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Abstract

One of the various human sensory capabilities is
to identify the direction of perceived sounds. The
goal of this work is to study sound source localiza-
tion in three dimensions using some of the most
important cues the human uses. Having robotics
as a major application, the approach involves a
compact sensor structure that can be placed on
a mobile platform. The objective is to estimate
the relative sound source position in three dimen-
sional space without imposing excessive restric-
tions on its spatio-temporal characteristics and
the environment structure. Two types of features
are considered, interaural time and level differ-
ences. Their relative effectiveness for localization
is studied, as well as a practical way of using
these complementary parameters. A two-stage
procedure was used. In the training stage, sound
samples are produced from points with known
coordinates and then are stored. In the recog-
nition stage, unknown sounds are processed by
the trained system to estimate the 3D location of
the sound source. Results from the experiments
showed under ±3° in average angular error and
less than ±20% in average radial distance error.

Introduction1

A sound produced by a point-source generates acous-

tic waves with spherical symmetry, assuming uniform

density of the surrounding air and absence of obsta-

cles or other sounds. It is known that the location of

the source can be established by detecting the front

of the propagating wave and computing the center

of the sphere (Capel 1978) (Cart 1966). Unfortu-

nately acoustical waves are not clearly distinguishable

objects and such a task is not trivial in real envi-
ronments even if real-life sources could be approxi-

mated by points (MacCabe 1994). Numerous stud-

ies have attempted to determine the mechanisms used

by humans to achieve dimensional hearing (Cart 1966)

1 Copyright 1997, American Association for Artificial In-

telligence (www.aaai.org). All rights reserved.

(Hartmann 1990) (Hartmann 1989). Most phenomena

have been reasonably explained in principle, although

many aspects of human dimensional hearing need fur-
ther study. It is known that two of the most important

cues used by humans are the interaural differences: in

time and level (ITD, ILD) (MacCabe 1994) (Wight-

man 1992) (Yost 1987). Other cues relate to the spec-

tral variations caused by diffractions at the head and

pinnae (Blauert 1969). For sounds with longer du-

ration, cognitive processes start playing an important
role, including dynamic head adjustments, high-level

reasoning, etc. (Yost 1987).

The problem of sound localization by

machine

Sound localization can be used in many different ap-

plications: robot hearing, human-machine interfaces,
monitoring devices, handicappers’ aids, etc, where

other means fail for different reasons. The obvious
importance of building sound localization devices has

prompted numerous efforts in the research community

and a variety of techniques has been developed. Driven

by concrete application needs, sensor setups of differ-
ent implementations have seldom attempted to follow

the human model. The number, size and placement

of the sensors in such devices follow the specific needs

of the task and are optimized for accuracy, stability,

ease of use, etc. For example, a number of microphone

subarrays have been placed on the walls with a goal to

pick up the location of a speaker in a room (Brandstein

1997a) (Brandstein & Silverman 1997) (Brandstein 

Silverman 1995) (Rabinkin 1996). In other studies 
human model has been followed to some degree result-

ing in constraints in applicability and limited accuracy

(Martin 1995). A significant amount of work has been

devoted to devices with a limited functionality (e.g.

constrained to localization in a single half-plane while

still using large sensor structures) (Bub ~ Weibel 1995)

(Rabinkin 1996) or the help of a non-acoustical modal-

ity has been used (e.g. vision)(Bub & Weibel 1995).

58

From: AAAI Technical Report SS-98-02. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



In contrast to large, fixed sensor arrays for special

situations and environments, this work concentrates
on a compact, mobile sensor array that is suited for a

mobile robot to localize 3D sound sources with moder-

ate accuracy. It can be positioned arbitrarily in space

while being capable of identifying the relative position

of an arbitrarily located sound source. It is neces-

sary to point out that the human three dimensional

sound localization capabilities, while amazingly accu-

rate in some instances, often have very serious limi-

tations. The precision depends on various character-
istics of the perceived sound: spectral contents, en-

velope variability as a function of time, volume level,

reverberation and echo, etc. It can be disappointingly

low and in some instances totally inconclusive (Hart-

mann 1990). Sometimes it can be convincingly wrong

(e.g. Franssen effect) (Hartmann 1989). One major

difference between human and engineering setup is the

number of sensors available.

