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Learning-based tone mapping operator for efficient

image matching
Aakanksha Rana, Student Member, IEEE, Giuseppe Valenzise, Member, IEEE, Frédéric Dufaux, Fellow, IEEE,

Abstract—In this paper, we propose a new framework to
optimally tone map the high dynamic range (HDR) content
for image matching under drastic illumination variations. Since
tone mapping operators (TMO) have traditionally been used
for displaying HDR scenes, their design is suboptimal when
used for computer vision tasks such as image matching. We
address this sub-optimality by proposing a two-step framework,
consisting of: a) a luminance-invariant guidance model based
on a Support Vector Regressor (SVR) to optimally adapt the
tone mapping function for image matching; and b) an energy
maximization model to generate appropriate training samples
for learning the SVR. At each step, we collectively address both
stages of keypoint detection and descriptor extraction in the
feature matching framework. By locally altering the intrinsic
characteristics of the tone mapping function, the learned guid-
ance model facilitates the extraction of local invariant features
in the presence of illumination variations. We demonstrate that
the proposed TMO significantly outperforms perceptually-driven
state-of-the-art TMOs on a dataset of HDR scenes characterized
by challenging lighting variations, such as day/night transitions.

Index Terms—High dynamic range, tone mapping operator,
image matching, stochastic gradient descent, machine learning.

I. INTRODUCTION

From acquisition to display, several significant develop-

ments have been made in High Dynamic Range (HDR) im-

agery in the last couple of decades [3]. It has been successfully

applied to several multimedia technologies, including video

coding [4], inverse tone mapping [5], saliency detection [6],

data hiding [7], and quality assessment [8], but also to fields

such as automotive or spacecrafts imaging [9]. HDR enables to

capture a wider dynamic range and color gamut, encapsulating

a vast amount of information. In computer vision applications,

for instance, the performance of existing algorithms degrades

substantially with drastic lighting variations [10] when the

scenes are captured using traditional low dynamic range (LDR)

images/videos. In such scenarios, a high contrast-preserving

technology like HDR can be of potential interest as it enables

to draw on subtle, yet discriminating details present both in

the extremely dark and bright areas of a scene [11,12], which

would otherwise get lost.

In this paper, we study how HDR can be employed to solve

one fundamental problem of image matching [13]. The latter

lies at the basis of many high-level multimedia applications
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et Systèmes (L2S, UMR 8506), CNRS - CentraleSupelec - Université Paris-
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such as image/video search [14,15], classification [16] and

localization [17]. Generally, it relies on the matching of dis-

tinctive features that are extracted from key (interesting) image

locations and are invariant to geometric (scaling, rotation, etc.)

and photometric variations [13,18]. Such algorithms have been

designed and tuned for LDR images, which are represented

using gamma-corrected 8-bit integer representation and ap-

proximately linear to human perception.

HDR images, in contrast to LDR, consist of real-valued

pixels which are proportional to the physical luminance of the

scene and are expressed in cd/m2. As a consequence, HDR

linear values can vary up to 105cd/m2 on a sunny day [3],

and are inappropriate when used with LDR-optimized features

extraction pipelines [12,19]. Our previous studies [11,19] on

keypoint detection and image matching demonstrate exper-

imentally that using HDR linear values significantly biases

the localization of keypoints towards the extremely bright

areas. In such scenarios, a simple solution introduced in

recent studies [1,2,11,12,19,20] is to convert HDR into an

adequate LDR representation using a Tone Mapping Operator

(TMO) [9], and then using conventional features extraction

pipelines to perform image matching.

Classical TMOs have been designed to convert a HDR

content into a suitable 8-bit LDR representation for display

purposes [5,21,22]. For instance, a popular technique involves

the compression of the estimated luminance (e.g., using edge

preserving filters such as bilateral [23] or in the gradient

domain [24]) from the HDR scenes in order to produce a

visually pleasing tone mapped output. Generally speaking,

existing TMOs are oriented towards preserving human-vision

attributes such as brightness and perceptual contrast [3,9,25].

Differently to human visual perception, image matching

is a task for machines. Its goal is not to yield a satisfying

quality of experience, but rather to extract unique signatures

from image locations which can be matched when the same

scene is captured under different transformations. In contrast

to perceptual attributes [26], such signatures are specifically

designed for invariance to geometric and photometric changes.

As a result, existing perceptually motivated TMOs might be

sub-optimal for image matching techniques.

Several recent studies emphasize the necessity [11,12,20]

and explain the requisites [27] for designing TMOs which

are optimal for individual tasks such as keypoint detection.

We made the first contribution in this direction and designed

a detector-optimal TMO [1] controlled by a guidance model

which is learned to understand the keypoint’s locally extremal

and covariant characteristics. Similarly, we also introduced a

descriptor-optimal TMO where the guidance model is mainly
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trained to facilitate the invariant densely-sampled descriptor

extraction [2]. However, both TMOs in [1,2] only handle one

aspect at a time, namely, keypoint detection or descriptor ex-

traction. This is inefficient in practice for the image matching

task, e.g., a poor detector degrades descriptor matching [13].

Therefore, the main contribution of this paper, compared to

our previous work, is to optimize TMO for the full features

extraction chain. To our knowledge, this is the first work

targeting this problem on HDR content.

Notice that optimizing a TMO considering keypoint de-

tection and description concurrently is not trivial, as the

corresponding design objectives are generally different and

somehow contrasting. For instance, an optimal TMO for

detection aims to produce covariant feature points, while

TMOs optimal for description should guarantee some form

of invariance to transformations over a local neighborhood. In

addition, optimal detection requires an accurate localization

of keypoint position, while optimal description is a patch-

level process. In our previous work [19], we have showed

that TMOs that are optimal for detection are not necessarily

so when the full matching chain is considered.

In this paper, we address this problem and design an optimal

tone mapping operator (OpTMO) to enhance the detection and

matching of features extracted from HDR scenes captured

under complex real-world illumination transitions. To this

end, we initially introduce a tone mapping function which

can be locally modulated by spatially varying (pixel-wise) its

parameters as a function of the HDR content characteristics.

