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Abstract—The security of cyber-physical systems, such as
vehicle platoons, is critical to ensuring their proper operation and
acceptance to society. In platooning, vehicles follow one another
according to an agreed upon control law that determines vehicle
separation. It has been shown that a vehicle within a platoon
and under the control of a malicious actor could cause collisions
involving, or decrease the efficiency of, surrounding vehicles. In
this paper we focus on detecting, identifying and mitigating so-
called destabilizing attacks that could cause vehicle collisions.
Our approach is decentralized and requires only local sensor
information for each vehicle to identify the vehicle responsi-
ble for the attack and then deploy an appropriate mitigating
controller that prevents collisions. A Deep Learning approach
(Convolutional Neural Network) with various data preprocessing
techniques are used to detect and identify the malicious vehicle.
Results indicate that with noise upto 30% in range/relative
speed data we achieve an accuracy upto 96.3%. Also, once the
adversarial vehicle is localized, we derive conditions for controller
gains using Routh Hurwitz criterion to mitigate the attack and
ensure stability of the platoon. Realistic simulator CARLA and
MATLAB simulation results validate the effectiveness of our
proposed approaches.

Index Terms—Autonomous platoon, security, Deep Learning,
intrusion detection, identification, Routh Hurwitz criterion. .

I. INTRODUCTION

The potential for automated vehicle technology to increase

the safety and efficiency of transportation systems is reflected

in the enormous investments being made in these technologies,

by industry and government alike. Automated vehicles will

eventually make the roads safer, by reducing fatalities and

accidents, decrease travel times, and increase fuel efficiency.

Even amidst all the numerous advantages, most experts agree

that one of the key aspects that is ignored when it comes

to automated vehicles is that of cyber-physical security. Au-

tomated vehicles depend upon an admixture of sensing and

computational capabilities to accurately and correctly under-

take maneuvers. However, these systems have been shown to

be vulnerable to numerous attacks, ranging from falsifying

sensor data to remotely compromising on-board computational

units in order to take control of the vehicle itself. The possible

outcomes of such compromises can be catastrophic, possibly

leading to fatalities.

Vehicle platooning, wherein vehicles sense each other and

act in a coordinated manner to maintain prescribed inter-
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vehicle distances [1], has been shown to improve traffic

throughput, passenger comfort and fuel efficiency [2], [3], [4].

Given the tight coupling between vehicles there is a pressing

need to quickly identify a compromised vehicle and isolate

it, as it could possibly cause nearby vehicles to collide [5].

The principal problem that needs to be addressed in order to

ensure the safety of the platoon is to detect the destabilizing

attack, identify the attacker vehicle, and minimize the damage

the attacker can cause.

String stability is an essential property of vehicle platoons

that ensures the efficiency of the transportation system as a

whole and the safety of individual vehicles. A platoon that is

string stable guarantees that spacing errors (actual vs. desired

spacing between vehicles) attenuate upstream from the source

of the error [6]. In this work we assume the vehicle platoon

follows a bi-directional, string stable control law, which allows

for constant spacing [7], where each of the vehicle has the

ability to measure the relative speed (range-rate) and distance

(range) of their immediate neighbors (predecessor and follower

vehicles).

While the stability, and other performance/comfort parame-

ters, of vehicle platooning has received considerable attention,

very few works have considered the operation of platoons in

adversarial environments wherein an actor attempts to induce

negative effects. In [5] it was shown that a platoon can be

destabilized by a single attacker vehicle modifying parameters

of its the control law, i.e., the modification of the control law of

a single vehicle was proved to cause the platoon to oscillate

in an unbounded manner, eventually leading to catastrophic

collisions. The first step towards solving this problem lies in

detecting the onset of the attack. In the field of network and

cyber-physical systems security, this is a well-studied problem

that falls under the category of intrusion/anomaly detection.

Pasqualetti et al. [8] proposed an anomaly detection scheme

for networks with misbehaving nodes. They considered a

decentralized consensus network, meaning that agents use only

information derived from neighbors [9]. Machine learning

techniques have also been utilized for anomaly detection.

Alkasassbeh et al. in [10] investigated the problem of intrusion

detection using ML methods, such as BayesNet, Multi-layer

Perceptron (MLP) and Support Vector Machines (SVM) on

a management information based data set. Almseidin et al.

in [11] furthered this approach and applied multiple ML

classifiers on a Knowledge Discovery and Data mining (KDD)

intrusion dataset.

Applying intrusion detection for an adversarial agent in

a vehicular platooning scenario has been studied in few

works. Sajjad et al. in [3] proposed an attack detection
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and identification scheme using low pass filters that acts on

measurement residuals; based on the direction of the source

of the attack a sliding mode controller was used to prevent

collisions, at the expense of platoon control. Jagielski et al.

[12] studied the effects of a maliciously controlled vehicle

that aims to cause crashes in a string of connected cars by

influencing the sensor readings. The detection strategy studied

for these attacks was performed either through a physics-

based approach or a Hidden Markov Model (HMM) approach.

Although sensor readings are used for the identification of

the attacker vehicle, the attacker and the victim vehicle are

pre-determined in all the cases studied. Dadras et al. in [13]

examined the identification of an attacker vehicle in a platoon

using a combination of a system identification and clustering

algorithms. In [14] consider a distributed sensor deception

attack on platoons. They use a distributed kalman filter and

proposed a generalized likelihood ratio to detect the sensor

deception attacks.

