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Abstract Images for "candle" (English)

Speakers of many different languages use the Inter-
net. A common activity among these users is up-
loading images and associating these images with
words (in their own language) as captions, file-
names, or surrounding text. We use these ex-
plicit, monolingual, image-to-word connections to
successfully learn implicit, bilingual, word-to-word
translations. Bilingual pairs of words are proposed
as translations if their corresponding images have
similar visual features. We generate bilingual lex-
icons in 15 language pairs, focusing on words that
have been automatically identified as physical ob-
jects. The use of visual similarity substantially
improves performance over standard approaches

Images for "vela' (Spanish)

: Ay : Figure 1:Matching words through their images: Images retrieved
based on string similarity: for generated lexicons from the web for the English wordandle (top) and the Spanish

V.V'th 1000 translations, |n_clud|ng V|sua_l informa- word vela(bottom). The matching between detecgdT keypoints
tion leads to an absolute improvement in accuracy s shown for a pair of images.

of 8-12% over string edit distance alone.
Facebook and Flickr every montHJsers naturally label their

1 Introduction images as they post the_zm online, providipg an _explipit lisk b

- ) } o o tween a word and its visual representation. Since images are
Bilingual lexicon induction is the task of finding words or |gpeled with words in many languages, we propose to gen-
phrases across natural languages that share a common megpate word translations by finding pairs of words that have a
ing. In the machine translation (MT) community, such trans-high visual similarity between their respective image sets
lations are usually obtained from aligned parallel textr Fo Figyre 1 illustrates our approach for a particular word pair
most language pairs, and most domains, parallel data is URye yse Google’s image search to automatically acquire im-
available, and therefore a range of methods have been dgyes for the wordsandlein English andvelain Spanish. We
veloped to find translations directly from monolln_gual text then use computer vision techniques to detect scale-amvari
[Fung and Yee, 1998; Rapp, 1999; Koehn and Knight, 2002eypointsn each image. These keypoints are used to produce
Haghighiet al, 200d. Bilingual lexicons have many uses g yisual similarity score for everyandldvelaimage pair. We
beyond MT, e.g. in cross-language information retrieval. ~ generate a single score foandldvelaby combining the vi-

To find translations using monolingual data, words arega| similarity across all image pairs. Using 20 images for
associated with information that is preserved across langach word, our approach rankelaas the most likely trans-
guages. Previous systems have exploited the similar spelli |ation for candleout of 500 translation candidates, despite
of translations in related languadé®ehn and Knight, 2002;  there being no identical images shared by the two image sets.
Haghighiet al, 200§, and their similar frequency distribu- 14 our knowledge, this is the first work to induce word
tion over time[Schafer and Yarowsky, 2002; Klementiev and ransjations through labeled images. An unexplored adtern
Roth, 2006. A seed lexicon has also been used to projectjye to our approach would be to have (monolingual) speakers
context words from one language into another; translationg yifferent languages provide words for tisameimages.
are then identified as bilingual pairs of words with high con-
textual similarity[Fung and Yee, 1998; Rapp, 1999 'Facebook recently tweeted that over 750 million images were

We exploit the universality ofisualinformation to build  uploaded over the recent New Year's weekend alomett er . cont
bilingual lexicons. Billions of images are added to sité®li  facebook/ st at us/ 22372857292005376#



For example, the monolingual speakers could play the ESEolor histogram

game[von Ahn and Dabbish, 2004n different languages, Deselaers et a]2004 note that forimage retrieval, thedlor

but with the same set of images. Or, we might pay annotatorkistogram performs well. . and can be recommended as a

to label images in their native language using online annosimple baseline for many applicatioh3o create a color his-

tation services such as Amazon’s Mechanical Turk. Un"ketogram, we partition the color space and count the number of

these alternatives, our approach can make use of the mamyage pixels that occur in each partition. We partition ¢slo

billions of web images and labels that already eXist. using the first hexadecimal digit in each pixel's R, G and B
We show that visual similarity enables improvements ovealues. This results in #3=4096-dimensional vector space.

