at the 

target position. However, it can also be seen that the clutter was not completely 

suppressed, especially at the range of the target. This can be explained by the limited 

number of training range bins used, leading to a poor estimate of the interference 

covariance matrix. This resulted in a distortion of the null at the clutter position. The 

residual clutter returns can be seen at all ranges; however, they are highest at the range 

bins close to the target. This is due to the fact that these range bins were left out of the 

training process as guard cells. 

Moreover, the STAP output shows persistent target range side lobes. These side 

lobes are clearly seen in the range profile shown in Figure 17. 
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Figure 17 STAP range profile 

 

The output of polynomial LBSTAP for the same scenario is shown in Figure 18. 

The range vectors used in LBSTAP are the quadratic expansion of the original 224-

dimensional vectors. The expanded vectors are then reduced in dimension, using 

principle component analysis (PCA), to become 30-dimensional. 

 

 

Figure 18 LBSTAP output 
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The range profile of LBSTAP is shown in Figure 19. 

 

 

Figure 19 LBSTAP range profile 

 

It can be seen from Figure 19 that the level of range side lobes of the output of 

LBSTAP is approximately the same as that of the output of STAP. 

5.2.1 Effect of the Size of Training Data on SINR. The performance of STAP in 

terms of SINR depends on the number of training range bins used in estimating the 

interference covariance matrix. According to the RMB SINR equation, the minimum 

number of training range bins needed for an SINR of 3 dB less than the optimum SINR 

(using the exact covariance matrix) is twice the total number of degrees of freedom 

(twice 224 for the simulations in this paper). For different practical reasons, STAP is 

sometimes required to work with a limited number of training range bins, well below the 

RMB requirement. Figure 20 shows the output SINR for STAP (with and without 20 dB 

diagonal loading) and polynomial LBSTAP versus the total number of training range 

gates used for each processing technique. (Note that PCA in this case reduces the 

polynomial expansion of vectors in LBSTAP to a dimension equal to the number of 

training range bins used). 
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Figure 20 Output SINR comparison 

 

It can be seen from Figure 20 that when the amount of training data available is 

high enough, STAP will have a higher output SINR. However, when the amount of 

training range bins is limited between 70 and 120, polynomial LBSTAP shows an 

advantage over STAP (with and without diagonal loading) in terms of output SINR. This 

is a significant advantage, given that the amount of training data available is usually 

limited. It will be shown next that the range where polynomial LBSTAP outperforms 

STAP and the size of the advantage of using the former depend greatly on the target 

power. 

5.2.2 Effect of Target Power. Target power does not have any significant effect 

on the interference covariance matrix estimation in STAP. Therefore, having a target of 

higher power or lower power will not affect the degree with which the interference will 

be rejected. (It will not affect the depth and precision of the clutter and jammer nulls). On 

the other hand, LBSTAP, being a classification technique, depends greatly on the relative 

target to interference power. Therefore, an increase in target power relative to 

interference should result in greater advantage for LBSTAP over STAP. 

Figure 21 and Figure 21 show the outputs of STAP and polynomial LBSTAP, 

respectively, for the same simulation environment and parameters used in the earlier 

simulation; however, the target power is increased from  20 dB to  10 dB. 
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The two figures show an advantage of using polynomial LBSTAP in terms of 

target range side lobes and clutter suppression over STAP in cases where the target power 

is relatively high. The target range side lobes reduction can be seen clearly in the range 

profile plots shown in Figure 23 for STAP and Figure 24 for LBSTAP. 

 

 

Figure 21 STAP output (higher target power) 
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Figure 22 LBSTAP output (higher target power) 

 

 

Figure 23 STAP range profile (higher target power) 
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Figure 24 LBSTAP output (higher target power) 

 

Figure 25 shows the effect of the number of training range bins on the output 

SINR curves for STAP and polynomial LBSTAP for the higher target power case. 

 

 

Figure 25 Output SINR comparison (higher target power) 

 

Comparing Figure 25 with Figure 20, it is clear that the gain in SINR as a result of 

having a higher target power is significantly higher for polynomial LBSTAP than for 

STAP. It can be seen that the range where polynomial LBSTAP outperforms STAP is 

extended to cover the range between 50 to 230 training range bins (50 to 170 for STAP 

with 20 dB diagonal loading). 
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It should be also said that reducing the target power well below the clutter power 

will cause the performance of LBSTAP to degrade significantly, while, again, STAP will 

not be affected as much by the variation in target power. 

5.2.3 Target-Cancellation. The theory of STAP requires that the training range 

bins used to estimate the interference covariance matrix must be target-free, to avoid 

what is known as target cancellation. This means that, to use STAP, it is required to have 

some prior estimate of the location of the target. For example, if the target was 

mistakenly assumed to be 10 range gates away from its actual position, STAP will fail to 

detect the correct location of the target. 