Afterwards, we propose a guidance model to map HDR-based

local characteristics features (detection and description-based)

to a low-dimensional TMO parameter space, by means of a

support vector regressor (SVR) [28]. In order to train this

SVR-based guidance model, we further address the problem

of a missing standard dataset. To this end, we compute the

ground-truth parameter maps on a dataset of HDR scenes

captured under drastic illumination variations. Specifically, we

obtain per pixel ground-truth TMO parameters by solving

an optimization problem using a stochastic gradient descent

(SGD) [29] approach, which simultaneously ensures: 1) stable

keypoint detection; and 2) keypoint description robust to illu-

mination changes. Since these two objectives are, in general,

non differentiable, we also propose a proxy cost function

which enables to compute the required derivatives and obtain

an optimal solution.

We formulate the proposed optimization framework to op-

timize tone mapping with respect to a popular corner detector

and a gradient-based descriptor. Nevertheless, the very same

design principles can be used with other detectors/descriptors.

In this paper, however, the selection of detector, descriptor and

the SVR-based regressor model has been motivated by state-

of-the-art baselines [1,2]. We compare our proposed model

with state-of-the-art TMOs using different features extraction

schemes. We evaluate the performance of OpTMO at both

detection and description levels. The results show consistent

gains in term of overall matching scores [30] and mean average

precision [13] across different illumination conditions. In

addition, our results show that the choice of detector/descriptor

is not critical, i.e., the obtained tone mapped images lead

to improved matching performance even if a different detec-

tion/description approach is used.

In a nutshell,

• We propose a novel, locally adaptive, image-matching-

optimal TMO which is guided by the SVR based predic-

tor model. The proposed model collectively addresses the

detection and description stages of the features extraction

pipelines.

• We introduce an efficient method to generate appropriate

training samples for learning the prediction model. Addi-

tionally, we propose a differentiable surrogate objective

function which builds on the detection and description

level characteristics simultaneously.

• We evaluate our proposed TMO against the state-of-the-

art methodologies. Furthermore, we show an applicative

scenario of object localization.

The paper is organized as follows. In Section II, we provide

a brief overview of the background information. In Section III,

we detail our proposed approach. We present experimental

results and analysis in Section IV. Finally, conclusions are

drawn in Section V, along with future research directions.

II. BACKGROUND AND RELATED WORK

A. HDR Imagery for Computer Vision

The literature of HDR imaging applied to computer vision

problems is not very vast. It is only recently that HDR imaging

has been considered in computer vision applications such as

keypoint detection [11,12,31], image matching [19], video

surveillance [32,33] and photogrammetric applications [34].

Suma et al. [20] presented the added value of using HDR

imagery and evaluated the performance of different TMOs

in the context of photogrammetric applications. Rerabek et

al. [35] considered the impact of HDR content on privacy

protection. In [36], Korshunov et al. evaluated TMOs for

face recognition applications. [31] investigated the enhanced

number of local invariant features on detailed architectural

scenes in HDR over LDR images. In [37], an interesting

scenario of enhanced people detection and tracking in indoor

HDR scenes is presented.

One commonality amongst all these studies is the use of

existing perception-based TMOs. These techniques have been

directly used to convert HDR images to LDR. In [11,19], we

observe that the performance of such operators varies with

the content as TMOs are scene-dependent [3]. In general,

in those studies, no single TMO has been found to be the

best for any of the considered computer vision tasks. In [27],

we further investigated this problem and studied strategies for

designing an optimal TMO for keypoint detection task. Our

results confirmed that optimizing TMO parameters with re-

spect to task-specific measures can improve features extraction

performance.

B. Tone Mapping Operators

Tone mapping operators enable to compress the dynamic

range of an HDR image to LDR, and have been mainly

developed to display HDR pictures on conventional LDR
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displays [21]. TMOs are broadly classified into global ap-

proaches, where a compression function is applied globally

to all the image pixels [21,38], and local techniques, where a

tone-mapped pixel depends on the values of neighboring pix-

els [22,23]. In general, global TMOs such as DragoTMO [38],

which maps the HDR content based on adaptive logarithmic

scaling, preserve the overall perceived contrast of the original

scene. Conversely, local TMOs, such as ChiuTMO [39] and

BilateralTMO (BTMO) [23], are better in conveying local

structure by normalizing the estimated luminance component

using filters (e.g., Gaussian or the edge preserving bilateral).

Other popular local TMOs includes ReinhardTMO and Man-

tiukTMO [21,22], which yield high visual quality output with

appealing brightness and contrast.

Traditionally, the performance of these TMOs have been

widely studied from a perceptual point of view [25,40,41],

generally for display applications. However, in this paper, we

discuss TMO for the fundamental computer vision problem of

image matching where the input is traditionally assumed to be

an LDR image.

Fine tuning of parameters to enhance the perceived visual

quality of tone mapped image has been previously explored in

the TMO literature [3,42]. Mostly, such parameters were tuned

either by a trial-test or grid-search based approach to yield

favorable outputs for a wide variety of scenes [21–23,39]. Al-

though some works even propose to automate the parameters

selection [43], the tuned values are applied globally over the

scene. However, these methods cannot be used for optimizing

a TMO for tasks such as local features extraction where the

parameters needs to be adapted spatially to maximize the

desired local responses such as extremal cornerness response

for keypoint detection or detailed gradient-level information

for descriptors. This is especially important to cope with

local illumination changes. Note that most existing features

extraction algorithms fail in practice under drastic non-affine

transformations such as day/night change [44].