Most authors distinguish a single parameter as the

most significant factor for dimensional sound localiza-

tion. It is the interaural time difference (ITD) of the
sound as perceived by two sensors. Numerous studies

report the ITD as the main cue in human dimensional

hearing (Wightman 1992). The clear geometrical rep-

resentation of the problem makes it the favorite feature

to be used when approaching such a task by a machine

setup (Brandstein 1997b) (Brandstein 1997a) (Brand-

stein & Silverman 1995) (Bub & Weibel 1995) (Chan
& Plant 1978) (Ianiello 1982) (Knapp 1976) (Rabinkin

1996). However, if we return to the physical aspect of

the problem, it is clear that even three sensors (non-
collinear) are not sufficient by themselves to establish

unambiguously the three dimensional location of the

sound source: obviously there are two symmetrical so-

lutions on each side of the plane, on which the sensors

lay. It is then reasonable to increase the number to

four microphones, to localize arbitrarily placed sound

sources.

Another cue known to have notable importance in

human dimensional hearing is the interaural level dif-

ferences (ILD). Surprisingly ILD have seldom been

used in actual system implementations because they

are believed to have unfavorable frequency dependence

and unreliability (MacCabe 1994) (Martin 1995). 
other reason is the lack of an explicit and stable rela-

tionship between ILD and source location which will

allow for a simple algorithmic solution to be derived

(MacCabe 1994). The learning approach used in this
study does not have such limitations and it benefits

from the added cues.

Finally the processing of the extracted features is one

of the dominating factors for the success of a localiza-

tion procedure. Most works determine the ITD and

then use either an iterative search algorithm to mini-

mize a certain objective function (Hobbs 1992) (Martin

1995) (Rabinkin 1996), or an approximation model 

which a closed-form solution can be derived (Brand-
stein 1997a) (Brandstein & Silverman 1997). The for-
mer is relatively slow and thus, it may not reach real

time speed. The latter introduces model errors and

cannot use more feature types for better accuracy.

To use both interaural time differences (ITD) and in-
teraural level differences (ILD) while effectively dealing

with the complex nonlinear relationships among these

feature measurements and the solution, this work em-
ploys a learning based approach. It consists of a train-

ing phase and a performance phase. In the training

phase, sounds from known 3D positions are generated

for training the system, during which a fast retrieval

tree is built. In the performance phase, the system

approximates the solution by retrieving the top match

cases from the retrieval tree. This flexible framework

allows for the use of more than one type of feature, and

to deal with the 3D localization problem without im-

posing unrealistic assumptions about the environment,
despite the compactness of the sensor structure. As far

as we know, this work is the first to use a compact non-
coplanar sensor array for full 3D sound localization.

In order to objectively evaluate the performance of

the system, initially a linear search algorithm was used

when searching for the nearest neighbors in the 12-

dimensional input space. The obtained results were
used to evaluate the correctness and the performance

of the SHOSLIF procedure. SHOSLIF achieves a high
speed of retrieval due to its logarithmic time complex-

ity O(log(n)), where n is the number of cases learned

and stored as necessary (Weng 1996a) (Weng 1996b).

It was found that the results produced by SHOSLIF

had identical precision with that of the linear search,

while its performance time was nearly 5 times faster.

Theoretical problem and sensor

structure

Required by versatile applications such as the dimen-

sional hearing of a mobile robot, we cannot use room-

oriented solutions (Brandstein & Silverman 1997) (Ra-

binkin 1996), which typically use a large intersensor

distance, with all the sensors fixed in the room. In our

case the sound source will necessarily be located out-

side of the sensor structure. Furthermore the distance

to the source will generally be significantly larger than

the dimensions of the sensor structure. Most of the

sound sources that are of interest for the purposes of

sound localization are compact enough to be assumed
point-sources. If the source cannot be approximated
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by a point then the problem is different and for the

case of a source size comparable to the source-detector

distance, the problem is outside the scope of this work.

