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This paper presents a novel pattern recognition approach to spectrum sensing in collaborative cognitive radio systems. In the
proposed scheme, discriminative features from the received signal are extracted at each node and used by a classifier at a central
node to make a global decision about the availability of spectrum holes for use by the cognitive radio network. Specifically, linear
and polynomial classifiers are proposed with energy, cyclostationary, or coherent features. Simulation results in terms of detection
and false alarm probabilities of all proposed schemes are presented. It is concluded that cyclostationary-based schemes are the
most reliable in terms of detecting primary users in the spectrum, however, at the expense of a longer sensing time compared to
coherent based schemes. Results show that the performance is improved by having more users collaborating in providing features
to the classifier. It is also shown that, in this spectrum sensing application, a linear classifier has a comparable performance to a
second-order polynomial classifier and hence provides a better choice due to its simplicity. Finally, the impact of the observation
window on the detection performance is presented.

1. Introduction

In the past few years, there have been remarkable develop-
ments in wireless communications technology leading to a
rapid growth in wireless applications. However, this dramatic
increase in wireless applications is severely limited by band-
width scarcity. Traditionally, fixed spectrum assignments, in
which frequency bands are statically assigned to licensed
users are employed. The static spectrum allocation prevents
from assigning vacant spectrum bands to new users and
services. Further, spectrum occupancy measurements have
shown that some licensed bands are significantly underuti-
lized. For example, the Spectral Policy Task Force reported
that radio channels are typically occupied 15% of the time
[1]. Hence, the limitation in the available spectrum bands
occurs mainly due the underutilization of available spectrum
resulting from the inefficient static allocation techniques.
This underutilization of available spectrum resources has
led regulatory bodies to urge the development of dynamic
spectrum allocation paradigms, called cognitive radio (CR)
networks.

A CR network senses the operating environment for
vacant spectrum opportunities and dynamically utilize the
available radio resources [2, 3]. In CR technology, unlicensed

(secondary) users are allowed to share the spectrum origi-
nally assigned to licensed (primary) users. Hence, frequency
bands that are legally assigned to primary users are exploited
by secondary users when primary users are idle. However,
primary users have the right to occupy their assigned bands
whenever needed. Consequently, secondary users should be
aware of the variations in the surrounding environment
and should be ready to adjust their operating parameters
accordingly in order to make a productive usage of the
spectrum [4].

Secondary users in CR networks are restrained by the
condition of providing adequate protection to primary users.
Hence, secondary users need to employ efficient spectrum
sensing techniques that ensure the quality of service for
primary users and exploit all dynamic spectrum sharing
chances. That is to say, in order to facilitate dynamic
spectrum access in licensed bands, effective spectrum sensing
algorithms need to be developed whereby high reliability
along with efficient utilization is achieved.

Spectrum sensing approaches that are commonly consid-
ered in CR applications include energy detection, cyclosta-
tionary feature detection, and coherent detection [2, 4–6].
Based on the prior knowledge a secondary user has about
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primary users, a specific technique would be more appro-
priate. For instance, if a priori information about a primary
user signal is known by secondary users, coherent detection
can be utilized. Coherent detection uses features such as
synchronization messages, pilots, preambles, midambles,
and spectrum spreading sequences. When these patterns
are known at the CR network, sensing is performed by
correlating the incoming signal with the known patterns [6].
Coherent sensing based on pilot detection was implemented
experimentally in [7]. On the other hand, when CRs have
very limited information about the primary signal, energy
detection is used. Another reason for using energy detection
in spectrum sensing applications is the low complexity
involved. However, the performance of energy detection in
terms of the ability to detect primary signals is degraded,
especially in low signal-to-noise ratio (SNR) conditions.

Another approach to spectrum sensing is based on
cyclostationary detection to sense the presence of a primary
user by exploiting cyclostationary features exhibited by the
statistics of the primary signal [8]. In cyclostationary detec-
tion, the spectral correlation function (SCF) of a modulated
signal is analyzed to decide on the presence of primary signal
in the target spectrum. Cyclostationary feature detection
based on multicycle detection has been proposed in [9,
10], where the cyclostationarity is detected at multiples
of the cycle frequency. In orthogonal frequency division
multiplexing (OFDM) systems, a cyclic prefix is intentionally
inserted as a guard interval, which could be used to detect
cyclostationarity of incumbent primary signals [11, 12].
Furthermore, the OFDM waveform could be modified in
order to generate specific signatures at certain frequencies
[13] such that the cyclic features created by these signatures
are then extracted via cyclostationary detection to achieve an
effective signal identification mechanism.