Recent research also suggests that Convolutional Neural

Networks (CNN), can outperform state of the art machine

learning techniques for time series data both in terms of noise

robustness and accuracy [15] [16]. Fault diagnosis in sensors

using CNNs has been studied by Dingfei et al. in [17], where

they residual signals of various sensors from a UAV were

transformed to their corresponding time-frequency map using

Short Time Fourier Transform (STFT). These time-frequency

maps were then passed through a CNN for feature extraction

and then used for fault diagnosis.

Various works have also addressed mitigation strategies in

vehicle platoons under different types of adversarial settings.

Petrillo et al in [18] have proposed a consensus-based control

strategy to combat communication impairments in the case

of message falsification attacks on platoons. Patounas et al.

examined different jamming attack scenarios and evaluated

defence schemes such as beamforming to mitigate the attacks

[19]. Jin et al. in [20] proposed an adaptive contoller for time-

invariant sensor and actuator attacks on a team of connected

vehicles.

Most of the works consider only detection of an attack

in platoon, but in this work we not only detect but also

localize (identify) the adversarial vehicle and take a Deep

Learning approach to solve it. This work is also an extension

of [21] in which we compared the effectiveness of fully

connected Deep Neural Networks (FCDNN) and CNNs in the

detection and localization of an attack in a fixed size platoon.

Previously, we have considered a global information scenario

and a local information scenario. The global information case

is where an assumption is made that there exists an entity

that receives sensor data from all the vehicles and processes

it in order to identify the attacker vehicle. As this is not

practically feasible, In this paper developed a local information

scenario where each vehicle has an independent network and

access to only local sensor information of their immediate

neighboring vehicles. The global information scenario existed

as a standard of comparison to check the performance of the

local information scenario with both FCDNNs and CNNs in

the presence of noisy sensor data.

One of the biggest challenges with validating our approach

was the feasibility and the costs associated with it. Hardware

implementation is usually a good approach but is not always

cost effective. Another commonly used approach in the field

of autonomous vehicle research is validation using simulators.

There are a number of simulators for this purpose such as the

TORCS simulator [22], MATLAB automated driving toolbox

[23], Udacity simulator [24], and the CARLA simulation

engine.

For the purpose of this work, we have used the CARLA

simulator for validating our approach. CARLA (Car Learning

to Act) is an open simulator for urban driving specifically

designed to further research into training, prototyping, and

validation of autonomous driving models. CARLA has been

built for flexibility and realism in the rendering and physics

simulation [25].

The main contributions of this paper are as follows:

(i) Detection and Identification (Localization) of an ad-

versarial vehicle in a platoon by using just local sensor

information has been achieved.

(ii) Various preprocessing techniques which convert time se-

ries sensor data into images such as Time Series to Gray Scale

(TSGS), Short Time Fourier Transform (STFT), Gramian

Angular Fields (GAF) and Markov Transition Fields (MTI)

have been explored. This is due to the fact that CNNs

perform distinctively with images as input data. From the

above mentioned techniques our CNN achieves an accuracy

upto 96.3% in localizing the adversarial vehicle with the noise

levels upto 30%.

(iii) We have validated our work on two platforms, MAT-

LAB and CARLA. A point mass platoon model is simulated

in MATLAB for initial study and for more realistic approach

open source simulator CARLA which takes care of the detailed

physics model and is specially designed for the prototyping

and validating autonomous driving models. The results on

both the platforms are similar showing the consistency of our

approach.

(iv) Once the attack in the platoon is detected and localized

accurately, we have derived conditions for the control gains

of the non attacked vehicles using Routh Hurwitz stability

criterion such that the attack is mitigated by the adversarial

vehicle.

The remainder of this paper is organized as follows. In

section II, we discuss the platoon vehicle dynamics and the

attacker model. Section III describes the methodology used

for the detection and localization process using various data

pre-processing techniques for different information availability

scenarios. Section IV, we discuss the results on detecting and

localizing an adversarial agent in both CARLA and MATLAB

environment. Section V, explains the attack mitigation section

and its results. Finally Section VI concludes the paper with

some future directions.

II. PROBLEM STATEMENT AND ASSUMPTIONS

In this section, we will discuss how the vehicles in the

platoon are modelled, the control law, and the attacker model.
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Fig. 1: Platoon model

A. Vehicle and Platoon Model

In this paper, we have assumed a fixed size platoon of 10

vehicles (For MATLAB simulation) travelling along a straight

path on a highway. Each vehicle is assumed to have sensors

that can measure the ranges and relative velocities of their

immediate neighbouring vehicles. As per [26] and [27], the

maximum recommended platoon size is 15 vehicles in order

to ensure good throughput. Assuming a straight path for the

vehicle platoon simplifies the problem to a great extent and

eliminates the need to implement a lateral controller for the

vehicles while approximating a highway scenario.

The vehicle model that we used for MATLAB environment,

is a jerk-model that captures a majority of the vehicle dynam-

ics while being easy to model and analyze

ẋi = vi (1)

v̇i = ai (2)

ȧi = ji (3)

where xi, vi, ai and ji are the position,velocity, acceleration

and jerk of the ith vehicle respectively. The control law that

governs the entire vehicle platoon has to ensure that all the

vehicles in the platoon converge to the leader vehicle’s speed

while maintaining a constant spacing between each of the

vehicles. The equations for the control law are given by,

ac = ui (4)

ji = Kj(ac − ai) (5)

where, ac is the commanded acceleration, ui is the control

input and Kj is the proportional gain that exists to mimic real

world actuation delay as closely as possible.

The first vehicle is the leader vehicle and is responsible for

maintaining the speed with which the entire platoon travels.

In our case, this desired speed is set to 30 m/s in order to

represent a highway scenario. Moreover, the constant spacing

that is to be maintained between each of the vehicles is given

by σref and for this paper, we have chosen this value to be 4

meters.