standard approaches to bilingual lexicon induction. We augach color partition and its count is used as a feature dimen-

tomatically determine a large class pifiysical objectords  sion and its value, respectively, in this color vector space
where one would expect consistent visual representations

across languages. We evaluate our method in a realistic ariFT keypoints
large-scale lexicon induction task using these words. \&f al SIFT keypoints are distinctive local image features that are
show how our method can provide useful semantic informainvariant to scaling and rotation, and robust to illumipati
tion for resolving other, monolingual, linguistic ambitjas. noise and distortiodlLowe, 2004. They are widely used

in vision research, including work that intersects with NLP
2 The visual similarity of bilingual words [Feng and Lapata, 20L.0We identify SIFT keypoints using

For a given word, we automatically: (1) acquire a correspondPavid Lowe’s publicly-available softwarewww. cs. ubc.

ing set of images, (2) extract visual features from these im¢&/ ~1 owe/ keypoi nts/. SIFT features are taken from im-
ages, (3) compute the visual similarity of two words using®9€S converted to gray-scale. Figure 1 shows the location of

their associated image sets, and (4) use this similaritgnar  S'FT Keypoints detected in two images. We added arcs to il-

translation pairs for bilingual lexicon induction. lustrate keypoints that are close in key-point space.
EachsIFTkeypointis itself a multi-dimensional vector. We

2.1 Using image search engines convert this bag-of-vectors into a bag-of-words represent

Search engines provide a natural way to collect labeled imtion by mapping each keypoint to a dimension in a quantized
ages, given the vast effort that has been expended to refir@dFT feature space. First, we cluster a random selection of
their widely-used image retrieval services. Search ersgiee 430 thousand keypoints (from our English image data) into
trieve images based on the image caption, file-name, and sult cluster centroids using the K-means algorithm. We found
rounding tex{Feng and Lapata, 2010To automatically re- the final clustering distortion to be robust to differentdam
trieve images, we provide a word or phrase as an HTTP querijitializations. Using the signal processing terminolpegch

to the search engine, and directly download the uniformly-resulting cluster centroid iseodewordn the K -dimensional
sized thumbnails that are returned (rather than downl@pdinS!FT codebookTo quantize the keypoints for a particular im-
the source images directly). For English words, we usedge, we map each keypoint to its nearest-neighbor codeword.
Google’s Image Searc{www. googl e. com i nghp), while ~ Each dimensionin the res_ultlng feature vector corresptmds
for foreign words, we used the corresponding foreign Googled codeword; each value is the count of the number of key-
website (all with default settings). For experiments ugitig ~ Points mapping to that word.

images for a given word (e.g., Figure 2(a) below), we take the . o

first W images returned by Google. We used Google becausé-3 Combining image similarities

previous research has shown that its results are compgetitii_et e andf be visual feature vectors for a pair of images. We
with “hand prepared dataset§Ferguset al, 2009. Also,  measure the distance between these vectors using thaiecosi

in related ongoing work, we achieve higher accuracy usingsimilarity: cosine(e, f) = % Many distance functions
Google images than using images obtained from Flickr. have been used in the literature and improving this function
22 Visual features could be fruitful future work ¢f. [Deselaer®t al., 2009).

Each word has a corresponding set of images. d.ahd
denote two such sets in a source and target language.
produce a single word-to-word visual similarity score,

We convert each image to a representation based on a finivﬁ,
set of visual features. A range of visual features have beez?o

explored in the vision literature, usually in the contexsap- sim(&, F), we combine the similarities of all image pairs us-
porting content-based image retrief@kselaerst al.,, 2004. ing one of two scoring functions:ViSMAX or MAX MAX.