In order to preserve the quality of service for primary
users, the interference caused by secondary users needs to
be maintained below an acceptable level. Hence, reliable
spectrum sensing needs to be performed by secondary users
to detect the presence of a primary user, especially under
shadowing and fading effects. Collaboration among spatially
displaced secondary users is, hence, required to mitigate such
effects without requiring excessively long detection times. In
this case, several CR nodes utilize the spatial diversity gain
provided by cooperative spectrum sensing to achieve better
performance in fading environments [4, 9, 10, 14, 15].

In this work, we propose a collaborative spectrum
sensing approach in CR applications. Specifically, we uti-
lize classification techniques used in pattern recognition
applications to identify the available and busy bands in the
radio spectrum. Previously, pattern recognition techniques
were used mainly in signal classification for determining
type of modulation rather than spectrum sensing [16–
18]. The proposed pattern recognition scheme represents a
centralized cooperative CR network, whereby the decision
of spectrum availability is made at a central node after
collecting spectral sensing information from all collaborating
users. Sensing information is subjected to a classifier model
that outputs a global decision regarding the availability
of the target spectrum band. Polynomial classifiers are

proposed in this work as classifier models, in which first- and
second-order expansions are investigated. Three spectrum
sensing techniques are implemented to provide informative
features to the classifier about the surrounding environment.
Spectrum sensing techniques used for feature extraction
can be classified into parametric and nonparametric. Non-
parametric detection includes energy detection where the
cognitive network does not have a priori knowledge on the
primary users’ signals. On the other hand, in parametric
detection, cyclic features characterizing primary signals and
prior knowledge of synchronizing preamble patterns are
utilized. The parametric detection schemes include coherent
detection and cyclostationary feature detection.

Many of the collaboration techniques in the prior work
implement maximum ratio combining, likelihood ratio test,
or hard decision rules, such as AND logic operation and
one-out-of-n rule [4, 5, 19, 20]. Cooperative sensing based
on energy detection has been proposed in [4], in which
linear combination of local test statistics from multiple
users is utilized in the decision making. The performance
of a cyclostationary-based spectrum sensing cooperative CR
system was considered in [20, 21], where binary decisions
with different fusion rules of the secondary user’s decisions
using cyclic detectors were compared. Moreover, multiple
user single-cycle detectors are proposed to accommodate
secondary user collaboration [9], where different cyclic
frequencies are utilized by different users and combined to
make a global decision. In [10], the summation of local
tests statistics of secondary users is employed as the fusion
rule when multicycle detection is performed by CRs. Finally,
cooperation based on hard decision rules was investigated
with coherent detection in [7].

The contributions of this paper are as follows. The
problem of collaborative spectrum sensing in CR networks is
investigated from a new perspective based on a pattern recog-
nition approach. More specifically, polynomial classifiers are
used in this work. The design, validation and evaluation of
first- and second-order polynomial classifiers are presented.
The parameters of these classifiers are optimized based
on the signal strength of the individual secondary users
in a collaborative manner. The performance in terms of
false alarm rate and detection probability under low SNR
conditions has been thoroughly examined and analyzed.
Comprehensive performance evaluation of energy-based
detection is provided. Finally, extensive simulations are
performed to evaluate the performance of the proposed
classifiers with parametric spectrum sensing schemes, where
carrier frequency and synchronization preamble patterns are
assumed to be known at the CR network. The results of this
investigation were partially presented in [22, 23].

The rest of the paper is organized as follows: in Section 2,
we introduce the signal model and the proposed cooperative
spectrum sensing scheme. In Section 3, different feature
extracting techniques are presented. The polynomial classi-
fier structure is developed in Section 4. Simulation results
and discussions are given in Section 5. Finally, Section 6
concludes the paper. All notations and symbols used in this
paper are explained in Table 1.
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Table 1: List of notations.