This condition does not apply to LBSTAP. This is due to the fact that the training 

process of LBSTAP uses part of the training range gates to model the interference present 

at each class. The effect of the range bin containing the target will limited to one class, 

and at the same time will be marginalized by the rest of the training range bins used to 

represent the interference at that class. 

Figure 26 shows the output of STAP for a scenario where the target was assumed 

to be 10 range bins away from its actual position. It is clear from Figure 26 that STAP 

fails to detect the target in such a scenario. 

On the other hand, Figure 27 shows that LBSTAP was able to perform almost the 

same as it did when the range bin containing the target was left out during the training 

process. 
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Figure 26 STAP output (target-cancellation) 

 

This means that the steps taken to have an initial estimate of the target position 

can be skipped, and the whole CPI data cube (including target and guard range gates) can 

be used in the training process. 
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Figure 27 LBSTAP output (target-cancellation) 

 

5.2.4 Clutter-Variation. In this section, the robustness of both STAP and 

LBSTAP in changing clutter environments is put under test. The clutter change of 

environment is simulated by a 10% increase in platform velocity, resulting in an increase 

in the slope of the clutter ridge. In other words, the training will be done in one clutter 

environment, while the testing will be done in a slightly different environment. 

Figure 28 and Figure 29 show the outputs for STAP and polynomial LBSTAP 

respectively. 
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Figure 28 STAP output (clutter-variation) 

 

 

 

Figure 29 LBSTAP output (clutter-variation) 
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Figure 28 shows that STAP was unable to suppress the clutter, which can be 

explained by the fact that the null position estimated in the training process is different 

than the position of the clutter in the test environment. 

On the other hand, polynomial LBSTAP was able to correctly detect the target 

while suppressing the clutter; albeit there is a slight degradation in performance when 

compared to the original scenario, where the training and testing were done in the same 

environment (shown in Figure 22). 

The robustness of LBSTAP to clutter variation can be explained the following. 

Unlike STAP, LBSTAP is not trying to place a null in the position of clutter. LBSTAP 

works to classify the range gate under test into one of the possible classes. Hence, a 

variation in clutter will, roughly speaking, equally reduce the degree with which the 

range under test matches the models of all classes produced in the training phase. Hence, 

the effect of clutter variation will be limited to a reduction in the power output at all 

range and Doppler bins. 

5.3 Cascaded System 

To conclude the simulation results section, it must be said that both STAP and 

LBSTAP have their own points of weaknesses and strengths. LBSTAP will completely 

fail in cases where the target power is significantly lower than the clutter power. In such 

cases, STAP will be the better technique to use. On the other hand, the performance of 

STAP degrades significantly when the number of training range bins is very limited. 

Therefore, cascaded system of STAP followed by LBSTAP can be used to take 

advantage of the strengths of both systems while overcoming their weaknesses. The 

STAP stage can reduce the clutter power relative to the target power to a level low 

enough for LBSTAP to perform effectively. This means that a cascaded system can be 

used in severe cases were both STAP and LBSTAP fail to work independently. 

To test the cascaded systems, the clutter power is increased so that the target 

power is now at  50 dB. In such a scenario LBSTAP is expected to fail, as shown in 

Figure 30. In addition, the number of training range gates is limited to 96. 
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Figure 30 LBSTAP output (severe environment) 

 

Finally, another jammer signal with a power of  30 dB is added very close to the 

azimuth angle of the target (target is at 30°; jammer is at 33°). The limited number of 

training range bins, in addition to the close proximity of the jammer null to the target 

maximum, is expected to degrade the performance of STAP, as shown in Figure 31. 
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Figure 31 STAP output (severe environment) 

 

Figure 32 and Figure 33 show the output of the cascaded system and the 

corresponding range profile, respectively. 
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Figure 32 Cascaded system output (severe environment) 

 

Note that the polynomial classifier used in this case is of degree four. The 

LBSTAP is applied on range vectors of dimension 16 (the number of PRIs per CPI), 

which are extracted from the output obtained from STAP. The expanded vectors are then 

reduced in dimension, using PCA, to become 30-dimensional. 

The cascaded systems were able to outperform both systems when used 

separately. The target was detected, while all the interference is suppressed to levels 

below  50 dB. The output plot shown in Figure 32 shows approximately no range side 

lobes or Doppler side lobes. 
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Figure 33 Cascaded system range profile (severe environment) 

 

5.4 Mountaintop Data 

The introduced methods (LBSTAP and cascaded system) were also tested with 

real radar data obtained from the mountaintop data set. The results are compared to STAP 

output. Figure 34 shows the unprocessed data. 

 

Figure 34 Unprocessed data (mountaintop) 
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A target is present at range gate around 150, with a Doppler frequency of 150 Hz. 

Clutter returns are present at the same Doppler frequency and range gate; however, at a 

different azimuth angle. 