Often such features correspond only to local parts of the im- For eache € £, AVGMaXx finds the best matching image

age, and the spatial relationship between these parts is not ) : )
modeled, analogous to the bag-of-words representatioit:fam mr it averages these top-matches to produce a single score:

iar to NLP researchers. We adopt this bag-of-words approach 1 Z
| ec&

for our two types of features: color features andr features. AVGMAX(E, F) = B max(cosine(e, f)) (1)

feF
20ur approach is also independent of the verbosity of a given )
annotator. Knowledgeable web users will naturally labetyies of MAxMAX, on the other hand, takes the single best match-
orioles, magpiesandcockatooswhereas a solicited annotator might ing image-to-image similarity as the word-to-word score:
be inclined to tag all these image with the simple |ahied.

¥Scripts and experimental data are publicly available at: MAXMAX (€, F) = max max(cosine(e, f)) (2)
www. cl sp. j hu. edu/ ~sber gsma/ Lex| ng/ ecf feF



3 Creating a lexicon of physical objects 3.2 Physical objects via distributional similarity

We assume that words for concrete objects, such as machinédhe above patterns only identify a small fraction of the phys
tools and living things, will have consistent color and key-ical objects that might be amenable to visual represemtatio
point features in their associated images. Words that repréMe create a larger list by finding words that occur in similar
sent more abstract concepts, suclpaxrastination forgot ~ contexts to a seed list of physical objects, i.e., words dnat
andintolerant, could be visually represented in myriad ways, distributionally similar. For example, our English seest li
or might have many irrelevant images in their automatically has the wordselicopter motorcycleandtruck; the larger list
compiled image sets. The latter words might therefore bédas similar wordsubmarinetractor, andlorry.
problematic to visually-align across languages. We use a seed lexicon of 100 physical objects in each lan-
We therefore propose to initially focus on finding transla- guage. Our English seeds are the top 100 words as ranked by
tions forphysical objectswords that are both likely to occur the pattern-based approach (excluding words occurringfew
in image labels and to have consistent visual representatio than 50 times in the N-gram data). The foreign seed lists con-
A multilingual lexicon of physical objects would have one sist of the Google translations of the English seed list.
obvious application: it could be used to extend the reach of We exploit the availability of large corpora in each lan-
multilingual image search enginf&tzioniet al, 2007. guage to rank a list of unigrams by their contextual simijari
We propose automatic methods for creating a lexicon ofwith the seeds. Contextual similarity is defined as the @sin
physical objects. We first explore a precise but low-coverag similarity between context vectors, where each vectorgive
pattern-based approach and then a higher-coverage but notbie counts of words to the left and right of the target unigram
ier approach based on distributional similarity with a seedWe get counts from English and foreign Google N-gram data
lexicon. While our experiments use single-token words, ex{Lin et al, 2010; Brants and Franz, 20009 Rather than

tending our approach to phrases is straightforward. building the vectors explicitly, we use the locality-seivel
. , _ , hash algorithm of Van Durme and L4R014 to build low-
3.1 Physical objects via pattern matching dimensional bit signatures in a streaming fashion. Thiwe!
We first collect English words filling the following pattern:  for fast, approximate cosine computation. We rank the uni-
{image,photo,photograph, pictyref {a,ar} _______ grams by their average similarity with their ten most-samil

seeds. The top 20,000 highest-ranked unigrams comprise the

We require the filler to have a noun part-of-speech tag and thﬁnal physical object lexicon in each language

word after the filler tonothave a noun part-of-speech tag.
We count how often each word fills this pattern in Lin . . .
et al[2010Q’s web-scale, part-of-speech-tagged N-gram cor-4 Experiments Part 1. 500-word lists
pus. We rank words by their conditional probability of co- 4,1  Set-up
occurring with this pattern. We filter words that occur in the
corpus as nouns less than 50% of the time; we also manual
filtered 29 potentially offensive terms. After filtering gtop
500 remaining words were taken as our English lexicon.
The resulting lexicon contains many physical objects (like
helicopter finger, andsword), but also some more general
or more abstract conceptsrganization situation logo, and
product Matching these words based on their visual features

valuation We first test on the 500-word lists created via
attern-matching§(3.1). Here, each source word, indexed
by i, has a translation in each target lexicon; let this be at
positiontr(z). For each source word's image séf, we rank
all foreign image setsf;, by their similarity with&;. The
goal is to haveF,, ;) ranked highest, i.eranke, (F,5))=1.
We use the following evaluation measures:

represents a challenging task for our approach. ¢ MRR: Mean-reciprocal rank of correct translation:

While it would be possible to apply this same process to MRR = ﬁ fgi m (closer tol is better).
other languages, we want to first evaluate the power of visual Top-N accuracy. Prolporiiznn of instances where the
similarity independently of the quality of our approacthis | correct translation occurs within the topy highest-
guistic components. We thus built corresponding lexicons i ranked translations. We ugé=1, 5 and 20.

foreign languages by directly translating the English veord

using Google Translate {ansl at e. googl e. com’ ). We . - .
take the one-best translation returned by Google Translatgaté We use our English-Spanish lists to perform prelimi-

and create lexicons in Spanish, German, French, Italian anEﬂary experiments and to set the parameters of our algorithm

Dutch. Since different English words may have the same for{including theA parameters described below). Our final re-
eign translation, the foreign lexicons can be less than 508Ults are the average MRR and Topaccuracies across all
words. pairs from English, Spanish, German, French, Italian and

We use Google Translate because it gives high—coveraQBUtCh’ excluding English-Spanish. Images for each languag

translations for the 15 language pairs we experimented4with &€ collected and processed as describgdinThe proposed

However, note that using a single translation from Googld@nkings are evaluated against the Google translations.

Translate might miss translations for words with multiple

senses, and thus make our task more difficult. Comparison approaches Let we andwz be source and

A o _ target word strings which have corresponding image Sets
“We did not previously have electronic dictionaries for hse ; Snilar ; .

pairs. In Section 5 we also make use of in-house electrogtiodi andf. We compare the following similarity functions:

naries for evaluation in Spanish-English and French-Bhgli 1. Random: Randomly score each, F pair.



System | MRR Top-1 Top-5 Top-20 System MRR Top-1 Top-5 Top-20
AVGMAX 36.0 31.0 40.8 48.8 Random 1.4 0.2 0.9 4.1
MAXMAXx | 315 270 352 42.0 Color Histogram 196 144 232 35.6
SIFTS 321 274 357 45.3
Table 1:500-word lists experiment (%): VM Ax performs better ~ SIFTs+Color 3.7 311 414 537
than MaxMAXx on English-Spanish bilingual lexicon induction. Normalized Edit Dist.| 41.7  37.3 458 52.9
SIFTs+Color+NED 536 48.0 595 68.7
60 T T T T 60 T T T
50 e 50 e Table 2:500-word lists experiment: Average lexicon induction per-
/\/~’~ formance (%) across all pairs withifiGerman, English, Spanish,
40 I 7 40 - 7 French, Italian, Dutch Top score inbold, second-highest iital-
30 | | 30 | i ics. Combining visual and orthographic similarity performsbe
20 | . 20 | . creasing, showing there is some value in later image results
0l | ol | Performance (and computation) also increases with the num-
Top-20 (o) —— Top-20 (%) ——— ber of codewords in theIFT codebook (Figure 2(b)), up to
p-1 (%) Top-1 (%) .~ . .
0 T R E 0 Lol il el around 1000 codewords (note the x-axis is on a logarithmic
0 5 10 15 20 10 100 1000 10000 scale). Beyond 1000 codewords, Top-20 accuracy plateaus
Number of images Size of codebook . . .
@ b) while Top-1 accuracy increases. Using more codewords re-

sults in a more specific visual representation, meaning that
) more general similarities between keypoints might be ngisse
Figure 2: 500-word lists experiment: Performance of English- pyt false positive matches are reduced.
Spanish lexicon induction improves with (a) more imagesvpend Table 2 provides final results averaged over the other 14
and (b) more codewords (clustersiFT keypoints). language pairs, using default settings for the above compo-
nents.sIFT features are more powerful than colors, but their
2. Color Histogram: Compute visual similarity using combination achieves even better results. The full visysd s