C. Local Invariant Feature Extraction

Feature extraction algorithms play a critical role in several

computer vision pipelines. Essentially, these algorithms com-

prise two stages, i.e., keypoint detection and descriptor ex-

traction. Keypoint detection methods look for covariant salient

locations in a scene that can be repeatedly detected when the

latter is undergoing drastic geometric and photometric trans-

formations [18,45,46]. Later, descriptor extraction algorithms

are applied to extract discriminative invariant signatures from

these selected keypoint locations [13,47–51]. In this paper, we

build an illumination invariant model that provides pixel-wise

optimal parameter maps for the full features extraction chain.

a) Keypoint Detection: the literature on keypoint de-

tection algorithms has been extensively explored in the past

decades. Keypoint detection algorithms, in general, have been

categorized in corner and blob detectors [13]. In this paper, we

consider the most popular and widely used keypoint detection

schemes: Harris [46], FAST [52], BRISK [53], SURF [54]

and SIFT [18]. These methods are computationally fast and

are widely used for real time applications such as object

localization and tracking.

b) Descriptor Extraction: descriptor extraction algo-

rithms have gone hand-in-hand with keypoint detection and

have been thoroughly studied (see, e.g., [13]). In this paper,

we consider the following features extraction schemes as

previously used in [19,20]: BRISK [53] and FREAK [55]

(corner based), SIFT [18] and SURF [54] (blob based).

BRISK [53] is a computationally efficient scheme made up

of a fast multi-scale detector and a binary descriptor. Its

detection module is an extension of corner-based detectors

such as FAST or Harris. The BRISK descriptor is a binary

string computed by brightness comparisons on circular sam-

pling patterns around the detected regions. We also consider

FREAK [55] which is composed of a Harris corner detector

and a binary descriptor. Similar to BRISK, FREAK also uses

a concentric rings arrangement, but the sampling grid is non-

uniform as inner circular rings have exponentially more points.

The third extraction scheme is SIFT [18] which is a classical

algorithm consisting of a blob keypoint detector (based on

difference of Gaussians) and a gradient-based descriptor. The

SIFT descriptor is a 128-dimensional histogram formed by

concatenation of the image gradients computed on 4× 4 grid

spatial neighborhood around the detected keypoint. Lastly, we

use SURF [54] features extraction scheme which is composed

of a computationally efficient blob type detector mainly based

on the Hessian matrix approximation, along with a descriptor

computed as the sum of the Haar wavelet response, around

the point of interest.

D. Learning models for TMO and image matching

In the case of image matching, a key problem in learning

a tone mapping is generating a proper training set. In [1],

we were the first to address this problem and designed an

optimization model which generated parameter maps optimal

for a keypoint detection task. However, the generalization

of such optimization model for an image matching task is

not straightforward as each stage targets different objective.

Specifically, there are two major challenges: (1) designing a

differentiable objective function encompassing both key stages

of the features extraction pipeline, (2) acknowledging the

keypoint localization dependency of the description stage.

Similar problems can be observed in designing learning-

based features extraction pipelines. In [44], authors propose an

end-to-end features extraction system by learning each stage

individually with their respective similarity-based objectives.

However, they train the models in a sequential manner, i.e., no

combined/collective objective is designed addressing each

stage. This approach is appropriate to learn the features extrac-

tion pipeline. Conversely, our target is to obtain optimal TMO

parameters while maximizing the efficiency of such pipelines.

Hence, a similar paradigm of sequential objectives cannot be

directly applied in our problem. Furthermore, the detection

and description stages accuracy measures, namely repeatability

rate (RR) [45] and mean average precision (mAP) [13], are

two non-differentiable entities and hence, cannot be directly

employed as objective functions.

Therefore, in this paper, we, firstly, employ an alternate

approach to use a proxy differential objective function to
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Fig. 1: Optimal Tone Mapping Design. The tone mapping function is
modulated by the SVR-based guidance model, which predicts optimal
parameter maps using the characteristic features.

mimic the desired behaviors. Secondly, we define an objective

function with two weighted terms subjected to maximize

the stability of detection response maps while enhancing the

similarity of the descriptors. Additionally, we also propose to

address the keypoint localization by applying a constraint on

the description term.

III. OPTIMAL TONE MAPPING FOR IMAGE MATCHING

Fig. 1 outlines the general framework of our proposed

optimal TMO for image matching. It primarily consists of a

tone mapping function ϕ which maps the linear-valued HDR

content of an image I to an output LDR I ′. Secondly, the

framework consists of a guidance model where a learned

SVR predicts an optimal parameter map θ based on local

HDR content characteristics. In the following subsections, we

discuss the design of our proposed framework and how to

generate training data for the SVR.

A. Optimal Tone Mapping Design

Let ϕ be a tone mapping function which maps the linear-

valued HDR content of an image I to an output LDR I ′. In

general, for each image pixel x, the TMO operates as:

I ′(x) = ϕ(I(x),θ), (1)

where I(x) ∈ <, I ′(x) ∈ [0, 255]. The θ represents a set of

parameters, given as θ = {θ1, θ2, .., θh} where h is the number

of parameters.

The parameter count h typically varies depending on the

TMO [21,22,38,39]. One example is ChiuTMO [39], where

θ contains one parameter only, i.e., the variance of the

Gaussian kernel which control the estimation of global lighting

component from the scene. Other examples include sharpening

constant in ReinhardTMO [21] and range and spatial variance

in bilateral filtering based TMO [27]. Conventionally, each of

these parameters is just a scalar value and is often tuned glob-

ally by cumbersome trial-test procedures to produce visually

pleasing output images.

In this paper, we not only propose to exploit the potential of

local tuning of these parameters for image matching problem

but also to automate them by proposing a learning mechanism.

We assume the function ϕ as an extension of existing tone

mapping functions which can be modulated spatially by adapt-

ing their parameter θ locally (pixelwise). We will define these

adaptive parameters as parameter maps, as shown in Fig. 2.

The basic idea of this work is to facilitate the local adaption

of the function ϕ at sparse keypoint locations so as to further

ease their identification, and also to preserve the unique

gradient-based local signature in the surrounding of a region,

so as to aid the extraction of invariant descriptors.

To automate the prediction of these optimal set of parameter

maps, we propose to learn a model by employing SVR [28],

which minimizes the non-linear problem of predicting θ by

linearly separating the input samples in a high-dimensional

space by using kernel mapping. The SVR model is learned

while complying with the following three desired constraints:

(1) to distinguish and localize a keypoint from its neigh-

borhood locations; (2) to preserve local gradient orientation

patterns around the keypoint; and (3) to bring invariance (as

much as possible) to non-affine lighting variations in physical

world scenes.