The control input, ui, for the ith vehicle in the platoon

model is given by,

(6)
ui = kp(xi+1 − xi − σref ) + kp(xi−1 − xi + σref )

+ kd(vi+1 − vi) + kd(vi−1 − vi)

where, σref is the desired distance that is to be maintained

between each vehicle, kp and kd are the proportional gain

Fig. 2: Platoon model in CARLA

and derivative gain respectively, xi is the position of the ith
vehicle, xi+1 is the position of the vehicle behind it and xi−1

is the position of the vehicle ahead it. Similarly, vi is the speed

of the ith vehicle, vi+1 is the speed of the vehicle ahead of it

and vi−1 is the speed of the vehicle behind it.

All the vehicles in the platoon have a minimum speed

saturation value of 0m/s, to ensure that the vehicles do not

move in the opposite direction. The vehicles also have a

jerk value saturation set to 1.3 m/s3 that prevents them from

accelerating to unrealistic values. The minimum kp and the

kd values for stabilizing the platoon based on the number of

vehicles, were found to be 1 and 10 respectively, by referring

to [5]. Fig. 3 show that these parameters lead to stability.

B. Attacker model

The attacker is a single vehicle that can alter its control

law by modifying the kd gain. The reason for choosing the kd
gain is to simulate the worst possible condition, i.e by varying

the gain associated to velocity can cause more harm than

the kp gain. The attacker can achieve this variation through

constantly accelerating and braking, causing the neighbouring

vehicles to either slow down or speed up in order to satisfy

the constraints of their individual control law and maintain

the desired spacing. Even though it has been shown in [5]

that the attacker can be present and destabilize the platoon

from any position in the platoon, we are assuming that the

leader vehicle cannot be an attacker as it represents a special

case which would cause the follower vehicles to expend any

amount of energy, as studied in [28]. The criteria for string

stability, as stated in [29], is given as follows

|Gi(s)|=

∣

∣

∣

∣

zi
zi+1

∣

∣

∣

∣

< 1 for i = 1, 2, ..., n− 2 (7)

where zi is the spacing error between the ith and the ith + 1
vehicles and |Gi(s)| is the magnitude of the (error) transfer

function between the ith and ith + 1 vehicles.

The minimum kd gain required for an attacker to cause

oscillations and destabilize from each position in the platoon,

based on the platoon size, were calculated by referring to

[5]. These gains make the system to oscillate and eventually

become unstable, leading the vehicles to collide into one

another. Since it is unreasonable to analyze the system after
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(a) Position and Inter-vehicular distance (b) Speed and acceleration of vehicles in the platoon

Fig. 3: Platoon response when under stable condition

(a) Position and Inter-vehicular distance (b) Speed and acceleration of vehicles in the platoon

Fig. 4: Platoon response when under attack

the vehicles crash into each other, the data for all the cases is

collected once there is an attack and up until the point before

a crash occurs. Fig. 4 shows the position, σref , speed and the

acceleration plots in the event of an attack.

III. ADVERSARIAL AGENT DETECTION AND

LOCALIZATION

We have considered a 10 vehicle platoon for MATLAB

simulation and 6 vehicle platoon for CARLA, with a single

adversarial agent whose control gains are modified such that

it makes the platoon unstable. Due to this instability, the

cars accelerate and decelerate abruptly, which may lead to

collisions. To avoid these collisions we need to first detect if

there is an attack and also localize it,i.e to identify the attacker

vehicle’s position. We assume that these cars are equipped with

sensors like LIDAR/RADAR which gives the relative speed

and range information. The intention here is to analyze the

sensor data to detect and identify an attack, if any, before a

collision can occur. This now turns into a pattern recognition

and classification problem where we want to discover different

patterns in the range and relative speed data of the cars for

various positions of the adversarial vehicle. Pattern recognition

and classification problems are well studied by researchers and

in recent years, Neural Networks (NN) have shown promising

results compared to any other state-of-the-art machine learning

techniques. In [21] we have compared a Fully connected

Deep Neural Network (FCDNN) and a Convolutional Neural

Network (CNN) in detection and localization of an attack and

we found that the performance of CNN was better compared to

FCDNN. Therefore, the emphasis here was given to improve

the performance of the CNN with the help of various data pre-

processing techniques and analyze the performance of CNN

when it has more realistic data coming from the CARLA

simulator. The rest of the section will explain the information
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availability aspect, data pre-processing and the architecture

used in CNN.

A. Information Availability

The information availability as we have defined it is of two

types; global (centralized) and local (decentralized) informa-

tion. The global information is an ideal case with a central

node that has access to the sensor data of all the vehicles. The

local information approach, which is more practical, the data

is collected only from the immediate neighbouring vehicles.

Each vehicle will have access to the range and relative speed

information of the vehicle ahead and behind it. Hence, each

vehicle will have the capability to perform detection and

identification independently using only with the neighbouring

vehicle’s data and not depend on a central node for decision

making. This makes our approach a decentralized one. Hence,

only local information results are presented in this paper but

for results on global information results please refer to [21].