The CPI data cube is made of 403 range gates; however, the training processes in 

all methods will be limited to 83 training range gates. This is done to see the performance 

of each method in circumstances involving limited secondary data. 

The output of STAP is shown in Figure 35. 

 

 

Figure 35 STAP output (mountaintop) 

 

The target was detected using STAP; however, the Doppler side lobes and range 

side lobes are relatively high, even though Doppler tapering has been used, in addition to 

diagonal loading, in order to achieve as good an output as possible. 

Figure 36 shows the output of polynomial LBSTAP. It is clear from the output 

that LBSTAP fails in detecting the target. This is due to the fact that the target power is 

considerably lower than the clutter power; and as mentioned earlier, LBSTAP degrades 

in performance as the target power falls with respect to clutter power.  
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Figure 36 LBSTAP output (mountaintop) 

 

Figure 35 shows that the performance of STAP, when the number of training 

range gates is limited, is relatively poor and suffers from high range and Doppler side 

lobes. Also, Figure 36 shows that LBSTAP fails at detecting the target when the clutter 

power is considerably higher than that of the target. 

Figure 37 shows the output of the cascaded system (STAP followed by 

polynomial LBSTAP). As was the result for the simulated data, the cascaded-system 

method was able to suppress the range and Doppler side lobes to very low levels. 
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Figure 37 Cascaded system output (mountaintop) 

 

Figure 38 and Figure 39 show range profiles for STAP and the cascaded systems 

respectively. 

 

 

Figure 38 STAP range profile (mountaintop) 

It is clear from the range profiles that the cascaded system is able to suppress the 

range side lobes from around  15 dB (after STAP) to around  150 dB. 
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Figure 39 Cascaded system range profile (mountaintop) 
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Chapter 6: Conclusions 

The practical constraints limiting the availability of secondary training data 

needed for the computation of STAP filter weights make the development of algorithms 

capable of achieving acceptable performance with limited secondary data a necessity. 

While there have been many improvements on the original fully-adaptive STAP 

algorithm, the necessity still holds, for each of these algorithms has its own limitations. 

Reduced-rank STAP algorithms suffer from the need for a priori knowledge of the 

low-rank interference subspace. Given the fact that a priori knowledge is generally not 

available, reduced-rank STAP algorithms often have to sacrifice part or all of their 

adaptivity in one dimension, depending on the algorithm of dimensionality-reduction 

applied. 

It was shown in this report that the proposed learning-based space-time adaptive 

processing technique is able to achieve higher target SINR compared to STAP for limited 

secondary data scenarios. This outcome holds as long as the target power does not fall to 

an extreme level below the clutter power. The range of values for the amount of 

secondary data used by STAP/LBSTAP over which LBSTAP outperforms STAP was 

shown to improve with the increase in target power relative to clutter power. For 

example, it was shown that for targets having a power 20 dB below the clutter power this 

range is limited between 70 and 130 secondary training bins. However, when the target 

power was increased by 10 dB, this range extended to cover low values (around 50 

training bins) and continued until reached values of around 200 training bins. These 

results were obtained for 224-dimensional snapshot vectors. 

Moreover, it was shown that LBSTAP overcomes two of the problems faced by 

STAP algorithms; namely, target-cancellation and clutter variation. It was shown in the 

results section that when the target range gate was mistakenly included in the training 

data, the output of STAP was unsatisfactory; the target was not detected in the correct 
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position. On the other hand, LBSTAP continued to perform almost unaffected by the 

inclusion of the target range gate in the training data. 

To test the effect of clutter variations on the performance of both systems, 

simulations were run in which the training phase of both systems was done in a clutter 

environment slightly different than that of the testing phase. It was shown that LBSTAP 

continued to perform almost unaffected while STAP failed to detect the target in the 

correct position. 

Although these results show a significant advantage for LBSTAP compared to 

STAP, the fact that LBSTAP fails to detect low-power targets can be a significant 

downside under certain circumstances. The cascaded system was proposed to overcome 

this issue. It was shown that the cascaded system is able to outperform both individual 

systems under severe conditions. STAP was used first to lower the gap between the target 

power and the clutter power. This facilitated the application of LBSTAP to detect the 

target and suppress interference to very low levels. STAP (when used alone) was not able 

to achieve acceptable results, due to the limited secondary data and the very-close 

proximity of the target and the jammer signals in the spatial dimension. On the other 

hand, LBSTAP (when used alone) failed, due to the low target power level. 

The proposed cascaded system was tested also using real radar data obtained from 

the mountaintop data set. It was shown to outperform both systems when used separately 

with limited secondary data. 

Finally, although it is apparent that all developments come with their own 

downsides and limitations, it is necessary to state that the proposed algorithms (LBSTAP 

and the cascaded system) cannot outperform STAP and other upgrades of STAP in ALL 

conditions. However, they do stand as alternatives that, in some possible conditions, can 

offer a performance advantage. 
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