Notation/symbol Explanation

r j[n] Received signal by user j

x[n] Transmitted primary signal

g j Channel gain coefficients

η j[n] Zero-mean additive white Gaussian noise (AWGN) at user j’s end

N Number of users in cognitive network

d N-dimensional feature vector consisting of features extracted from different CRs

M Number of samples observed to make a decision (observation window size)

Rα
x(τ) Cyclic autocorrelation function

Sαx[k] Spectral correlation density function

R jc[k] Cross-correlation between the received signal and the preamble sequence

ϕ(d) l-dimensional vector consisting of the monomials of a another vector d

wi The classifier model parameters for class i

Dtrain
K ×N matrix, where N is the dimensionality of the input feature vectors (provided by N CR users)
and K is the number of feature vectors used in the training process

M A (K × l) matrix representing the polynomial expansion of elements in training data set Dtrain

ti An ideal target vector representing the ideal channel state (ON or OFF)

Yd Binary global decision on channel availability

2. Signal Model and System Description

We consider dynamic spectrum allocation in a collaborative
CR network with the structure illustrated in Figure 1. The
primary user and CR network are assumed to coexist within
the same geographical area. The CR network consists of
N users with a central node that detects the presence of
primary signals and decides on the channel availability.
CRs temporarily access the underutilized licensed frequency
bands, without conflict with primary spectrum holders’
usage.

The binary hypothesis test for spectrum sensing is
formulated as

r j[n] =

{

g jx [n] + η j[n] : H1

η j[n] : H0
for j = 1, 2, . . . ,N , (1)

where r j[n] represents the received signal by the jth CR user
at the nth instant of time, and x[n] denotes the primary user
transmitted signal. H1 represents the hypothesis of an occu-
pied spectrum, while H0 corresponds to an idle spectrum.
The received signal at the jth user is corrupted by a zero-
mean additive white Gaussian noise (AWGN), η j[n] with
variance σ j2. The primary signal passes through a wireless
channel to reach the jth CR user with a channel gain g j .
The wireless channel is modeled as a flat channel with slow
fading. Each channel has a complex valued coefficient with
Rayleigh distributed magnitude and uniformly distributed
phase over the range [0, 2π). The channel coefficients of
different CRs in the network are assumed to be constant over
a number of received signal symbols, that is, slow fading,
and are also assumed to be independent and identically
distributed.

In this paper, spectrum sensing in CR networks is
formulated as a pattern recognition problem. Generally
speaking, pattern recognition is used to classify a given set of
data into several different categories. A pattern recognition
system assigns an input signal to one of a number of
known categories based on features derived to emphasize
commonalities between those signals. A generic term that
is used to describe input signals that need to be classified
in a recognition system is patterns. Usually, patterns may
not be useful for classification, and hence they need to
be processed to acquire more useful input to the classifier
[24, 25]. This processed information is called features. In
supervised learning, a labeled training set of feature vectors is
processed through the classification algorithm to determine
the classifier model parameters. These parameters are used
in predicting the class of new data that have not been
seen during the learning phase. In this paper, supervised
pattern recognition is utilized at the CR base station (CRBS)
to classify available spectrum holes such that maximum
detection is achieved with a desired false alarm rate.

In the proposed system, secondary users are constantly
sensing the target spectrum band for primary signal pres-
ence. Within a secondary user receiver, discriminative fea-
tures are extracted from the sensed signal. The extracted
features from the difference secondary users are transmitted
to the CRBS through a relatively low data rate control chan-
nel. This control channel is used for exchanging information
between CRs and CRBS. At the CRBS, a decision about the
spectrum availability is made based on a pattern recognition
classifier that is previously trained. The block diagram of
the proposed system is depicted in Figure 2 showing the
signal flow of the CR inputs through feature extraction
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Figure 1: An example of a centralized CR network.
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Figure 2: Pattern recognition CR system model.

and classification leading to a decision about the spectrum
availability at the CRBS.

The first step is spectrum sensing which involves input
data acquisition by processing the signals received by
antennas at different CR receivers. The received signal
of the jth user is assumed to follow the mathematical
model described in (1). These signals are transformed
into multidimensional feature vectors that compactly
characterize the sensed signals.

When secondary users in a CR network have no
prior information about the transmitted primary signal,
the energy of the received signal is used at the feature
extraction stage and utilized by the classifier to discriminate
between the noise only and primary signal present cases.
On the other hand, if prior information, such as carrier
frequency and synchronizing patterns, is known about the
primary user’s signal, feature extraction will be achieved
by either exploiting cyclic features present in the signal or
through coherent detection. Features extracted by any of the
mentioned detection schemes will exhibit certain patterns
when the spectrum is occupied by a primary user that
are different from the patterns extracted when only noise
is present in the spectrum. The difference between these
patterns will be exploited as discriminative input data to

the pretrained classifier for decision making. The following
section discusses the different feature extraction schemes
used in this paper.