The same applies to the case of distinct sources of com-

parable intensity. To determine the minimum number

of sensors and their optimal placement, we need to look

into the geometrical aspects of the problem.

Parameters

From the front of the spherical acoustic wave, the two

main parameters that can be estimated are ITD and

ILD. Assuming that the speed of sound is constant,

which is true only for uniform media (density, tem-

perature, chemical and physical contents, etc.), ITD is

proportional to the difference of the distances between

each of the detectors and the sound source:

ITD ,-, rl - r2, (1)

where ri is the distance between the sound source and
the i-th microphone, i = 1, 2, and ,,, indicates propor-

tional (Fig. 1). Also, since the amplitude of the sound

corresponding in three dimensional space to a given

measured value of ITD or ILD. From equation (1) the
locus is represented by a hyperboloid of two sheets of

revolution with foci D1 and D2. Depending on the sign

of the difference, one of the sheets contains the source
location. Then from equation (2), for the matching

ILD, it is less obvious but it can be shown the locus is
a sphere (Guentchev 1997) (Albert 1966) (Bell 

(Sommerville 1929). The intersection of these surfaces,
defined by a number of detector couples, will determine

the solution. It is clear that, apart from some special

cases, with three couples the intersection is two points

located symmetrically on both sides of the plane pass-

ing through the three detectors. If four non-coplanar

detectors are used the intersection is a single point.

Since there are no restrictions on the source-detector

placement, an equidistant structure seems reasonable.

In the case of four sensors this suggests a tetrahedron

(Fig. 2). A mobile robot requires that the structure

of the sensor array be compact, while accuracy consid-

eration requires a large array. In the experiment, an

equal-side tetrahedron with a 20cm side was used.

Figure 1: Two detectors, D1 and D2, and the sound source
S.

wave, or the intensity of the sound, varies inversely

with the square of the distance, the ILD is propor-

tional to the difference between the inverse values of

the square of the distance. However if we take the dif-

ference we will be confronted with high-order terms in

the equations which will lead to unnecessary compli-

cation of the computations. A much simpler form is

provided by the ratio of the two values:

ILD ,~ r22 (2)

Both parameters in (1) and (2) can be estimated

from the signals, detected by a pair of microphones.

Number and placement of detectors

In order to determine the minimum number of detec-

tors necessary we will first have to consider the geo-

metric representation. For each couple of microphone

detectors, we can derive the locus of the source points

Figure 2: Placement of the 4 microphones on the array.

Methodology

As outlined above, efficient sound localization can be
performed after having extracted the necessary differ-

ential features. It can be shown (Guentchev 1997) that
the minimum number of detectors required to obtain

unambiguously a solution in three dimensional space

is four and that it is unique. In order to fully solve

the problem of three dimensional sound localization

two main steps need to be performed. First the chosen

features need to be extracted from the acquired sig-

nal. Then the actual sound location is estimated using

those features.

Feature Extraction

As discussed, the two features considered in this work
are ITD and ILD. Their extraction is based on the fact

that the signal detected by the different sensors bears
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a significant degree of coherency when produced by a

single dominating source.

Using the appropriate hardware, the acoustic signal

can be first converted to electrical signal (microphones)

and then to digital form (analog to digital converter

board). The digitized data is a sequence of values rep-

resenting the intensity of the sound, as picked by the
respective detector for a determined period of time.

A window of sufficient duration is used to define the
searchable domain. Some preprocessing is applied to

ensure satisfactory quality of the sample. For instance,

the amplitude of the signal’s envelope can vary over

time, e.g. with speech this corresponds to accents and

pauses within and between words. These sound blanks

contain little useful information and using them can

degrade the quality of the estimates. In order to avoid

this problem, the window is divided into smaller inter-

vals in which the variation of the signal is evaluated

(Fig. 3). This preprocessing selects only signals with

high variance for feature extraction. A measure of the

"efficiency" of the sample is returned by the procedure

as the percentage of used subframes in the whole win-

dow.