B. Generation of Training Set

In this section, we address the problem of generating an

adequate ground truth for training the SVR-based model. We

aim to find such ground truth parameter maps θ, which result

in efficient image matching (i.e., mAP score) for a scene which

undergoes drastic lighting variations, as shown in Fig. 2. In

this section, we, therefore, formulate an objective function f ,

which we minimize over the θ to yield the optimal parameter

maps. The proposed total energy f represents the difference in

the image matching pairs. We quantify this difference in terms

of both keypoint detection and descriptor extraction stages,

depicted as ‘Detection Response’ and ‘Description’ in Fig. 2.

Finally, we propose to optimize the objective using the SGD

based optimization method to obtain the optimal θ.

In the following, we first discuss the formulation of the

objective function f . Then, we detail the considerations with

respect to image matching components in view of designing

the objective function f . Finally, we detail the SGD-based

method to optimize the objective to obtain the optimal θ.

1) Objective Function: We aim to optimize θ to tone map

an image for the full features extraction pipeline. Therefore,

the objective function should consolidate each stage of the

features extraction pipeline i.e., to locate and extract the fea-

tures. Henceforth, we introduce two energy terms dedicated to

keypoint localization (Edet) and descriptor extraction (Edes),

respectively and define combined objective function as:

minimize
θ

f(θ) = Edet(θ) + Edes(θ), (2)

where each energy term is computed over a scene consisting

of N HDR images with lighting variations as shown in Fig. 2

(a). We denote P =
{

(1, 2), (2, 3), . . .
}

the set of K =
(

N
2

)

pair combinations of N images. The Edet term aims to ensure

the covariance of the corner response maps. Conversely, the

Edes term helps in retaining the invariance of the discrimina-

tive patterns around the key locations in the image pairs when
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undergoing drastic transformations. Both terms are detailed as

follows:

2) Edet: To ensure efficient matching, we observe that it

is important to enforce the similarity in detection response

maps [27]. This is mainly because highly similar response

maps increase the probability of detection of keypoints at

similar locations and thereby enhance the probability of correct

matches.

We define the detection similarity term Edet, by summing

the penalty computed from each pair in the set K, as:

Edet =
λdet

K

∑

{i,j}∈P

C1(Ri(θ),Rj(θ)). (3)

For each sample pair {i, j} ∈ P , we penalize the response

maps dissimilarity by a logistic cost function given as:

C1(i, j) = log(1 + exp(εc −
〈

Ri · Rj

〉

), (4)

where εc is the penalty control factor, Ri and Rj are the

response maps corresponding to the images i, j and 〈·〉 denotes

the scalar product. The selection of R is detailed later in this

section.

Inspired by the max-margin formulations applied to re-

trieval [15] or classification tasks [56], we use the logistic

function as the penalty in our detection term. It is a smooth

differential operator and ideally penalizes less if there is high

similarity and vice-versa. Note that the term Edet is somewhat

similar to the one we proposed in the detector optimal TMO

in [1]. But, in this paper, we include an additional factor λdet

which weights the penalization corresponding to detection.

a) Selection of R: From handcrafted [45] to deep-

learning [44] era, the concept of corner-like keypoint detection

methods has gained popularity for low-latency vision tasks due

to high speed, less computational complexity and competitive

accuracy. By definition, corners exhibit low correlation with

neighboring pixels in all directions. The most basic and widely

adopted corner detectors [46,57,58] localize the extrema pri-

marily by computing the per pixel gradient autocorrelation

matrix, given as:

M =

[

I2x Ixy

Iyx I2y

]

, (5)

where each component represents the directional derivative.

Thereafter, different methods are proposed in the literature

to localize the extrema “keypoints” [45]. In this paper, we

use [46] which describes the response for each pixel x without

directly computing the eigenvectors of M as:

R(x) = det{M(x)} − k · tr{M(x)}2, (6)

where k is tuned empirically.

Similar to the baseline [1], we employ the detector response

in Eq. (6), mainly because it is based on the popular structural

matrix M , which is simpler to differentiate than alternative

approaches, thus aiding in backpropagation. Note that alternate

detection methods could also be used, but our choice has been

made entirely based on the computation complexity and ease

of use in backpropagation.

3) Edes: The energy term Edes aims to penalize the dis-

similarity of the descriptors extracted from the tone mapped

images. Previously in [2], we proposed a densely sampled

patch-based method where a model is learned to predict global

parametric values for an individual patch. Hence, not only the

method optimized θ for a patch globally, but it also lacked the

consideration of keypoint localization. In contrast, the image

matching pipeline additionally relies on the localization of the

descriptors. Hence, in this paper, we argue that it is important

to compute the gradient orientation impact per pixel and to

focus on its locations prior to designing a descriptor-based

penalty function. It not only helps in preserving the salient lo-

cations but also avoids any “look-alike” redundant matches [2].

Therefore, we propose to constraint the penalization to the

dissimilarity of those descriptors that belong to some potential

keypoint region. We define Edes as:

Edes =
λdes

K

∑

{i,j}∈P

C2(Di(θ)−Dj(θ)), (7)

where C2 is the Euclidean distance and λdes is a weighting

factor. To apply the constraint in practice, we compute the

descriptor D after the keypoint localization which is obtained

by applying the softargmax operation S [59] on the resulting

response map. In general terms, S is given as

S =
∑

i

exp(βzi)
∑

j exp(βzj)
· i (8)

where zi is the pixel location and β is a hyper-parameter

for defining the shape parameter. The softargmax operation

is a differentiable function to obtain local optima and helps

in avoiding the cluttering in response maps. Cluttering refers

to a phenomenon when several keypoints are located close to

each other [2].