A sample data of relative speed and range collected in the

Global and local information format is given by,

vri = [vi−1 − vi, vi − vi+1] (8)

XCr
= [vr2 , vr3 ...vrn−1

]T (9)

XGr
= [σref1 , σref2 , ...σrefn−1

]T (10)

σrefi = xi+1 − xi (11)

XDr
= [vi−1 − vi, vi − vi+1]

T (12)

XLr
= [xi−1 − xi, xi − xi+1]

T (13)

where xi and vi is the position and speed data of the

vehicle that is performing the detection and identification for

local information case, whereas for the global information

a central node gets all the information about the vehicles.

vi−1 and xi−1 is the speed and position data of the vehicle

ahead and vi+1, xi+1 is the speed, position data of the

vehicle behind. These data are concatenated and passed on

for training the CNN. Here, i = 2, 3...n − 1, while XDr

and XLr
are one sample vector of relative speed and range

respectively for local information case. XCr
and XGr

are

one sample vector of relative speed and range respectively

for global information case.

These relative speed and range data are usually obtained

using a LIDAR and RADAR sensor, which have an accuracy

of ±3cm and ±0.05m/s respectively [30]. Based on this

information from sensor datasheets, the noise is modelled as

a Gaussian distribution N(µ, σ2) from 10 to a maximum of

30%. The platoon simulation, including the attack, runs for

a 100 seconds in MATLAB environment and 300 seconds

in CARLA environment. The time of attack is randomized

to occur between the 45th to 55th second in MATLAB and

190th to 200th in CARLA. This window can be modified

without any loss in generalization. The data is sampled at 0.1

second and the data is collected between 55thsec to 70thsec

(a) (b)

(c) (d)

Fig. 5: (a) Position of vehicles in CARLA (b) Speed of

vehicles in CARLA (c) Position of vehicles after attack in

CARLA (d) Speed of vehicles after attack in CARLA

(15 seconds) for MATLAB and 200th to 215th in CALRA, as

the vehicles begin to collide into one another after this point.

The idea here is to detect and localize before any collisions

occur for all attacker vehicle positions. Hence 70thsec and

215th serves as the upper bound for data collection. Now,

in [21] the initial study showed that CNNs performed well

in detecting and identifying the attacker vehicle. Hence,

here we concentrate on improving the performance of CNNs

by exploring various pre-processing methods which convert

time series data to images as CNNs mostly achieves better

results with images as input. Finally, test and compare these

methods with different data types, noise levels, and simulation

environment.

B. Data For Validation

For the purpose of validating our vehicle model, we chose

to model our platoon in CARLA simulation environment using

the same control law as stated above. CARLA is built as an

open source layer over the Unreal Engine 4 [31]. The realistic

physics that the engine provides would serve as a comparison

benchmark for the jerk model developed in the MATLAB

simulation environment. For the purpose of this paper, we have

used CARLA version 0.9.5 and chose ’Town06’ CARLA map

to set up the platoon scenario. This readily available town

map in CARLA is characterized by long highways with many

highway entrances and exits. Due to the constraints arising

from the length of the highway available in the town map, we

have limited the number of vehicles in the platoon to six. The

code for setting up the platoon environment and collecting the

data can be found on our github page at https://bit.ly/34asiR5.

C. Data Pre-processing

The time series data that is generated is pre-processed to

enhance the features as possible in order to help the CNN

to easily classify and improve its accuracy. The methods
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experimented here are, converting the time series data to a gray

scale image (TSGS), Short Time Fourier Transform (STFT)

of the time series data, Gramian Angular Fields (GAF) and

Markov Transition Fields (MTI).

1) Time series to Gray Scale Image

It has been shown in the literature that CNNs are great

image classifiers and have even exceeded human performance

levels [32]. We took advantage of this fact and converted

the time series data into grayscale images for training the

CNNs. The Fig.6 shows the block diagram of the process

and.The sensor data (time series) obtained from vehicles are

one dimensional vector, so this vector is normalized and then

reshaped into a 2D matrix. The values in the 2D matrix are

between 0 to 1, and the normalized matrix is converted into a

gray scale image where 0 represents black and 1 being white

color. The values between 0 and 1 will have gray colors.

Fig. 6: Time series to Gray Scale Image Block Diagram

2) Short Time Fourier Transform

Short Time Fourier Transform (STFT) is a time frequency

analysis that helps determine the frequency and phase content

of the signal. In the recent literature, many have experimented

with STFT method as a pre-processing method before sending

the data over to the neural networks and have seen promising

results [33], [34], [17] and hence we decided to experiment

with STFT images. Initially we applied STFT for time series

data and analyzed both the frequency vs time and power vs

time plots, and found that power vs time plots had richer

features and therefore chose to train the CNN with the power

vs time plots (images). Similarly even the range data of the

vehicles are converted to STFT images before they are sent to

CNNs for training. In Fig.7 shows the example of relative

speed of vehicle-3 converted to TSGS images and STFT

images with and without noise.

3) Gramian Angular Fields

Gramian Angular Field (GAF) is a method recently intro-

duced in [35] to represent time series data into images. Usually

time series data are represented in cartisean co-ordinates but in

GAF they are represented in polar co-ordinates. Each element

in the gramnian matrix is the cosine of the summation of

angles. Given a time series S = {x1, x2...xl} of l real valued

observations, we normalize S such that they fall in the range

[-1 1]:

x̃i =
(xi −max(S)) + (xi −min(S))

max(S)−min(S)
(14)

Thus we can represent the rescaled time series S̃ as,

{

φ = arccos x̃i,−1 ≤ x̃i ≤ 1, x̃i ∈ S̃

r = ti
N
, ti ∈ N

(15)

(a) (b)

(c) (d)

Fig. 7: (a) relative speed vehicle-3 no noise TSGS image (b)

relative speed vehicle-3 with noise TSGS image (c) relative

speed vehicle-3 no noise STFT image (d) relative speed

vehicle-3 with noise STFT image

Here ti is the time stamp and N is the constant factor to

regularize the span of the polar coordinate system.