High wrlancm Low veHanca

Figure 3: Preselection according to signal variance

The next phase involves the use of a cross-correlation

procedure to determine the shift between the sampled

signals at each of the sensor couples. This gives a direct

measure for the ITD (Bub & Weibel 1995). We find the

peak of the cross-correlation function varying across a

range of possible time-delays (3). When j = 0, k varies
from 0 to n - 1 and when k = 0, j varies from 0 to

n-l:

Rrnax = maxj=o, o_<~<~ (Ri,j), (3)
k~0, O<j<n

where

Ri,j =

and where R,~a~ is the maximum cross-correlation, Xi
and Yi,i = 0,... ,N are the samples from both chan-

nels, N + n being the total number of samples in the

window and n the number of samples corresponding to

half of the maximum possible time delay.

The time-shift T will be proportional to the value of

j or k that maximizes the value of (3), more precisely
it is the product of that number and the digitization

interval (the inverse of the sampling frequency). The

value at the maximum is selected and is returned along
with a~ parameter reflecting the sharpness of the cor-

relation curve at the peak (Fig. 4). A combination

of those two parameters is used as a quality estimate

for the ITD ("score"). A high value of Rma~ is an

indication of good coherence of the signals from both

channels, which is true for a clear and compact sound

source but also is true for an even isotropic noise. The

second parameter, however, discriminates accurately

between those two cases and helps select only the ap-

propriate matches: a wide, flat correlation curve would

indicate a predominance of noise, and a narrow, sharp

curve - a clear, distinguishable sound source.

Figure 4: Typical cross-correlation curve with good sharp-
ness

We should note a very useful side effect, which is

closely related to the precedence effect in human audi-

tory perception (Hartmann 1990) (Hartmann 1989). 

case there are reflections of the incoming sound from
incident surfaces (echoes, reverberation (Champagne

& Stephenne 1996)) a secondary maximum will appear

in the correlation curve. However, with the presented

approach, it will be ignored because the coherency of

that signal will be significantly lower and thus it will

correlate less well (lower and wider peak).

Using the thus obtained information for the ITD, it

is possible to evaluate the ILD by computing an inte-

gral value of the signal energy from the shift-adjusted

signal. The value for microphone pair 1 and 2 is shown

in equation 4.

ftlj &(t)
ILD12 = S2(t + T) (4)

where $1 (t) is the signal picked from microphone 1 and

S2(t + T) is the signal picked from microphone 2, T is

the previously determined time shift and ti - tj is the
length of the sample window.

The estimates for ITD and ILD are considered reli-

able only if the efficiency and score of the sample are

71



satisfactory, i.e. above a predefined threshold. Thus

the described procedure not only extracts the needed

features but will also suggest when a sample can be

reliably used for localization and when it should be

discarded as useless.

Source localization

Once the ITD and ILD are extracted from the signal
picked up by the detector array, the next step is to

perform the actual sound source localization. The dis-

cussed disadvantages of the currently available meth-

ods can be avoided to a large extent by taking a

learning-based approach. As stressed above these fea-

tures uniquely define a solution and thus we have a

direct correspondence between the three dimensional

coordinates of the sound source and the extracted

ITD and ILD values. We should also note the ex-
treme complexity of the actual mapping function. It

is appropriate then to use learning as an efficient way

of approximating complex high-dimensional functions

(Weng 1996a). Being able to explicitly model the func-

tion would significanlty increase the accuracy of pre-

diction. However, in the current case, when consid-

ering all the presented variables, it is very difficult to

establish the form of such a model. Furthermore, the

model might strongly depend on the training environ-
ment and hence the generality of the performance ap-

plication domain will be seriously limited.

In the current case the input feature space X is

12 dimensional: 6 for ITD and 6 for ILD (one for
each combination of detector pairs). The output

space Y is 3-dimensional: azimuth, elevation and

radial distance. Thus the mapping is of the form

Xll, X12, X13, X14, X15, X16, X21, X22 ~ ~g23, X24 ~ X25, X26] --4"

[Ya, Ye, Yr]. The polar representation in output space

is used because it is known that the radial distance is
a very unreliable estimate.