3. Feature Extraction Techniques

In this work, three different feature extraction schemes
have been used, namely, noncoherent energy-based features,
cyclostationary-based features, and coherent detection-based
features.

3.1. Energy-Based Feature Extraction. Energy detection is
one of the most commonly used techniques in spectrum
sensing due to its low computational complexity and simple
implementation. It does not require any prior knowledge
of the primary users’ signal; hence, it is considered as a
nonparametric detection scheme. The classification system
identifies spectrum availability relying on the energy of the
received signal over an observation period. However, the task
of detecting the signal becomes very challenging under low
SNR levels and fading channels [5, 14]. As a preprocessing
step, the received signal by the jth secondary user, r j(t),
which follows the model specified in (1), is filtered according
to the desired frequency band to obtain y j(t). The sampled
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Figure 3: Cyclostationary feature detection estimator.

version of the signal is used to extract one representative
energy feature d j defined as

d j =
1

M

M
∑

n=1

∣

∣

∣y j[n]
∣

∣

∣

2
, (2)

where M is the length of the observation period in samples.
Accordingly, a feature vector for this observation period
is constructed from the N users’ signals such as d =

[d1 · · ·dN ]T , where T is the vector transpose operation.
This feature vector will be presented to the classifier in the
classification stage. A new set of energy features is obtained
every observation window.

3.2. Cyclostationary-Based Feature Extraction. Most commu-
nication signals can be modeled as cyclostationary ran-
dom processes, as they are usually characterized by built-
in periodicities in their mean and autocorrelation. These
underlying periodicities arise from the use of sinusoidal
carriers, repeating spreading codes, pulse trains, or cyclic
prefixes in signal transmission. On the other hand, noise
signals do not exhibit such periodicity characteristics. Hence,
the sensing of the spectrum availability can be based on the
detection of the signal periodicity.

A binary phase shift keying (BPSK) that digitally mod-
ulated signal x(t) with symbol duration T0 has a cyclic
autocorrelation function (CAF) defined as

Rα
x(τ) �

1

T0

∫ T0/2

−T0/2

(

x

(

t +
τ

2

)

x∗
(

t −
τ

2

)

e− j2παt

)

dt, (3)

where τ is a nonzero delay, and α ∈ {0,±1/ T0,±2/ T0, . . .}.
Rα
x(τ) represents the Fourier transform of the delay

product x(t + τ/2)x∗(t− τ/2) evaluated at the frequencies in
α. The signal x(t) is said to contain second order periodicity
if and only if the Fourier transform of Rα

x(τ) has discrete
spectral lines at nonzero frequencies α /= 0 [26, 27].

Cyclostationarity of a signal leads to the presence of
specific patterns in the spectrum of the signal, which can
be examined using the so-called spectral correlation density

function (SCD) [27, 28] defined as the Fourier transform of
its CAF as

Sαx
(

f ;α
)

=

∫∞

−∞

Rα
x(τ)e− j2π f τdτ. (4)

The SCD is the cross-correlation function between the
spectral translates of the signal at f ± α/2, for some cyclic
frequency α. This function is smoothed using a frequency
smoothing vector (window) W with P frequency bins. Since
discrete-time samples of the received are used in estimating
the SCD, it is possible to show that the SCD is given by

Sαx[k] =
1

P

(P−1)/2
∑

v=−(P−1)/2

X

[

k +
α

2
+ v

]

X∗
[

k −
α

2
+ v

]

W(v),

(5)

with

X[k] =
M−1
∑

n=0

x[n]e− j2πkn/M , (6)

where k = 0, 1, . . . ,M − 1, and M is the number of samples
over which the spectrum of the received signal is calculated
(FFT length). The SCD estimation is implemented to obtain
the cyclic feature extraction receiver structure as shown in
Figure 3. The SCD of the received signal will depend on
the presence or absence of the primary transmitted signal
according to the following:

Sα0
r j [k] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∣

∣

∣g j
∣

∣

∣

2
Sα0
x [k] + Sα0

η j [k] : H1,

Sα0
η j [k] : H0,

(7)

where Sα0
η j [k] is the SCD of the AWGN only at the jth

CR user, and Sα0
x [k] is the SCD of the transmitted primary

signal at some cyclic frequency α = α0. Since the AWGN is a
wide sense stationary process and does not possess second-
order cyclostationarity, it will not have a peak at any cyclic
frequency. On the other hand, the band-pass BPSK signal
exhibits second-order cycle frequencies at α0/2 = fc + m/T0

[2, 9], for some integer m. Since the strongest spectral lines of
a BPSK signal appear at= fc, the strongest cyclic components
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are observed at α0/2 = fc [9]. Therefore, the local decision
variable for cyclostationary detection from jth CR user is
chosen to be the value of the SCD in (7) evaluated at k = 0.
This value is used as the jth element in the feature vector

d = [d1 · · ·dN ]T that will be presented to the classifier in the
classification stage, where d j = Sα0

r j
[k] with k = 0.