Fig. 8: Gramian Angular Field Procedure

Bijective and the polar coordinates preserving the temporal

dependence are the two important properties of equation 15.

Bijective because cos(φ) is monotonic when φ ∈ [0 π]. For

a given time series the mapping produces a unique inverse

function in the polar coordinates. Once the time series is

converted to polar co-ordinates we can utilize the angular

perspective by taking the trigonometric sum between each

point to identify temporal correlation within different time

intervals. Therefore, GAF can be written as,

G =











cos(φ1 + φ1) . . . cos(φ1 + φn)
cos(φ2 + φ1) . . . cos(φ2 + φn)

...
. . . . . .

cos(φn + φ1) . . . cos(φn + φn)











(16)
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After transforming to polar coordinates, time series is taken

at each time step as 1-D metric space. By defining the inner

product as,

< x, y >= x.y −
√

1− x2.
√

1− y2 (17)

The Gramian matrix G is given by,

G =











< x̃1, x̃1 > . . . < x̃1, x̃n >
< x̃2, x̃1 > . . . < x̃2, x̃n >

...
. . . . . .

< x̃n, x̃1 > . . . < x̃n, x̃n >











(18)

4) Markov Transition Field

Markov Transition Field (MTI) is another method similar to

GAF introduced in [35]. Here the time series S is divided into

P quantile bins where each xi is assigned to corresponding

bins pj(j ∈ [1, P ]). Transitions among the quantile bins are

counted like a first order markov chain along time axis and P x

P weighted adjacency matrix Z is constructed. The frequency

with which a point in a quantile pj is followed by a point in the

quantile pi is given by zij . Normalizing
∑

j zij = 1, Z will be

the Markov transition matrix. This matrix is independent to the

distribution of S and temporal dependency on time ti. In the

absence of temporal dependency there is a lot of information

loss in matrix Z. Hence Markov Transition Field is defined

as,

M =











zij|x1∈pi,x1∈pj
, . . . zij|x1∈pi,x1∈pj

zij|x1∈pi,x1∈pj
, . . . zij|x1∈pi,x1∈pj

...
. . . . . .

zij|x1∈pi,x1∈pj
, . . . zij|x1∈pi,x1∈pj











(19)

Fig. 9: Markov Transition Field Procedure

The procedure to generate the MTI is shown in the Fig.9.

D. Convolutional Neural Network

The first component of CNN si convolutional layer which

performs a convolution operation with the previous layer

with m filters of size k x l which is the sliding window.

The second compenent is the max pooling layer, here the

feature map obtained after the convolutions is divided into

sections and each section will be represented by its maximum

value. The final component is the fully connected layer which

will contain the extracted features from the convolution and

pooling layers. These extracted features is then used for

classification. Equations for each of these layers are given in

[15]. The activation functions that work best when the input

was a grayscale image are Sigmoid and Relu. Exponential

Linear Units (ELU) worked best when the input was an STFT,

GAF and MTI images. Also, in [36], [37] it has been shown

how ELUs can not only help with faster learning but also

gives a higher classification accuracy. The final output layer

has a Softmax activation function for both the cases. The

architecture used in our work is shown in the Fig. 10 and the

parameters are as follows, 16 filters of size 2x2, stride is set

to 1 and the pooling was also of size 2x2. This architecture

is used for data generated by both CARLA and MATLAB

simulation.

Fig. 10: Architecture of CNN

IV. RESULTS FOR ADVERSARIAL AGENT DETECTION AND

IDENTIFICATION

The results presented in this paper is divided into two main

categories, detection and identification (localizing the attacker

vehicle) of the attack for data generated from both CARLA

and MATLAB simualtion. Results also shows the effects of

various pre-processing techniques, data types (Relative speed

and range) and different noise levels on the accuracy of CNNs.

TABLE I: Detection Accuracy for CARLA Simulation

Information Data Type

(Rel)

Input Type Accuracy

Global speed/Range TSGS 100%

STFT 100%

GAF 100%

MTF 100%

local speed/Range TSGS 99.6%

STFT 99.65%

GAF 100%

MTF 99.8%

The number of training samples for attack detection were

1000 images for each pre-processing technique, TSGS, STFT,

GAF and MTF. Out of 1000 images, 250 were of no noise and

the rest 750 images were with three levels of noise varying

from 10% to 30%. There were 100 test images for all the cases.

Table. I and Table. II shows the detection accuracy for data

collected from CARLA and MATLAB simulation respectively.
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When it comes to detecting an attack the accuracy is quiet

high although, the data type or the pre-processing technique

doesn’t make any significant difference which is clear from

Table. I and Table. II. Also, other machine learning algorithms

can be used to solve the detection problem but due to high

dimensionality of time series data Deep Neural Nets will be

a better choice. For the attack vehicle identification, the test

is performed using both CARLA and MATLAB simulation

data, but only the local sensor information is considered due

to its practical applications and advantages. The total number

of training samples were 7200, out of which 720 samples were

used for testing the network. In this work, we have assumed

that the attacker can be only from vehicle-2 to vehicle-9,

meaning that out of 7200 samples, 900 images were dedicated

for each attack vehicle position.

TABLE II: Detection Accuracy for MATLAB Simulation

Information Data Type

(Rel)

Input Type Accuracy

Global speed/Range TSGS 100%

STFT 100%

GAF 100%

MTF 100%

local speed/Range TSGS 98.5%

STFT 98.9%

GAF 99.5%

MTF 99.1%

For example, if vehicle-3 is performing the identification,

range/relative speed data between (vehicle-2, vehicle-3) and

(vehicle-3, vehicle-4) are collected and concatenated. The

noise added to the range and relative speed are based on

the data-sheet available for the sensors which are used in

real autonomous cars [30]. So the sensors used in the real

autonomous cars have noise levels less than 10% but we are

validating the performance of CNNs for noise levels up to 3

times the actual. The accuracy of the networks is calculated

as follows,

Accuracy =
SDE

TTS
(20)

Here SDE is the sum of diagonal elements of the confusion

matrix and and TTS is the total number of test samples.