The goal of the SHOSLIF recursive partition tree

(RPT) is to find the top k nearest neighbors 

O(log(n)) time, where n is the number of training
samples learned and stored. The SHOSLIF scheme

(Weng 1996a) (Weng 1996b) automatically generates

the RPT, which recursively partitions the input space

X into smaller and smaller cells. Each leaf node con-
tains exactly one training sample (xi, yl), where xieX

and yieY. The partition is based on automatically
computed principal component subspace or linear dis-

criminant subspace at each internal node of the RPT.

A distance-based weighting according to (5) is applied
to the yi vectors of the top-k matched leaf nodes to

give an interpolated output vector yeY, given input

vector xeX.

k1 Zw’Y 
(5)Y: k W

~i=1 i i----1

where w is the weighting function and Y0 is the nearest

neighbor:

wi = (6)
where a ~ 1.

Experimental setup and results

In order to test the methodology, an experimental

setup was used to perform a number of tests. A set

of four identical Lavalier microphones is placed at the

tips of a solid tetrahedron with 20cm side (Fig. 2). The

signal from the microphones is amplified by four mod-

ular microphone preamplifiers to bring the signal level

in range. It is then supplied to an analog-to-digital

converter board mounted in a personal computer. The

software is designed to visualize, train, recognize and

run various sound localization related tasks. Samples

were taken from various points with known 3D coor-

dinates, some were used for training and others for

testing. The results were analyzed with linear search

and the performance of SHOSLIF was evaluated.

Experiment and results

The dedicated hardware was built from off-the-shelf

consumer and industrial quality items. All experi-

ments were held in the Pattern Recognition and Im-

age Processing laboratory of the Department of Com-

puter Science, which is hardly suitable for high preci-

sion acoustic experiments. The test space is located in

the middle of the laboratory, in between cubicles with

computers and reflecting, and absorbing surfaces of ir-

regular shape. The number of devices producing strong

noise of different frequencies and levels is above 20.

Often laboratory members would speak softly in the

background while samples are being taken for training

or retrieval. This highly problematic environment was
close to the real world environments, in which a typical

sound localization device would be intended to work.

Experiment At the training stage a continuous

sound, originally produced by a human speaker utter-

ing a short sentence, is reproduced using a hand held

tape recorder, from a set of previously defined loca-

tions (Fig. 11). Without significant loss of generality,

the span of the training grid was set to an arbitrary

section of 3 × 3 × 2.1 meters, with the microphone array

in the middle of one of the sides. The density is linear

in Cartesian coordinates with a granularity of 0.3m.

However, only 237 of the thus defined 700 points were
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used for training. They were selected to simulate an

uniform angular density and ten samples were taken

from each of those points. The approximate angular

density of the training points was around 15°. Thus

the angular span of the training area was about 180°

in azimuth and a little less than that in elevation. The
site was the PRIP Laboratory where the acoustics is

very challenging and the background noise was signifi-

cant. At this time a room with better acoustic proper-

ties (e.g. anechoic chamber) was not available but 
it was mentioned earlier, this type of environment is

close to the one in which an actual sound localization
device would be exposed to.

At the recognition stage the same device produced
the original sound, however the performance of the sys-

tem was tested with other sources, as well. A human
speaker would produce variable results. One important

observation was that the quality of the sound, which

directly influences the reliability and the accuracy of

recognition, depended on the amount of useful infor-

mation (ratio of sounds vs pauses) but mostly on the

compactness of the source - the aperture of the mouth.

The system can be started to collect 0.5s samples

and provide location estimates based on each of them

or to store them for further analysis. Test samples

from 79 points on the grid, but different from the ones

used for training, were taken. They were analyzed of-

fline with the specially designed software. Estimates

for the location of each of the test points were thus

produced and recorded. They were compared to the

known actual values of the three dimensional coordi-

nates and the error was computed as the difference

between the actual and estimated value for the angles,

and the ratio of that difference to the actual value, for
the radial distance.