3.3. Coherent Based Feature Extraction. Another sensing
scheme investigated in this work is feature extraction using
coherent detection. Coherent detection is performed by
demodulating the primary user’s signal, which requires a
priori information of the primary signal such as packet
format, control, or synchronization sequences. [6]. If the
synchronizing preamble patterns are known at the CR
network end, coherent sensing can be exploited by corre-
lating the incoming signal with the known patterns. This is
effectively correlating the signal with itself resulting in an
autocorrelation function that peaks at zero delay when the
primary user is present. Primary users are assumed to use a
frame size of M bits with an L-bit synchronization preamble
referred to as xp[n]. Accordingly, the cognitive users will be
acquiring data during the preamble period (i.e., L bits every
M bits). The received signal from jth CR user, r j(t), is cross-
correlated with the preamble sequence over the preamble
length to obtain

R jc[k] =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∣

∣

∣g j
∣

∣

∣

2
L
∑

n=1

∣

∣

∣xp[n]
∣

∣

∣

2
+ Re

⎧

⎨

⎩

L
∑

n=1

xp[n]η∗j [n]

⎫

⎬

⎭

: H1

Re

⎧

⎨

⎩

L
∑

n=1

xp[n]η∗j [n]

⎫

⎬

⎭

H0.

(8)

Under hypothesis H1, R jc[k] becomes an autocorrelation of
the transmitted preamble having a strong peak at k = 0.
However, under H0, R jc[k] will not exhibit strong peaks. The
peak value of R jc[k] is used as the jth element in the feature

vector d = [d1 · · ·dN ]T that will be presented to the classifier
in the classification stage, where d j = max{|R jc[k]|}.

4. Polynomial Classifiers

In this paper, we use polynomial classifiers (PCs) as the
classification models to decide on the spectrum availability.
Polynomial classifiers have shown improved recognition per-
formance with lower computational complexity as compared
to other recognitions methods, such as neural networks and
hidden Markov models [25, 29]. Furthermore, polynomial
classifiers deal with simple mathematical operations such as
multiplication and summation, which makes them suitable
for practical implementation in digital signal processing
algorithms. The principle of a polynomial classifier is the
expansion of the input feature space into a higher dimen-
sional space that is linearly separable [30].

Consider an input pattern d = [d1 · · ·dN ]T , where N
is the number of features and T represents the transpose
operation. The rth order polynomial classifier first performs
a vectorial mapping of the N-dimensional feature vector, d,

into an l-dimensional vector ϕ(d). The elements of ϕ(d) are
monomials of the form [24, 25]

ϕ(d) =
[

1,d1,d2, . . . dN ,d2
1,d1d2,d1d3, . . . ,d1dN ,d3

1 ,d2
1d2,

. . . d2
1dN , . . . ,dr1,dr1d2, . . . dr1dN ,

d2
2 ,d2d3, . . . ,d2dN ,d3

2 ,d2
2d1,d2

2d3, . . . d2
2dN ,

. . . ,dr2,dr2d1, . . . ,dr2dN , . . .
]T
.

(9)

Then, the output scorer yi is obtained at the output layer after
linearly combining the expansion terms ϕ(d) using

yi = wT
i ϕ(d), (10)

where wi is the model (weights) of class i. The dimensionality
of the expanded vector ϕ(d) can be expressed in terms of
the polynomial order and the dimensionality of the input
vector d. The design of the classifier comprises of two stages,
namely, training and testing.

4.1. Training. The training process involves finding the
optimal model parameters that best map a multidimensional
input sequence to a corresponding one-dimensional target
sequence. The model is designed to classify between two dif-
ferent classes, Hi for i = {0, 1}, corresponding to the binary
hypotheses in (1). The multidimensional input sequence
Dtrain is a K × N matrix, where N is the dimensionality of
the input feature vectors (provided by N CR users) and K is
the number of feature vectors used in the training process.
The training matrix Dtrain is given by

Dtrain =

⎡

⎢

⎢

⎣

d11 d12 · · · d1N

...
. . .