color features onlysimgq)of(€, F)- tem (sIFTs+Color) is competitive with Normalized Edit Dist.,
3. sIFTs. Compute visual similarity usingIFT features and even exceeds its Top-20 accuracy. Since visual and or-
only: simg|g7(€, F). thographic similarity provide such complementary informa
4. siFTs+Color: Use a linear combination of tteFTand  tion, thesiFTs+Color+NED combination works much better
color histogram similarities: than either visual or orthographic similarity on its owndan
sims|FT(E, F) + Aosimgg)or(€, F). achieves the top result on all measureshaid). Note the

5. Normalized Edit Dist. (NED): Compute the character- Top-1 accuracy of this system: across 14 language pairs, the
level (orthographic) similarity ofve andwr using the  correct translation is the first one proposed (of 500 candi-
widely-used edit distance measure. NED uses dynamidates) in nearly half the cases.
programming to compute the minimum number of inser-
tions, deletions and substitutions needed to transformthg ~ Experiments Part 2: 20,000-word lists
source stringug into the target stringu~. It normalizes
this edit distance by the length of the longer string. 5.1 Set-up

6. sIFTs+Color+NED: Use a linear combination of the Evaluation We now create bilingual lexicons using the
two visual and one orthographic measure: 20,000-word lists. These lists consist of words that are dis
simg|eT(€, F) + A1simeg|or(€, F) + A2NED(we, wr)  tributionally similar to a seed list of 100 physical objeats

each language;(3.2). We conduct experiments to generate
4.2 Part1results English-Spanish and English-French lexicons. For these ex

We first provide results on our English-Spanish developmenP€riments, it is not the case that every English word has a
data. We use this data to investigate three key components §nslation in the foreign lexicon. According to our golerst
our algorithm: the scoring function (defaultv&Max), the ~ dard lexicons (below), only 24% of the English words have a
number of images in each image set (default 20) angtie ~ SPanish translation, and only 21% have a French translation
codebook dimensionality (default 20,000). For simplicie 1 he task is now to detect these correct translations withen t
investigate these components using osilyT features. 400 million possible pairs. We therefore choose a different
Table 1 shows that we get a consistent gain usingMAx evaluation: Given a proposed list of thé most-confident
rather than Mix MAX scoring. Our approach therefore lever- franslations, what proportion are correct? \We compare sys-
ages not just the exact image matches in the image sets, B@MS by plotting these proportions for different values.of
ag_(i:_]rr]egate |rt1)formfalt|on ovetrhm;':my Weak_e r matrc]: hes. th SNote how the scale of our Part 2 experiments compares to pre-
€ number or Images that we use In each image set Qg s work. Koehn and KnigH2002 evaluate on the 1,000 most-
a strong impact on both performance and efficiency (CoMsequent English and 1,000 most-frequent German nounslewhi
puting A/7GMAX increases quadratically with the number of Haghighi et al[200d evaluate on the 2,000 most-frequent English

images in each image set). While the Top-1 accuracy plateaugd foreign nouns. By focusing on only the most-frequentnspu
around 20 images (Figure 2(a)), the Top-20 scores arerstill i these approaches use data where lots of distributionatnivzfion



Data The 20,000-word lists are generated as described in
§ 3.2. For each word in each language, 20 images are down-
loaded and processed as describegiZnresulting in a target
of 400,000 images for each language (but not all words re-
turn a full set of 20 images). For efficiency reasons, we use
the sIFT features, but not the color features, in these experi-
ments. For computing similarity, we parallelize the royghl
400K2=160 billion cosine computations.