The employed algorithm uses two parameters for fine

tuning. One is the relative weight of the two extracted

features: ITD and ILD. Because of the importance

of the ITD, only the ILD was multiplied by a vari-

able factor, called scaling on ILD~ thus increasing its
weight (the original values being very low numbers) 

needed. This allows us to estimate the relative influ-
ence of those two parameters on the accuracy of the

results. A low value of this parameter would mean ne-

glecting the ILD (a value of zero means only ITD are

used), while a higher value indicates a predominance

of the ILD. Their relative weight is practically equal

for a value of scaling on ILD of around 13. The other

parameter is the weight coefficient a in the interpola-

tion of the retrieved nearest neighbors (6). A low value

of a would indicate that all considered nearest neigh-

bors are almost equally weighted (for a = 1 we have

averaging) while a big value of alpha emphasizes the

role of the nearest neighbor.

-. 15

Scaling on ILD 0
WeighOng coefficient

Figure 5: Distribution of error values for Azimuth

Figure 6: Distribution of standard deviation for Azimuth

It is known that ITD and ILD are frequency depen-

dent, e.g. ITD uses predominantly the low frequencies,

while higher frequencies are the only ones that can be

used for estimating the ILD. A preliminary signal fil-

tering can be employed to leave only the useful frequen-

cies when determining each of those two parameters.

The actual response of those two filters can be another

subject for fine tuning. However, the real-time imple-
mentation requirements for this project impose serious

limitations on the amount of preprocessing that can

be performed and thus spectral analysis of the signal
is abandoned at this stage.

Results The results obtained in this manner were

used to study the above mentioned relations. A num-

ber of plots is used to show some observed trends.

Fig. 5 shows how the relative weighing between ITD
and ILD affects the accuracy of estimation of the az-

imuth, Fig. 7 - of the elevation and Fig. 9 - of the dis-
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tance. The respective standard deviations are shown

on Fig. 6, Fig. 8 and Fig. 10. The horizontal axes are

the scaling on ILD - the coefficient by which ILD is

multiplied when considered for estimating the nearest

neighbors, and the weighting coefficient a, which indi-

cates how much influence the further neighbors have in

the interpolation (see equation 5). The range on the
axes was chosen equal on all plots for compatibility

and the direction of the axis, representing the scaling

on ILD, was inverted for the distance plot so the sur-

face can face the viewer. The distance plot shows a

trend of a descending error value but its further extent

was not followed because the standard deviation is in-
creasing for those same values, rendering the low error

values unreliable. In these trials a number of KNN=7

(nearest neighbors) was used. The values of ILD are

theoretically unbound hence it is impossible to get a

correct number for the balance of relative weights of

ITD and ILD but an empirically estimated value of

scaling on ILD of around 13, for which their weight is

approximately equal, was found.

We can notice how the angular error is low when the

relative importance of ITD is high (scaling on ILD is

low). The minimum, however, is registered for a non-

zero value of scaling on ILD. We can make the contrary

observation for the error in distance. It becomes clear

from those observed trends that when it is necessary

to estimate both direction and distance to the sound

source, both ITD and ILD should be taken into ac-

count. A compromise value of scaling on ILD would
ensure aceptable error both on angular and radial es-

timates.

The best precision measured for points located

within the sector designated for training but between

the grid points used for training, was estimated at

around ±2.2° in azimuth, ±2.8° in elevation and ±19%
in distance. The superresolution is achieved by the

KNN interpolation while the lower performance in dis-

tance is expected for such source - sensor placement. It

should also be noted that the specific task the system

was tested for - indicating the actual location of the

sound - is very difficult for humans in such situations,
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as well.

A sample set of error values, used to produce a single

point in the average errors plots is presented in Table 1.

User Interface allows the user to pass all necessary pa-

rameters to the program, to select the various options,
as well as to view the waveform of the scanned signals.