To compute an accurate keypoint localization, we define the

final gradient orientation around each pixel location as follows:

D =

{

h(ν|p), if S(R) ≥ Λ

0, otherwise
(9)

where h(ν|p) is the gradient orientation feature map explained

later in Eq. (10) and Λ is the maximum softargmax value in

a 16 × 16 neighborhood window of the considered pixel. It

simply means that if the softargmax response score for the

considered pixel location is maximum in its neighborhood

window, only then the gradient orientation map is taken into

account to contribute in the final descriptor-based penalty term

in Eq. (7).

a) Selection of h: A common image matching approach

relies on the similarity of features extracted from patches

corresponding to detected keypoint locations. One widely

used descriptor extraction algorithm is the Scale Invariant

Feature Transform (SIFT) [18] which is a concatenation of

16 unnormalized cells i.e., [c1, ...c16], where each cell can be

compactly defined as [60,61]:

h(ν|p)[c] =

∫

Gδ(ν−∠∇p(y))Gσ̂(y−c)‖∇p(y)‖d(y), (10)

where c is the center location of the cell in the restricted

square patch p of size 16 × 16. The independent variable ν
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Fig. 2: Generation of Training Set. Ground-truth parameter maps are
generated by minimizing the total energy determined from a set of
images of the same scene, undergoing lighting variations, using the
procedure in Section III-B.

represents the gradient orientation ranging in [0, 2π]. More-

over, G represents the Gaussian kernel with standard deviation

σ̂ and an angular dispersion parameter δ. Once histograms are

computed, they are normalized and concatenated into a single

128-dimensional descriptor. Finally, the distance between the

resulting descriptor can measured using the `2 metric.

4) Stochastic Gradient Descent Implementation Details:

We optimize the objective function in Eq. (2) using Stochastic

Gradient Descent (SGD) [29]. It is a fast and robust optimiza-

tion technique to estimate the incremental gradient descent by

its stochastic approximation using a randomly chosen sample

from the initial set. To implement the SGD optimization,

we follow the backpropagation procedure. We initially build

the required partial derivative framework with the objective

function given in Eq. (2). It is more formally expressed as

∇C{i,j}(θ) =
{ ∂C1
∂Rl

·
∂Rl

∂ϕl

·
∂ϕl

∂θ
+

∂C2
∂Rl

·
∂Rl

∂ϕl

·
∂ϕl

∂θ

}

∣

∣

∣

∣

l=i,j

(11)

Then, following the SGD rule, we iteratively estimate θ by

randomly selecting sample (i, j) from the set P . Finally, we

compute the gradient of the objective in Eq. (2), that is:

∂f

∂θ

∣

∣

∣

∣

θt

=
1

K

∑

{i,j}∈P

∂C

∂θ

∣

∣

∣

∣

θt

(12)

where

C = λdet · C1(Ri,Rj) + λdes · C2(Di,Dj), (13)

with the single (i, j) selected image pair. Thereafter, at each

iteration t, SGD update rule is given as:

θt+1 = θt − γt · ∇C{i,j}t(θt), (14)

where γt is a learning rate that can be made to decay with t
as γt = γ0/(t+1), and the gradient for the objective function

in Eq. (2) is replaced by the gradient of a randomly chosen

sample pair {i, j} at time t, i.e.,

∇C{it,jt}(θt) ,
∂C(Rit ,Rjt ,Dit ,Djt)

∂θ

∣

∣

∣

∣

θt

. (15)

For SGD-based optimization, we start from a randomly

initialized set of θ which are updated iteratively using the

update rule in Eq. (14). In total, the model comprises 3 hyper-

parameters: γ0, λdet, λdes. To estimate these hyperparameters,

we follow the standard approach used in [62] and take a small

set of pairs from P and perform a simple cross-validation

using the grid search method in the log scale. For the SGD

related optimization and convergence proofs along with the

asymptotic analysis, we refer the reader to [29].

This proposed mechanism for finding the optimal parame-

ters θ for a function ϕ using SGD is generic, i.e., one can

easily tune the parameter maps of any TMOs that can be

expressed as Eq.(1). In this work, we propose to learn the local

spatial and range variance of the bilateral filtering based tone

mapping which is described in the following subsection. Note

that our proposed OpTMO will be a learned local adaption of

bilateral filtering based tone mapping BTMO [23,27].

C. Selected Tone Mapping Operator

Many tone mapping approaches aim at separating scene

illumination, which can display large dynamic range varia-

tions, from the reflectance of objects, which instead has lower

dynamic range characteristics [27,39]. Following this idea, we

consider a tone mapping function ϕ, expressed as: ϕ = I ·L−1.

The illumination component L is estimated by an adaptive

version of bilateral filtering [63] and is given as:

L(x,θ) =
1

W
·
∑

y∈Ω

Gθ1(x)(‖x−y‖)·Gθ2(x)(‖I(x)−I(y)‖)I(y),

(16)

where G is a Gaussian kernel. The parameter map vector θ

has two components, θ1 and θ2, also known as spatial and

range variance. For each pixel location x, y is a pixel in the

neighborhood Ω of x. The normalization factor is given as:

W =
∑

y∈Ω

Gθ1(x)(‖x− y‖) · Gθ2(x)(‖I(x)− I(y)‖). (17)

D. Support Vector Regressor Training

SVR [28] is a learning-based algorithm to estimate the

unknown functions which map the input samples into a

high dimensional space where the data becomes linearly

separable. Consider the sample set of characteristic features

F = {f1, . . . ,fn} and the corresponding output denoted by

Y = {θk(1), . . . , θk(n)} where k = 1, 2 in our case. To build

our predictor model, we want feature samples which capture

distinctive information for both descriptor and detector. To

that end, we build our feature sample fi by concatenat-

ing two parts: a) the gradient-based SIFT pattern [18], 64
dimensional feature; and b) the 5 × 5 grid-based detector

response feature [1], 25 dimensional feature. This forms a

total dimension of 89. The features fk are computed from the

original HDR linear values, without any processing. This is

not contradictory with the need to perform a TMO as, locally,

HDR images generally display limited dynamic range [12].