We compile a gold-standard translation lexicon for evalu-
ation via two sources. First, we include all entries in saler
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in-house electronic Spanish-English and French-English d
tionaries. Second, we use Google translate in two direstion
(A) to convert every English-list word to its foreign trans-
lation, and (B) to translate every foreign-list word to ita-E

glish translation. Unfortunately, the 20,000 lists inaudany Figure 3:20,000-word-lists experiment: Precision (%) of induced

typos and other rare strings. Since Google translate passgsicons in (a) English-Spanish and (b) English-Frenchdiad vi-
OUt'Of'YocabmaW words verbatim, we exclude any verbatimsyal similarity 61FTs) improves over string similarity alone (NED).
translations from our gold standard as unreliable. To preve

these exclusions fro_m (j|stortlng our r_esults, we only [delu n previous approaches, there would be insufficient statist
a proposed translation in our results if both the English an

foreign words occur at least once in our gold standard (o al or orthographic information to enable discovery of thes
9 urg ; - translation pairs. Indeed, these terms might not be foued ev
course, they need not occur together in a translation palq

To be clear: this only removes pairs where both the Englishh plentiful paraliel text.
and foreign words are translated verbatim by Google trans: We also computed the matching of the English list against

late, and neither occurs in our in-house lexicons. |tself_(excludir_19 identical Word ma_ltches)_ aﬂd present exam
ples in the third columf. While visual similarity alone is

rarely definitive, these results suggest that together ettiler

Comparison approaches We compare visual similarity us- indicators, visual similarity might provide helpful seni&n

ing SIFT features §IFTs) and orthographic similarity using information for detecting morphologically-related foriesg.

Normalized Edit Distance (NED). For efficiency, we only re- hurricaneshurricane), correcting spelling errorsrgsery

tain the top 1000 most-similar words for each English word.rosary), and identifying semantic relationshidssfihookand

For thesIFT similarity, we use the default scoring function, boathookare taxonomic cousins: both aneoks.

number of images, and codebook size from Part 1. We com-

pare systems based on the visual and orthographic measurgs Discussion and Euture Work

on their own, and a joint system that simply sums the two

similarities over their individual top-1000 listsFTs+NED). ~ Our work differs from approaches fdmage annotation
automatically labeling images or image parts with words

5.2 Part 2 results or phrases/Barnardet al, 2003; Lavrenkoet al, 2003;

Figures 3(a) and 3(b) show results on English-Spanish anﬁeng and Le}patl;al, 20]‘%/\/? do nottan?jlyztla the image to c_ig-d
English-French lexicon induction. Here, NED strongly ‘€MIN€ appiicable words, we instead rely on user-provide

outperforms visual similarity alones(FTs), reflecting the annotanodns. Wwe f?ﬁus on matching |mta%es \tNItIh itherérr;-
smaller proportion of physical objects in the 20,000-word39€s, and we use theé image-imageé matches 1o link word 1a-

lists, and hence the greater difficulty of visual matching.P€!S: However, we can still benefit from advances in im-
However, when we combine visual and orthographic simi-29€ annotation; any improvements in the monolingual word-

larity, we achieve substantial improvements: when prappsi image links will resu_lt n be_tter image sets, a_nd therebyeret
1000 translations, we get an absolute improvement of 1208Verall word-word visual similarities. In particular, aaivces
(Spanish) and 8% (French) over using orthographic sintylari In image annotation might allow us to do better on absEract
alone. Remarkably, without any manual involvement beyond:once,f)t V\_/ords_. Rec?nt work has a'!“ed to go b_eYSW"

the 100 seed words, we are able to generate 1000 translatiof'ds’ o identify the “attributes, relations and activitiésn

with 80% precision in French and 70% in Spanish. images[Hodoshet al, 201d. As recognition of these im-

Table 3 provides some specific examples of similarities?™VeS: finding the translation of adjectives, abstractnsou
computed using the visual features. Note that being ablémOI verbs could improve in tandem.

to propose correct translations for low-frequency nouke li _ OUr ultimate aim is to use visual features, along with

rosary andfishhookis a major advance over previous work, °ther semantic indicators, to jointly learn bilingual @it
spondences and monolingual semantic relations. Beyond

construction of the 20,000-word lists, our current apptoac

is available for the lexical items (hence datasets faverabltheir / » 0 I |
does not leverage the lexico-semantic information given by

methods). We increase the scope of the lexiconsabyorder-
of-magnitude finding matches across 20,000 English and foreign
nouns. While we focus on physical objects, we actually gitem
something that is much wider in scope than previous work.