Table 1: Error values for Scaling on ILD -- 11 and weight-
ing coe~cient -- 1 , A=Azimuth [o] , E--Elevation [o] ,

D=Distance [%]

A E D A E D A E D
2.0 6.0 17.45 1.0 1.0 44.25 1,1 0,3 22.16
1.1 6.4 7.70 1.7 5.9 38.35 1.4 1.0 19.54
1.0 1.0 39.46 3.0 2.0 34.02 4.9 0.6 6.95
12.0 0.0 0.00 1.0 4.0 40.24 3.0 3.0 29.82
4.0 2.0 11.82 1.0 4.0 40.24 8.9 3.3 31.68
0.0 10.0 25.37 i.I 8.0 14.55 0.0 2.1 22.08
2.6 3.3 17.22 2.0 2.0 19.14 7.0 2.0 56.67
0.0 0.7 25,35 6.7 0.9 17.04 9.0 1.0 45.56
3.0 4.0 23.95 5.0 2.0 19,79 2,0 3.0 30.86
3.0 4.0 23.95 1.7 3.9 26.79 6.6 4.0 29.94
0.0 1.1 24.45 5.7 1.1 7.72 3.0 2.0 41.13
3.0 0,9 14.07 0.9 4.4 2.83 2.0 3.0 30.86
1.4 2.9 11.51 7.7 2.9 16.54 0.0 0.0 3.89
1.3 0.4 11,64 5.3 3.1 1.98 0.0 0.0 50.34
0.1 2.7 10.45 3,1 1.1 9.45 6.4 5.9 0.61
ll.O 3.0 32.09 7.0 0.0 8.99 5.4 1.3 22.39
0.0 5.3 3.38 2.4 5.6 7.70 0.7 0.9 4.52
9.0 1.0 45.56 3.6 3.1 7.05 3.0 1.0 39.36
2.0 9.0 37.70 0,0 5.1 25.36 0.9 4.6 13.76
0.3 5.1 51.18 3.0 0.0 26.72 2.4 2.3 13.80
3.0 2.0 41.13 5.1 8.4 17.51 0.7 4.4 13.60
0.3 1.7 22.14 0,I 1.0 4.81 1.O 4.0 23.59
9.0 4.1 57.37 2.3 2.3 6.60 4.0 0,3 14.68
1.1 2.4 69.98 0.9 3.3 46.99 6.0 3.0 12.55
1.1 4.6 19.53 8.0 3.0 22.56 4.7 2.0 7.40
1.0 1.0 44,25 1,4 0.3 1.99 4,6 1.1 12.31

Program performance and details

For accuracy testing and parameter fine tuning a de-

terminsitic linear search algorithm was implemented to

find the nearest neighbors in input space. The results
obtained in such a way were used to estimate the per-

formance of the SHOSLIF procedure. The speed was

confirmed to be considerably faster with SHOSLIF.
As timed on the test PC, a single retrieval from the

tree, with 2370 test samples, took 2.5ms on average

for SHOSLIF, versus 15ms with the linear search (see
table 2). The accuracy was comparable to that of the

linear search. The timing for the preprocessing indi-

cated an average of 230ms which, although being con-
siderably longer than the retrieval time, is still shorter

than the signal scan time of 500ms (single window). 

other words the algorithm, as implemented, is twice as

fast as needed for real time application.

Table 2: Comparative timings of vaxious routines

I PrePr°cessing I Linear Search ] SHOSLIF] 230ms 15ms 2.5ms

The program was written in C++ and is object ori-

ented with the exception of the C code, adapted from a
previous implementation of SHOSLIF. The Graphical

Figure 11: Training the system

Implementation restrictions

As mentioned before, the system performed well de-

spite different unfavorable factors, like background

noise, reflections, unreliable sound sources, etc. How-
ever, it should be noted that although no exact mea-

surements have been performed, these and some other

factors would influence its reliability and accuracy de-

pending on their strength. In most experiments the

acoustic noise was kept at a S/N ratio of around 20dB

(as estimated visually from the displayed waveform)

but in real life situations the S/N ratio can be as high

as 0dB (noise is as strong as signal). Another problem

would be multiple sound sources. In the case of signal

reflection, the intensity of the reflected signal would

be significantly weaker and thus it will be ignored by

the preprocessing routine. However, with secondary

sources, the intensity of the sources can be compara-

ble and this might lead to jumping between the two

sources and even complete wash-out of the correlation

curve and thus incorrect localization.