The accuracy calculation for the local sensor information case

either for detection or identification is the average accuracy

of all the vehicles in the platoon performing detection and

identification of the attacker vehicle. Therefore the average

accuracy is given by,

Average Accuracy =
Acc1 +Acc2 + ...+Accn

TNV
(21)

Here Acc1 upto Accn are the accuracy of the vehicle-

1 upto vehicle-n performing detection and identification

and TNV is the Total Number of Vehicles involved in

detection and identification of the adversarial vehicle.

TABLE. III and TABLE. IV show the results for adversarial

vehicle identification using CNN with various preprocessing

techniques, data type and noise levels when the data

is collected from CARLA and MATLAB simulation

environment respectively. From TABLE.III and TABLE.IV

we can conclude the following, that is just with local sensor

information we are able to detect and identify the adversarial

vehicle having noise levels of 30% with high accuracy of

upto 94.8% and 95.7% with relative speed as the data type

in MATLAB and CARLA respectively. By using range as

the data type we achieve 95.1% and 96.3% in MATLAB and

CARLA respectively. This is a appreciable improvement for

our previous work in [21] where we had achieved 88.7%
with relative speed and 93.1% with range data for local

sensor information case with maximum noise levels when

the data is collected from MATLAB environment. The other

observations made from this study is that GAF and MTI

preprocessing techniques are better than TSGS or STFT.

When it comes to which data type works better, range data

as input CNNs achieve better accuracy compared to relative

speed. All these observations are similar across both CARLA

and MATLAB simulation environments.

TABLE III: Local Sensor Information Identification Accuracy for CARLA Simulation

Data Type Noise

level(%)

Input Type Accuracy(Avg)

Relative

Speed

10 TSGS 92.3%

20 91.1%

30 90.4%

Relative

Speed

10 GAF 97.8%

20 96.9%

30 95.7%

Relative

Speed

10 MTF 97.5%

20 96.6%

30 95.3%

Range 10 TSGS 94.5%

20 92.7%

30 91.4%

Range 10 GAF 98.5%

20 97.5%

30 96.3%

Range 10 MTF 97.9%

20 97.0%

30 96.1%

TABLE IV: Local Sensor Information Identification Accuracy for MATLAB Simulation

Data Type Noise

level(%)

Input Type Accuracy(Avg)

Relative

Speed

10 TSGS 91.1%

20 90.3%

30 89.2%

Relative

Speed

10 STFT 95.6%

20 94.4%

30 93.1%

Relative

Speed

10 GAF 97.5%

20 96.6%

30 94.8%

Relative

Speed

10 MTF 97.1%

20 96.5%

30 94.5%

Range 10 TSGS 93.7%

20 92.4%

30 90.6%

Range 10 STFT 96.2%

20 95.8%

30 94.0%

Range 10 GAF 98.5%

20 96.9%

30 95.1%

Range 10 MTF 97.8%

20 97.1%

30 95.6%
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V. ATTACK MITIGATION

Once the platoon is under attack, our approach will help

us detect and identify the adversarial vehicle. So after the

detection and identification the next step will be to mitigate the

attack induced by the attacker vehicle. So with the information

of adversarial vehicle’s position we show that the attack can

be mitigated by changing the kd values of the non attacker

vehicles. So the objective here is to choose kd gain value

for each non attacker vehicle such that the real part of each

eigen value of A remains negative. Here A is the coefficeint

matrix of the states in error coordinates. We use Routh Hurwitz

criterion to compute kdm which is the mitigation gain of

the non attacker vehicles to ensure the negative eigen value

of A which also guarantees stability. Once we derive the

conditions using Routh Hurwitz stability criterion we simulate

it in MATLAB to validate the effectiveness of the derived

conditions.

We know that platoon can be asymptotically or BIBO

unstable when the attacker can bring at least one eigen value of

A matrix to the real part. For the stability analysis we use the

error coordinates formulation for n vehicle platoon. Also, for

simplicity in this analysis we consider the acceleration model

rather than the jerk model. The error coordinates and general

form of A matrix in the absence of the attacker is given as,

z1 = x1 − x2

y1 = ż1 = v1 − v2

z2 = x2 − x3

y2 = ż2 = v2 − v3

z3 = x3 − x4

y3 = ż3 = v3 − v4

...

zn−1 = xn−1 − xn

yn−1 = ˙zn−1 = vn−1 − vn

To write it in the ẋ = Ax form we have to take the derivative

of the error coordinates,

ż1 = v1 − v2 = y1

ẏ1 = −2kpz1 − 2kdy1 + kpz2 + kdy2

ż2 = v2 − v3 = y2

ẏ2 = kpz1 + kdy1 − 2kpz2 − 2kdy2 + kpz3 + kdy3
...

˙zn−1 = vn−1 − vn = yn−1

˙yn−1 = kpzn−2 + kdyn−2 − 2kpzn−1 − 2kdyn−1

Here the acceleration model is given as,

ẋi = vi (23)

(24)
v̇i = kp(xi+1 − xi − σref ) + kp(xi−1 − xi + σref )

+ kd(vi+1 − vi) + kd(vi−1 − vi)

Now in the presence of an attacker vehicle at the ith

position, 1 < i < n− 1 we show which elements of the A
matrix are changed.