Finally, for each training sample, we get the following input-

output corresponding pairs {(f1, θk(1)), ..., (fn, θk(n))} and
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Fig. 4: Repeatability Rates (RR) computed for OpTMO using a corner
(Harris) and a blob (SURF) keypoint detector.

formulate our prediction problem using SVR. To fit the de-

sired nonlinear SVR prediction function, the corresponding

optimization problem is solved using the dual maximization

approach. For further details on SVR, we refer the reader

to [28].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

We consider the HDR dataset presented in our previous

work [1], which is composed of 8 different HDR scenes as

shown in Fig. 3. The Light Room, Project Room and Poster

have been used for evaluating HDR for keypoint detection

problems [11,64] 1. 4 outdoor scenes have been captured at

famous locations in Paris: Notre-Dame, Louvre, Invalides and

Grande Arche, at different hours of the day with a Canon 700D

camera. The Camroom indoor scene is shot with a Canon Mark

III camera in the presence of powerful 2K Watt reflectors.

HDR images have been created by fusing multiple exposure

LDR images using the algorithm in [65]. All scenes have been

geometrically calibrated for image matching evaluation.

B. Evaluation Metrics

We evaluate the keypoint detection and descriptor extraction

performance on the tone mapped images using the standard

measures of Repeatability Rate (RR) and Matching Score

(MS) respectively, as detailed in [13,30]. For the evaluation

of the full image matching, we compute the mean average

precision (mAP) scores [13].

RR is a measure of detector efficiency, defined as

rref (ε)

min(nref , ntest)
, (18)

where rref is the number of keypoints detected in the reference

image which are repeated in the test image, and nref and ntest

are the number of detected keypoints in the reference and test

image, respectively. A keypoint is considered to be repeated

in the test image if: a) it is detected as a keypoint in the test

image, and b) it lies in a circle of radius ε centered on the

projection of the reference keypoint onto the test image.

MS is defined as the fraction of correct matches to the total

number of correspondences in the image pair. To define a

match, three different matching strategies have been discussed

1Light Room and Project Room dataset can be downloaded from
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm

in [13]. In nearest neighbor (NN) matching, a descriptor A

finds its matches B only if A is the nearest neighbor to B and

if the distance between them is below a threshold. Nearest

neighbor distance ratio (NNDR) extends NN by introducing

a threshold to the ratio of the distance descriptors. More

precisely, a descriptor finds a good match if the ratio between

its distance from the first closest match and its distance from

the second closest match is less than a given threshold th.

These distances depend on the descriptor type, i.e., Hamming

distance metric is used for binary descriptors and Euclidean

distance is used for non-binary descriptors. In this paper, we

have used NNDR matching strategy to compare the perfor-

mance of our TMO with other techniques.

To define a correct match, feature location is taken into

account. Two descriptors yield a true positive match if they

correspond to two keypoints/regions which are repeated [13] in

the reference and query images. Similarly, a match is labeled

as a false positive if the corresponding keypoints are not

repeated.

MS gives only the estimate of correct matches, while in

practice, many incorrect matches may occur. Therefore, for

completeness, we also evaluate the performance using mAP

score. To this end, we generate a Precision-Recall (P-R) curve

by varying the matching strategy parameter th from 0 to 1.

Recall is defined as the fraction of true positives over total

correspondences and precision is given as the ratio of true

positives to the total number of matches. Once the P-R curves

are generated for each scene, we then compute the mAP scores

by determining the area under the curves.

C. Evaluation Setup

We test our proposed OpTMO for image matching task on

8 HDR scenes (shown in Fig. 3) at detection and description

levels and compare with state-of-the-art TMOs. The HDR

dataset is composed of a total of 52 images. For detection

and description stage, we formulated a total of 280 test image

pairs respectively from the 8 scenes.

We compare the proposed OpTMO with classical

perception-based TMOs, including: BTMO [23], Chi-

uTMO [39], DragoTMO [38], ReinhardTMO [21] and Man-

tiukTMO [22]. We consider these TMOs as they have been

previously applied for HDR evaluation studies [20,27] for

similar keypoint detection task. In addition, we also consider

our previously proposed DetTMO [1] and DesTMO [2], which

are optimized methods for detection and description only,

respectively.

SVR Training and Implementation: We use the SVR

implementation of LibSVM [66] using the Radial Basis Func-

tion (RBF) kernel. The optimal values of SVR parameters,

the regularization cost and epsilon, are obtained by 10-fold

cross validation from the range of [2−5, 215] and [2−10, 25],
respectively.

To train and validate the SVR model, we build the training

set with 5000 sample feature set for each test scene. This train-

ing set is drawn from other scenes excluding the corresponding

test scene. For instance, to test the Project Room scene, we

build the training set by randomly selecting samples from all
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Light-Room Project-Room Poster CamRoom Grande-Arche Louvre Notre-Dame Invalides

Fig. 3: Sample images from HDR dataset, composed of 8 scene from different indoor/outdoor locations, taken with different artificial/natural
lighting variations.
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Fig. 5: Keypoint Detection I: Average Repeatability Rates (AvgRR) computed on different TMOs using various keypoint detection schemes.
The average is calculated over all test scenes.

other 7 scenes. For each training sample, we randomly select

a pixel location and compute characteristic features around

the selected location, while following the features extraction

procedure described in Section III-D. A window of 16×16 is

selected around the pixel location for computing the gradient

based SIFT pattern part of the feature fi, whereas a 5×5 grid

based detector response is used for the second part of fi.

D. Keypoint Detection

We evaluate all the considered TMOs using Harris [46],

FAST [52], BRISK [53], SURF [54] and SIFT [18] (as detailed

in Section II-C). We selected these detection methods based

on state-of-the-art studies in evaluating the performance of

TMOs [2,11,64,67] and also due to their popularity in real

time applications [68].

The RR is the performance measure as given in Eq. (18).

RR [13] is sensitive to the number of detected keypoints

and the error rate ε. For instance, large variations in the

number of keypoints across different scenes might lead to

biased average scores. Therefore, we fix the keypoint detection

to the strongest N keypoints as suggested in prior TMO

evaluation studies [11,12,19]. The impact of N and ε over

average RR score is shown in Fig. 4. Overall increase in

number of keypoints leads to an increase in average RR,

but the growth slows down after a certain number, partially

due to the detection of cluttered keypoints. On the other

hand, increase in the average RR with the increasing ε is in

coherence with the findings of [45]. In this paper, we choose

the values N = 500 and ε = 10.