...
dK1 dK2 · · · dKN

⎤

⎥

⎥

⎦

. (11)

The one-dimensional target vector ti = [ti1 ti2 · · · tiK ]T for
i = {0, 1} consists of K elements where tiz = 1 if the
corresponding zth feature vector belongs to class i, and tiz =
0 if the corresponding zth feature vector does not belong to
class i, for z = 1, 2, . . . ,K .

The training vectors are expanded into their polynomial
terms as defined in (9) resulting in a model training M data
set of size (K × l) that is defined by

M =
[

ϕ(d1) ϕ(d2) · · · ϕ(dK )
]T

. (12)

Once training feature vectors are expanded into their
polynomial basis terms, the polynomial classifier is trained

to find an optimum set of weights, w
opt
i , that minimizes

the Euclidian distance between the ideal target vector ti and
the corresponding outputs of the classifier using the mean-
squared error criterion to get

w
opt
i = arg

w

{min‖Mw − ti‖2}. (13)



Journal of Computer Networks and Communications 7

The problem of (13) can be solved using the method of
normal equation to explicitly obtain the optimal model for
the two-class spectrum sensing problem as [25, 29]

w
opt
i =

(

MTM
)−1

MT ti. (14)

4.2. Testing. In the testing stage, novel feature vectors dtest are
used to represent the testing data set. The features are initially
expanded into their basis termsϕ(dtest) and then presented to

the trained models {w
opt
0 , w

opt
1 } to obtain the corresponding

set of scores {yi} as

{

yi
}

= ϕ(dtest) w
opt
i for i = 0, 1. (15)

Accordingly, we assign the testing feature vector to hypothe-
sis Hi that satisfies [25]

Yd = arg
i

{

max
{

yi
}}

. (16)

Ideally, the output from the classifier model, for a certain
input feature vector, should be one when the spectrum is
occupied and zero when the spectrum is idle as we apply it

to the corresponding model w
opt
i . However, when new input

data are fed to the classifier, the output has values varying
around one for hypothesis H1 and values varying around
zero for H0 and vice versa. In order to achieve a desired level
of constant false alarm rate, a threshold needs to be defined
to separate the two classes instead of just comparing different
models output scores.

An iterative algorithm is applied at the training stage
to search for the threshold for different signal levels that
achieves a specific false alarm rate as follows. First, the output
score is computed by subjecting a validation data set (with

known class labels) to the model w
opt
1 . The threshold is

initialized to λ = 0.5, such that the global decision variable
Yd = 1 if y1 > λ and Yd = 0 otherwise. The false alarm
rate is then estimated by comparing the output decisions
of all validation feature vectors to the ideal output t1. A
false alarm will be declared when the output decision is one
indicating that the spectrum is busy while the ideal output
t1 is zero indicating that the actual spectrum is available.
The threshold λ is incremented or decremented with a small
value such that the desired false alarm rate is achieved with
a specified accuracy, for example, a mean-squared error of
less than 1%. The above steps are repeated for the validation
data with different received SNR levels to form a lookup
table that could be used when new test data is received.
Note that the threshold setting operation, in addition to
the training process, is performed offline. The training and
validation data sequences are retrieved from a database that
is maintained at the CRBS for offline training and validation.

5. Simulation Results

In this section, the performance of a first-order polynomial
classifier (known also as linear classifier (LC)) and second-
order polynomial classifiers (PCs) using the previously dis-
cussed feature extraction methods is evaluated. A band pass

BPSK primary signal is used when cyclostationary feature
detection is utilized, while antipodal baseband signaling with
S(k) = ±1 in the case of coherent detection. To emulate
a more challenging and practical situation, we assume
the distance between the CR network and the primary
transmitter is relatively large; hence, the average received
SNRavg is in the low SNR range, that is, SNRavg ≤ 0 dB.
In addition, the jth CR receives a signal with a signal-to-
noise ratio SNR j that depends on the ith CR’s proximity
from the primary user. To account for signal shadowing,
SNR j follows a log-normal distribution with a variance
σ2 = 4 dB and a mean equivalent to SNRavg . The small-
scale channel variations follow a flat Rayleigh fading model.
It is also assumed that the channel variation is relatively
slow compared to the bit duration (slow fading model).
We remark that the simulation parameters were used for
illustrative purposes, and other values could be used without
loss of generality.