A(2(i− 1), 2(i− 1)) = −kd − k̂d, A(2(i− 1), 2i) = k̂d
(25)

A(2i, 2(i− 1)) = k̂d, A(2i, 2i) = −kd − k̂d
(26)

Where k̂d is the attacker’s gain. In [5] Dadras et.al have

proved that if an attacker chooses a derivative gain k̂d < −kd
will cause A to have atleast one eigen value with positive real

part and therefore making the platoon unstable. So here we

verify this condition using Routh Hurwitz stability critierion

and also derive mitigation gains for non attacker vehicles to

achieve stability.

Now, lets us consider three vehicle platoon case with the

attacker’s position being vehicle two. For Routh Hurwitz

stability analysis we need to take the characteristic equation

of A. 27 is the (sI −A) matrix for three vehicle platoon case

with attacker’s position being vehicle two. The change in the

elements of the (SI − A) matrix is made using equation 25

and 26.

Note: The characteristic equation of A will not change with

the change in the attacker’s position.

V3 =









−s 1 0 0

−2kp −kd − k̂d − s kp k̂d
0 0 −s 1

kp k̂d −2kp −kd− k̂d − s









(27)

The characteristic equation of V3 is,

(28)
V3c = s4 + (2kd + 2k̂d)s

3 + (k2d + 2k̂dkd + 4kp)s
2

+ (4kdkp + 2k̂dkp)s+ 3k3p

The Routh Hurwitz table for V3c is given below,

V3rh =













1 k2d + 2k̂d + 4kp 3k2p
2kd + 2k̂d 4kdkp + 2k̂dkp 0

Z 3k2p 0
X 0 0
3k2p 0 0













(29)

(30)Z =
2k3d + 6k̂dk

2
d + 4k̂d

2

kd + 4kdkp + 6k̂dkp

2kd + 2k̂d

(31)X =
Z(4kdkp + 2k̂dkp)− 3k2p(2kd + 2k̂d)

Z

According to Routh Hurwitz criterion if the first column has

a sign change then the system will be unstable. Therefore, if
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any element in the first column of V3rh is negative then the

platoon becomes unstable. So considering 2nd element of first

column of V3rh and and the condition k̂d < −kd will cause A
to have atleast one eigen value with positive real part making

the platoon unstable which is proved in [5],

2kd + 2k̂d < 0

k̂d < −kd

k̂d = −αkd

2kd − 2(−αkd) < 0

2kd < 2αkd

α > 1

Therefore if α > 1 and k̂d = −αkd were k̂d is attacker

vehicle’s gain will make the 2nd element of first column of

V3rh negative hence making the platoon unstable. This also

verifies the condition proved in [5]. Now to bring back the

stability the strategy used here is to vary the kd gains of the

non attacker vehicles such that it mitigates the effect of the

adversarial vehicle. That is we have to make sure that all the

terms in the first column of V3rh should be positive. For the

mitigation part we substitute kd = kdm which will be the

mitigation gain of the non attacker vehicles after the attack

and we will again consider 2nd element of first column of

V3rh,

2kd + 2k̂d > 0

k̂d = −αkd, kd = kdm

2kdm > 2αkd

kdm > αkd (32)

Accordingly, if kdm > αkd the 2nd element of first column

of V3rh will be positive. To verify this condition for Z and

X , we subsitute kd = kdm = 2αkd and k̂d = −αkd,

(33)Z =
16α3k3d − 24α3k3d + 8α3k3d + 2αkdkp

4αkd − 2αkd

(34)Z = kp

(35)X =
kp(8αkdkp − 2αkdkp)− 3k2p(4αkd − 2αkd

kp

(36)X = 0

Finally, from 34 and 36 we can say that all the terms

will be positive with no sign change if kdm > αkd after

the attack and hence mitigating the attack introduced by the

adversarial vehicle. Next we derive conditions for 4 and 5

vehicle platoon and make a case for n vehicle platoon. In the

end the simulation results and eigen value plots will validate

the above derived conditions.

Now, let us consider 4-vehicle platoon case, with 3rd vehicle

as the attacker. Below is the matrix for (sI −A) matrix,

V4 =









−s 1 0 0 0 0

−2kp −2kd−s kp kd 0 0

0 0 −s 1 0 0

kp kd −2kp −kd−k̂d−s kp k̂d

0 0 0 0 −s 1

0 0 kp k̂d −2kp −kd−k̂d−s









(37)

The characteristic equation for V4 is,

(38)

V4c = s6 + (4kd + 2k̂d)s
5 + (4k2d + 6k̂dkd + 6kp)s

4

+ (k3d + 3k̂dk
2
d + 14kpkd + 6k̂dkp)s

3

+ (6k2dkp + 6k̂dkdkp + 10k2p)s
2

+ (9kdk
2
p + 3k̂dk

2
p)s+ 4k3p

Now by applying the same steps as 3-vehicle case, the

conditions for attack and attack mitigation for a 4-vehicle case

are as follows,

• If α > 1 and k̂d = −αkd were k̂d is attacker vehicle’s

gain the platoon will be unstable.

• For attack mitigation, kd = kdm and if kdm > 2αkd
with k̂d = −αkd and α > 1 all the elements in the first

column of the Routh Hurwitz will be positive making the

platoon stable.