Implementation: We use the HDR Toolbox [42] for

the implementation of the considered TMOs. Moreover, we

use the Matlab’s Computer Vision toolbox for Harris, FAST,

BRISK and SURF, and Vlfeat for SIFT.

Comparison: We perform a thorough evaluation of

our proposed OpTMO quantitatively using the RR measure.

In Fig. 5, we initially show the performance of our OpTMO

and other state-of-the-art TMOs in terms of RR averaged over

all test scenes. For the sake of completeness, we also report

the average RR obtained using HDR linear photometric values

(HDRLin), without any tone mapping. Our results clearly show

that the proposed OpTMO outperforms all the perception-

based TMOs. In addition, the significant drop in performance

with HDRlin demonstrates that HDR linear values are highly

sub-optimal for keypoint detection task, similar to what is

found in previous studies [11,19].

In Fig. 6, we expand our experimental test bench for each

scene and compare the performance of our OpTMO with the

globally optimized BTMO [27] and our previously proposed

detector-optimal DetTMO [1]. The per scene gains of OpTMO

over BTMO prove that local modulation of parameters sig-

nificantly improves the keypoint stability. In addition, we
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observe that the gain in performance between local and global

optimization depends significantly on content characteristics.

Especially for indoor scenes, which have been acquired by

varying locally the illumination and introducing stark shadows,

local parameter tuning enables to obtain important RR gains.

We also notice that OpTMO achieves similar (within 2-4%

per scene) RR as DetTMO, which is optimized for keypoint

detection only and thus provides an upper bound in the

achievable repeatability.

In order to further confirm these observations, we report

a head-to-head comparison of OpTMO versus BTMO and

DetTMO, respectively, in Fig. 7, for two different detectors:

Harris (corner) and SURF (blob). OpTMO has higher RR

whenever a point (representing a specific scene and illumina-

tion condition) is above the 45∘ line. As expected, we observe

that this is often the case for BTMO, while for DetTMO the

two methods have very similar performances. As mentioned

above, the loss in keypoint repeatability compared to DetTMO

is expected, and is mainly due to two reasons. On one hand,

the additional descriptor-level cost term in Eq. (7) changes the

objective function with respect to detector repeatability only

(as in DetTMO). On the other hand, the use of the softargmax

localization measure in Eq. (8) reduces cluttering of keypoints

in our OpTMO. This is illustrated on a detail of the “Project-

Room” scene in Fig. 8. For instance, cluttered keypoints are

detected near the beaver’s eyes in DetTMO, whereas OpTMO

handles such detections efficiently. Interestingly, the composite

objective function in Eq. (2) enables to achieve RR almost as

good as DetTMO, but with a significantly improved descriptor

matching and thus overall image matching performance, as

shown in the next section.

Finally, we observe from Fig. 7 that these conclusions are

valid for both Harris and SURF detectors, in spite of the

fact that OpTMO is trained with respect to a classical corner

response function (Eq. (6)). This demonstrates experimentally

that images tone mapped with the proposed approach lead to

increased detection performance even when the actual used

detector is different from the specific response characteristics

captured by the proxy cost function used for training.
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Fig. 6: Keypoint Detection II: Average Repeatability Rates (RR)
computed using BTMO [27], DetTMO [1] and the proposed OpTMO
for each test scene using Harris keypoint detector.
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represent an image pair with different lighting conditions from the
HDR dataset. The points represented using o depict the Harris corner
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Fig. 8: Keypoint Detection IV. Harris corner keypoints on the
DetTMO and proposed OpTMO. The cluttered keypoints in DetTMO
are highlighted using the red squares.

E. Descriptor Matching

We perform a thorough evaluation of our proposed OpTMO

for descriptor matching using BRISK [53], FREAK [55],

SIFT [18] and SURF [54] descriptors. We use the matching

score (MS) as performance measure, as described in Sec-

tion IV-B, considering the NNDR matching criteria with a

threshold value th = 0.5.

Implementation: We use the Matlab’s Computer Vision

toolbox for FREAK, BRISK and SURF, and Vlfeat for SIFT,

with their default parameter settings.

Comparison: In Fig. 9, we compare the average OpTMO

MS with respect to state-of-the-art TMOs. Overall, we attain

significant gains in terms of MS using all features extraction

methods. With th = 0.5 (default value [13,18]), the gains are

considerable for gradient-based features schemes such as SIFT

and SURF, which is expected by design given the definition

of the descriptor signature in Eq. (9).

To further analyze these results quantitatively, in Fig. 10 we

report per scene comparison between the competing TMOs

that are observed from Fig. 9. We observe that for each scene

(indoor or outdoor) our OpTMO outperforms all the other

TMOs. As in Section IV-D, we observe considerable gains

with respect to traditional BTMO, confirming the potential

of local parameter optimization. In comparison to DetTMO,

we observe that gains are not as high as what are obtained

with BTMO. This can be explained by the higher RR of the

DetTMO (Fig. 6) which improves the probability of correct

matches. Interestingly, we also observe that in many scenes

DetTMO and DesTMO perform equally well, e.g., Invalides

and Project-Room scenes. This is mainly because DesTMO is

not optimal for detection, which entails a higher number of
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Fig. 9: Descriptor Matching I computed on different TMOs using SURF, SIFT, FREAK, BRISK descriptor extraction schemes. The average
is calculated over all test scenes.

false matches.

Finally, we show the per image-pair analysis in Fig. 11

to further analyze the behavior of individual test pairs. We

observe that our OpTMO improves the MS over DesTMO

across the whole dataset (i.e., the gains are not concentrated

on specific image pairs). In fact, there is not a single case

where there is a significant drop in OpTMO’s performance

against the descriptor-optimal DesTMO, which again confirms

the advantages of simultaneously optimizing the TMO for

keypoint detection and description. In addition, the OpTMO

produces consistent gains even if a binary descriptor such as

FREAK is employed, in spite of the use of a gradient-based

cost function in Eq. (9).