5Note hurricanematches perfectly withurricaine Google cor-
rects the latter spelling to the former and returns idehticages.



Word Spanish French English

hurricane | huracan:0.14huracan:0.08 ouragan:0.06 méteorologie:0.06 hurricaine:1.00hurricaines:0.28
borrasca:0.05 tsunami:0.05 tsunami:0.05 cyclone:0.05 huricanes0.28 tsunami:0.05

rosary camandula:0.15 puntaje:0.14 chapelet0.21 activite:0.15 rosery.0.17 docment:0.15
accidentalidad:0.14 rosaire:0.15 chatoiement:0.15 precompensator:0.14 octonidi¥:(

fishhook | anzuela0.13 densi-metro:0.13 hamecon0.12 baton:0.11 sjambok:0.12 mangalsutra:0.12
chaira:0.12 pincel:0.12 binette:0.11 pinceau:0.11 hétad boathook:0.11

Table 3:20,000-word-lists experiment: Examples of visually-samiwords in different languages, ordered by similarity recoCorrect
translations in bold. Visual similarity correctly ideng&8 translations that would be missed using string simylgfishhookanzuel9, and
also finds morphologically or semantically-related wond€nglish fishhookboathoo.

frequency, contextual-similarity, etc., that was foundro [Ferguset al, 2009 R. Fergus, L. Fei-Fei, P. Perona, and
prove performance in previous studies. Monolingualat A. Zisserman. Learning object categories from Google’s
semantic information might also be exploited. For example, Image Search. ITCCV, 2005.

if fis_hhoolandbpathoolere visually sir_nilar in E_nglish, their [Fung and Yee, 1998P. Fung and L. Y. Yee. An IR approach
forelgn trf_;mslatlons should also be wsually 5|m|!ar. M for translating new words from nonparallel, comparable
ideas (using text) have been explored for inducing bilingua  ;oy¢q. INCOLING-ACL, 1998.

lexicons[Koehn and Knight, 20d2and building semantic o o )
taxonomiegSnowet al., 2004, but not as a single combined [Haghlgh'e,t al, 2009 A. Haghighi, P. Liang, T. Berg-
model. Also, while large-scale efforts like ImageNetarecu  Kirkpatrick, and D. Klein. Learning bilingual lexicons

rently linking images to words in a semantic taxonolgng from monolingual corpora. IACL-08: HLT, 2008.

et al, 2009, visual features have not yet been exploited to[Hodoshet al,, 2014 M. Hodosh, P. Young, C. Rashtchian,

help build and extend the taxonomy itself. and J. Hockenmaier. Cross-caption coreference resolution
) for automatic image understanding. @@oNLL, 2010.

7 Conclusion [Klementiev and Roth, 2006A. Klementiev and D. Roth.

We have shown that it is possible to use labeled web images Named entity transliteration and discovery from multilin-
to improve the performance of bilingual lexicon induction.  gual comparable corpora. HLT-NAACL, 2006.

We presentled results. for a.number of languages and expelp1 oehn and Knight, 20d2P. Koehn and K. Knight. Learning
mental settings, and investigated key parameters sucteas th 5 translation lexicon from monolingual corpora. ACL

similarity scoring function, the number of images per word,  \yorkshop on Unsupervised Lexical Acquistiaf02.

and the number of codewords in the visual codebook. \ﬁsuaﬂ

similarity provides substantial gains over orthograpliln-s  LLavrenkoetal, 2003 V. Lavrenko, R. Manmatha, and
ilarity alone, even on related languages where orthogaphi J. Jeon. A model for learning the semantics of pictures.
similarity is known to be effective. On unrelated language In NIPS 2003.

pairs (like English-Hindi or Arabic-Chinese) the benefifs o [Lin etal, 201Q D. Lin, K. Church, H. Ji, S. Sekine,
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