5.1. Energy-Based Feature Extraction. Energy detection is
performed at the various secondary users, and the extracted
decision variables are provided to the recognition model at
the CRBS. The probability of detection achieved by the LC
and PC at different average received signals levels is presented
in Figure 4. The results are obtained for a window size of
200 bits and a target false alarm (P f ) of 10%. The value of
the false alarm rate was chosen to be consistent with the IEEE
802.22 requirements for CR networks [3]. It is interesting
to notice that although the PC requires more memory
and computational complexity to perform the expansion
operation, it does not improve the detection probability
performance compared to the LC. Hence, it is recommended
to use an LC since it provides good performance with less
required memory space and computational cost resulting
in making faster decisions about the availability of the
spectrum. Moreover, the advantage of cooperative sensing
compared to single-radio-based sensing is demonstrated by
the improvement in the detection performance as the num-
ber of secondary users contributing to signal classification
is increased. For instance, a received SNR of around −9 dB
is appropriate to reach a detection probability of 90% with
three CRs, while a received signal with an average SNR of
around −6.5 dB is required to achieve the same detection
rate with one CR, resulting in a 2.5 dB gain which improves
the ability to avoid interfering with weak primary users. It is
notable from Figure 4 that the enhancement in performance
diminishes as the number of receivers collaborating in global
decision increases.

The probability of detection results of the energy detector
for a received signal with SNRavg = −5 dB, N = 3 users, and
P f = 10% is depicted in Figure 5 for both the LC and PC as
a function of the observation window size. It is evident that
the detection performance is highly affected by the window
size over which the local decision variables are estimated.
As the window size increases, the data used for training and
testing becomes more representative to the present signal in
the spectrum, and hence the classifier’s output score is more
accurate. However, the larger the window size is, the longer
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Figure 4: Detection performance for cooperative LC and PC with energy-based feature extraction.
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Figure 5: Impact of the window size on detection performance of energy-based schemes: SNRavg = −5 dB, N = 3 users, and P f = 10%.

it takes for decision making of spectrum availability by the
classifier at the base station. This yields a delay in spectral
allocation when the spectrum is available, hence, resulting in
lower spectral utilization.

A useful performance measure is the receiver operational
characteristic (ROC) that represents the variation of the
probability of detection with the false alarm probability at
certain operational parameters. Since the LC provided a
better choice with energy detection, its ROC is obtained
as shown in Figure 6 when the primary signal is received
at an SNRavg = −14 dB and observation window size of
M = 200 bits. It is observed that the detection probability
deteriorates for low false alarm rates and improves when
higher false alarm probability is tolerable. This behavior
is expected since in order to achieve a low false alarm
rate, the threshold level needs to be raised. Raising the

threshold level above classifier’s output score, corresponding
to occupied spectrum class, may lead to miss detecting
primary signal’s presence, and consequently causing more
interference to the primary network’s users. It can be noted
that higher detection is accomplished with higher number of
cooperating CRs.

5.2. Cyclostationary Based Feature Extraction. Simulation
results for the proposed classification system when cyclosta-
tionary features are fed to the CRBS for spectrum sensing are
presented in Figure 7. It is shown that cyclostationary feature
detection can achieve very high detection probability even
with low SNR values by using more cooperating CRs. For
instance, a detection probability of about 90% is achieved
with an average SNR of −18 dB when five CRs are used.
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Figure 6: ROC curves of energy-based linear classifier scheme: SNRavg = −14 dB and M = 200 bits.
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Figure 7: Detection performance for cooperative LC and PC with cyclostationary-based feature extraction: P f = 10% and M = 200 bits.

The results demonstrate improved performance compared
to the energy-based detector. For instance, a gain of about
4 dB is observed when the number of CRs cooperating in
making the decision increases from one to three at Pd = 90%.
As in the case of energy detection, it is observed that there
is no significant performance improvement as the order of
the classifier is increased from first order to second order.
Furthermore, performance improvements due to increasing
cooperative CRs saturate for higher number of users.

The detection performance of the cyclostationary detec-
tion scheme is improved by increasing the observation
window size as illustrated in Figure 8. The detection results

for the LC and PC are presented at SNRavg = −14 dB, N = 3
users, and P f = 10%. Increasing the observation window size
from 20 to 200 bits results in improving the probability of
detecting from about 70% to 98%, at a SNRavg of −14 dB.
The ROC curve is shown in Figure 9 for a SNRavg =

−14 dB and observation window of 200 bits indicating that
using more cooperating radios results in better detection
performance.