Note that MS is sensitive to the choice of th. Therefore,

in the following section, we perform a global image matching

evaluation using mAP to overcome the impact of the threshold.

F. Image Matching

We evaluate the full image matching chain by computing

mean average precision (mAP) scores over the complete

dataset. We obtain the mAP rates by averaging the area-under-

the-curve of PR curves [13]. The results per TMO are reported

in Fig. 12. We observe that for every descriptor extraction

scheme our proposed model outperforms all the other TMOs.

High mAP scores imply that our model obtains more correct

matches and reduce the probability of false matches. An

illustration of matching results is given in Fig. 13, showing that

the proposed full-chain optimal tone mapping improves the

matching efficiency in drastic lighting variations. Notice that

ReinhardTMO and MantiukTMO provide poor image match-

ing results compared with the proposed approach, although

they provide better visually looking images. From Fig. 13, we

observe that optimizing only for detector response (DetTMO)

might produce a higher number of false matches. On the other

hand, optimizing with respect to descriptor matching only

(DesTMO) cannot ensure high matching efficiency due to the

lower keypoint repeatability. Instead, efficient image matching

can only be ensured by optimizing the TMO with respect to

the full features extraction chain, as in the proposed OpTMO.
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The points represented using o corresponds to FREAK features
detection scheme and � corresponds to SURF scheme.

G. Applications

Localization of objects is a high-precision and pivotal task

in many computer vision applications, e.g., to find region of

interest for fine-grained recognition challenges. For localiza-

tion, first a homography matrix is computed by finding the

best matching correspondences between the target and the

test image. Then, the desired object is localized based on

the estimated geometric relationship. In Fig. 14 and Fig. 15,

we show a similar applicative scenario of localization of
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selected objects such as structures in images undergoing

both lighting and rotational transformations. We compare the

performance of our proposed image-matching optimal TMO

and the widely used ReinhardTMO over three scenes, namely

Louvre, ProjectRoom and Notre Dame. In Fig. 14, we first find

the corresponding matches between the two scenes using the

SURF scheme for each TMO. Then, based on those resulting

matches, we estimate the homography as proposed in [69].

We observe that our model gives more correct corresponding

matches in all three scenes as compared to ReinhardTMO.

In challenging outdoor scenes such as Louvre where there is

a direct impact of sunshine, we observe that ReinhardTMO

results in all incorrect matches, mainly concentrated in the

brightest regions. In Fig. 15, we overlay the results on the test

tone mapped images to show where exactly our desired object

should be located based on the obtained correspondences. In

Louvre and ProjectRoom scenes, we observe that tone mapped

images using our proposed model result in correct localization

of the desired object in the test image, as compared to Rein-

hardTMO. In the Notre Dame scene, the impact of illumination

on the target region is smaller, and we are able to find correct

overlaying results using both tone mappings.
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Fig. 12: Image Matching I. mAP % scores for the 9 different LDR
modalities using 4 feature extraction schemes. Scores are averaged
over 8 lighting change datasets.

Computation Time: In Fig 16, we compare the execution

time (i.e. to tone map an HDR image) of the most competing

state-of-the-art TMOs namely, BTMO, DetTMO, DesTMO

and OpTMO. The computational time of our proposed method

is not very far from the DesTMO. Note that the current

implementation has been carried on a Intel Xeon CPU 4

cores processor, 16 Gb RAM windows 7 machine and has not

been parallelized. An efficient parallelized implementation can

further sped up the execution.

V. CONCLUSIONS

In this paper, we propose a new learning-based adaptive tone

mapping framework for efficient image matching under drastic

changes of lighting conditions. To this end, we first generate

training samples by proposing a bi-objective function captur-

ing both the detection and description stages of the features

Fig. 13: Image Matching II. Day/Night matching using SURF.
Row I: 2 HDR images from Invalides scene are displayed after log
scaling [38]. Correct and incorrect matches are shown with yellow
and red lines, respectively. Green lines represent the special case of
mismatch due to repetitive structure. Row II: the feature matching
using our proposed OpTMO (21 correct and 3 incorrect matches).
Row III: using DetTMO (13 correct and 6 incorrect matches).
Row IV: using DesTMOusing (11 correct and 3 incorrect matches).
Row V using Reinhard TMO (3 correct and 11 incorrect matches).
Row VI: using MantiukTMO (3 correct and 4 incorrect matches).
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Fig. 16: Computation time in sec (log scale). The time is computed
by running all TMOs for an image size (512× 512) on a Intel Xeon
CPU 4 cores processor, 16 Gb RAM windows 7 machine.

extraction pipeline. Later, we train a Support Vector Regressor

using local characteristics to learn a model which predicts

spatially varying TMO parameters. We evaluate the proposed

OpTMO on a HDR dataset of indoor/outdoor scenes where

it outperforms state-of-the-art TMOs across different image

matching algorithms. Finally, we demonstrate the performance

of our method over other TMOs in a simple localization based

application scenario.

Our proposed task-optimal TMO can be applied to different

detection/description approaches. Hence, it can be directly

fused with any existing local feature based applications such

as structure from stereo, scene reconstruction, object tracking,

recognition and photogrammetric applications. In the future,

instead of learning the tone mapping parameter, we will focus
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Fig. 14: (Match & Locate) Row I: Pair of HDR images from Louvre, ProjectRoom and Notredame scenes, with one reference and other
being a selected region undergone lighting change and rotation. Row II: the feature matching using our proposed OpTMO. Row III: using
Reinhard TMO.

(a) OpTMO (b) Reinhard TMO (c) OpTMO (d) Reinhard TMO (e) OpTMO (f) Reinhard TMO

Fig. 15: (Match & Locate) Results of matching images with different illumination and matched-regions (shown in Figure 14), where the
shaded area is the matched image region. Results are shown for OpTMO and ReinhardTMO.

on directly learning a tone mapping function for the image

matching problem.
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