Most of the experiments were performed with a

sound source steadily fixed in space. A moving source

would present a challenge for the current implementa-

tion. With the current windowing approach, a source

movement would be similar to having a source of a
larger size (aperture), which would produce a lower

signal correlation. The performance with a shortened

window has not been studied extensively at this point.
In a similar way an influence on the accuracy of detec-

tion was observed when varying the size of the aper-
ture of the sound source. For instance sounds pro-

duced with a wide open mouth would yield a higher
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error value. An accurate study of this relation needs

to be performed in order to determine the correct way

of compensating the increase in source size.

One of the main disadvantages that training presents
is the difficulty for a learning system to perform in

unknown environments, compared to the environment

in which it was originally trained. No exact measures

have been taken to establish the actual error values
in a new environment but many observations indicate

that the system can perform within some reasonable

expectations.

Another obvious limitation is the absolute distance

from the detectors to the sound source. Because of
the physical characteristics of sound propagation in the

air, the coherency of the sound waves decreases signifi-

cantly with distance: non-linear frequency absorption,

distortion, fading, are just a few of the factors. A good

example is the noise, coming from the engines of air-

planes high in the sky - it is very difficult to establish

the location of the source, even after turning around

several times (another factor intervenes here, too: the
relatively slow speed of sound introduces a serious de-

lay, relative to the optical image, i.e. the actual loca-

tion of the object). For the presented implementation

distances of just 5 to 10 meters would already pose a

serious problem.

Conclusions

Discussion

A learning-based method for determining the three-
dimensional location of a sound source is presented.

Two of the most important features used by humans in

sound localization are used. Their extraction is based
on a fast and efficient algorithm that is capable of not

only computing those parameters with satisfactory ac-

curacy but also provides a very useful means of evalu-

ating the usability of the taken sample. The three di-

mensional localization is performed by a learning tech-

nique. The applicability of the proposed implementa-

tion is more general than the majority of the currently

available solutions, in that various features can be used
without the need to explicitly model the relationship

between feature values and the 3D location estimates.

The method needs to store a large number of samples

(over-learning is avoided by SHOSLIF by only stor-

ing samples that are necessary). In order to achieve

good accuracy the training density needs to be close
to the expected resolution. This can lead to the need

of taking samples from hundreds of three dimensional

locations, and to ensure stability, several samples from
each point need to be taken. Thus the total number

of training samples can some times approach tens of

thousands. However, the logarithmic retrieval makes

the system easily reach real-time response speed.

The originality of this work is in the versatility of

its application domain. First the lack of spatial con-

straints allows for a wide range of applications. The

use of a compact sensor array makes it suitable for

mobile robots, embedded devices and other human-

machine interaction apparati. The simultaneous use of

ITD and ILD as related attributes is another advantage
because of their complementary character. It is made

possible by the learning approach, also unique for this

range of problems. The employed non-coplanar array

with a minimal number of sensors is another distinctive

feature of this work.

Future research

Some results suggest several directions for future work.

The observed dependence of the "quality" of the sound

on the size of its source (aperture) is an important

issue because of the typical application domain of

this method - human voice. Because of the differ-

ent size of the mouth of different people and because

of the inherent variations in the ways of pronounc-

ing phonemes, the detectability of human sources can

suffer severely. The chosen approach in preprocessing

of captured sounds could be revised to reflect the ex-

pected variations in the source size.

Another direction for further study is the impact of

sound source movement over the selected methodology.

The relation between the speed of source movement

and the discretization interval (the time segment, used

to extract the features) can be adjusted so that the
source movement remains relatively slow but this ap-

proach will inevitably result in loss of accuracy. Other

techniques for compensating the source movement can

be developed to efficiently handle this problem.

The issue of multiple sound sources also should be

studied in more details. With the present approach

the presence of a second sound source is ignored but

it degrades the quality of localization for the primary

source.

It is also necessary to establish the degradation of

performance when the system is put in an unknown

environment. When training the system no assump-

tions are made about the acoustics of the environment

and the ability of the system to overcome obstacles like

noise, reflections, etc., could be due to the environment

specific training. It is interesting to study the relation

between the characteristics of the environment and the
quality of sound localization.
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