5.3. Coherent-Based Feature Extraction. For the coherent-
based scheme, Figure 10 shows the detection probability
as the received primary signal’s level is varied. Coherent
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Figure 8: Impact of the window size on detection performance of cyclostationary-based schemes: SNRavg = −14 dB, N = 3 users, and P f =

10%.
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Figure 9: ROC curves of cyclostationary-based linear classifier scheme: SNRavg = −14 dB and M = 200 bits.

detection was simulated for a primary signal with a preamble
size of L = 16 bits and a frame length of M = 200 bits. It is
noticed that a gain of about 6 dB is achieved as the number
of collaborating radios N increases from one to three, at a
detection probability of 90%. The achieved gain, however,
reduces to around 1.5 dB as N increases from three to five.
Coherent detection provides reliable signal identification
with Pd > 98%, when the received signal level is above
−10 dB and N = 5. We notice that the LC and PC perform
comparably when coherent detection is utilized in feature
extraction.

The ROC curve for coherent-detection-based sensing
for various numbers of cooperative CRs is demonstrated in
Figure 11. It is apparent that there is a performance variation
as the different number of CRs collaborates in making the

decision. The performance gap between various numbers of
CRs shrinks as the false alarm probability increases.

Finally, Figure 12 shows the performance gain achieved
using coherent detection LC scheme as the length of
preamble sequence increases. The figure presents the SNRavg

required to obtain a specific detection probability and
false alarm rate, as the preamble length increases. Longer
preamble sequences result in lower values of the required
SNRavg indicating that a lower level of received primary
signal is sufficient to achieve a certain detection rate as
preamble length is increased.

5.4. Discussion. Among the three considered schemes, cyclo-
stationary feature detection provides the best performance
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Figure 11: ROC curves of coherent-based linear classifier scheme: SNRavg = −14 dB and L = 16 bits.

in terms of both detection and false alarm rates, while
energy detection results in the poorest performer. The
implementation of cyclostationary feature detection relies on
the knowledge of carrier frequency and modulation type of
the primary signal. The obvious drawback of cyclostationary
detection is the high computational complexity required
to extract cyclic features at CRs, as compared to other
techniques. On the other hand, it provides high reliability to
the CR network under low SNR conditions.

It has been shown that a longer sensing time can
improve the detection performance considerably. However,
detection improvement due to increasing sensing time is
achieved at the expense of lowering the network’s agility,
since longer time is required to decide on the vacancy of the
spectrum. This comment is very important when comparing

the performance of the cyclostationary scheme over coher-
ent scheme. Specifically, the cyclostationary-based scheme
achieves a better detection performance when compared
to the coherent detection scheme. This is so because the
former uses the entire frame in the process of decision
making. On the other hand, the coherent-based scheme uses
a shorter observation window (preamble) leading to a more
timely decision making. Increasing the preamble length will
improve the performance for the coherent-based scheme but
at the expense of a reduction in the spectral efficiency of the
primary user, while the cyclostationary-based scheme does
not suffer from this drawback.

Finally, although energy detection represents the feature
extraction scheme with least detection capability under low
SNR conditions, representing severe fading and shadowing,
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Figure 12: Impact of the preamble length on detection performance of coherent-based linear classifier scheme.

it is still an attractive technique under high SNR regimes
due to its simplicity and minimum prior information
requirements.

6. Conclusion

In this paper, pattern recognition models were proposed to
tackle the problem of spectrum sensing in CR networks. The
proposed classifier model is based on collaborative sensing,
in which secondary users monitor channel usage in a given
area and cooperate through a centralized node to provide the
spectrum occupancy information. The cooperation between
secondary users was achieved through first- and second-
order polynomial classifiers that were modeled, trained,
validated, and evaluated. Results indicate that both the linear
and the polynomial classifiers provide high detection rates
of primary signal over wireless fading channel and very
small signal to noise ratios. Moreover, simulation results
show that both classifiers perform comparably; consequently,
the linear classifier is chosen as the best model for coop-
erative CR networks due to its lower complexity. Energy-
, cyclostationary-, and coherent-based feature extraction
techniques were compared. Simulation results demonstrated
that cyclostationary detection constitutes the best candidate
for feature extraction when information on primary signal is
available, since it outperforms energy and coherent detection
substantially. However, the remarkable detection capability
of cyclostationary detection is achieved at the expense of
higher implementation complexity.
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