We repeat the procedure for 5-vehicle case. (A − sI) matrix

for 5-vehicle case is with 3rd vehicle as the attacker is written

as,

V5 =













−s 1 0 0 0 0 0 0

−2kp −2kd−s kp kd 0 0 0 0

0 0 −s 1 0 0 0 0

kp kd −2kp −kd−k̂d−s kp k̂d 0 0

0 0 0 0 −s 1 0 0

0 0 kp k̂d −2kp −kd−k̂d−s kp kd

0 0 0 0 0 0 −s 1

0 0 0 0 kp kd −2kp 2kd













(39)

A =























0 1 0 0 0 0 0 0 . . . 0
−2kp −2kd kp kd 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
kp kd −2kp −2kd kp kd 0 0 . . . 0
...

. . .

0 . . . 0 0 0 0 0 0 0 1
0 . . . 0 0 0 0 kp kd −2kp −2kd























(22)
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The charactersitic equation of V5 is,

V5c = S8 + (6kd + 2k̂d)s
7 + (11k2d + 10k̂dkd + 8kp)s

6

+ (7k3d + 13k̂dk
2
d + 32kpkd + 10k̂dkp)s

5

+ (k4d + 4k̂dk
3
d + 34k2dkp + 26k̂dkdkp + 21k2p)s

4

+ (8k3dkp + 12k̂dk
2
dkp + 47kdk

2
p + 13k̂dk

2
p)s

3

+ (18k2dk
2
p + 12k̂dkdk

2
p + 20k3p)s

2

+ (16kdk
3
p + 4k̂dk

3
p)s+ 5k4p

(40)

So the conditions for attack and attack mitigation for a 5-

vehicle case are as follows,

• If α > 1 and k̂d = −αkd were k̂d is attacker vehicle’s

gain the platoon will be unstable.

• For attack mitigation, kd = kdm and if kdm > 3αkd
with k̂d = −αkd and α > 1 all the elements in the first

column of the Routh Hurwitz will be positive making the

platoon stable.

By observing the conditions derived for 3, 4 and 5 vehicle

platoon case we can write an expressions for instability and

stability after attack for n vehicle platoon as,

• when k̂d = −αkd and if α > 1 it will make the platoon

unstable.

• To mitigate this attack if the kd gains of the non attacker

vehicles that is kdm should satisfy the below condition,

kdm > (n− 2)αkd (41)

Note: The value of α will have a limitation based on the

acceleration limits of the vehicles. Hence the maximum value

for α can be written as αmax. Also, we will only have only

the information of position of the malicious vehicle and not

on the value of α chosen to destabilize the platoon, 41 can

also be written as,

kdm > (n− 2)αmaxkd (42)

The conditions for 4, 5 and n-vehicle case are not explained

in detail as 3-vehicle case due to space constraints. Now,

the above mentioned conditions are validated using MATLAB

simulation. Two cases are considered, 5-vehicle and 10-vehicle

platoon. In the 5-vehicle platoon 2nd vehicle is considered

to be the attacker vehicle (attacker is chosen randomly). The

simulation parameters for 5-vehicle platoon are as follows,

kp = 1, kd = 1, α = 1.1, k̂d = −1.1, αmax = 2, speed

= 30m/s, distance between vehicles = 4m and simulation

time = 300sec To mitigate the attack, we substitute the values

to 42 and get kdm > 6. Next, we consider a 10 vehicle

platoon case with 6th vehicle being the attacker vehicle. The

simulation parameters for 10- vehicle platoon are same as

5-vehicle platoon except the simulation time = 400sec. To

mitigate the attack, again we substitute the values to 42 and get

kdm > 16. Fig.11, Fig.12 and Fig.13 shows the plots of speed,

separation between vehicles and eigen values after attack and

also shows the effect after applying mitigation gains for 5-

vehicle and 10-vehicle case respectively. It is clear from these

(a) (b)

(c) (d)

Fig. 11: (a) Speed of Platoon after attack for 5-vehicle platoon

(b) Separation of vehicles after attack for 5-vehicle platoon

(c) Speed of Platoon after attack mitigation (d) Separation of

vehicles after attack mitigation

(a) (b)

(c) (d)

Fig. 12: (a) Speed of Platoon after attack for 10-vehicle platoon

(b) Separation of vehicles after attack for 10-vehicle platoon

(c) Speed of Platoon after attack mitigation (d) Separation of

vehicles after attack mitigation

plots that after the attack mitigation the speed and separation

between the vehicles settle down to its original value and all

the eigen values lie in the negative half of the plane making

the platoon stable.

VI. CONCLUSION

In this work we have shown that just with the local sensor

information an attack from the adversarial vehicle in the
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(a) (b)

(c) (d)

Fig. 13: (a)Eigen Values after attack for 5-vehicle platoon

(b) Eigen Values after attack mitigation for 5-vehicle platoon

(c)Eigen Values after attack for 10-vehicle platoon (d) Eigen

Values after attack mitigation for 10-vehicle platoon

platoon can not only be detected but also localized with high

accuracy even with noise levels upto 30% using CNNs. The

performance of the CNN is improved from our previous work

by exploring various pre-processing techniques which converts

time series data into images such as TSGS, STFT, GAF and

MTI. From the results we have understood that with range

as input data and with GAF or MTI as the pre-processing

techniques, CNNs give the best accuracy in both MATLAB

and CARLA environment. Once the attack in the platoon is

detected and localized accurately, we have derived conditions

using Routh Hurwitz criterion for the control gains of the

non attacker vehicles such that the attack is mitigated and the

platoon is bought to stable condition. The simulation and eigen

value plots substantiate our proposed approach. Our future

work will concentrate on scalability of the platoon, dealing

with multiple attackers, comparing deep learning algorithms

for time series classification and also study the effects of

various types of cyber attacks on the platoon.
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